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Abstract

The article presents a literature review of the plant origin natural compounds with biocidal properties. These compounds 
could be used as modifiers of biodegradable materials. Modification of polymer material is one of the basic steps in its manu-
facturing process. Biodegradable materials play a key role in the current development of materials engineering. Natural modi-
fiers are non-toxic, environmentally friendly, and renewable. The substances contained in natural modifiers exhibit biocidal 
properties against bacteria and/or fungi. The article discusses polyphenols, selected phenols, naphthoquinones, triterpenoids, 
and phytoncides that are natural antibiotics. Due to the increasing demand for biodegradable materials and the protection of 
the natural environment against the negative effects of toxic substances, it is crucial to replace synthetic modifiers with plant 
ones. This work mentions industries where materials containing natural modifying additives could find potential applications. 
Moreover, the probable examples of the final products are presented. Additionally, the article points out the current world’s 
pandemic state and the use of materials with biocidal properties considering the epidemiological conditions.

Keywords Biodegradable polymers · Natural origin modifiers · Biocidal additives · Polyphenols · Phytoncides

Introduction

Modification of polymer materials is carried out to give the 
desired characteristics to the final products. These features 
depend on the application. For example, the industry in 
which the polymer materials will be used or the function 
they will perform. Modification is the most common way 
to give unique features and improve selected parameters of 
finished goods made from polymer materials. The modifica-
tion changes their properties and internal structure. One of 
the methods of changing the internal structure of materials 
is the insertion of modifying additives. In general, it is car-
ried out during the production process. The aspiration to 
reduce the number of additives gave rise to the search for 
modifiers that would give more than one new feature to the 
biodegradable material. Due to the current epidemiological 
situation, the research of compounds with biocidal proper-
ties added to polymer materials is in more dynamic progress 

than ever before. The biocidal properties of the material are 
understood as the capability to reduce the number of patho-
genic microorganisms under defined conditions [1–4]. The 
increase of public awareness of environmental pollution, 
the constant growth of the number of post-consumer waste, 
and care for human health are observed nowadays. Thus 
additives should meet the modern criteria and conditions. 
First of all, they should be non-toxic to human health and 
the environment [5]. Polymer materials used in the medi-
cal, pharmaceutical, and packaging industries are in close 
contact with the human body or food [6, 7]. The application 
of polymer materials in mentioned industries may depend 
on the substances they contain. The additives contained in 
the material cannot interact with other materials. All of the 
mentioned conditions concern both modifying additives and 
polymer matrices.

Biopolymers are the polymers that naturally occur in flora 
and fauna [8]. They cause no environmental pollution and 
are completely harmless for the inhabitants of the earth. 
Moreover, this kind of polymers is obtained from renewable 
resources which do not destroy our planet. The natural origin 
of this type of materials makes them biodegradable—sus-
ceptible to chemical processes that lead to the decomposition 
of biochemical substances. The decomposition is done by 
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microorganisms [9]. The biopolymers are well suited for bio-
composites (composites that are produced from renewable 
raw materials) manufacturing due to their biodegradability, 
no-toxicity, and natural origin.

Biocomposites are promising materials that may be 
implemented into everyday use. The processing of biocom-
posites with biopolymer matrix doped with natural-origin 
modifying additives is a promising field of biodegradable 
biocomposites. Biocomposites like this are the present 
development trend in polymer materials. The current lit-
erature state helps to create a classification of modifying 
additives of natural origin which contain organic substances.

This article presents already used modifiers and those 
having the potential to be used in the production of poly-
mer materials that exhibit biocidal properties. The synthe-
sis, properties, and application of natural modifiers of plant 
origin are discussed. The basic groups of polyphenols and 
selected compounds of natural origin such as some phe-
nols, naphthoquinones, triterpenoids, or phytoncides are 
presented.

Biopolymer Matrices

Polymer might be called biopolymer if it is biobased (pro-
duced by the living organism) or/and biodegradable. They 
are divided into two groups. The first group of biopolymers 
(natural) is obtained from living organisms, while the sec-
ond one (synthetic) is produced during the polymerization 
of selected compounds contained in renewable resources 
[10–12]. Moreover, the natural biopolymers group consists 
of two subgroups: polysaccharides and proteins, while the 
synthetic biopolymers group is divided into degradable and 
non-degradable biopolymers [10]. Most of the representa-
tives of mentioned groups are used as materials for biocom-
posite matrices. Due to the current ecological threat resulted 
from residual plastic waste the creation of completely biode-
gradable composites is crucial. It is possible, however, every 
part of the composite should be biodegradable. Therefore, 
the application of natural plant modifiers in biocomposites 
is an excellent solution for environment-friendly materials.

Chitosan

Chitosan belongs to polysaccharides. This biopolymer is 
sourced from chitin—one of the most common polysac-
charides in the world. It occurs in marine shellfish, insects, 
mushrooms, and yeast. The highest percentage content of 
chitin has been observed in shells and tails of crabs, shrimps, 
and lobsters. Hence, chitosan could be “recycled” from 
seafood waste. This method of chitosan extraction could 
improve current environmental conditions [13–15].

Chitosan is known as a semicrystalline polymer material 
with various types of crystal structures (polymorphism). It 
is a biodegradable, biocompatible, and renewable polymer 
material with antioxidant properties. Moreover, chitosan is 
non-toxic for humans and bioactive against selected micro-
organisms and viruses [15, 16]. Material is soluble in acid 
solution and non-soluble in the majority of solvents. Its 
hydrophilic properties promote the ability to create films. 
However, the hydrophilicity of this material has its draw-
back: it leads to material swelling in water. Hence, material 
modification is advised. Furthermore, it is known that chi-
tosan is susceptible to modification [17].

This biopolymer is used for environmental protection 
purposes (e.g. water purification) [17]. In the agricultural 
industry, chitosan is applied as a biostimulator that promotes 
plants growth and their defense mechanisms. As a seed coat-
ing material chitosan improves its germination rate [18]. Due 
to its biological activity, it is used in the food and food pack-
ing industries as a biopreservative that extends the shelf life 
of products [19, 20]. Material has potential application in 
the medical industry due to its unique (e.g. wound healing) 
properties. Chitosan could be applied as surgical sutures or 
in bones and dental prosthetics. According to the hydrating 
properties of the compound, it is could be used as a material 
for contact lenses [15, 21].

Starch

Starch is another natural polymer that belongs to polysac-
charides [22]. It occurs in plant roots, tubers, and fruits. The 
main sources of starch are cereals and potatoes. Although it 
could be extracted from certain varieties of pea and lily [23, 
24]. Starch consists of homopolymers—amylase and amylo-
pectin. Amylase is soluble, while amylopectin is non-soluble 
[8, 22]. Wet grinding, drying, and sieving are the main ways 
to obtain starch [24].

Energy storage is the main function performed by starch 
in various plants [25]. Starch is a hydrophilic biodegrad-
able polymer that is non-soluble in cold water and soluble 
in diluted solutions of acids and bases. It is known that the 
mechanical treatment (milling) of starch improves its solu-
bility [22, 26, 27]. This polymer is renewable, biocompat-
ible, and biodegradable [24]. Its presence in polymer materi-
als increases their biodegradability [25]. According to Syafiq 
et al. [28], the mechanical properties of the starch-based 
films are comparable to currently used plastics. Besides this, 
the starch films have an advantage—they are edible. Moreo-
ver, starch is a low-price polymer [24].

According to the non-toxicity of starch and its unique 
polymer properties, it is applied in many industries [24]. 
However this polymer is mainly used in textile [29], phar-
maceutical [24], paper [30], printing [31], and cosmetic [32] 
industries. This polymer would be an excellent material for 
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the production of biodegradable disposables if it exhibited 
hydrophobic properties [25]. The wide range of starch modi-
fication methods enables its application in the food industry 
[33].

