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Abstract

We have developed a system which mediates between an unmodified reactive
mobile robot architecture and human natural language I/O. We introduce reactive-
odometric plans and demonstrate their use in plan execution, plan recognition,
and learning to associate human terms with perceptually unremarkable locations
in the environment. The communication component of our architecture supports
typewritten natural language discourse with people. It lets users name places
either immediately or in relation to other known places, ask questions about the
robot’s plans and the spatial relationships of known places, and give the robot short
and long term goals. This thesis presents results obtained with our implementation
of this architecture on a physical mobile robot system designed by[Connell, 1992a]
and in simulation. These results reflect experiments performed by the author and
by other users.
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Chapter 1

Overview

Two important capabilities for a mobile robot are the ability to know and report

where it is and the ability to go where people tell it to go. Several current mo-

bile robots have these abilities in more or less limited forms. Unfortunately, the

language in which people ask questions, receive answers, or give instructions is

often unnatural, if these capabilities are supported at all. Frequently this makes

the process of interacting with a mobile robot difficult or complicated.

One problem with making robots that can understand human descriptions for

places is that to actually use these descriptions at face value requires arbitrarily

sophisticated perception. For example, consider these terms people might use in

descriptions of places: “A map of Russia on the wall,” “a big room,” and “office

number 705.” These are perfectly reasonable and natural ways to refer to places,

but they potentially require very complicated perception.

A solution to this problem takes advantage of the fact that in most cases, the

descriptions people use in giving directions or commands refer to stable parts of

the environment. The poster isn’t going anywhere any time soon, nor is the office.

Thus, if we can make a robot associate human-language descriptions with places

it recognizes through its own perceptual mechanisms and navigation strategy,

our robot will be able both to take advantage of successful low-level navigation

techniques and to interact with people in a natural way.

We would like people to be able to direct a robot to go to any location within
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a building that they can name and that it can physically reach. We would like to

support descriptions which are convenient for people, because we can remember

them and others can also use them.

Therefore, we have developed a system which mediates between an unmodified

reactive mobile robot architecture and human natural language I/O. We introduce

reactive-odometric plans and demonstrate their use in plan execution, plan recog-

nition, and learning to associate human terms with perceptually unremarkable

locations in the environment. The communication component of our architecture

supports typewritten natural language discourse with people. It lets users name

places either immediately or in relation to other known places, ask questions about

the robot’s plans and the spatial relationships of known places, and give the robot

short and long term goals. This thesis presents results obtained with our im-

plementation of this architecture on a physical mobile robot system designed by

[Connell, 1992b] and in simulation. These results reflect experiments performed

by the author and by other users.

This chapter begins by defining a task for mobile robots that requires them to

communicate with a human tutor to learn human names for places in their shared

environment, and explaining the motivation for this task. The chapter continues

by stating the project of this thesis and describing evaluation criteria that apply to

any solution to the described task. A brief sketch of our solution, a description

of the contributions of this thesis, and a roadmap to the remainder of the thesis

complete this chapter.

1.1 The Task

We define a task for mobile robots called the communicating mobile robot task. The

task presumes a navigating mobile robot that has basic corridor following and

obstacle avoidance capability. We address in Section 4.4 the specific requirements

we make of this robot navigation system, and the suitability of some particular

existing navigation systems and strategies to this task.

16



The communicating mobile robot task is defined by the following additional

requirements of the robot:

� The robot should learn to associate human terms with places in its environ-

ment by receiving a running description of its immediate surroundings as it

explores.

� The robot should learn about additional places from descriptions of them

which relate them spatially to places it already knows.

� The robot should respond appropriately to instructions given in these learned

terms, which includes navigating to previously named places.

� The robot should use these terms correctly to describe places it has visited

and the spatial relationships among places it has learned about.

The remainder of this section describes each of these requirements in more detail.

The motivation for this choice of task is described below in Section 1.2.

The robot should learn human terms for places in its environment by receiving

a running description of its immediate surroundings as it explores. In our present

formulation of the task, places must be points in the environment, such as “in front

of Mark’s office door”, rather than areas with extent, such as whole corridors. In

Chapter 10, which describes future work, we discuss the possibility of relaxing this

requirement. While we do not make the use of natural language explicit in the task

description, after considering a variety of communication strategies in Chapter 2

we decide to use natural language for our solution to this task. These descriptions

are provided in typewritten English by a tutor who follows the robot around as it

explores its environment.

The robot should learn about additional places from descriptions of them which

relate them spatially to places it already knows. One of the uses for a robot which

could solve this task would be to direct visitors to places they want to reach. To

facilitate this, the robot should be able to learn about places that it can’t actually

reach, if they are important to people.

17



The robot should respond appropriately to instructions given in these learned

terms. The robot is expected to correctly navigate to a place it has learned about

when it is instructed in the appropriate communication modality to go to that place.

The robot should use these terms correctly to describe places it has visited and

the spatial relationships among places it has learned about. In support of the ability

to communicate about places, we require that the robot be able to correctly answer

questions such as “What is to the north of Mark’s office?” and “How would I get

from the AP lab to Andy’s office?”.

1.2 Motivation For This Task

The communicating mobile robot task is motivated by a number of goals. We seek

to build robots that are easy to instruct. We want robots to be able to learn about

environments other than the ones in which they were first tested. An interactive

conversation with a tutor can help a robot solve localization tasks and deal with

perceptual aliasing problems. Robots would need human tutors even if they could

locally recognize any place, in order to develop a common language. Communi-

cation facilitates judgments of the rationality of the robot. This section addresses

these motivations in turn.

Current navigating mobile robots suffer from the problem that the language

in which you give them goals is unnatural. Many robots can only accept goals

that are programmed by their designer in some internal robot representation. It

is an important goal of this research that people be able to instruct robots in ways

which are convenient for the people instead of convenient for the robots. This

motivation supports the more widespread use of robots by people who can learn

the restrictions on the communication language more readily than they can learn

the details of an internal spatial representation.

Robot systems which require the robot programmer to train the robot to rec-

ognize landmarks don’t work well when the robot needs to work in a different

environment. The robot designer, or other expert, must travel with the robot to the

18



new environment to reprogram the robot’s landmark recognition. A concrete goal

of the research described here is to build a robot system that could be trained by

someone who is not familiar with the internal structure of the robot program, in an

environment other than the one in which the robot was originally designed.

Localization is a mobile robot task in which the robot must determine its loca-

tion after being turned on at an unknown position within a known environment.

Some authors [Basye, 1992a, Brown et al., 1992] solve this localization problem by

exploring the environment after seeing the perceptually ambiguous place until the

actual place can be discriminated. While we do not address the localization prob-

lem directly, we believe that information provided in natural language by a tutor

can in some cases obviate the need to explore for localization.

The perceptual aliasing problem occurs when the immediate local perceptual

image of two different places appears the same [Chrisman, 1992, Whitehead and

Ballard, 1991]. One of the things that makes the communicating mobile robot task

hard is that there may be perceptual aliasing between places that the tutor wants

the robot to discriminate. We expect that information provided by a tutor can help

the robot to resolve problems of perceptual aliasing. In particular, in cases where

the robot has become confused about its location, the tutor can offer clarifying

advice that may disambiguate the robot’s location.

Even if perceptual aliasing were not a problem, the ability to communicate

with a tutor is important for a robot that will be able to accept goals expressed in

human terms. The landmarks in the environment that are convenient for robot

navigation don’t necessarily correspond to places that are important to people for

communication about the world. If we wish to give our robots instructions in ways

that are convenient for us, we need to develop robots that have the ability to learn

which places in the environment are important in our ontology. We believe that this

can be done without resorting to powerful or unsolved techniques in perception to

pick out the objects and features that people actually use, by taking advantage of a

certain structure in the environment. In particular, the names people use for places

pick out places, which the robot can come to recognize by other means so long as
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they are stationary.

People judge the rationality of an agent’s behavior in part based on their un-

derstanding of its intentions. The intentions of a robot which cannot communicate

effectively with people are far less apparent than those of a robot that can. By

building a robot that can communicate with people, we expose its intentions to its

observers and thus enable more sophisticated judgments of its rationality. We do

not argue that communicating robots are necessarily more rational than noncom-

municating robots, only that they engage in more activity on which assessments of

their rationality can be based.

The communicating mobile robot task is motivated by each of these desiderata.

The project of this thesis has been to develop a mechanism which can solve the

task.

1.3 The Project of this Thesis

This thesis explores the communicating mobile robot task by considering possible

solutions to the task, the extent to which existing work can be used to make progress

on this task, and by proposing a solution and demonstrating it on a physical robot.

We have not attempted to come up with the only mechanism that can perform the

task. Instead, our contribution is in the representations for spatial plans we have

developed, and our analysis of the way these representations mediate between

communication and reactive navigation to solve the task.

1.4 Our Solution

This section describes our solution in brief. Our system is composed of three

main components: natural language I/O, a memory and planning system, and a

reactive robot capable of simple corridor following and obstacle avoidance. Our

natural language system uses very simple techniques and the reactive robot system

was designed and implemented by[Connell, 1992b]. The main contribution of this

20
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TJ: I am at Mark's Office

Where are you?

Figure 1-1: Overview of our system. This figure shows some of the information
flow within the system we describe.
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work lies in the design of the plan learning and execution system which mediates

between these other components. Figure 1-1 shows the general structure of this

system.

Our architecture mediates between the user and the robot by way of the state and

memory stored in a Lisp system. Navigation and communication are supported

by data structures for places, plans, and reactive-odometric plans, or ROPs, all of which

are described in Chapter 5.

The robot system navigates by storing a directed graph that connect places by

way of ROPs. ROPs are automatically recorded each time the robot is told by a user that

it is at a new named place. These ROPs serve as the arcs in a simple graph which

is searched by shortest-path algorithm that enables the robot to navigate again to

a place it has learned about. Place recognition is performed by plan recognition on

the relevant ROPs. We treat the underlying reactive robot system as a black box,

and operate only on its control interface as described in Chapter 4. The details of

the implementation of our higher level navigation are described in Chapter 6.

Natural language understanding is accomplished by parsing statements, com-

mands and questions into simple Lisp function calls, which operate on the state

and memory. Most language generation is performed by these same functions,

which generate language in response to utterances made by the user. Language

may also be produced to report state changes the system recognizes such as arrival

at a known place. The implementation of the natural language component of our

system is described in Chapter 7.

1.5 Sample Dialogue

By way of illustration, we here include a sample dialogue with our system.

This is not taken from an actual interactive session with the robot, but was hand-

crafted for pedagogical reasons. All of the behavior exhibited in the dialogue is

implemented and actually works on the robot.

We use a simple hypothetical map for this example, shown in Figure 1-2. Pat’s

22



Pat's Office

 Central Copier Closet
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Figure 1-2: Map of hypothetical environment for sample dialogue

office is at the top, or north. The Central Copier Closet is south of it, the water

cooler is further south, and the conference room is at the bottom. At the start, the

robot is facing west and is in the hallway in front of Pat’s office.

“You are at Pat’s office” 1

“I am learning about PAT’S OFFICE”

“Turn Left”

“I am turning left.”

The robot turns left and faces south.

“Where are you?”

“I am AT PAT’S OFFICE.”

The robot remembers the preposition at used by the tutor. It knows it is still at the

same location since it has only rotated in place.

“Go to the end of the hallway.”

“I am going to go until I see an obstacle in front.”

1Boldface statements in quotations are text which the user types to the robot.
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The robot drives to the end of the hallway.2

“This is the conference room.”

“I am learning about THE CONFERENCE ROOM.”

The robot stores a ROP to get from Pat’s office to the conference room, and a reverse

ROP to get back.

“The water cooler is to the north of the conference room.”

“I am learning about THE WATER COOLER.”

The robot doesn’t yet know how to get there, but it has a limited sense of where

the water cooler is.

“Go to Pat’s office.”

“Now I am going to PAT’S OFFICE.”

“Would you please tell me if we pass THE WATER COOLER?”

The robot plans a route to Pat’s office, and executes the ROPs that lie along this route.

The second sentence expresses the robot’s limited knowledge about the location of

the water cooler.

“Where are you?”

“I’m on my way from THE CONFERENCE ROOM to PAT’S OFFICE.”

“You are at the central copier closet.”

“I’m learning about THE CENTRAL COPIER CLOSET.”

“I’m going from THE CENTRAL COPIER CLOSET to PAT’S OFFICE.”

“Go to the map of Russia”

“I don’t know about THE MAP OF RUSSIA yet.”

“Go to the water cooler”

“I don’t know how to get to THE WATER COOLER.”