Zein

Zein which belongs to proteins is one of the most frequently 
used biopolymers from renewable sources [34]. It is obtained 
only from maize: corn gluten meal (CGM), distillers dried 
grains (DDG), and dried milled corn [35, 36]. It is the main 
protein that occurs in corn endosperm cells and its percent-
age content varies from 35 to 65% [35, 37].

It is a biodegradable and biocompatible material that 
exhibits hydrophobic, antioxidant, and mucoadhesive prop-
erties [38–41]. The solubility of zein depends on the solvent: 
it is insoluble in water, while anionic detergents, alcohols, 
and urea (only in high concentration) dissolve it [35]. Sol-
vent parameters (such as pH and temperature) affect zein 
structure [42]. According to Arvanitoyannis et al. [43] zein 
is a brittle material and this characteristic has a negative 
effect on its structural properties.

Zein is used in the textile, food, and biomedical indus-
tries [35]. According to Gonçalves et al. [44], zein-coatings 
improve the hydrophobic properties of cotton. Due to the 
United States Food and Drug Administration (FDA) zein 
is generally recognized as safe (GRAS) [38]. Hence, it is 
widely used in industries where this polymer could have 
close contact with the human body. Zein-based edible coat-
ings which contain various antioxidant modifiers are used 
as food biopreservatives. Zein is applied as a component of 
adhesives [35]. It is known that the bioactive agents could be 
encapsulated with this biopolymer [38, 45]. Zein is applied 
as a material for gene, drug, and vaccine delivery. Tissue 
engineering is another industry where zein could be poten-
tially used [41]. It could be also implemented as a film and 
coating material for materials engineering uses. According 
to the unique properties of zein, it has the potential to replace 
currently used polymers with the petrochemical origin [42].

Gelatin

Gelatin is another protein biopolymer [46, 47]. It is obtained 
from animal skin, bones, cartilages, connective tissues, and 
fish scales. All the mentioned sources contain collagen [8, 
46, 48]. Nowadays, the main source of gelatin is cattle and 
a pig skin. However, these kinds of animals are suffering 
from various infectious diseases. Therefore, the alterna-
tive sources of gelatin are in constant search. For example, 
almost one-third of fish waste is skin, scales, and bones 
which could be used for protein extraction and further gela-
tin production [25]. It is one of the sustainable ways of waste 

management which could improve the current ecological 
state.

According to the natural origin of this polymer, it is com-
pletely biodegradable and biocompatible. Gelatin exhib-
its bioactive (especially antimicrobic), antioxidant, and 
crosslinking properties [46]. The organic solvents dissolve 
this material [49]. Gelatin prevents recrystallization and pro-
motes adhesion. However, its adhesive properties depend-
ing on the viscosity of the solution. Gelatin is a promising 
biopolymer for materials engineering applications because 
of its ability to form films and foams [50]. The fish gelatin is 
a strong rival to mammal one due to their similar properties. 
However, the characteristics of fish gelatin depend on the 
species of fish and the extraction conditions [51].

This biopolymer is widely used in the pharmaceutical, 
medical, cosmetic, and food industries due to its biocompat-
ible properties [8, 25]. Gelatin is a feedstock for capsules 
production [49]. Medical applications of material cover 
mainly tissue engineering (especially tissue regeneration) 
[52]. Gelatin-based face masks are widely used by consum-
ers [53]. It is known that this polymer is applied as a com-
pound of lotions and creams [54]. The tasteless edible films 
and encapsulating materials made from gelatin are used 
in the food industry [49, 55]. Gelatin-based biofilms with 
improved mechanical properties and water resistance are in 
current research [55]. Moreover, it is applied as a photo-
graphic emulsion and surface modifier [46, 55–58].

Polylactide (PLA)

PLA is classified as a synthetic degradable polymer [10]. 
PLA is obtained from lactic acid which is mainly isolated 
from sugar beets, potatoes, and corn [59–61]. There are 
two main methods of PLA production: polycondensation 
of lactic acid and ring-opening polymerization of lactide 
(extracted from lactic acid) [62, 63]. According to Su et al.’s 
[64] predictions, the amount of produced PLA will increase 
in the next 2 years.

PLA is a thermoplastic polymer, its properties (clarity 
and rigidity) are similar to polystyrene (PS) [65]. However, 
the melting temperature  (Tm) of PLA is higher and riches 
180 °C [61]. Another advantage of PLA is a lower green-
house gas emission compared to PS [66]. It is completely 
biodegradable, dissolves in organic solvents, and swells in 
a wide range of solvents. The water absorption tendency of 
PLA affects negatively its degree of crystallinity [61, 67]. 
The toxicity of polymer is low [68].

According to the biocompatibility of PLA it is widely 
used in healthcare (e.g. medical and drug) and cosmetic 
industries. Material is used in prosthetics, orthopedics, 
reconstructive surgery, tissue engineering and so forth. The 
PLA microcapsules and microspheres are used to reach 
the effect of prolonged drug release. Cosmetic application 
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of material includes microbeads, face masks, and tissues 
[68–72]. Due to its relatively high mechanical strength, it is 
used in the food-packing industry as a vegetable packaging, 
shrink films, and food trays material. Moreover this it is 
used for paper bags lamination [73]. The PLA-based pack-
ing materials are an environmentally friendly solution that 
could replace the packaging with petrochemical and non-
degradable origin [74, 75]. Another industry of PLA appli-
cation is the textile industry. PLA fibers are similar to PET 
fibers, however, the first ones have several advantages: they 
are more hydrophilic, have better self-extinguishing param-
eters, and prevent the multiplication of bacteria. Hence, it is 
used in clothing, towels, wipes, and filters. Due to sustain-
ability and environmental friendliness, PLA is applied in 
geotextiles [76]. Moreover, PLA is used for environmental 
purposes as a sorbent that disposes harmful contaminants 
contained in water. Additionally, PLA takes part in biore-
mediation—a technique that uses microorganisms to remove 
environmental impurities [77].

Polyhydroxybutyrate (PHB)

PHB is another biopolymer that belongs to the degradable 
biopolymers subgroup [10]. It is produced by various bac-
teria and microalgae under certain stress conditions (e.g. 
carbon excess; oxygen, nitrogen, or phosphate deficiency) 
and performs a storage function [12, 78, 79]. Bacteria and 
microalgae are the most common forms of life in the world. 
However, the cultivation and harvesting of these microor-
ganisms is limited due to the expensive equipment used in 
these processes [12]. According to Sirohi et al. [80], PHB 
could be isolated from by-products created during produc-
tion processes in agricultural, dairy, and food industries.

Certain properties (e.g. physicochemical) of PHB are 
comparable to fossil fuel-based polymer materials. Despite 
this, the high biodegradability and biocompatibility of 
this polymer are known. This fact makes PHB a potential 
alternative to currently used petroleum-based polymers. 
However, the high production costs of biopolymer are the 
main obstacle for its implementation into the industry for 
commercial purposes. It creates no environmental pollution 
due to the no-toxicity of its degradation products [78–82]. 
PLA is characterized as a high crystallinity (degree of its 
crystallinity rages from 50 to 70%) polymer with low water 
vapour permeability [79, 83–85].

PHB is used in aquacultural, medical, and tissue engi-
neering industries. Moreover, biopolymer is used for equip-
ment production [79, 85]. PHB is applied as a material for 
the wound dressings and microspheres used in drug delivery 
systems. Tissue engineering applications of biopolymer and 
its composites cover sutures, screws, bone plates, staples, 
rivets, tacks, etc. In the aquacultural industry, it is used as 
an anti-adhesive agent against shellfish pathogens. While in 

the agricultural industry it could be applied as an antifoul-
ing compound [85]. Also, it is used as an additive for paints 
and coatings that cause no environmental pollution [86]. It 
hardly interacts with food, hence it has potential application 
in the food packing industry [87].