“Go to the conference room”

“Now I’m going to THE CENTRAL COPIER CLOSET.”

The robot replans to get south to the conference room via the copier closet. Later,

it says

2Here our picture differs from what we intended when we wrote the dialogue, in that there is
not an obvious obstacle to stop the robot. Please assume for purposes of this example that the
conference room door is usually closed, and the robot stops short of it.
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“This is THE CENTRAL COPIER CLOSET.”

“Now I’m going from THE CENTRAL COPIER CLOSET to THE CONFERENCE

ROOM.”

And once it arrives,

“I have arrived AT THE CONFERENCE ROOM.”

1.6 Evaluation Criteria

This section explains evaluation criteria that apply to any solution to the CMRT. It

points ahead to a place where we apply these criteria to our solution, and invite

readers to do the same.

The most straightforward criteria to apply are the requirements stated in the

task itself. That is, a proposed solution to the task should exhibit the performance

characteristics described above in Section 1.1. In particular, it should be able to

associate names provided by a tutor with places in the environment based on

direct or indirect descriptions. It should be able to use those names in responding

appropriately to navigation requests or user queries. Judgment of its ability to

perform this task well is inherently subjective, however, in our analysis of our own

solution we have tried to present a balanced account in Chapter 11.

One of the strongest evaluation criteria we may apply to solutions to the CMRT

is the requirement that people other than its author be able to use the solution

in new environments. We have also applied this criterion to our solution, and

documented the results in Chapter 8.

1.7 Contributions of the Thesis

This section describes the contributions this thesis makes.

1. Defines a clear problem, the communicating mobile robot task, work on

which is relevant to the more general problem of interfacing natural human

communication with behaviorally effective task solutions.
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2. Provides a solution to the CMRT which integrates existing work on reactive

navigation architectures and natural language systems through a mediating

representation we define.

3. Introduces ROPs, a representation which is natural for integrating odometric

information with more robust sensed plan-step termination conditions.

4. Identifies the strengths and weaknesses of a variety of choices of communi-

cation modality for the CMRT.

1.8 Preview

This section outlines the remainder of the thesis. Chapter 1 has presented the

Communicating Mobile Robot Task, motivated it, and provided a preview of our

solution. Chapter 2 explores a variety of possibilities for the communication modal-

ity to use for this task, and explains why we chose natural language. Chapter 3

describes natural language systems in detail, explains the implementation of our

natural language system, and documents the language subset understood and

produced by our system and how we decided what to include.

Chapter 4 characterizes the performance of the reactive component of our sys-

tem, including the physical robot TJ and its subsumption software. It also explains

which aspects of this robot system are essential to the operation of the rest of the

work we describe and why.

Chapter 5 contains a grammar of the knowledge representation we have de-

signed for places and plans. Chapter 6 explains how these representations support

the robot’s navigation ability, and Chapter 7 explains how they support its ability

to communicate in natural language.

Chapter 8 documents the results of our experiments with the system, with an

emphasis on relating those results to the evaluation criteria we set out in Section 1.6.

Chapter 9 places this work in relation to a variety of other work on robot navigation

and embodied natural language systems. Chapter 10 describes work that might be
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performed as natural extensions to the work done here, and Chapter 11 offers our

conclusions as a result of this thesis.

Appendix A concerns the use of simulators in this research and generally in

mobile robot research. Appendix B contains the text of a small human study we

performed in which we asked subjects for sample dialogues with a mobile robot.
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Chapter 2

Choices for Communication

There are a variety of ways we could choose to communicate with a robot while

it solves the communicating mobile robot task. This chapter surveys some of

the strong contenders, and explains why we chose to use natural language. The

choices for communication we consider here include maps drawn by robots, maps

drawn by people, gestures, buttons, and spoken and typewritten natural language

systems.

2.1 Maps Drawn By Robots

One natural choice is to have the robot draw the map it is constructing in a way

that it will be familiar and recognizable to people. A tutor can then name places on

the map by, for example, clicking on the map and then typing in a name or selecting

an icon. Alternatively, users could just click on the map directly to indicate goals

to the robot.

Several researchers describe systems that learn maps and draw them in human-

recognizable form. Notably, [Connell, 1992b] demonstrated such a system using

the same physical mobile robot and low-level reactive control system that we used

in this research.

This choice has several advantages. The robot doesn’t have to drive to places

while they are being named, although it has to have driven there once before while
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Robot draws map

User indicates goal on map

Figure 2-1: Maps drawn by robots

constructing the map. There is not much of a language problem to solve. Selecting

a place on a map drawn by the robot is very precise with respect to location, and

may already be in the robot’s terms.

There are also disadvantages. Maps drawn in this way will lack details helpful

to people as context for their place-naming, such as posters on the wall, wall-

openings that were closed (e.g. by doors) when the robot toured the world to

construct the map, and other features that are present in the world but would be

missing from the map. In addition, this approach requires the robot to gather

more detail, to construct an accurate map for people to use, than the robot may

need to navigate in the environment. Finally, the robot must have explored the

environment in advance, before users can give it goals.

2.2 Maps Drawn By People

Another approach is for people to draw maps or sketches to communicate ideas

about where they want the robot to go. This approach involves a potentially greater

recognition and understanding problem than even linguistic approaches, but there

is a promising new idea which may ease this burden.
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Robot explores map with simulator

User draws map

Figure 2-2: Maps drawn by people

Lynn Stein, in [Stein, 1991], proposes an imagination system in which people

inform a robot about its environment in advance by drawing a map for it. The

robot explores the map directly, using a simulator, rather than trying to interpret

it in some abstract spatial terms unrelated to its navigation strategy. This has the

advantage that the robot imagines, or predicts, the experience it will have in the

real world, and thus constructs a representation for its subsequent navigation that

should model the world well.

We might imagine extending this approach to handle naming of important

places, say by indicating to the simulator that the robot should be told “this place

is important” when it reaches a certain mark. In this way, the imagination system

could be applied to the communicating mobile robot task.

This approach is only effective to the extent that the simulator models the

world well enough for the robot to construct the same spatial representation when

operating in the simulator as it does in the environment. As we have argued in

[Torrance, 1992] and in Appendix A, the simulator does not need to model every

aspect of the world; just those that are relevant to the distinctions the robot is

making. For example, if the robot is thresholding a sensor value and then acting

on its value as a predicate, the simulator needs only to predict which of the two
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possible values the virtual sensor will take on. However, in practice we expect that

for the more complex sort of robot that could remember places as specified in the

communicating mobile robot task, metric aspects of the environment will become

important to a degree that renders it remarkably hard to construct the simulator

the imagination method requires.

If there is a mismatch between the world imagined by the robot and the real

world, either because of simulator idiosyncracies or because of discrepancies be-

tween the drawn map and the real world, the robot will need to be able to revise

its internal representation in the face of new facts about the environment. Doing

this revision while maintaining learned information about important places could

become arbitrarily hard, especially given the modest sensing capabilities of most

mobile robots. We would expect such discrepancies to arise frequently in practice.

2.3 Gestures

User gestures to indicate command

Camera

Robot recognizes gesture
and acts on command

Figure 2-3: Using gestures to indicate commands

Gestures are another form of non-linguistic communication that we could use
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to communicate intentions and goals to a robot. These could include pointing to a

place or standing at it to indicate its importance, pointing in a direction you want

the robot to go, or moving or waving an arm or leg to convey some signal or ask a

question.

As you can see from these examples, gestures are more appropriate for some

types of communication than for others. [Horswill, 1993a, Horswill, 1993b] con-

structed a tour-giving robot in our lab that uses vision for navigation and gesture

recognition. His robot Polly speaks with a voice synthesizer, and invites people

to “wave your foot around if you would like a tour.” This is an example of a

non-intuitive gesture that happens to be one the robot can recognize, but it plays a

reasonable role in communication since the robot explains its meaning.

The kinds of gesture recognition that would be most useful and effective for

communication are those that already have a meaning to people, such as pointing,

standing at a place, and holding a hand still to mean “stop.” These particular ges-

tures may be hard to recognize computationally. [Horswill, 1993b] also developed

a cheap nod detector that could be used on a robot with a camera pointed up.

In any case, there are communicative aspects of this problem that do not lend

themselves naturally to gestures. Among these are naming a place for use in a

command issued later, asking the robot to go to a particular place that isn’t within

sight of the tutor or the robot, giving the robot information about a place that

isn’t nearby, and asking questions of the robot. So even if gesture recognition

were employed in its natural roles, there would still be a need for other forms of

communication.

2.4 Buttons

By now, the reader may be asking, “Why can’t we just put some simple buttons

on the robot?” Perhaps the robot could be equipped with a control panel full

of buttons labelled “Important place 1,” “Important place 2,” and so on. A user

presses “Learn” and then names a place with “Important place n.” Then later the
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Robot executes commands

User trains robot with buttons

P1 P2 P3 P4 P5

Learn Go To

Figure 2-4: Using buttons to train and command the robot

user presses “Go-to” and selects a place-button. In fact, [Mataric, 1992] presents a

mobile robot with just such an interface.

This does describe one aspect of the natural language interface we currently

have implemented on our robot, with one important exception. Our system allows

its users to use terms they think of for these places. This makes them memorable

to humans, and allows the robot to benefit from the same common names that

facilitate communication among people about places.

Furthermore, our move to a natural language system, albeit a simple system,

reflects our conviction that the work we have done on spatial representations that

support navigation and communication will be applicable to more sophisticated

kinds of linguistic communication than we have explored here. We will have more

to say on this in Chapter 3.

2.5 Typed Language

The modality of natural language, whether spoken or typewritten, supports

the natural naming of places, explicit questions and answers which may refer to

remote places and objects, and the statement of goals to go to previously named
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User instructs robot by typing
in natural language

Robot learns from natural
language instruction sent
via wire or radio modem

Figure 2-5: Using typewritten language to communicate with a robot

places. Natural language systems also offer opportunities to apply discourse theory

that has been developed for natural language communication but less so for other

modalities [Terveen, 1993].

The disadvantages of typed language interaction with the robot stem from the

need for a keyboard, which would tend to preclude a free and open interchange

while the robot is navigating through the environment. We have come up with a

satisfactory solution to this problem by letting the user and the robot converse in

either of two ways: on a fixed workstation connected to a radio modem, through

which the system communicates with the untethered mobile robot, or on a portable

computer that can be worn around the neck like a candy vendor’s tray and tethered

to the robot with a serial-communications connection.

We plan to explore applying the work developed in this thesis

to another, vision based robot in development by Ian Horswill. The

interface to this robot may include a video display on any workstation

in our lab of what the robot is seeing at the moment, which would

help somewhat the problem of remote place-naming.

Future
Work

In our system, the user interacts with the robot by having a typewritten con-

versation in English on a computer. The user can freely intersperse any of the

following types of speech acts set out in the communicating mobile robot task:
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� direct commands such as go, stop, turn left, and face north

� informative statements, such as you are at John’s office or you are lost

� long-range goals, such as go to Mary’s office

� questions, such as Where are you?, Where is John’s office?, or How would I get to

John’s office?.

Spoken language output is easy and is supported on our robot; the user can

choose whether to have the robot’s utterances spoken or just displayed. More

detail about the natural language system we have developed is found in the next

chapter.

2.6 Spoken Language

User speaks commands

Robot hears and obeys commands

Figure 2-6: Using spoken language to communicate with a robot

An ideal communication system for a mobile robot would allow users to in-

teract with the robot in any and all of the ways they find natural. Speech is a

predominant form of human-to-human communication of instructions, explana-

tions, and goals. Speech processing has the advantage that the robot system could
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potentially support the rich variety of natural language that affords people efficient

communication, in a way not encumbered by the requirement of a keyboard and

display.

State-of-the-art speech recognition has already reached the point

that it would probably be practical for the application we have de-

fined here. In supporting named places that use vocabulary not

previously taught to the system, more sophisticated speech process-

ing techniques would need to be used. In particular, representing

the poorly-recognized words by their waveform for later matching,

rather than fully interpreting each sentence, would enable a speech

processing system to readily support this application.

Future
Work

In developing this thesis, we chose not to try to incorporate current speech

recognition technology. As we assessed the problem, we found the introduction of

speech recognition into this system would have served mainly orthogonal goals.

There is a significant amount of interesting research progress regarding the tighter

integration of language understanding, including speech recognition, and situated

action. We look with anticipation to the results of these attempts, and believe that

connecting present-day commercial speech recognition to the system we have built

would serve the interests of demos, but not science.
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Chapter 3

Natural Language

This chapter describes the use of natural language in our system. It begins with

a discussion of the constraints the communicating mobile robot task places on

the natural language system and the ways in which they have motivated our

restrictions on the natural language system we employed. It goes on to describe

the kinds of language our system currently supports.