Classi�cation of Polyphenols

Polyphenols are organic compounds and plant secondary 
metabolites i.e. final products of enzymatic reactions which 
occur as a result of metabolism in plants [8, 88]. Polyphenols 
are present in fruits, seeds, roots, bark, stalk, timber, and 
leaves of numerous plants. They are divided into phenolic 
acids, lignans, stilbenes, and flavonoids [89]. This classifica-
tion is based on the number of phenolic groups contained 
in the phenolic ring and also on the method of aromatic 
rings combining. Each group additionally includes over a 
dozen subgroups. More than 8000 polyphenol compounds 
have been discovered [90, 91]. The majority of polyphenols 
are compounds of products that play an essential part in the 
basic human diet. The well-known properties of polyphenols 
make them interesting modifying additives of biocomposites 
[92–94]. The next parts of the article perform a detailed 
analysis of mentioned groups of polyphenols.

Flavonoids

The best-known group of polyphenols is flavonoids 
(Fig. 1)—compounds that dye flowers, fruits, and drupes 
of plants. Flavonoids are the biggest group of polyphenols 
that includes over 8000 compounds [95, 96]. The number 
of discovered compounds is constantly increasing [97]. 
These compounds perform plenty of functions: protecting 
plants from ultraviolet radiation (UV) damage, creating a 
biological protective barrier, and exhibit biocidal functions 
against microorganisms. Furthermore, flavonoids are known 
as natural antioxidant compounds [98]. Representatives of 
flavonoids such as flavanones, flavones, flavonols, and iso-
flavonoids are also well-known for their biocidal properties.

Flavonoids are the promising modifiers of polymer mate-
rials due to mentioned properties. These modifiers can be 
used in the building industry as compounds of products that 
are exposed to UV radiation (windows, gutters, and other 

Fig. 1  Chemical structure of flavonoids [99]
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elements manufactured from polymer materials). Increased 
resistance to UV radiation may improve the aesthetic values 
which getting worse over time. Window or door elements 
such as handles doped with biocidal modifiers compounds 
like flavonoids are necessary in public spaces, especially 
in current epidemiological conditions. This solution may 
decrease the number of microorganisms embedded in ele-
ments of public usage. In the future, it may reduce the 
number of infections with various diseases. This group 
of compounds and their applications are discussed in sec-
tion ‘Classification of Flavonoids’.

Phenolic Acids

Phenolic acids are the subgroup of polyphenols that contains 
carboxyl and hydroxyl groups. Phenolic acids can be divided 
into two groups: the first group contains hydroxybenzoic 
structures (Fig. 2a) and the second group—hydroxycinnamic 
(Fig. 2b). Phenolic acids naturally occur in fruits, vegetables, 
and grains. They are found as compounds in free form (not 
connected with other compounds) and as connected form. 
The last form is connected by ether, ester, and acetal bonds 
with molecules that perform building functions in plants 
[100]. Proteins, cellulose, and lignin are responsible for these 
kinds of functions in plants. Phenolic acids also occur in the 
form that is connected with polysaccharides (starch). They 
take part in the synthesis of proteins, nutritional and allelo-
pathic processes. During the allelopathic processes, the toxic 
substances produced by plants are releasing into the envi-
ronment. The research confirms that substances performing 
allelopathic functions are also natural bio-stabilizers—sub-
stances that inhibit cell division processes (multiplication) 
of pathogenic microorganisms [2]. These compounds are 
contained in cucumber and onion [101–105]. Phenolic acids 

as modifiers of polymer materials may be potentially applied 
in conditions with a high risk of microorganisms invasion. 
Products that are used in humid conditions should perform 
both exploitative and biocidal functions since humidity pro-
motes the multiplication of microorganisms. Phenolic acids 
fulfill these conditions and can be used as modifying addi-
tives of materials used in water transport systems.

The caffeic, gallic, vanillic acids are the representatives 
of this group [106]. Caffeic acid connected with chitosan 
exhibits anti-tumor properties what makes it a potential 
anti-cancer agent [107]. Zein-based and PLA-based coat-
ings which contain caffeic acid can be used in the food pack-
ing industry. PHB/gallic acid nanofibers with antibacterial 
properties are a novel material for the food packing indus-
try. Chitosan-based mats doped with gallic acid and vanillic 
acid grafted chitosan (as a wall material) are used for food 
encapsulation. These materials exhibit antioxidant proper-
ties [108–112]. In materials engineering, phenolic acids are 
used as UV stabilizers in biopolymers (PLA + vanillic acid) 
[113]. Completely degradable nanoparticles made from PLA 
which contains caffeic acid could be potentially applied in 
various industries [114].

Lignans

Lignans (Fig. 3) are the phenylpropane dimers that are clas-
sified as phytoestrogens—the plant origin hormones. Lin-
seed is one of the richest sources of lignans. These phytoes-
trogens control the growth and development of linseed and 
also take part in its protection against the harmful effect 
of UV radiation. They exhibit antifungal and antiparasitic 
activity. Moreover, lignans are known for their strong anti-
oxidant properties. The solubility of these compounds in 
the essential oils and resins is high [98, 116]. This prop-
erty can be used in the field of materials engineering during 
resin-based materials processing. The biocidal and antioxi-
dant properties of these materials would be increased. The 

Fig. 2  Chemical structures: hydroxybenzoic (a) and hydroxycinnamic 
(b) [115] Fig. 3  Chemical structure of lignans [120]
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additives that improve more than one property of the biode-
gradable materials (e.g. mechanical strength and microbio-
logical resistance) are currently searched.

Certain lignans (phyllanthin and silymarin) are imple-
mented into biopolymers. Chitosan-based microcapsules 
with phyllanthin have a potential application in the phar-
maceutical industry [117]. Cellulose biocomposites con-
taining zein/silymarin nanoparticles could be used in food 
packing. The strong antioxidant properties of this packaging 
elongate the shelf life of products packed in it [118]. Sily-
marin improves the resistance of biopolymer blends (PLA/
PHB) on thermo-oxidative degradation. Therefore it could 
be applied as a thermooxidative stabilizer in materials engi-
neering [119].

Stilbenes

Stilbenes (Fig. 4) are the organic compounds contained i.a. 
in berries, grapes, and nuts. These substances have a com-
plicated structure. They exhibit antioxidant and antimicrobic 
properties and have the ability to polymerization. The anti-
oxidant mechanism of stilbenes is based on the stimulation 
of proteins and enzymes contained in plant cells. Stilbenes 
are not widely spread and occur only in 30 plant species. In 
the years 1995–2008 approximately 400 new stilbenes were 
discovered [98, 121]. This group of substances exhibits both 
biocidal and antioxidant properties. The presence of these 
modifying additives could increase the service life of final 
products which could be exposed to pathogenic microorgan-
isms and adverse climatic conditions (e.g. UV oxidation).

The resveratrol and piceatannol belong to stilbenes. 
Biopolymer-based nanoparticles loaded with resveratrol 
have a potential application in the drug industry. The deliv-
ery of resveratrol in nanoparticles improves its solubility 
in the human body [122, 123]. Biopolymers/resveratrol 
materials are used as repairing scaffolds in tissue engineer-
ing [124]. The gelatin/zein mats and pectin/gelatine films 

containing resveratrol are used as an active packaging mate-
rial that elongates the shelf life of food [125, 126].

It is known that resveratrol improves the photo-oxidative 
and thermal stability of PLA and could be applied in materi-
als engineering [127]. Piceatannol is a stilbene with strong 
anti-cancer, anti-viral, anti-inflammatory, and antioxidant 
activity which is used in the pharmaceutical industry. The 
chitosan-PLA nanoparticles and zein nanospheres have a 
potential application as drug carriers for the piceatannol 
[128, 129].

Classi�cation of Flavonoids

Flavanones

Flavanones is a small subgroup of flavonoids that takes a 
big part in medicine. Citrus fruits are the richest source of 
flavanones. Citrus peel has the greatest concentration of 
these active substances. Due to their bioactive properties 
(effecting on human health), citrus fruits extracts are used as 
well as immunostimulants, preservatives and cleaning agents 
[130]. Pinostrobin, naringenin, and hesperidin are the most 
known flavonoids (Fig. 5).

Pinostrobin is obtained from plants Renealmia alpinia 
and Alpinia zerumbet [131, 132]. It is the dominant poly-
phenol contained in certain propolis species [133]. Due to 
the research described in [134], this substance has a biostatic 
effect against Helicobacter pylori and Herpes simplex virus 
type I.

Chitosan/sodium alginate nanoparticles doped with 
pinostrobin could be used in the pharmaceutical industry 
as an anticancer drug [135]. Biopolymer films doped with 
propolis extract have a potential application as an active 
packaging material [133].

Naringenin contained in pomegranate juice is a nar-
ingin derivative. This compound caused the characteristic 
bitter taste of pomegranate [136, 137]. Naringenin is also 
contained in peach drupels, citrus fruits, and tomatoes. 
Apart from many anticancer properties, naringenin exhibits 
biostatic activity against H. pylori strain and inhibits the 
enzymes secreted by it [138]. Moreover, this compound 
exhibits antioxidant and anti-inflammatory properties and 
also can be used as the agent that inhibits the development 
of the SARS-CoV-2 virus [139].

Chitosan nanoparticles loaded with naringenin are used in 
the pharmaceutical industry due to the anti-cancer properties 
of naringenin [140]. Biopolymer nanoparticles doped with 
naringenin increase the water solubility of flavanone. This 
solution has potential application in drug delivery systems 
[141]. The effectiveness of chitosan-based nanoemulsions 
doped with naringenin in skin injuries treatment has been 
proved [142].Fig. 4  Chemical structure of stilbenes [120]



1689Journal of Polymers and the Environment (2022) 30:1683–1708 

1 3

Hesperidin like naringenin is contained in citrus fruits 
and is active against some types of viruses such as Her-

pes, Poliomyelitis, and Paramyxovirus. Due to the latest 
research that shows low cytotoxicity of hesperidin, it can 
be used as an active compound of antivirals against coro-
naviruses [143–145].

The biopolymer-based hydrogels containing hesperidin 
in the concentration of 10% could be used as a wound 
healer agent [146]. Gelatin films with chitosan nanopar-
ticles doped with hesperidin have been considered as an 
active packaging material [147]. Biopolymer-based mate-
rials with hesperidin have a potential application in the 
food packing industry due to their antioxidant properties 
and environmental friendliness [148].

Flavones

As well as previous group flavones are contained in cit-
rus fruits and their juices [151]. The biological activity 
was observed in luteolin and apigenin which are classified 
as flavones (Fig. 6). Luteolin is contained in red onion, 
kohlrabi, lettuce, arugula, carrots, red and yellow pep-
pers, beetroot, green beans, and spinach. The mechanism 
of biocidal activity is based on the inhibition process of 
DNA (nucleic acids are built of nucleotides connected 
with phosphodiester bond) polymerase [8]. Luteolin exhib-
its biological activity against the flu virus, Herpes virus, 
and some Propionibacterium and Staphylococcus bacteria 
[152, 153]. It is biostatic against Chlamydia pneumoniaem, 

Fig. 5  Chemical structure of: 
pinostrobin (a) [131], narin-
genin (b) [149], and hesperidin 
(c) [150]

Fig. 6  Chemical structure of: 
luteolin (a) [159], apigenin (b) 
[149]
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Trichophyton rubrum, and T. mentagraphytes bacterias. 
The effectiveness of luteolin against some fungi is com-
parable to the effectiveness of ketoconazole which is clas-
sified as an antifungal drug [152].

Luteolin is used in the pharmaceutical industry, however, 
the low absorption (bioavailability) in the human body is one 
of its disadvantages. The biopolymer drug carriers (zein, 
chitosan, etc.) make it more bioavailable [154–156]. The 
elongated antioxidant activity of luteolin encapsulated with 
starch nanoparticles is proved. This kind of nanoparticles 
could be used in both the drug and food industries [157]. 
The antioxidant and biocidal properties of luteolin make 
it an interesting additive for chitosan-based active packing 
films [158].

Apigenin is contained in i.a. the chicory, pak choi cab-
bage, and red onion [160]. Clinical trials prove the biostatic 
activity of apigenin against SARS-CoV-2 and its anti-HIV 
effect that was similar to the effect of the nelfinavir—the 
HIV drug [139]. Due to this observation, the substances used 
in the treatment of HIV can also be applied in cases of coro-
navirus infection. Apigenin is a natural antioxidant and this 
property can increase the service life of polymer materials. 
The cosmetics with an antioxidant effect are in high demand, 
therefore the apigenin can be potentially implemented in 
this industry [149]. Luteolin and apigenin constitute a new 
interesting application—as active ingredients of polymer 
materials with biocidal properties.

As well as luteolin, apigenin is a flavone with low bio-
availability. This property could be improved with its intro-
duction into zein/lecithin nanocomposite. This material has 
a potential application in the pharmaceutical, cosmetic, and 
food industries [161]. Chitosan also enhances the solubility 
of apigenin and could be used as its carrier in drug delivery 
systems [162]. The apigenin hydrogels based on biopoly-
mers [gelatin, chitosan, and polyethylene glycol (PEG)] 
promote diabetic wound treatment. Hence, its prospects in 
diabetic skin injuries therapy is huge [163]. Chitosan-based 
nanogels loaded with apigenin stop the cancer cells prolif-
eration, therefore the potential application of these materials 

in oncology is justified [164]. Starch-apigenin complex has 
a potential application as a supplement supporting stable 
glucose level in blood. In materials engineering, apigenin 
could be used as a thermal stabilizer of starch [165].

Flavonols

Kaempferol, quercetin, and myricetin are the best known 
and the most common flavonols (Fig. 7) [160, 166]. This 
group performs different functions such as photoprotection, 
i.e. protects plants against the harmful effects of UV and 
parasites, gives plants colour, and also prevents oxidation 
processes [167]. The biological activity of flavonols depends 
on their chemical structure and the presence of hydroxyl 
groups [166].

Kaempferol occurs in many plant species, however 
the highest content of this substance is found in several 
plant species: acacia, saffron, aloe, ginkgo, goatweed, leaf 
flower, and rosemary [170, 171]. Among berries, kaemp-
ferol occurs in blackcurrants, gooseberries, and strawberries 
[160, 172]. This substance also exhibits antioxidant and 
antimicrobial properties [170]. Kaempferol is a nontoxic 
substance and has the ability to inhibit inflammatory pro-
cesses caused by H. pylori which take place in the human 
body [172, 173].

Zein nanoparticles coated with alginate and chitosan are 
used for kaempferol encapsulation in order to increase its 
absorption in the blood. This form of kaempferol adminis-
tration is a prospective solution for drug delivery systems 
[174]. Zein-kaempferol coatings improve the mechani-
cal and bioactive properties of scaffolds, thus their tissue 
engineering application is justified [175]. The biopolymer-
based membrane doped with kaempferol could be potentially 
applied as an infected wound dressing [176]. The study of 
gelatin nanoparticles doped with kaempferol confirms that it 
could be used as an eye drops for certain eye diseases [177]. 
The lecithin/chitosan nanoparticles loaded with kaempferol 
has a potential application as an antifungal agent [178].