3.1 Traditional Natural Language Processing

Traditional Natural Language Processing systems decompose the problem of lan-

guage understanding into a particular series of steps. Syntactic analysis, or parsing,

is concerned with determining the structure of an utterance in terms that are in-

dependent of meaning. It produces a parse tree that represents this structure.

Semantic analysis operates on this parse tree and produces a semantic represen-

tation that should contain meaning by virtue of its connection to a system that

connects it to some world the utterance concerns.

Our main complaint with this model is that it is primarily designed for one-way

processing, from sound utterance to textual representation to parse tree to semantic

interpretation to world. It makes little allowance for the impact of context or

other facts about the world on the disambiguation of speech recognition, syntactic

ambiguity, or context-sensitive semantics.
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Many people have worked on this problem, most resolving it by changing what

data is sent upstream. For example, modern speech recognition systems return

several likely strings with their associated probabilities of being correct. Parsers

reject some of these strings as ungrammatical, and pass on multiple possible parses

where there is ambiguity. Semantic interpretation can often reject certain possibil-

ities as nonsensical, and it in turn passes on the interpretations of the remaining

possibilities. Ultimately, the system that will use the semantic representation must

decide what was meant, or engage in discourse to ask for clarification.

This architecture works fine as far as it goes, but some are coming to question

this decomposition of the problem. Parsing language into a syntactic representation

depends on an idealized model of language; extending parsers and lexicons to cover

truly natural language can be quite hard. Semantic interpretation that operates

without the benefit of knowledge of the current state of the world and of the

robot’s mind will produce descriptions that are overgeneral. Knowledge about the

environmental, mental, and discourse context for the utterance is crucial to proper

interpretation.

New approaches offer hope for a way to break the grip of this traditional

architecture. Charles Martin has done work on a natural language system that

connects language understanding intimately to action[Martin, 1993].

3.2 Restricted Natural Language

This section describes ways in which constraints from the task we have chosen

impact the design of the natural language system.

The communicating mobile robot task involves a particular kind of natural

language problem. Following the methodology in Section 3.3, we determined that

we only need to support a limited variety of English sentence constructions. Thus,

we a very constrained grammar will suffice, but we would like to be able to use

arbitrary names for places without having to make lexical entries for every word

we might use.
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One solution to this problem is automatic lexical type inference from context.

This involves a natural language system which can infer the lexical type, or syntactic

category, of words it does not know. It does this by using the known words in the

sentence to constrain the possible categories of the unknown words. This works

well when only one or two words per sentence are unknown (REWORK: need a

reference).

Another solution, and the one we’ve adopted, is to constrain the grammar

enough that we can tell for sure when we’re parsing a noun phrase, and then allow

those to contain arbitrary text. Our current implementation of the system works

this way, with a pattern-matching input recognizer in place of a parser.

We are not wedded to this pattern matching approach. As lexical inference

technology improves, it will become an attractive alternative to the system we

developed. In practice, however, we find that relying on names stored as uninter-

preted strings works fine for the kinds of names people use to describe places in

our environment.

Occasionally people would like to use more than one description for the same

landmark. One that came up in our experiments was “the map of Russia” vs. “the

poster of Russia”. We have provided language support for synonym creation, as

in “the map of Russia is the same as the poster of Russia.”

A simple extension could yield a hybrid solution, in which the

user’s sentence is first passed to a parser which breaks out compli-

cated structure, and then to a pattern matcher. The pattern matcher

could perform string matching against the components of the bro-

ken out parts of the sentence. Alternatively, it could try to match

the whole input sentence if the parser did not recognize some parts

of it. This hybrid approach would combine most of the power of a

traditional parser with the flexibility of the pattern match system in

which the full lexicon does not need to be known in advance.

Future
Work
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3.3 Methodology of Language Support

This section describes the way in which we determined what set of speech acts to

support. Most of the language support was developed according to our needs. It

was influenced by a small human subject study we performed, by the comments

of observers who watched the author use the system, and by other users of the

system.

Our goal in including the set of things we did was not to exhaust all possibilities

a user might expect on interacting with a natural language system in this context.

We did, however, try to support the main types of instructive, informative, and

interrogative speech acts that we believe are critical for solving the communicating

mobile robot task.

The small study involved only two subjects. We asked them to write a sample

dialogue they might expect to have with a robot, with speech acts in each of

the categories we describe above. We further asked these subjects to write their

sample sentences in increasing order of difficulty as they perceived it. We were

hoping that sentences which might require arbitrarily hard perception or reasoning

ability would be reserved for the end of the sample dialogues. The text of the

questionnaire for the study, and the full dialogues written by the subjects, are

included as Appendix B.

Our primary purpose in conducting the study was to look for examples of

language use which were, in our opinion, fundamental to the task, but which we

had failed to support to date. For this purpose the study was a success.

The nature of the responses varied considerably. It is dangerous to generalize

from just two responses, but our observation is that the first subject, who was more

familiar with the capabilities of existing mobile robots, was more restrained in his

expectations of the natural language interaction. The real lesson we learned in

conducting this study was that we drastically underspecified the problem, or the

characteristics of the robot, so that both participants expected fully AI-complete

problem solving behavior from the interaction.
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The choice of what language to support was also influenced by the comments

of observers who watched the author use the system, and by the other users of the

system who used it in support of our evaluation criterion. Their use of our system

is documented in Chapter 8.

3.4 Language Supported By Our System

This section describes the set of language that is supported by our system, including

where needed a description of the behavior that language makes the system have.

We use the following conventions. Direction refers to any of the eight direc-

tions “north”, “northeast”, “east”, “southeast”, “south” “southwest”, “west”, or

“northwest”.1 In addition, these may be abbreviated with one or two character

versions, as in “n”, “ne”, and so on. Sentence refers to a whole sentence as accepted

by our parser. Place refers to a place name or place description, which may consist

of uninterpreted noun phrases.

Square braces delimit optional text. Curly braces delimit a set of words sepa-

rated by vertical bars, one of which must be provided. If the behavior of the system

varies depending on which word is present, that fact is documented following the

sentence in question. Things the user types are set in boldface type; the robot’s

responses are in normal type.

3.4.1 Statements

“You are fat j in j ong place”

This is the primary mechanism by which the user trains the robot about new

places. It is presumed that the user knows where the robot actually is, and that the

user is being honest. The robot will learn this place, and will subsequently be able

to navigate back here from any other place that it has experienced as connected to

1Note that some other relative directions, including “left” and “right”, are supported in addition
to these directions.
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this place.

“You are facing direction”

There are times when the robot becomes disoriented. This speech act provides

a way for a user who notices the robot is incorrect in its claims about its heading to

correct it.

“Place is [to the] direction of fhere j youg”

“You are [to the] direction of place”

“Place is [to the] direction of place”

This type of speech act gives the robot some information about a place, but not

enough to allow it to navigate there without further assistance. This information

can be used when explaining how a user could get to the learned place, however,

since the user has access to a richer set of perceptions than the robot does. In

addition, the robot will record the relationship between the two places described

(or between its current place and the place described). Each time the robot is at the

known place and headed in the appropriate direction, until it has learned how to

get to the new place, it will remind the tutor to tell it when it gets to the new place.

“Place is [the same as] place”

This speech act lets the robot know of another name for a known place. It is

at present an error to tell the robot two places are the same when the robot had

already learned different paths to get to each of them, as we did not implement the

required place-unification and plan-unification to support this capability.

3.4.2 Commands

Except for “faster,” “slower,” and their synonyms, each of these commands inter-

rupts any other activity or planning the robot was doing.
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3.4.2.1 Velocity

“Go”

This is the basic way the user tells the robot to move. It requests the robot to

start moving forward in the current direction.

“Stop”

This asks the robot to stop moving. This might be used in preparation for

naming a new place, for example.

“[Go] ffast j slowg[er]”

This sentence causes the robot to adjust its speed to meet the user’s preference.

This reflects modes of operation specific to TJ; other robot architectures might pro-

vide a different set of choices that would need to be supported through language.

They do not have any permanent effect since our system doesn’t store the robot’s

speed or speed changes.

3.4.2.2 Heading

“[Turn] fright j leftg [degrees [degrees]]”

“[Turn] around”

“Face direction”

These commands cause the robot to turn relative to its current heading, or to

turn to a certain absolute heading. They also make the robot stop moving forward,

as the turn radius of the robot when it is moving depends on its speed. We found

it safest to require the robot to stop when it is making a turn. When degrees is not

provided to a turn left or turn right command, the robot turns 90 degrees.
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3.4.2.3 Short Term Plans

These commands are ways to get the robot to move forward with a certain prespec-

ified stopping condition. The robot will announce that it has arrived at its goal and

stop when the condition specified in the sentence is achieved. Sentences grouped

together here are treated as synonymous.

“Go [until you get] to the end of the hall”

“Go as far as you can”

These commands ask the robot to go until it sees something in front of it.

“Go until you can turn fright j leftg”

“Go until there is an opening on your fright j leftg”

These commands ask the robot to go until there is no obstacle in the requested

direction.

“Go until you fcan’t j cannotg turn fright j leftg”

“Go until there is no[t an] opening on your fright j leftg”

“Go until there is fa wall j somethingg on your fright j leftg”

These commands ask the robot to go until there is some obstacle in the requested

direction.

“Go [about] number finches j feet j yardsg”

These commands ask the robot to go the specified distance.2

3.4.2.4 Long Term Plans

Commands in this category initiate behavior that may take some time to complete.

This behavior remains fully interruptible if the user decides on a different goal or

2We happened to choose English measurements instead of metric, because the distances used by
the communication interface to the reactive robot we used are expressed in inches. This conversion
would be easy.

44



wants to teach the robot about some new place.

“Go to place”

This is the primary method used to direct the robot to navigate to a place it has

previously learned about. If the robot knows how to get to this place from where

it presently is, it will plan a route there and begin to navigate it. The planning

is performed again at each place it passes through along the way, because it is so

quick and it might allow the robot to take advantage of new information it has

learned.

“Go back”

This command would be unlikely to be used in practice by a tutor other than

the author. It causes the robot to return to the most recent place it was sure of.

The robot does this by reversing the high-level navigation actions it has taken to

get to this point. It must substitute distance-measured termination conditions for

ones that depend on other conditions such as the presence or absence of walls,

since those conditions are usually different when travelling the same passage in

the opposite direction.

3.4.2.5 Requests for Information

“Describe place”

“Tell [me] about place”

These ask the robot to provide a simple description of the location of place.

We considered supporting something much more complicated here, including the

modelling of which places the user knows about already so the robot can cast its

description of place in terms of those places. In the end, we decided that project

wasn’t central to our thesis.
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3.4.2.6 Utility

“Forget where you are”

This makes the robot stop and forget where it thought it was. This is useful if

the robot has become confused about its location, and the user wants to command

it using go, stop, and turn commands to get it back to a known location, without

having the robot mistakenly learn this route as the way to get from where it

erroneously thought it was to the place the user finally gets it to.

“Forget fall j everythingg”

This completely refreshes the robot’s memory when things are really messed

up.

“Forget about place”

This makes the robot forget anything it has learned about the named place. This

includes all plans that get it there from other places. This might have the effect

of disconnecting parts of the robot’s graph of places if the robot has learned lots

of other places already; it is usually a good idea to teach it place again as soon as

possible.

“fLoad j Saveg [filename]”

These speech acts allow the user to store and refresh the robot’s memory of the

places and plans it has learned. This is particularly useful for allowing the robot to

explore different locations and not have any danger that they might conflict in its

memory.

3.4.3 Questions and Responses

“Which way are you facing?”

46



This simple question asks the robot to name the direction it currently believes

it is facing. Odometry error can cause the robot to become confused about its

heading; the tutor can correct this confusion by telling it its correct heading.

“Where are you fgoing j headedg?”

This asks the robot to name the place it is headed for if it is presently on its way

to a place.

“Where fis TJ j are you j am Ig?”

These are ways of asking the robot to name its current location, or to name the

places it is between when it is not at a particular place. It is mostly useful as a way

of confirming that the robot is doing the right thing.

“Where is place?”

This has the same effect as “Describe place” and “Tell about place.” See the

description provided above in the Requests for Information section.

“What is [to the] direction of fhere j youg?”

“What are you [to the] direction of?”

These sentences are trivial to implement given the rest of our ar-

chitecture, but we did not have time to implement and test them.