Fig. 7  Chemical structure of: kaempferol (a), quercetin (b) [168], and myricetin (c) [169]
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Quercetin is a substance with antioxidant properties. It 
stimulates the human enzyme system which is responsi-
ble for metabolic processes [96]. This substance has been 
applied in silver nanoparticles processing and replaced 
widely used reducing agents which pollute the environ-
ment. Silver nanoparticles with biocidal properties that 
are obtained with quercetin are called “green” due to the 
ecological method of their production [179, 180]. Querce-
tin exhibits biostatic properties and the activity of these 
properties depends on the type of bacteria. It is a strong 
agent that inhibits Gram-positive bacteria, however, its 
activity against Gram-negative bacteria is weak. Research 
proved that quercetin inhibits the growth of several bac-
terial strains: Escherichia coli, Staphylococcus aureus, 
Pseudomonas aeruginosa, and Salmonella enterica [181]. 
The literature overview reveals that both quercetin and 
kaempferol are bioactive against SARS-CoV-2 and inhibit 
metabolic processes of this virus type [139]. This prop-
erty is crucial in the current pandemic situation. Previously 
mentioned modifiers have a potential application as biocom-
posites additives. These modifiers could limit the spread 
of the pathogenic virus on the surface of materials. Due to 
their properties, the biocomposites that contain this type of 
modifying additives could be applied in the public spaces 
and medical industry.

Zein is used for quercetin encapsulation and as a drug 
carrier. Due to the bioactive and antioxidant properties of 
the material, it could be applied in the pharmaceutical, 
healthcare, food, and food packing industries [182–185]. 
The potential biomedical applications are based on the 
implementation of quercetin encapsulated with biopoly-
mers [186, 187]. It has been proved that biopolymer-based 
hydrogels containing quercetin regenerate bones. There-
fore, these hydrogels could be applied as scaffolds in tissue 
engineering [188]. Chitosan, chitosan/gelatin, and starch/
gelatin films loaded with quercetin elongate the shelf life 
of food due to the above-mentioned properties. Hence, it 
is well-suited for food packaging applications. Addition-
ally, these films are edible, which makes them even safer 
for humans [189–193]. The presence of quercetin in PLA-
based films makes them interesting materials for active 
packaging due to the antibacterial activity [194]. Leci-
thin/chitosan nanoparticles doped with quercetin have a 

potential application in functional food (food that besides 
its nutritional value prevents diseases or supports health) 
production [195]. The thermal stability of starch doped 
with quercetin was greater than the pure starch one. This 
fact suggests that quercetin could be potentially used dur-
ing polymer processing [196].

Another flavonol is myricetin that occurs in parsley, mari-
gold, berries, grapes, oranges, broad beans, herbs, wine, and 
tea [197–200]. The characteristic feature of this compound 
is the high melting point—357 °C. The activity of myri-
cetin against S. aureus has been reported in [153]. It is a 
natural antioxidant compound that neutralizes free radicals. 
The application of this substance in various industries is 
complicated due to its physicochemical properties, which 
are poorly understood so far [198].

Chitosan, chitosan-based, and starch materials could be 
applied as myricetin carriers used in the therapy of various 
diseases [201–203]. Certain biopolymers improve the bio-
availability of myricetin [204]. Chitosan loaded with fla-
vonols (myricetin, kaempferol, and quercetin) is considered 
to be an excellent active packaging material due to its modi-
fied properties (antimicrobial, antioxidant, etc.) of chitosan 
[205].

Isoflavonoids

Isoflavonoids occur in various plants: red clover, lentil, spin-
ach, some species of burclover, meadow-grass, coffee beans, 
plants as the broad bean, and white kwao krua which belong 
to the bean family [206]. However, soybeans have the high-
est concentration of isoflavonoids. In the medical industry, 
the most commonly used isoflavonoids are genistein, daid-
zein (Fig. 8), and glycitein (Fig. 9) due to their biological 
activity [207].

Genistein naturally occurs in beans, potatoes, coffee 
beans, babchi plant, and red clover [208]. This substance 
inhibits the development of several types of bacteria: S. 

aureus, H. pylori, Bacillus anthracis, and Vibrio vulnificus. 
Further research does not confirm a similar effect of gen-
istein on E. coli, Lactobacillus reuteri, Shigella sonnei, and 
Klebsiella pneumoniae. It suggests that the biocidal proper-
ties of genistein depend on the properties of selected bacteria 

Fig. 8  Chemical structure of: 
genistein (a) [230], daidzein (b) 
[220]
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[209]. Genistein is a natural antioxidant and also antiallergic 
and anti-inflammatory agent [210, 211].

Genistein encapsulated with biopolymer nanoparticles 
is a promising material for food and pharmaceutical appli-
cations [212–214]. Gelatin and starch could be used as 
genistein carriers. A high possibility of commercialization 
of these drug carriers is caused by the low manufacture 
costs [215, 216]. PLA improves the solubility of genistein. 
Due to the non-toxicity of PLA and therapeutic proper-
ties of isoflavonoid, the pharmaceutical application of 
their blend is justified [217]. It has been proved that the 
bioactive properties of genistein contained in gelatin do 
not change within 3 months. This suggests, that gelatin is 
an excellent matrix for genistein storage [215]. Chitosan-
based nanofibers loaded with genistein could be used for 
biomedical purposes [218]. Chitosan doped with antioxi-
dant genistein can be potentially used as a functional food 
additive [219].

Daidzein is another substance that belongs to isoflavo-
noids. This isoflavonoid occurs in various subspecies of the 
bean family, red clover, and kudzu roots [220, 221]. The 
substance exhibits antibacterial and fungicidal properties 
[222]. The conducted research proved, that daidzein is an 
auxiliary substance of several antibiotics. S. aureus is resist-
ant to methicillin, but its combination with daidzein makes 
it active against this type of bacteria [223]. The activity of 
daidzein against P. aeruginosa has been proved. Moreover, 
it exhibits antioxidant, anti-inflammatory, and anti-aging 
properties [220, 224].

Daidzein is a natural adhesive agent which could be 
applied in certain non-metallic coatings which are widely 
used in the automotive, furniture, and cosmetic industries 
[222]. The possibility to improve the adhesion of this type of 
coatings is crucial due to their low durability and exposure 
to abrasion during their exploitation. The main reason of 
the paint coatings chipping is the disruption of their integ-
rity caused by low adhesion between the coating and coated 
material. The search for an agent which increases adhesion 
is in the constant process due to the needs of coated products 
users. The non-toxicity and the renewability are extremely 
desired in modern materials engineering. Therefore these 
features of daidzein make it even more attractive as a mod-
ern adhesive agent.

Chitosan, starch, gelatin, poly(lactic-co-glycolic) acid 
(PLGA), and PHB could be used as daidzein carriers which 
improve its bioavailability [225–229]. This fact shows the 
pharmacological value of these material blends and daidzein 
in particular.

Glycitein occurs in soybean and it is responsible for the 
characteristic taste of products made of soybean [206, 231]. 
The substance exhibits antibacterial and fungicidal proper-
ties against Colletotrichum gloeosporioides [232, 233]. It 
is an antioxidant compound [234]. According to the above-
mentioned properties of this isoflavonoid, it has potential 
applications in various industries (cosmetic, medical, phar-
maceutical, and polymer). However, the current literature 
analysis suggests that glycitein is not well-exanimated yet. 
Therefore its potential applications as a biopolymer-modifier 
are poorly studied.

Blackcurrant Extract

One of the richest sources of polyphenols is a blackcur-
rant bush. Although the extract obtained from each part 
of the plant exhibits biocidal properties. The comparison 
of the amount of the polyphenols in various fruits shows 
their greater content in the blackcurrant. The content of 
polyphenols in this plant is 340 mg in 100 g of blackcur-
rant seeds.

The high content of polyphenols in blackcurrant extract 
made it a promising modifier of polymer materials due to 
its non-toxicity and easy cultivation in the middle European 
climate. Blackcurrant extract is obtained from various parts 
of the plant such as fruits, leaves, seeds, and buds. However, 
it has been proved that the blackcurrant buds are the rich-
est source of biocidal substances contained in blackcurrant 
[236].

There is a wide spectrum of biocidal properties of 
this extract. It exhibits biocidal activity against Candida 

albicans which belongs to fungi. The mechanism of fun-
gicidal activity is based on fungi cell wall deformation 
which leads to the leak of the internal substance. This pro-
cess initiates the inevitable death of the microorganisms 
[237]. Blackcurrant buds exhibit antimicrobic properties 
owed to kaempferol, quercetin, rutin, and myricetin con-
tained in them [238]. According to the literature review 
extract from the blackurrant buds exhibits biological activ-
ity against several bacterial strains: B. subtilis, Listeria 

monocytogenes, S. aureus, E. coli, P. aeruginosa, and 
Acinetobacter bacteria. The biostatic activity of black-
currant extract on C. albicans, Alternaria alternata, and 
Aspergillus niger depends on blackcurrant variety [236, 
239]. The effect of the extract on certain fungi strains has 
been compared to the effect of fluconazole (antibiotic). 
According to the conducted research, the plant extract is 

Fig. 9  Chemical structure of glycitein [235]
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more effective against microorganisms than certain anti-
biotics [239]. The extract exhibits anti-inflammatory and 
antioxidant properties due to the content of ascorbic acid 
which is a natural antioxidant [236, 240]. The blackcurrant 
berries contain calcium, aluminium, magnesium, and iron 
which give them their characteristic navy blue colour. The 
red shade of blackcurrant pulp is caused by the presence 
of potassium [240]. The pigment substances contained 
in the blackcurrant berries extract limit its application as 
modifying additive of biodegradable polymer materials. 
However, this property can also be an advantage of this 
modifier in cases where the colour of products is desired. 
Besides biocidal and antioxidant properties, the extract 
performs pigment functions which could reduce the num-
ber of additives contained in polymer biocomposites. It is 
another advantage of this extract.

The influence of the blackcurrant extract encapsulated 
with gelatin on the blood flow has been confirmed. There-
fore it can be used for pharmaceutical purposes [241]. The 
effect of blackcurrant extract on the biopolymer mixtures 
was investigated. It was founded, that certain blackcurrant 
concentrations improve the crosslinking, hydrophilic, and 
optical properties of materials. Hence, this fact makes these 
materials an interesting solution that could be implemented 
in the optoelectronic industry [242]. The colouring prop-
erties of the blackcurrant anthocyanins are known. The 
biopolymer-blackcurrant anthocyanins mix is an excellent 
substitute for the currently used dyes with the synthetic 
origin [243]. Due to the unique properties (bioactive and 
antioxidant) of blackcurrant, its complexes with proteins 
could be applied as an additive in functional food [244]. 
The starch-blackcurrant complexes have the same appli-
cation. It has been founded that blackcurrant modifies 
the physicochemical properties and colour features of the 
biopolymer [245]. The presence of blackcurrant in gelatin 
increases its hardness and brittleness which are desired in 
the food industry [246].

Tannic Acid

Tannic acid (Fig. 10) is a substance that occurs commonly 
in the natural environment as a plant compound [247] This 
substance is classified as phenol—the organic compound 
which includes one or more hydroxyl groups connected 
with the aromatic ring [8]. It is noticed that this substance 
occurs in almost all aerial parts of plants [247]. The richest 
source of tannic acid is galls—growths with hardened struc-
tures. The galls are appearing as a result of certain insect 
spices preying and also as by-products produced by mites, 
fungi, and bacteria. Oak galls, also known as oak apples, 
are created by two insects that belong to the Cynipidae fam-
ily. One of these insects called the gall-fly is probably the 

main reason of the galls creation [248]. Besides oaks, galls 
occur in roses, apples, willows, poplars, beeches, acacias, 
redwoods, and pistachio trees [249–251]. Tannic acid also 
occurs in other plants—in the walnut tree bark which is 
common in middle Europe, in pine and mahogany which 
grows in Central America. It is the ingredient of strawber-
ries and nettle [251].

Tannic acid exhibits antioxidant properties and is active 
against viruses, bacteria, and fungi [254–260]. Flu virus and 
HIV are susceptible to tannic acid. This substance exhibits 
a bacteriostatic effect against several Gram-negative bacte-
rial strains (Cytophaga columnaris, H. pylori, E. coli, and 
K. pneumoniae) and Gram-positive bacterial strains (S. 

aureus and L. monocytogenes, B. subtilis) [254–256]. The 
antimicrobial activity depends on the type of bacteria—the 
inhibiting effect was stronger against Gram-positive bacte-
rial strains. The tannic acid is also antimicrobic against C. 

albicans which belongs to fungi [254]. Kim [255] proved 
that the thermal treatment of tannic acid increases its anti-
microbic properties.

The combination of several properties (biocidal, anti-
oxidant, and crosslinking) in one additive makes tannic 
acid a potential modifier that could be applied in polymer 
biocomposites. When the tannic acid contacts with a sol-
vent, it releases dyes which makes it a natural colouring 
agent. According to this, tannic acid could replace synthetic 
dyes which are currently used. The main disadvantage of 
polymer biocomposites is a low adhesion between phases 
which could be improved with tannic acid introduction. 
It increases the mechanical strength of the biocomposite 
and expands the area of the final product application. The 
application of tannic acid in biocomposites could prob-
ably increase the service life of material due to the reduced 
amount of microorganisms present on their surface. Moreo-
ver, tannic acid could inhibit internal and external antioxi-
dant processes.

This type of biocomposites has a potential application 
in the medical, catering, and other industries where micro-
biological hygiene is required. Tannic acid is a promising 

Fig. 10  Chemical structure of tannic acid [252, 253]
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modifier with biocidal properties which could be applied 
in the packaging industry due to its non-toxicity. The anti-
microbic and antioxidant properties of tannic acid are 
confirmed with research conducted on the biodegradable 
packaging made of starch doped with this substance [256]. 
This type of packaging can certainly be implemented in 
the industry and have the potential to replace the currently 
used packaging made of crude oil. Polymer biocompos-
ites made of chitosan containing tannic acid are interest-
ing materials with potential application in cosmetology 
as acne patches [257]. The colonization of the sebaceous 
glands by the bacteria Propionibacterium acnes is one of 
the reasons of acne [261]. The biocomposites with tannic 
acid probably could lead to the death of these pathogenic 
microorganisms. However, this type of research is not done 
so far and the effect of tannic acid on these bacterial strains 
is not investigated yet.

These complexes could be applied in drug or supplement 
delivery systems as a carrier due to the non-toxicity and 
ability to controlled supplement/drug release [262]. Gela-
tin microspheres containing tannic acid could be applied 
for nutraceutical purposes [263]. Gelatin/tannic acid films 
exhibit antibacterial properties which are desired in bio-
medical materials [264]. Gelatin/tannic acid hydrogels 
with shape memory are interesting materials for potential 
biomedical and robotic applications [265]. Biocomposite 
nanofibers with tannic acid could be used as a biocompat-
ible wound dressing material with an antibacterial effect 
[266]. The zein/tannic acid complexes acid have a wide 
range of applications in food and cosmetic industries due 
to their stabilizing and crosslinking properties [267, 268]. 
Zein/tannic acid coatings elongate the shelf life of fruits, 
therefore this kind of edible layers could be used as non-
toxic biopreservatives in the food industry [269]. Zein par-
ticles modified with tannic acid improve mechanical prop-
erties and hydrophobicity of gelatin-based composites for 
food packing [270]. The gelatin doped with silver nanopar-
ticles and tannic acid is another material for potential food 
packing application [271]. The chitosan films containing 
tannic acid could have the same application [272]. Tannic 

acid improves interfacial adhesion in composites and as a 
result—mechanical properties of ones. Therefore, it could 
be used in polymer biocomposites production [273, 274]. 
Chitosan/tannic acid coatings applied on biocomposites 
fillers increase the fire resistance of biocomposites. This 
kind of coatings has a potential application in materials 
engineering [275].