These are ways of asking the robot to describe nearby places that it

knows about. Because the robot stores its plans in terms of direc-

tions in world-coordinates, it can determine this kind of information

directly from those plans.

Future
Work

“How fdo j wouldg fyou j Ig get from place to place?”

“How fdo j wouldg fyou j Ig get to place [from place]?”

These questions ask the robot to describe routes between places or from the

current place to another place. The robot uses a different strategy to describe these

routes depending on whether the user is asking how TJ gets there or how a person
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would get there. If the former, TJ will explain that it can’t get to places it hasn’t

learned yet by experiencing them.

We expect that in intended use, the person asking these questions doesn’t al-

ready know the answer. Even if they are unfamiliar with the robot’s environment,

people following the plan that the robot provides should be able to find the place

once the plan gets them close. For this reason, the system will include directions at

the end of the plan such as “Then go north until you see John’s office,” which the

robot can’t follow itself, but which a person can.

3.4.4 Modals

We have begun to implement the described behavior of these

sentences, but have not yet fully tested them.

Future
Work

“fThen j Next j Finallyg sentence”

Sentences that start with one of these words cause the robot to defer the com-

mand that follows until it has completed its other pending commands. This pro-

vides a way to tell the robot to

Go to the end of the hall.

Then turn right.

Finally go about 10 feet.

This capability is an important precursor to a robot system that would be able to

understand and store full plans without simultaneously executing them.

The author has worked on another system that can perform this task with a

simulated robot and a natural language interface, described in[Torrance, 1994].
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Chapter 4

The Reactive Layer

This chapter describes the reactive layer of our architecture, the basic navigation

strategy of the robot TJ as implemented by Jonathan Connell. It also describes the

robot TJ to the extent needed to understand how it accomplishes obstacle avoidance

and corridor following.

4.1 Physical Architecture

The mobile robot TJ, illustrated in Figure 4-1, was designed and built by Jonathan

Connell at IBM T.J. Watson Research Center [Connell, 1992b].

The robot is constructed on a Real World Interfaces (RWI) B-12 base, a 12 inch

diameter commercial product used frequently in research on mobile robots. The

remainder of TJ’s hardware sits in separable sections of the same diameter above

the base. Wiring between the sections runs through a series of holes down through

the rear of the robot, much like a spinal cord. This architecture makes it relatively

easy to interchange parts or to do repairs to one or more sections independently.

The cylindrical symmetry of the robot is important, because it makes it possible

for this robot to rotate in place without danger of interacting with static obstacles.

This isn’t entirely accurate, since there are openings in the surface of the robot

which can get caught on protrusions, for example, but in practice turning in place

is quite safe.
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The Robot TJ

Speaker

Sonar distance sensors
and sonar processor

Radio modem

Infrared distance sensors
and IR processor

RWI B-12 base

Halt button

Radio antenna

Speech synthesizer
and speech processor

Base interface processor

Host communications
and bridge processor

Figure 4-1: Components of the physical mobile robot TJ used in this research
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4.1.1 Sensors

TJ’s sensors include infrared and sonar distance sensors as well as the extensive

support for odometry that is built into the RWI base and a radio modem.

Twelve infrared sensors are mounted in a ring, with heavier concentrations in

the front and sides of the robot. These sensors are used primarily for corridor or wall

alignment and obstacle avoidance. Three higher power infrared sensors, tuned to

a longer range, are mounted facing directly forward and to the left and right of

the robot’s travel direction. These are used for obstacle avoidance and to detect

wall openings, which may correspond to open doors or side passages, at times

when the robot is aligned with a corridor. A dedicated 6811 microprocessor, the IR

Processor, collects these distance measurements and reports them when requested

to the bridge.

The infrared sensors are most effective on moderate to light colored surfaces

that reflect infrared light well. They are also confined to a single layer of the robot,

about 9 inches from the ground, so they can’t detect obstacles at other heights.

Sonar sensors are employed to help overcome these problems. These are Po-

laroid ultrasonic ranging transducers, connected to custom analog signal process-

ing hardware. This hardware, designed by Connell, does more analysis of the time

domain signal from the sensor than is typically done in applications that employ

sonars. As a result, TJ’s sonars are often able to detect the distances to each of

multiple echos from a single ping. This same board contains the Sonar Processor, a

dedicated 6811 that collects this data and returns it to the bridge when so requested.

The version of the RWI base TJ uses computes fairly accurate odometry mea-

surements of the total distance the base has translated and rotated since it was

reset. (A newer version of this base has greatly improved odometry; unfortunately,

we did not use the new version in this research.) The Base Interface Processor in-

tegrates this information over time to develop an estimate of the robot’s current

x; y; � position relative to its starting position and orientation.

Data communications received over the radio modem or through an RS-232

cable that bypasses the modem, comes into TJ through the Host Communications
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Processor, and provides input to the Bridge Processor. This allows the host computer,

in our case a Macintosh Powerbook, to send commands to the robot as described in

Section 4.2. Among these commands are strings to be said by the voice synthesizer

when it is enabled, so this direction of communication serves in the output side of

the natural language system.

4.1.2 Effectors

TJ’s primary effectors are the wheels on its RWI base. In addition, it is equipped

with a speech synthesizer and amplified speaker, and a radio modem.

The RWI base is a nearly holonomic drive system. This means translation

and rotation can be controlled independently. The base is only nearly holonomic

because the point of contact for each wheel is not precisely beneath the vertical

rotation axle around which it rotates. This means the wheels must slip some on

the ground when the base rotates. This effect is negligible, however, compared to

the slip that can be introduced by uneven floor surfaces such as carpet. The Base

Interface Processor supports drive commands to these processors.

The speech synthesizer provides spoken output from English text input with a

quality no better or worse than typical commercial speech psynthesizers. We find

it to be adequate for our needs, especially when it is used in a discourse setting

where the other conversant has expectations about what the robot will say.

The radio modem (or its substitute RS-232 cable) provides sensory information

and command feedback from the processors on TJ to the host computer, an external

computer to which the robot is linked and which runs the other levels of our

architecture.

4.2 Computational Architecture

Code written in Lisp communicates with the TJ system through the Host Communi-

cations Processor and the Bridge Processor. These processors provide pass-through

commands to each of the processors in the style of remote procedure calls, and the
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Bridge Processor itself implements subsumption architecture [Brooks, 1986] by

providing for command inhibition.

The robot has a set of virtual effector resources that can be turned on or off by

the Bridge Processor. These include fast and slow versions of turn left, turn right,

translate forward, and translate backward. A higher level program sets up which

of these resources should be available at any time; to restrict the robot to slow

motion, for example, all of the “fast” resources are inhibited.

Programs that run on each of the processors, called “behaviors,” can provide

“advice” about which resources should be inhibited. One behavior that runs on

the IR Processor, for example, will inhibit the robot’s rotation toward an obstacle it

percieves. Another behavior runs on the Sonar Processor, and slows or stops the

robot when there is an obstacle in front. The higher level program in Lisp can, over

the serial communications link, determine which of these behaviors will be active

at any time.

4.3 Performance

The capabilities of TJ employed in this research include ballistic rotation, odomet-

ric measurement, obstacle avoidance, corridor following, and discrimination of

openings from obstacles on the left, right, and in front. This section reviews TJ’s

performance on each of these tasks.

TJ is nearly flawless at ballistic rotation. The wheels do slip on the carpet, so

the angle turned through is not always the angle requested. The routines that

implement this ballistic rotation are in the RWI base ROMs, and return a value

that accurately reflects the change in odometry from before the turn to after. Still,

slippage on the carpet can play a role. A mistake of three or four degrees at the start

can translate to a big error in position after travelling a long distance. Fortunately,

we operated the robot in environments where the relative scarcity of big open

spaces helped us in this case. Hallways provide the robot a chance to realign and

correct for errors in its odometry. To be fair, in many applications where wide
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open spaces are common, carpet is less so, and bare floor improves the rotational

accuracy of bases like the RWI B-12 tremendously.

For translation, the TJ architecture provides a way to measure the robot’s

progress in inches in the commanded direction. This means that, to the extent the

robot’s rotational odometry is correct, it can get a good estimate of how far it has

travelled down a corridor even in the presence of the wall following behavior. This

is important, because the raw translational odometry could vary a lot from run to

run down the same corridor, depending on where and how often the robot happens

to adjust its heading.

At obstacle avoidance, TJ has some trouble. Its likelihood of stopping for a

person who steps in front of it, for example, depends dramatically on the color of

the person’s pants. The IR sensors can see white and light colored pants, and miss

the dark pants. We would have expected the sonars to do well here, but they don’t.

We haven’t yet undertaken a thorough investigation of this problem, so we suspend

judgment until we have. Still, the robot’s poor performance at moving obstacle

avoidance deserves serious consideration when thinking about how to integrate

this robot into a complete system that can operate safely in an office environment.

We did not tackle this problem beyond our analysis here.

TJ is wonderful at corridor following. It can achieve speeds of better than 1.5

meters per second safely (in the absence of moving obstacles). Front-mounted

sensors reliably detect static obstacles as the robot approaches them and their

associated behaviors, when active, cause the robot to slow for the approach. Con-

nell has developed an ingenious wall following strategy based on three carefully

distance-tuned IR sensors that works very well.

The opening discrimination routine works well, again for static obstacles. It

does not discriminate closed doors from walls, a performance requirement of some

systems [Myers and Konolige, 1992b]. Consequently, the rest of the system using

this routine must accept it for what it is, and try to use it only to detect the openness

of a door the robot is pretty sure is there, or the presence of an opening the robot is

pretty sure stays open. If both the position of the robot and the state of the opening
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are unknown, this discriminant is useless for localization.

4.4 Requirements of the Base System

This section describes the requirements we believe the rest of our architecture

makes of the base system, and how other systems might meet those requirements.

We originally expected to require the base robot system to be capable of land-

mark recognition and point to point navigation among these landmarks. We in-

tended that our ROPs would be used only for local navigation with a recognized

landmark as a starting point, and that distant places would be acquired by first

planning globally in the space of recognized landmarks and then using ROPs to

go the final distance to the odometrically recognized place. [Horswill, 1993b]

has presented a vision-based system which has this performance, increasing our

confidence that this is reasonable to expect.

In performing this research, however, we determined that TJ does not have

the appropriate sensors for landmark recognition except in the context of good

odometric information. Since we intended to push the use of odometry anyway,

we emphasized this and removed our requirement of landmark recognition. In

the end, we believe landmark recognition would be a substantial improvement to

the system we have implemented, as it should allow more robust performance.

However, we find that the odometry we have employed as provided by TJ is

remarkably adequate for the task in the absence of any other landmark recognition.

Obviously, high quality odometry is assumed by the rest of this research. Places

will only be recognizable to within the error introduced by the measurement of

translational odometry in the desired direction. Moreover, without landmark

recognition, serious errors in translational odometry could make ROPs that rely

only on distance measurements unusable. Luckily, the high quality translational

odometry provided on TJ and its RWI B-12 base are now becoming standard, so

meeting this requirement should not be a problem for many robots.
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Chapter 5

Plans and Representation

This chapter describes our representations of places and plans. These representa-

tions form the primary contribution of this thesis, and serve as the bridge between

natural language and the reactive robot. The following two chapters explain how

these representations are used to support navigation and communication respec-

tively.

5.1 BNF

The following is a Backus Normal Form grammar that expresses the relationships

between our representational data structures for plans, places, and ROPs. More

information about each of these data structures, including the semantics of their

various components, is found in the subsequent sections.
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plan ::= (rop*)

place ::= h (name*), (rop*), (rop*), preposition, (place*), (place*) i j nil

name ::= any string

preposition ::= “at” j “in” j “on”

rop ::= h place, place, (step*) i

step ::= h heading, length, stop-condition i

heading ::= 0:0 :: 360:0 j nil

length ::= 0 :: 1 j nil

stop-condition ::= shortfront j longfront j

shortleft j longleft j

shortright j longright

5.2 Places

Place

Names
ROPs to me
ROPs from me
Preposition
Nearby new places
Nearby known places

Figure 5-1: Data structure for storing a place

A place is a data structure in our program that is used to represent a point

location in the physical world. Places are almost always points that the robot

can navigationally reach, although we do store places we have learned something

about but for which we do not have a procedure to get there. In typical use in our
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system, which only drives the robot around the corridors of our building and does

not attempt to drive into offices, the spot in the hallway in front of an office is named

with the number and/or occupant of that office. When the user subsequently asks

the robot to “go to Mark’s office,” it navigates back to the point in front of the office

at which it was previously told “this is Mark’s office” or “you are at Mark’s office.”

A place includes storage for a variety of names that are used to describe the

place. The names include each name that has been used by a tutor to describe the

place; these are introduced through language such as “you are at place,” “place is

north of here,” “place is the same as place,” or “place is east of place.”

Each place also stores a set of ROPs that lead from this place to other places and

a set of ROPs that lead from other places to this place. These serve to connect the

places together in a graph, where each place is a vertex and each ROP is an edge. A

variety of mechanisms ensure that the growth of this graph is controlled; Chapter 6

has more information on this topic.

A place also indicates the preposition, if any, used by the tutor to describe

presence at the place. This is either “at”, “in”, or “on”. If no preposition is used

when the place is taught, such as in the sentence “This is place,” the system uses

“at” by default until it is told otherwise in a subsequent sentence.

In addition, two other lists are kept with a place. One contains a list of places

that the robot has learned are nearby this place, but whose precise location is not

yet known. These are called nearby new places. The other list is used when the place

itself is only known by its relationship to other nearby places; those other places are

stored as nearby known places. As the robot is told about places by their relationship

to other places, it manipulates these lists. For example, if the user says “John’s

office is north of the conference room,” the system will store JOHN’S OFFICE on the

nearby-new-places list of THE CONFERENCE ROOM, and will store THE CONFERENCE

ROOM on the nearby-known-places list of JOHN’S OFFICE.

This information is used in a variety of circumstances. When the system is at the

conference room and begins to head north, it will ask the user to tell it when it gets

to John’s office. Additionally, when describing how a person could get to John’s
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office, the system can tell the person how to get to the conference room and then

suggest that the user “go north to John’s office.” This plan is not precise enough to

allow the robot to navigate to John’s office on its own, but it is useful information

that could allow a person to get there. More information about this topic is found

in Chapter 7.

5.3 Reactive-Odometric Plans

ROP

From
To
Steps

Figure 5-2: Data structure for storing a ROP

A Reactive-Odometric Plan, or ROP, is a representation of a short-range plan to

get the robot between two places. These ROPs provide a way for the robot to

understand a place in terms of a way to get there in the world. A ROP includes

references to the places it leads from and to, which we sometimes call the starting

place and goal, respectively, of the ROP. It also includes a list of steps.

The steps of a ROP provide the language of interaction between the reactive

layer and the higher layers of the planner and the natural language system. We

have determined that this language needs to have these properties:

1. Taken together, the atoms of this language are sufficient to get the robot to go

to anyplace we desire it to go, and that it can physically reach.

2. These plan steps can be automatically recognized by a plan-recognition mod-

ule, and therefore regenerated by a memory-based planner.
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3. They can be told to the robot by a person.

The language of ROP steps we have designed meets these criteria.

A step of a ROP corresponds to one straight-line leg of the journey represented by

the ROP. Each step includes three components; a heading, a distance, and a stopping

condition. Each of the components is optional.

The heading, when present, indicates the direction the robot should face when

beginning to execute that step. It is expressed in absolute world coordinates rather

than being relative to the previous direction the robot was facing; this allows fairly

straightforward reversal of ROPs. If the heading is nil, the robot continues on at

its current heading when beginning to execute this step.

The distance, when present, reflects an estimate of the travel distance of this

step of the ROP. When executing the step, the robot will travel the required distance

and then stop or move on to the next step. In ROPs that the robot has actually used

to navigate, distance measurements are stored for every step. These measurements

are recorded directly from the odometric distance measured by Connell’s software

for TJ. As described in Section 4.3, this estimate reflects progress in the commanded

direction, rather than recording the total progress of the translation motors of the

base. This turns out to be quite repeatable and reliable.

This distance measurement on each step is also used by the system to compute

a distance estimate for a complete ROP. This latter estimate is used in the high-level

planner as the cost of using this ROP, as it works to find the shortest path between

two places.

The stopping condition, when present, provides an additional condition under

which the robot will consider itself done with this step of the ROP. At present, this

condition can be one of these six possibilities:

� shortfront

� longfront

� shortleft
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� longleft

� shortright

� longright

These represent sensory conditions measured by the robot. These conditions are

introduced when a person gives an immediate mode command that involves mea-

suring one of them, such as “Go to the end of the hall,” “Go until you can turn

left,” or “Go until there is something on your right.”

An example of a ROP that would get the robot to go north down a hallway and

stop at the end, 120 inches away, would be:

hPLACE 1; PLACE 2; (h0:0; 120;shortfronti)i

In this ROP, PLACE 1 and PLACE 2 refer to the system’s internal representations for

those places, and the single step of the ROP contains the heading command 0:0, the

distance command 120, and the stopping condition shortfront.

For purposes of efficiency, only nearest-neighbor ROPs are stored by the system.

When the system learns about a new place B that is between two other places A

and C, it replaces the ROPs A,C with new ROPs A,B and B,C. In addition, the

structure of the environment means each place will have few nearest neighbors.

These factors restrict the growth of the graph of places connected by ROPs. This

property is explored further in Section 6.4.

ROPs can be easily reversed. This is important since when the robot learns about

B after travelling there from the known place A, the system needs to install both

the forward ROP A)B and a reverse ROP B)A. The same algorithm is also used to

reverse the current ROP to get the robot back to its most recent known place when

it is asked to plan a route while it is between known places.

ROP steps that involve explicit stopping conditions will not normally work

correctly when reversed. Consider a step that says to go until there is a gap on the

right. There may be no natural stopping condition to indicate the other end of that
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leg of the journey, and even if there is it wouldn’t be the same gap. Since every

ROP step the robot has experienced is annotated with its distance, we sacrifice the

robustness of the explicit stopping condition and just store a GO step that makes

the robot travel the right distance in the reverse direction. This makes every ROP

reversible.

By way of example, consider the ROP with these steps:

(h0; 55;longrighti h90; 20;nili)

These steps, when reversed, would look like this:

(h270; 20;nili h180; 55;nili)

The first of the original steps becomes the last of the reversed steps. Explicit angles,

where provided, are reversed.

If steps in the ROP have nil headings, the reversed ROP expresses them as

though their headings had been copied through from the most recent step that had

an explicit heading. This ensures that each step of the ROP will be traversed in the

reverse direction in the reverse ROP.

5.4 Plans

A plan is a representation of a longer range plan that would get the robot between

two places or between its current location and a place. It consists of a sequence of

ROPs, with the goal of each ROP being the starting place of the next ROP in the plan,

and the goal of the final ROP being the goal of the whole plan.

Plans are not stored in any permanent way, but are generated as needed by

Dijkstra’s well-known shortest path algorithm. Because in typical interactions

with our system new places are frequently named during the execution of a plan,

the planner replans at each intermediate place. That is, in executing a plan, the

robot just executes the first ROP in the plan and then replans. This would allow
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the robot to take advantage of fortuitous knowledge added by the user during the

execution of the first ROP, such as a fact about the connectedness of two places the

robot did not know were connected.
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Chapter 6

Navigation Support

This chapter describes the way in which the representations described in Chapter 5

support the robot’s navigation.

6.1 Basic Execution Sequence

The basic execution sequence of the robot is shown in Figure 6-1. It consists

of a loop, in which data is grabbed from the robot, natural language commands

are processed, the current ROP step is executed, the robot’s location is updated

based on plan recognition, and the robot replans as needed to get to its goal. This

loop is repeated continuously, as often as possible. Each of the steps in the loop is

described in sequence in this chapter, save for the processing of natural language

commands which is reserved for Chapter 7.

6.2 Grabbing Data from the Robot

Certain data is required from the reactive system that provides low-level control of

the robot. This includes the current heading, the distance the robot has travelled

along the commanded heading since it was last reset, whether the robot is currently

moving, and the current values of the sensors.

Polled sensors used by this higher level code include the long-range IR sensors
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Statements
Commands
Questions

LISP

Statements
Answers to questions

RS-232 to TJRS-232 from TJ

User Conversation Window

Parser

Command Interpreter

Command Queue

LOOP
    Update State
    Process Commands
    Take Action
    Update Location
    Replan

Current ROP
Running ROP
Goal Place
Distance Travelled

State Memory
Places
ROPs

TJ: I am at Mark's Office

Where are you?

Figure 6-1: Overview of our system, showing some of the information flow. Process-
ing commands and updating location can each produce natural language output;
these may draw upon the memory and the state in so doing.
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mounted in front and on the left and right of the robot, as well as the sonars. These

sensors are merged to form three virtual sensors that reflect whether there is an

obstacle near the robot to the left, to the right, and in front.

6.3 ROP Execution

Current
Step

Pending StepsCompleted Steps

Most Recent Place

Place Goal

Immediate Place Goal

Current Place

Current ROP

Figure 6-2: Components of the state of the robot

Figure 6-2 illustrates the variables that make up the robot’s current state. At all

times, *current-rop* reflects the robot’s progress since its last known location,

and contains steps that represent its current and pending navigation actions.

The current step may include a heading, a distance, and/or a stopping con-

dition. The heading, if present, is used when execution of the step is begun, as

a ballistic turn command to get the robot facing the proper direction. If the step

contains an explicit distance, the ROP executor calls the step complete when the

robot has travelled at least that distance. If the step contains a stopping condition,

the executor monitors that condition and calls the step complete when it holds

true. In the current implementation, if both conditions are present the robot will

not stop until the stopping condition occurs; this increases its utility as a way of
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compensating for translational drift over time.

The algorithm leaves room for more sophisticated step termina-

tion conditions. For example, if both a distance and a condition

are present, the robot could express some healthy skepticism if the

condition does not occur at around the same place from execution

to execution. Because the distance of each step is recorded in the

completed-steps list, the robot would be able to return to a known

place to try again or to ask for help when necessary.

Future
Work

6.4 Plan Recognition

As the robot leaves a place, it begins to track its progress along each of the ROPs it

knows that start at that place. The robot recognizes that it has arrived at a place by

noticing that the ROP it has executed so far is isomorphic to some ROP it is tracking.

This tracking problem does not become computationally complex because of

a feature of the environment that works in our favor, and because of a pruning

process we perform. The environmental feature is that places, viewed as graph

vertices, have a relatively low branching factor. In our environment, as in many

office environments, the robot’s domain is largely composed of corridors and in-

tersections. The possible travel directions from any intersection number at most

four in our environment, and they happen to be in the cardinal directions in our

building. Our system assumes the number is small, as this restricts the branching

factor of the planning problem, but not necessarily that the paths are in cardinal

directions.

The pruning process we perform removes a ROP that is superseded by a pair of

ROPs which together achieve the path of the original ROP. These shorter ROPs are

introduced automatically whenever a new place is named while the robot is on its

way to a previously known place. For example, when the system learns about a

new place B that is between two other places A and C, it replaces the ROPs A,C with

new ROPs A,B and B,C. This pruning process means that the only ROPs stored

from a place lead to adjacent known places, not to all known places. Thus, the low
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branching factor of the environment and the high density of named places with

respect to this branching factor cause the branching factor of the place graph to

remain low.

At present, ROPs only unify with each other if they were generated by the same

source. When a ROP is recorded as the user commands the robot to drive around

its environment, and the same ROP is later used as part of a navigation plan, the

running execution of this ROP will unify with the stored version. That is, our current

algorithm only detects the unity of identical ROPs. This is sufficient for recognizing

places that the robot was expecting to get to because they were along the route

of its high level plan (see Section 6.5, below), but does not allow sophisticated

recognition of places the robot is surprised to have arrived at. For example, the

system would not at present recognize that these two ROPs have the same effect:

hPLACE 1; PLACE 2; (hnil; 25;nili hnil; 25;nili)i

hPLACE 1; PLACE 2; (hnil; 40;nili hnil; 10;nili)i

These ROPs could have been constructed by two separate stop-and-go processes in

each of which starting from place 1 the user said “Go,” “Stop,” “Go,” then “You

are at place 2.”

We have designed and tested some preliminary improvements to this unification

algorithm. We have augmented the ROP recording procedure so it merges together

consecutive GO steps without explicit stopping conditions into a single step which

says to go the sum of the old steps’ distances; this eliminates the problem described

in the previous paragraph. We have also fixed the implementation of the turn

commands (such as “turn left” or “face north”) so that multiple commands issued

in sequence are represented as a single step that produces their net effect. We

further merge a turn step without a translation command (i.e. with 0 distance)

with a subsequent translation command that occurs, saving one combined step in

the completed steps of the current ROP. These improvements are effective at making

more ROPs correctly unify.
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6.5 Planning

The robot can accept instructions that cause it to begin long-range navigation be-

havior to get to a particular place. These instructions come from natural language,

and are discussed more in Section 7.2.4. When the user has asked the robot to go

to a place the robot knows how to get to, it stores this place in the state variable

*place-goal*.