Betulinic Acid

Betulinic acid belongs to triterpenoids which are the trit-
erpenes derivates. The source of the betulinic acid is i.a. 
varied birch species [276, 277]. This substance is obtained 
from betulin (BE) shown in Fig. 11. The betulin occurs in 
plants such a birch, London plane tree, jujube, Caucasian 
alder, thistle, and rosemary [278, 279]. Among mentioned 
plants, the highest concentration of betulin is found in birch 
bark which consists of inner and outer parts. It has been 
proved, that the content of betulin in the outer bark ranges 
from 30 to 35% and this value depends on the birch variety 
[276, 280]. The white colour of the tree is caused by the 
presence of betulin, which is a natural dye. This substance 
was discovered in 1788 by a pharmacist and chemist Tobias 
Lowitz [281].

Betulinic acid exhibits antiviral properties against HIV 
due to the functional groups that occur in it at carbon atoms 
C-23 and C-28. Betulinic acid is biocidal against the Herpes 

simplex virus (type 1 and type 4) and several Enterovirus 
viruses [284–286]. Some of the betulin derivatives are also 
exhibiting antiviral activity. Bevirimat which is produced 
by the chemical modification of betulinic acid exhibits the 
highest activity against HIV and inhibits HIV-1 and HIV-2 
[287]. This substance also inhibits the advanced stage of 
HIV-1. Due to the mentioned properties of bevirimat, it is 
a promising compound that could be used as an anti-HIV 
drug [279, 288].

Antibacterial property is another advantage of betulinic 
acid. According to conducted research, the tannic acid is the 
only betulin derivate with biostatic activity against E. coli, 

Fig. 11  Chemical structure of: 
betulinic acid (a) and betulin (b) 
[282, 283]
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P. aeruginosa, and Enterobacter aerogenes. It is probably 
caused by the structure of mentioned bacteria which belong to 
Gram-negative bacteria. They have an extracellular membrane 
which could be an obstacle during the penetration of active 
compounds—betulin derivatives. Furthermore, betulinic acid 
exhibits biostatic activity against E. faecalis bacterial strain 
and inhibits the growth of these bacterial colonies by 56% 
[289]. The antibacterial activity of betulinic acid against bac-
teria P. aeruginosa, E. coli, and S. aureus bacterial strains is 
caused by increased production of superoxide anion radicals 
which cause oxidative stress in bacterial cells. This process 
is unfavorable for bacterial cells and most often leads to their 
death. The oxidation process of bacterial cells has been proved 
by increased concentration of malondialdehyde which is an 
indicator of oxidative stress and cell destruction [290]. Accord-
ing to the current literature state, the substance also inhibits 
the SARS-CoV virus [291]. The inhibiting mechanisms of 
viruses can be divided into two groups which are implemented 
at different stages of viral development. The processes which 
belong to the first group are activated during the cell penetra-
tion by the virus. These processes make it difficult for the virus 
to cross the cell membrane. The second group is based on 
inhibiting the process of viral replication caused by the effect 
of betulinic acid on SARS-CoV 3CL protease [291]. Ascorbic 
acid is a substance that has a synergistic effect on betulinic 
acid.

The literature overview allowed us to estimate the validity 
of betulinic acid application as a modifier of biodegradable 
polymer materials. The estimation was based on the previously 
described properties of the substances. Betulinic acid is a new 
substance in the polymer industry, therefore the information 
about its behavior and effects on the polymer matrix is very 
limited. However, there is a reliable report—a patent invented 
by scientists from the University of Silesia in Katowice, 
Poland, and the Medical University of Silesia in Katowice. 
The method of obtaining betulin-modified thermoplastic poly-
mers is the subject of this patent. The characteristic features of 
this polymer are antibacterial and anti-inflammatory properties 
[292]. This is a breakthrough discovery because betulin and 
betulinic acid have similar properties. This fact suggests that 
polymer materials containing betulinic acid would probably 
exhibit antibacterial properties as well. This will undoubtedly 
extend the service life of final products and increase the area of 
their potential application. Such areas may be industries where 
sterile conditions are desired.

The effectiveness of betulinic acid against parasites has 
been proved via testing chitosan nanoparticles loaded with 
betulinic acid [293, 294]. Certain biopolymer coatings con-
taining betulinic acid exhibit anticancer properties [295–297]. 
The same properties were noticed in biopolymer-based nano-
particles loaded with betulinic acid [298, 299]. Therefore, the 
pharmaceutical potential of betulinic acid is huge. From the 
literature overview, it could be concluded, that the applications 

of betulinic acid as a biopolymer-additive in other industries 
have not been described yet.

Lapachol

Lapachol is a compound that occurs both in the inner part of 
the bark and in the heartwood of Tabebuia trees, commonly 
found in South and Central America [300]. In the collo-
quial language of Brazilians, this tree species is also called 
taheebo, pau d’Arco, or lapacho which probably gives the 
name to the active substance contained in the tree bark [301, 
302]. According to the literature reports, the other plants 
which belong to the Bignoniaceae family (as well as Tabe-

buia does) also include lapachol in their timber [303, 304]. 
The Tabebuia bark has been already used by Incas in ancient 
times—the infusion of chopped tree bark was applied for 
medicinal purposes. In 1882 lapachol was extracted by 
Italian phytochemist—Emanuel Paterno for the first time 
[301, 302, 306, 305]. Lapachol (2-Hydroxy-3-(3-methyl-
2-butenyl)-1,4-naphthoquinone) is classified as naphtho-
quinone [303]. Naphthoquinones are organic compounds 
derived from naphthalene. The presence of ketone groups 
(C=O) in the naphthoquinones structure is known [8, 307]. 
The chemical structure of lapachol is illustrated in Fig. 12.

Lapachol exhibits biological activity against microorgan-
isms. Its biocidal mechanism is based on the initiation of 
oxidation processes and enzyme inhibition. Both reactions 
occur in cells [300]. It has been proved that the biologi-
cal activity of naphthoquinones depends on their structure 
[308]. The biological effect of this substance is similar to 
the effect of antibiotic amphotericin B. Lapachol is effec-
tive against the following bacterial strains: H. pylori, Strep-

tococcus, Enterococcus, Clostridium, Staphylococcus, and 
Bacillus which are hazardous for human health. The antifun-
gal activity extends to Candida species and Cryptococcus 

neoformans [300]. Lapachol like the majority of naphtho-
quinones exhibits colouring properties and could be used 
as the yellow pigment [301, 303, 304]. It is also a natural 
antioxidant agent [309].

Fig. 12  Chemical structure of lapachol
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The unique properties of lapachol and its toxicity against 
microorganisms are advantages. The resistance of polymer 
materials on the microorganisms is crucial due to their com-
mon exposure to the microorganisms. Hence, the bark of 
Tabebuia which contents lapachol is a promising material 
that could be introduced in biodegradable polymer biocom-
posites. The modification of biocidal and mechanical proper-
ties of biocomposites with the lapachol does not pollute the 
environment. The biocomposite that consists of the biode-
gradable PLA matrix and the reinforcement such a Tabebuia 
bark is completely biodegradable. This type of biocomposite 
has been examined by authors. The manufacturing of the 
biocomposite was carried out in several stages—by extru-
sion with granulation and injection. The enzymatic biodeg-
radation studies were performed according to the method 
contained in the article [310]. These studies lasted 8 weeks. 
Due to our studies [311], the increase of bark content in 
biocomposite leads to the increase of the percent mass loss 
which proves higher biodegradability of biocomposite. The 
same dependence has been noticed during the mechani-
cal studies. The increased content of Tabebuia bark in the 
biocomposites increases the tensile modulus of materials. 
The presence of lapachol contained in the Tabebuia bark 
improved the thermal durability of the biocomposites. How-
ever, more detailed research of lapachol influence on the 
thermal properties of PLA is recommended. According to 
biocidal studies, the antimicrobic activity of biocomposites 
was lower than the one mentioned in [301]. The decrease 
of biocidal activity of the biocomposites is caused by the 
high processing temperatures (e.g. extrusion and injection 
molding) applied.