When there is a place goal stored in *place-goal*, the robot will replan to

get to it whenever it arrives at a known location. The robot replans because new

information added while the robot executed the most recent leg of the plan could

have changed which route is the shortest.

The planner uses the well-known Dijkstra shortest path algorithm to find the

best route from its current location to *place-goal*. ROPs form the edges of a

graph connecting the known places, so these are used as the steps of this plan.

A distance estimate is formed for each ROP, and used by the planner as it

determines the shortest path. This estimate is formed by summing the distances of

all the steps in the ROP.
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Chapter 7

Communication Support

This chapter describes the way in which the representations described in Chapter 5

support natural language communication with people. It parallels Section 3.4,

which details the intended behavior of each of the speech acts described in this

chapter. Section 3.3 provides the methodology behind our choice of what language

components to include. This chapter emphasizes the implementation of these

speech acts.

We use the following conventions. Direction refers to any of the eight directions

“north”, “northeast”, “east”, “southeast”, “south” “southwest”, “west”, or “north-

west”. In addition, these may be abbreviated with one or two character versions,

as in “n”, “ne”, and so on. Sentence refers to a whole sentence as accepted by our

parser. Place refers to a place name or place description, which may consist of

arbitrary text.

Square braces delimit optional text. Curly braces delimit a set of words sepa-

rated by vertical bars, one of which must be provided. If the behavior of the system

varies depending on which word is present, that fact is documented following the

sentence in question. Things the user types are set in boldface type; the robot’s

responses are in normal type.
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7.1 Statements

“You are fat j in j ong place”

This is the primary mechanism by which the user trains the robot about new

places. It is presumed that the user knows where the robot actually is, and that the

user is being honest. The robot will learn this place, and will subsequently be able

to navigate back here from any other place that it has experienced as connected to

this place.

The robot does a number of things when the user tells it this statement. It

terminates the current step, which sets its distance to the current odometric distance

measurement of the robot and pushes the step onto the completed-steps list. If the

named place was not already known, it instantiates a new place with the given

name as its only name. It sets *current-place* to be this new place.

If the robot knew where it most recently was, that place will be stored in

*most-recent-place*. In this case, it then stores the completed-steps as a

ROP to get from *most-recent-place* to *current-place*, and also stores

a reverse-rop to get from *current-place* back to *most-recent-place*.

Section 5.3 describes the procedure for reversing a ROP. Likewise, if the robot was

on its way to a named place (this would be stored in *next-place-goal*), it

generates ROPs from the remainder of the terminated step and the still pending steps

to get between *current-place* and *next-place-goal*. Last, it replans if

it had a *place-goal* to take advantage of the newly installed ROPs.

Places may have multiple names; if the robot is already at a known place and it

is told it is at new place name, it will just add new place name as a synonym for the

place it knew it was at. Synonyms can also be introduced with “is” or “is the same

as”, as described below.

71



An easy extension to the work we have done here would keep

track of the number of times users use each name for a place so the

robot can use the most popular name for a place over time. A more

sophisticated version of this extension would maintain a model of

which user it was talking to, and store preferences for place names

on a per user basis.

Future
Work

“You are facing direction”

There are times when the robot becomes disoriented. This speech act provides

a way for a tutor who notices the robot is incorrect in its claims about its heading to

correct it. The robot interface provides a layer of abstraction between the heading

reported by the base and the heading the robot uses. This abstraction is managed

by an offset, which is added to the base-reported heading before it is reported, and

subtracted from commanded headings before they are passed to the base control.

The “You are facing” sentence changes the value of this offset so it makes the robot

believe its current base heading is in fact the named direction.

“Place is [to the] direction of fhere j youg”

“You are [to the] direction of place”

“Place is [to the] direction of place”

This type of speech act gives the robot some information about a place, but not

enough to allow it to navigate there without further assistance. This information

can be used when explaining how a user could get to the learned place, however,

since the user has access to a richer set of perceptions than the robot does. In

addition, the robot will record the relationship between the two places described

(or between its current place and the place described). It records the new place

on the nearby new places list of the known place, and records the known place on

the nearby known places list of the new place. Each time the robot is at the known

place and headed in the appropriate direction, until it has learned how to get to the

new place, it will remind the tutor to tell it when it gets to the new place. When it

finally learns how to get to the new place, it removes the entries it made on their
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nearby-places lists.

“Place is [the same as] place”

This speech act lets the robot know of another name for a known place.

It is at present an error to tell the robot two places are the same

when the robot had already learned different paths to get to each

of them, as we have not implemented the required place-unification

and plan-unification to support this capability.

Future
Work

7.2 Commands

All commands except speed changes share certain implementation features. They

all cause the current step to be terminated, which sets its distance to the cur-

rent odometric distance measurement of the robot and pushes the step onto the

completed-steps list. In most cases, they kill all the pending steps, and install a

new step as the only pending step. The contents of that step are described below

after each command.

7.2.1 Velocity

“Go”

This is the basic way the user tells the robot to move. It requests the robot to

start moving forward in the current direction. It is implemented by installing a

new pending step with no heading, distance, or stopping condition.

“Stop”

This command stops the robot, causes the current step to be terminated, kills

the pending steps, and has no other effects.

“[Go] ffast j slowg[er]”
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These sentences operate by sending commands directly to the TJ interface to

adjust the speed of the robot, but they are not recorded in the current ROP and

otherwise have no effect on the operation of the robot. We found that speed

changes do not affect the robot’s odometry in any meaningful way, which makes it

acceptable to have the speed changes independent of the execution of the ROPs.

7.2.2 Heading

“[Turn] fright j leftg [degrees [degrees]]”

“[Turn] around”

“Face direction”

These commands cause the robot to turn relative to its current heading, or to

turn to a certain absolute heading. They also make the robot stop moving forward,

as the turn radius of the robot when it is moving depends on its speed. We found

it safest to require the robot to stop when it is making a turn. When degrees is not

provided to a turn left or turn right command, the robot turns 90 degrees. They are

implemented by installing a new step with heading+degrees as the heading, where

heading is the robot’s current commanded heading (that is, the most recent heading

command found by searching through the pending and current ROP steps).

7.2.3 Short term plans

“Go [until you get] to the end of the hall”

“Go as far as you can”

These commands operate by installing a new step with no heading or distance

commands but with shortfront as a condition.

“Go until you can turn fright j leftg”

“Go until there is an opening on your fright j leftg”
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These commands operate by installing a new step with no heading or distance

commands but with longright or longleft as a condition as appropriate.

“Go until you fcan’t j cannotg turn fright j leftg”

“Go until there is no[t an] opening on your fright j leftg”

“Go until there is fa wall j somethingg on your fright j leftg”

These commands operate by installing a new step with no heading or distance

commands but with shortright or shortleft as a condition as appropriate.

“Go [about] number finches j feet j yardsg”

These commands ask the robot to go the specified distance and then stop. They

operate by installing a new step with no heading or condition commands but with

the specified distance.

7.2.4 Long term plans

“Go to place”

To execute this command, the robot first determines whether it knows the

named place. If it does, and it can find a plan to get there from the current place or

from its most recent known place, then the robot establishes the named place as its

*place-goal*. If the robot is not presently at a known place, it will first return to

its most recent known place using the algorithm described below under “Go back”;

once it gets there, it will automatically replan a route to *place-goal* using the

algorithm described in Section 6.5.

If the robot does not know how to get to the place, but does know where it is

with respect to some other place, the robot will offer to go to the nearby known

place, go in the appropriate direction, and let the user tell it when it arrives at the

desired place. If the robot knows nothing about the place, it states this fact.

“Go back”
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This command is implemented by stopping the robot, terminating the current

step, deleting any pending steps, reversing the completed and current steps of the

current ROP, and installing them as pending steps. Reversal of ROPs is described

in Section 5.3. Notice that by using the existing mechanism for executing these

reversed steps (the pending steps list), the whole ROP can be reversed again if the

user later tells the robot to stop or to do something else while it is in the midst of

going back to the most recent known place.

7.2.5 Requests for Information

“Describe place”

“Tell [me] about place”

At present, these commands just make the robot state whether it knows about

the named place or not, and which places it is near. The robot checks to see whether

place is known, and reports whether it is. If it is known, the robot reports the list of

places that are reachable from place by a single ROP. It also reports the direction of

the nearby place if the ROP to it contains only one step with an explicit heading.

7.2.6 Utility

“Forget where you are”

This command forces the robot to forget where it is. This is useful if the robot has

become confused about its location. The command sets *most-recent-place*,

*current-place*, *next-place-goal*, and *place-goal* to nil. This

has the effect that the next time the robot is told where it is, it will not learn any

new ROP to get to this place. In this way, the tutor can get the robot resynchronized

with its map.

“Forget fall j everythingg”
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This more drastic command makes the robot erase all its state and its memory

of the places in the world and the ROPs that connect them. It might be used when

the robot is taken to a new environment to reset its software.

“Forget about place”

This command is implemented by removing the place corresponding to place

from the robot’s memory, and all the ROPs that lead to and from it. This includes

removing ROPs from adjacent places that tell how to get to this place. The robot

will forget parts of where it is to the extent that this place is involved in that

state. That is, any of the variables *most-recent-place*, *current-place*,

*next-place-goal*, or *place-goal* will be set to nil if they are currently

set to the place that is being forgotten.

A better implementation of this command might try to reconstruct

ROPs that connect adjacent places, with the goal that these places

remain connected in the agent’s graph.

Future
Work

“fLoad j Saveg [filename]”

These utility commands make the system load a graph of places and their

connecting ROPs from a file, or save the current graph out to a file. When loading,

the robot additonally forgets its current location, as its state information might be

corrupt with respect to the environment graph it has just loaded. The file save

format is straightforward; it includes just the places with their associated names,

prepositions, nearby-places lists, incoming and outgoing ROPs.

7.3 Questions and Responses

“Which way are you facing?”

This question is answered by reporting the robot’s current heading, as converted

to the nearest of the 8 principal directions, with the response “I am facing direction.”

This is useful for diagnosing problems of rotational odometry error.
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“Where are you fgoing j headedg?”

This question is answered by reporting the robot’s *place-goal* with the

response “I am on my way to place” if it has one, or “I am not on my way anywhere

right now” if *place-goal* is nil.

“Where fis TJ j are you j am Ig?”

This question is answered by reporting the robot’s *current-place*, if it

is known, with the response “I am prep place,” where prep is the place’s asso-

ciated preposition and place is the most recent name used by the user for the

place. If the robot is between places, it will report that it is on its way from

*most-recent-place* to *next-place-goal*with the response “I’m on my

way from place 1 to place 2.”

“Where is place?”

This question reports information about place in the same way “Describe place”

does.

“What is [to the] direction of fhere j youg?”

“What are you [to the] direction of?”

These sentences are trivial to implement given the rest of our

architecture, but we did not have time to implement and test them.

They should report the nearest known place found by following a

ROP in the appropriate direction from the current place. If the robot is

between known places and the direction is consistent with the unique

direction of the ROP it is following, the robot will report one of the

places it is between as appropriate to answer the question.

Future
Work

“How fdo j wouldg fyou j Ig get from place to place?”

“How fdo j wouldg fyou j Ig get to place [from place]?”

These questions ask the robot to describe routes between places or from the
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current place to another place.

If a path can be found between the requested places, the system describes this

path in high level terms, using the intermediate place names. For example,

To get from MARK’S OFFICE to IAN’S OFFICE,

I go north to ANITA’S OFFICE.

I go north to LYNNE’S OFFICE.

I go north to ROBERT’S OFFICE.

I go north to IAN’S OFFICE.

If the goal of the plan the system is asked to describe is a place the robot has no

ROP to get to, the system uses a different strategy depending on whether the user

is asking how TJ gets there or how a person would get there. If the former, TJ will

explain that it can’t get to places it hasn’t yet experienced. If the latter, however,

TJ will describe a path as above to a nearby place that is known, and then describe

the direction the person should go to get to the desired place. For example,

To get from MARK’S OFFICE to THE YELLOW TRASHCAN,

You go north to ANITA’S OFFICE.

You go north to LYNNE’S OFFICE.

You go north to ROBERT’S OFFICE.

You go north to IAN’S OFFICE.

Then you go west to THE YELLOW TRASHCAN.

This generation of language descriptions of plans could be im-

proved in a number of respects. The repeated direction information

is redundant; a multi-sentence model of discourse would help alle-

viate this problem. The presence of all the intermediate places in the

path generation is not very useful; some post-processing of the plan

could be used to simplify the description.

Future
Work
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7.4 Modals

We have only begun to implement the described behavior of these

sentences, but have not yet fully tested them.

Future
Work

“fThen j Next j Finallyg sentence”

Our intention is to implement them by not terminating the current step, but just

appending the step described by sentence onto the end of the pending-steps list.

This will allow the buffering of commands in the current-step and pending-steps

in advance, supporting such sequences of commands as

Go to the end of the hall.

Then turn right.

Finally go about 10 feet.

This capability forms the beginnings of a capacity to support the description of full

plans without the concurrent execution of them by the robot.
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Chapter 8

Performance

This chapter describes the performance of our system. It provides data to support

the conclusions we draw in Chapter 11.

8.1 Experimental Methodology

It is challenging to report the results of mobile robot research. A variety of ap-

proaches have been tried, from recording the path the robot took in detail by hand

and on videotape [Mataric, 1992] to relying primarily on simulation [Kuipers and

Byun, 1991].

In this research, we began with a reactive system that was known to be capable

of basic obstacle avoidance and corridor following [Connell, 1992b]. We believe

the most important aspect of the system’s performance we can report is the juxta-

position of its navigation performance with its communication behavior. This is

most easily appreciated in a live demonstration, but since this medium does not

allow for that, videotape and descriptive dialogues will have to suffice.

We have not yet prepared a videotape of the robot in action; we expect to do

this early in February, 1994. For the moment, then, we can offer only annotated

dialogues which illustrate the actual behavior of the system.

In preparing these dialogues, actual transcripts of the natural language inter-

action were taken from the Macintosh Powerbook and pasted into this document.
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These were then annotated with comments from the author concerning the robot’s

navigation behavior during the runs.

8.2 Experiments With TJ

We include here some examples of actual dialogue between the system and a user

who was in this case the author. Text typed by the user is in a roman courier font;

text said by the robot appears in italic courier.

8.2.1 Experiment 1

This transcript is taken from a successful section of a transcript from an early

experiment. Parts of the transcript reflected bugs or behavior that have been

fixed since this experiment was run. The part shown here was contiguous in the

transcript.

you are at mark’s office

I’m learning about MARK’S OFFICE.

go

I’m going.

stop

I’m stopping.

you are at anita’s office

I’m learning about ANITA’S OFFICE.

go

I’m going.

stop

I’m stopping.

you are at lynne’s office

I’m learning about LYNNE’S OFFICE.
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go to mark’s office

Now I’m going from LYNNE’S OFFICE to ANITA’S OFFICE.

This is ANITA’S OFFICE.

Now I’m going from ANITA’S OFFICE to MARK’S OFFICE.

This is MARK’S OFFICE.

I have arrived at MARK’S OFFICE.

go to lynne’s office.

Now I’m going from MARK’S OFFICE to ANITA’S OFFICE.

This is ANITA’S OFFICE.

Now I’m going from ANITA’S OFFICE to LYNNE’S OFFICE.

This is LYNNE’S OFFICE.

I have arrived at LYNNE’S OFFICE.

8.2.2 Experiment 2

This reflects a more recent experiment, in which the system is stable and working

consistently. The complete, unedited transcript is provided.

you are at Mark’s office.

I’m learning about MARK’S OFFICE.

you are facing south.

I am facing SOUTH. Thanks.

go

I’m going.

where are you?

I am AT MARK’S OFFICE.

stop

I’m stopping.

you are at karen’s office.
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I’m learning about KAREN’S OFFICE.

where is Karen’s office?

I know how to get to KAREN’S OFFICE.

KAREN’S OFFICE is SOUTH of MARK’S OFFICE.

where is Mark’s office?

I know how to get to MARK’S OFFICE.

MARK’S OFFICE is NORTH of KAREN’S OFFICE.

where is the poster of russia?

I don’t know about THE POSTER OF RUSSIA yet.

the poster of russia is north of karen’s office.

I’m learning about THE POSTER OF RUSSIA.

where is the poster of russia?

THE POSTER OF RUSSIA is to the NORTH of KAREN’S OFFICE.

go to the poster of russia.

I don’t know how to get to THE POSTER OF RUSSIA from here.

go to mark’s office.

Now I’m going from KAREN’S OFFICE to MARK’S OFFICE.

Would you please tell me if I pass THE POSTER OF RUSSIA.

you are at the poster of russia.

I’m learning more about THE POSTER OF RUSSIA.

Now I’m going from THE POSTER OF RUSSIA to MARK’S OFFICE.

This is MARK’S OFFICE.

I have arrived at MARK’S OFFICE.

go to karen’s office.

Now I’m going from MARK’S OFFICE to KAREN’S OFFICE.

This is THE POSTER OF RUSSIA.

Now I’m going from THE POSTER OF RUSSIA to KAREN’S OFFICE.
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This is KAREN’S OFFICE.

I have arrived at KAREN’S OFFICE.

which way are you facing?

I am facing roughly SOUTH.

go

I’m going.

stop

I’m stopping.

you are at roger’s office.

I’m learning about ROGER’S OFFICE.

roger’s office is 702.

I’m learning that ROGER’S OFFICE is also called 702.

where is roger’s office?

I know how to get to 702.

702 is SOUTH of KAREN’S OFFICE.

where are you?

I am AT 702.

go

I’m going.

stop

I’m stopping.

you are at the northeast tee.

I’m learning about THE NORTHEAST TEE.

go

I’m going.

stop

I’m stopping.
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go to the poster of russia.

Now I’m going from THE NORTHEAST TEE to 702.

stop

This is 702.

Now I’m going from 702 to KAREN’S OFFICE.

stop

I’m stopping.

forget where you are.

I’m forgetting where I am.

you are at roger’s office.

I’m learning more about ROGER’S OFFICE.

go to the map of russia.

I don’t know about THE MAP OF RUSSIA yet.

what do you know about?

I know about THE NORTHEAST TEE, 702, THE POSTER OF RUSSIA, KAREN’S

OFFICE and MARK’S OFFICE.

go to the poster of russia.

Now I’m going from 702 to KAREN’S OFFICE.

This is KAREN’S OFFICE.

Now I’m going from KAREN’S OFFICE to THE POSTER OF RUSSIA.

This is THE POSTER OF RUSSIA.

I have arrived at THE POSTER OF RUSSIA.

8.3 Experiments by Other Users of the System

Michael Frank, another researcher in our lab, worked with this system to teach

it about the seventh floor of our building. Unfortunately, the transcript from
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this experiment was lost when the portable computer containing it crashed. The

experiment was very successful, however, as his report will attest.

We asked Michael to prepare a one or two paragraph summary of his experience

in using the system. We advised him that we would include his report in our thesis

whether it was positive or negative. This report follows.

I used Mark Torrance’s robot for a period of more than an hour. In

that time, I was able to easily teach it about a large portion of the 7th

floor of the MIT AI Lab. Commands such as “go as far as you can” and

“go until you can turn left” provided a natural and convenient way to

tell the robot how to get to new places. A number of times I tested the

robot’s ability to return to a place previously visited. The combination

of odometric measurements with reactive wall-following proved to be

very successful at achieving this task. Except for a few times when mi-

nor program bugs cropped up (and were fixed by Mark or temporarily

worked around), or I accidentally pulled out the robot’s cable, or the

lisp environment crashed, the robot demonstrated a remarkable ability

to return exactly to previously-named locations without bumping into

obstacles, even when this involved going around several corners and

past open doorways and around irreglar objects scattered in the halls.

Even when odometric drift degraded the robot’s rotational orientation,

it seemed to be able to accomodate and correct for this drift through

its reactive wall-following. Similarly, when the positional odometry

drifted, the robot was able to continuously correct for that through the

execution of reactive ROP steps such as “go as far as you can”. Overall,

my impression was that Mark’s techniques are effective, allowing his

system to break important new ground, in terms of performing a task

that humans do well that no similarly-equipped robot has done before

(to my knowledge), namely, reliably navigate an irregular office envi-

ronment, despite the robot’s having very limited and inaccurate sensors

and effectors. This work points the way towards even more powerful
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and flexible future mobile robot designs. I would not be surprised if

commercial mobile robots of the future depend partially on some of

these same techniques for navigating through offices and corridors to

their assigned destinations, and for being taught about how to get to

these destinations by their human co-workers.
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Chapter 9

Related Work

The work described in this thesis emphasizes the construction of an integrated

system that supports natural language communication as well as action in the

world. Research done in several specific areas of Artificial Intelligence is related,

as are some other projects that also attempt to bring together complete systems.

Related work on mobile robots falls under the topics of robot navigation, land-

mark recognition and self-localization. We also point to related survey articles on

conventional planning. Related recent natural language work concerns active natu-

ral language processing, or Active NLP. Finally we describe work on other complete

architectures for integrating communication with action in a robot system.

9.1 Robot Navigation

Robot navigation is an extensively studied area of AI. While there is still valuable

work to be done in this area, the consensus of the community is that the problem of

point-to-point indoor office navigation is to a great extent solved[Gat et al., 1992].

A wide variety of methods have been employed in addressing this problem.

These include potential field methods, geometric path planning, and point-to-

point navigation on a graph with edges defined by reactive procedures and nodes

representing landmarks.

Potential field methods were first introduced to the robotics community by
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[Khatib, 1986], and have been explored further by [Arkin, 1989, Koditschek, 1987,

Latombe, 1990]. These methods work by representing space as a vector field, where

the vector at each point describes which way the robot should go. In typical use,

there is a point in space that is the robot’s goal, and a number of known obstacles.

One field is introduced in which the goal a point attractor, and other fields are added

to it to make each obstacle repulsive. Gradient descent is used to drive the robot

toward the goal while it avoids obstacles. Local minima in the space are a problem,

and these may be overcome by random motion (need a reference) or by iteratively

increasing the repulsiveness of the robot’s present location by introducing a new

vector field (need a reference). We observe that the behavior of this latter method

is similar in practice to the behavior of who’s simulated robot experiments with the

TD-lambda procedure, in which places become less desirable as they are explored.

Potential field methods are sensitive to the accurate measurement of the location

of the robot and the obstacles around it. More recent methods based on realistic

sensors recompute the fields as the robot runs. In these solutions, however, the

problem of overcoming local minima becomes more pronounced. [Koditschek,

1987] solves these problems by computing navigation functions, which have a single

global minimum, so that he can employ simple gradient descent. However, as

noted by [Dean and Wellman, 1991], the cost of generating navigation functions

can be high in complex environments.

Geometric path planning has been explored extensively for its value as a math-

ematical problem. Path planning in complicated configuration spaces is now well

understood. Algorithms based on multiresolution cellular decompositions of free

space, vertex-based shortest-path graph traversal, and smooth spline path genera-

tion have all been developed and used. Lozano-Pérez, Mason and Taylor introduce

the preimage process by which goals are back-chained to find source positions from

which the robot can move to them; they apply this process to the problem of peg

insertion [Lozano-Pérez et al., 1984]. They begin to explore the effects of position

uncertainty in this environment; Latombe explores uncertainty in this problem in

more detail [Latombe et al., 1991].
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Recently, very successful robot systems have been built which use combina-

tions of simple behaviors to achieve robust navigation performance[Brooks, 1986,

Brooks, 1987, Mataric, 1992]. Further research has explored the use of these systems

as the basic level in multilevel control architectures, with other kinds of control at

the top.

Jim Firby introduced Reactive Action Packages, or RAPs, as a way to provide

conditional sequence control above primitive reactive behaviors[Firby, 1989]. RAP

execution mediates between a planner which generates RAPs and the reactive

behavior capabilities of the controlled system. An important emphasis of this

architecture is error detection and recovery. Our work on ROPs, which also represent

sequences of action, may be seen as a restriction of RAPs to the office-and-corridor

navigation domain.

Erann Gat developed the ATLANTIS architecture and used it to control a va-

riety of physical and simulated robots performing navigation tasks [Gat, 1991].

This architecture, like ours, implements planning at its highest level and uses a

reactive system to control the robot during execution of the plans. He adds a third

layer between these that is similar to Firby’s RAP execution system, in that it is

able to select an appropriate procedure for achieving a goal or performing a task

from a library of procedures. ATLANTIS differs from Firby’s system in that it

allows the top layer of the architecture to do more than develop RAPs for the RAP

library. In Gat’s system, this top layer can “perform all manner of time-consuming

computations, including sensor processing as well as planning.”