The lapachol derivative—lapachol sodium salt exhibits 
biological activity and could be used as a drug. The chitosan 
flakes/lapachol sodium salt complex increases the bioavail-
ability of the latter [312]. The lapachol derivative lapazine 
has a potential application as a drug used in infectious dis-
eases treatment. The studies of alginate/chitosan micropar-
ticles loaded with lapazine prove it. β-Lapachone is another 
lapachol derivative with a wide range of therapeutic proper-
ties. However, the high toxicity of β-lapachone is an obstacle 
to its implementation into the pharmaceutical industry. The 
studies on the β-lapachone connected with chitosan confirms 
the decrease of agent toxicity. This fact increases the prob-
ability of its application in the pharmaceutical industry [313, 
314]. According to Pereira et al. [315], starch could be used 
as a lapachol carrier in drug delivery systems.

Allicin

Allicin (diallyl thiosulfonate) (Fig. 13) is the main ingredi-
ent of garlic, onion, and clove extracts which exhibits bioc-
idal properties [8, 316]. It creates during garlic or onion 

crushing [317]. This compound belongs to phytoncides—the 
bioactive compounds that are produced by selected plants. 
Phytoncides are defined as natural antibiotics. The biocidal 
properties of garlic extract were observed at the end of the 
nineteenth century by Louis Pasteur. The isolation of allicin 
from cloves was carried out by Chester John Cavallito and 
John Hays Bailey in 1944 for the first time [318]. The high-
est concentration of allicin is found in the garlic extract. 
For this reason, the plant is applied in traditional medicine. 
Moreover, due to its high taste attributes it is used in almost 
every cuisine of the world. The wide spectrum of garlic bioc-
idal properties has caused a growing interest in the modern 
scientific world including materials engineering.

Allicin is a substance that exhibits a strong antioxidant 
effect based on free radicals inhibiting [318, 320]. It has 
antifungal and antimicrobic (the antibacterial activity against 
several Gram-positive and Gram-negative bacterial strains 
was noticed) properties [319, 321, 322]. The mechanisms of 
the biocidal action of the substance are not well known so 
far, but literature reports show that the formation of allyl-
sulfide compounds changes L-cysteine, which is a free amino 
acid [318]. Allicin has a cytotoxic effect on proteins con-
tained in microbes cells. The penetration of parasitic cells 
by allicin leads to their death [323].

According to the conducted research, the highest activity 
of allicin (more than 86%) was noticed on the 3rd day of 
studies while this percentage value changed over time. The 
last measurement has been done on the 11th day of studies 
and the percentage value of substance activity decreased by 
almost 1/3 compared to the 3rd day of studies. It was prob-
ably caused by the high volatility of allicin. However, the 
substance had high biological activity even after 11 days of 
exposure to the bacteria [324]. The allicin is also bioactive 
against several fungi and protozoa [325].

Due to the wide spectrum of biocidal properties of allicin, 
it can replace currently used additives which give the resist-
ance of the biodegradable material to the adverse effects 
of pathogenic microorganisms. However, one of the main 
disadvantages of this compound is the characteristic sulfuric 
smell which is associated with the garlic smell. According to 
this, allicin can be applied in biodegradable materials which 
have limited contact with humans. It can also be used in con-
ditions where the controlled development of microorganisms 
on the surface of the material is desired.

Cellulose nanoparticles doped with allicin exhibit anti-
microbial properties which suggest that this complex could 

Fig. 13  Chemical structure of allicin [319]
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be used in food, food packing, and textile industries to limit 
microbial proliferation [326]. The starch-based wall material 
is used to produce allicin microcapsules which can be used 
as a biopreservative in the food industry [327]. The chi-
tosan/allicin complex exhibits grown antimicrobial activity, 
therefore this material is suitable for the food industry appli-
cations [328–330]. Allicin encapsulated in chitosan/starch 
could be used as a nitrogen fertilizers additive. The presence 
of allicin elongates the release of the nutrients in the soil 
which is desired in perennial plants cultivation [331]. Gela-
tin nanoparticles loaded with allicin could be used in cancer 
therapy due to the anticancer activity of allicin [332]. The 
strong antibacterial activity of biocomposites [chitosan/poly-
vinyl alcohol (PVA)] doped with allicin has been noticed. 
The long-term antibacterial impact makes allicin a perspec-
tive material for medical purposes as a tissue engineering 
and wound dressing material [333, 334].

The E�ect of Modi�ers on Certain 
Biopolymers

The modification of biopolymers is one of the basic steps in 
their processing. It helps to suit the biopolymers to certain 
applications. The aim of the modification is based on chang-
ing, improving, or/and creating new properties of the mate-
rials. The below table summarizes the modification effects 
of biopolymers caused by plant-based modifiers (Table 1).

Conclusions

This literature overview shows a new direction in the devel-
opment of natural modifying substances with biocidal prop-
erties. The compounds contained in plants are an undoubt-
edly competitive group of natural modifiers because the 

Table 1  The effectiveness of the biopolymers modification by certain natural additives

Modifier Material Modification effects

Lignin PLA Enhanced thermal resistance [335]

Caffeic acid, gallic acid Gelatin Increased mechanical and antioxidant properties [336]

Vanillic acid PLA Improved resistance on the photooxidative degradation [113, 337]

Silymarin PLA/PHB blends Enhanced resistance on thermo-oxidative degradation [119]

Resveratrol PLA Improved photo-oxidative and thermal stability [127]

Hesperidin PLA, PHA Improved oxidation resistance [148]

Apigenin Starch Decreased digestion rate of and improved thermal stability [165]

Kaempferol, myricetin,
quercetin

Chitosan Improved mechanical properties, reduced oxygen and water vapor permeability, 
decreased UV light transmittance [205]

Quercetin Gelatin Increased mechanical properties and decreased swelling degree, improved the UV-light 
absorption [336, 338]

Chitosan Reduced transparency and altered tint (to green one) [189]

Starch Elevated thermal stability [196]

PLA/PEG blends Enhanced mechanical and thermal properties, changed colour and reduced transparency 
[194]

PLA Improved resistance on the photooxidative degradation [337]

Blackcurrant Starch Altered colour and physicochemical characteristics [245]

Gelatin Increased hardness and brittleness of polymer [246]

Tannic acid Zein Changed shape of zein molecule which affects wettability changes [267]

Gelatin Improved mechanical properties, increased compatibility between polymer matrix and 
additives modified with tannic acid, improved antioxidant activity, stability, transpar-
ency, and antibacterial properties [263, 270, 339]

Gelatin/silver nanoparticles Synergistically increased antibacterial properties [271]

Chitosan Improved transparency, antibacterial properties; increased tensile strength and decreased 
solubility of the material, affected synergistically on plasticizer contained in the mate-
rial [272, 340]

PLA/filler Improved adhesion between polymer matrix and filler and greater dispersion of filler in 
the matrix [273, 274]

Betulinic acid PEG Changed physical structure [341]

Lapachol PLA Increased thermal durability and biodegradability [311]

Allicin Chitosan Increased water solubility and changed colour [328]

Chitosan/PVA blend Decreased hydrophilicity, increased porosity and changed microstructure [333]
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effects of their antimicrobial activities are comparable to 
those of some synthetic biocides. In some cases, the natu-
ral compounds exhibit stronger biocidal activity. This fact 
makes them an interesting alternative for synthetic modi-
fiers. Non-toxicity and complete biodegradability are some 
of their unquestionable advantages. Further development of 
natural modifiers and focus on biocidal properties of poly-
mer materials are expected. Those expectations are justified 
due to the current pandemic conditions and the necessity of 
the elongated service life of the biocomposites. The biodeg-
radability of polymer materials and their modifiers is crucial. 
Hence, the environmentally friendly and non-toxic modifiers 
are in constant search.
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