Gat performed experiments on robot navigation in another part of the same

environment we used for the experiments in this thesis. His system emphasized

procedures that rely very little on odometry, since the odometry on the robot he

used was poor. In our research, our success relies a great deal on the good odometry

provided by Connell’s robot TJ that we used.

Jonathan Connell [Connell, 1992b] developed the SSS architecture and used it

to control the robot TJ, the same robot we used in this research. His architecture

consists of three layers; servo, subsumption, and symbolic, which work in concert
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to control the robot. The robot TJ I am using implements his servo and subsumption

layers, and the work I have done could fit into his architecture as a replacement for

his symbolic layer.

9.2 Landmark Recognition

Landmark recognition involves recognizing known locations in the world. This

process is important because it allows robots to know their locations for purposes

of self-localization, and to correct for odometric error. Recent mobile robot research

has explored the use of infrared, sonar, and vision for landmark recognition. Other

work supports behaviorally defined landmarks. We conclude by describing how

these methods can be used with odometry in a mutually reinforcing and redundant

way.

Distance-measuring sensors that use infrared light or sonar can be used to

capture “signatures” of particular locations. A signature is a record of the values

of those distance sensors at a particular place. If the environment is stable with

respect to those sensors in that place, then the signature can be used to recognize

the place the next time the robot passes through it. This won’t work if, for example,

there are doors that may be either open or closed that are part of the boundary of

that location. Another problem can come if the robot is not always at the same

lateral position when it passes through the given landmark.

Kuipers and Byun present a strategy that uses hill climbing in perceptual space

to define perceptually salient landmarks [Kuipers and Byun, 1991]. Thus, a robot

might navigate to a place it believes is close to its landmark, and then perform

hill climbing to, for example, equalize as much as possible the values of all its

distance sensors. This approach has the advantage that, exclusive of sensor noise

or error, this uniquely defines each landmark. One disadvantage is the type of fine

navigation required to perform the hill climbing. This work was also performed

on a simulated robot; work using this strategy on a physical robot has not yet been

published.
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Mataric describes work in which landmarks are recognized by a high level

process that observes the behavior of the robot [Mataric, 1992]. Certain behav-

ior modules in her robot, Toto, are activated at the onset of corridor recognition

and at other repeatable times. These onsets, as marked by the activation of the

corresponding behavior modules, serve as landmarks. Toto is able to navigate

to these landmarks by maintaining a connected graph of them in a distributed

network representation, and spreading activation through this network to find the

shortest route. We explored this type of landmark recognition in a simulator of

Toto, but found the landmarks were not repeatable enough to serve as anchors for

the odometrically guided ROPs we use to remember important places that are not

perceptually distinctive.

Horswill describes a place recognition algorithm that combines vision and

odometry [Horswill, 1993b]. The algorithm matches its current low-resolution

image against stored images of all the landmarks the system knows about to find

the best match. If its quality is high enough, the module declares it has recognized a

landmark. In the presence of better odometry, we might imagine extending the al-

gorithm to use expectations about the next landmark it will encounter to constrain

the possible templates it tries to match.

Our system at present relies heavily on odometry, but can use more robust

distance-based landmarks when it is instructed to do so. We originally planned

to use our ROPs only in conjunction with some more reliable landmark recognition

method, as the ROPs were intended for relatively local navigation. In practice,

we found the translational odometry worked surprisingly well, and alleviated the

need for a separate landmark recognition scheme. We believe landmark recognition

techniques such as those described here could be effectively used in conjunction

with the odometric techniques we have explored.

The problem of self-localization occurs when a robot does not know where it

is within an environment. It is presumed that the robot knows something about

the environment in advance, and that it is trying to localize itself with respect to

this previously known map. The robot could be unsure of its location because its
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sensory expectations about the environment are not met or because it has just been

turned on at an unknown location.

Kenneth Basye introduces an automata-based approach to map learning that

provides a robot with the capability to infer the structure of the part of the world it

can explore [Basye, 1992a, Basye, 1992b]. It does this by treating the world/robot

pair as a finite automaton, using reactive strategies to robustly traverse links in

the world. This procedure, or any other automatic map learning procedure, could

be used to relearn a map of the environment until the map thus learned can be

uniquely unified with the previously known information, thus constraining the

robot’s location.

Another approach to the self-localization problem is to make use of information

that can be provided by a tutor or other user of the robot. We argue that robots

will often operate in environments where people are available to answer questions

or provide advice in cases where the robot has become confused about its location.

Our system is designed to take advantage of this type of linguistic aid provided by

a user.

9.3 Planning

A vast amount of research has been done on the problem of planning. We do not

presume to provide a survey here; excellent overviews may be found in[Dean and

Wellman, 1991, Georgeff, 1987, Hendler et al., 1990].

9.4 Active NLP and Communicating Robot Systems

This section describes work on active natural language processing, which concerns

systems that intimately connect the use of language to action. A few researchers

have developed robot systems that learn in response to interactive natural language

instructions; these are also described here.
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SHAKEY the robot [Nilsson, 1984] was perhaps the paradigmatic system to con-

nect natural language instruction to action in a mobile robot. Statements entered

in English, such as

“Use box 2 to block door DPDPCLK from room RCLK,”

were converted by the language system ENGROB [Coles, 1969] to a goal expressed

as a first order predicate calculus formula:

Blocked(DPDPCLK,RCLK,BOX2).

The planner STRIPS was then called to compute a sequence of operators that would

achieve the goal. This plan was general where possible, and during plan execution

it could be instantiated in different ways depending on unexpected circumstances

encountered in the world.

The computational power available to mobile robots today is immense com-

pared to that of SHAKEY. Real-time interactive conversation with a user, not prac-

tical then, is now possible on inexpensive portable computers. By emphasizing

the interaction with the tutor, we have explored this new capability in a robot that

solves navigation problems similar to those of SHAKEY.

Huffman and Laird present Instructo-Soar, a system which learns new pro-

cedures from sequences of instruction and also learns how to extend its knowl-

edge of previously known procedures to new situations [Huffman et al., 1993,

Huffman and Laird, 1993]. Like our system, Instructo-Soar is capable of learn-

ing new procedures to accomplish a task, and then to use those procedures in a

compound way under the control of a planner. Unlike our system, Instructo-Soar

handles generalization, specialization, and extending knowledge about the task

domain; we merely support knowledge acquisition of a particular sort within the

task domain. This system is built within the Soar framework; its authors claim it is

applicable to any problem representable within the Soar problem space framework.

In their published work, Huffman and Laird apply Instructo-Soar to a simulated

block-stacking robot problem as their example. The system has not, to our knowl-

edge, been applied to the robot navigation domain or to any physical robot. In
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our research we have developed techniques that support actual robot navigation;

these might be used as the basis for a performance domain theory that would allow

Instructo-Soar to operate in the physical navigation domain.

Myers and Konolige describe a reasoning system that uses a combination of

analogical representations and logical formalism [Myers and Konolige, 1992a,

Myers and Konolige, 1992b]. The analogical representation is an annotated map

of a robot’s environment, which contains implicit in its structure many frame facts

about the world that would be expensive to represent in logic. They also incorpo-

rate the use of a human advisor in what they call a semi-autonomous framework.

In this work, Myers and Konolige recognize the potential of interaction with a

human tutor for easing the perceptual burden on a robot, and explore the kinds

of reasoning that can be done using their annotated map representation. To our

knowledge, this system has not yet been implemented on a physical mobile robot.

Our work addresses some of the same issues. While they emphasize reasoning

and problem solving ability, we have focussed on building the robot’s capacity to

recognize and remember places and to navigate to them on command. Some of

our work on odometric place memory might be applicable as Myers and Konolige

begin to implement their system on a physical robot.
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Chapter 10

Future Work

This chapter describes directions in which this work might be naturally extended,

and questions it has left unanswered.

10.1 Moderate Extensions

Chapter 2 mentions our plans to apply the work described in this thesis to an-

other, vision based robot currently being developed by Ian Horswill. Linguistic

communication with robots that have additional high-bandwidth human commu-

nication modalities available such as vision will provide interesting opportunities,

as we may interleave Ian’s work on gesture recognition with this work on natural

language interaction.

The same chapter also mentions the exciting potential of state-of-the-art speech

recognition systems; finding a reliable system that can run on a portable computer

and interfacing it to a robot running our navigation system would be a good

implementation project.

Chapter 6 leaves open the question of how to appropriately execute a step

that contains both a distance and an explicit termination condition. Presumably

the distance was measured when the ROP was first recorded, and so the distance

should be similar the next time the ROP is executed. If it is slightly different, this

might be chalked up to sensor or odometry error and so ignored. If the distance is
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dramatically different, the robot might presume it has encountered some unusual

type of error, such as failing to see the sensory condition because of a change in

the world or a bad sensor. Fortunately, since we record the steps of the current ROP

reversibly, if the robot detects a serious error it has a recovery strategy that involves

returning to the last place where it knew where it was.

There are several simple extensions to the current system described in Chapter 7.

Keeping statistics on the number of times users use each of the multiple names for

a place would help the system pick a well-used name from the assortment it might

store. A simple user model could store preferences for place names on a per-user

basis. This model could also record places the robot knows the user knows about,

which would allow the robot to give routes to unknown places in terms of places

the user knows, or at least to make descriptions of user-known places less elaborate

than those of user-unknown places.

We do not yet uniformly support the commands that let the user state that two

places are in fact the same. If the robot already knows about these two places from

separate experiences, and there are no conflicts between the stored ROPs for the

separately learned places, it should be able to merge them on this command. This,

too, is problem left open for future work.

Likewise, the command for forgetting about a place does not leave behind a

usable graph. It would be better for this command to also create ROPs to con-

nect places on either side of the forgotten place, so that the graph would remain

connected.

The hybrid approach to natural language processing we describe in Chapter 3

would be a natural step to take as soon as the complexity of the language desired

in the system warrants it. Input text would be passed first to a parser, which might

not recognize the text at all if it contains words that aren’t in the lexicon. If it is

not recognized, the pattern matcher could make an attempt, and if it is still not

recognized, only then would the system report that it did not understand.

We did not complete the implementation of the description of nearby places;

the answers to questions such as “What is to the north of Mark’s office?” This im-
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plementation is straightforward given the rest of our architecture. As we described

earlier, because the robot stores its ROPs in terms of directions in world coordinates,

it can determine the answers to these questions directly from these ROPs.

The implementation of the modal sentences that begin with “then”, “next”, or

“finally” should be completed and tested. We believe these sentences provide a

solid basis for understanding and storing described plans without simultaneously

executing them, but we can’t yet know for sure.

Language generation in the system could be improved a lot. This is especially

true for the multi-sentence descriptions of plans.

10.2 Bigger Questions

This section covers some bigger questions that may require a significant amount of

further research to answer.

10.2.1 Error Recovery

We have left open the question of error recovery. Many anomalous situations can

be resolved with the help of the tutor or user, who may notice that the robot has

become confused and can help to correct it through language. In practice, we

would hope the robot would not need to be attended by a user all of the time.

Under these circumstances error detection and recovery strategies are called for.

Error detection requires knowledge of the robot’s plans and enough sensory

capacity to tell that something is interfering with them. People or other obstacles

might block a corridor that was once free, for example. The robot should recognize

that it is not making forward progress and initiate an error recovery strategy.

The fact that ROPs can be reversed makes for a good error recovery strategy if

nothing better can be found. It is likely that the robot can successfully reacquire

its most recent known place if it tries. This should work, based on our experience,

even when the robot has been interrupted by an obstacle during the execution of a

plan. The robot’s translational odometry will not increase when the robot is forced
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to stop by an obstacle in its path. This condition could be used to detect this type

of error; the fact that it stays the same means the ROP reversal should be successful

as well.

10.2.2 Integration with Landmark-Based Navigation

It was our original goal to begin with a landmark-based navigating robot, treat

those landmarks as highly reliable, and use our primarily odometry-based ROPs

only for recording path offsets from the landmarks. We still believe this is a good

approach, especially as landmark recognition techniques improve (see Section 9.2).

This integration task poses some definite challenges in interleaving planning and

navigating in the existing navigation system with ROP execution once the nearest

landmark has been acquired.

10.2.3 Places with Extent

How could this system handle places with extent? So far, our system treats all

place descriptions as referring to single points. There are some descriptions in

plans people use, however, which refer to places that definitely have extent, such

as “the east corridor” or “the playroom”. We would like a system that could

understand that some places have extent. It should learn their extent by being told

directly, or by being told at multiple different locations that they are all part of the

same place.

We built a simple natural language system, which we called LOCO, that was

able to learn about places with extent. This system was not connected to a physical

robot, and its model of the world included no error in position sensing or effectors;

it was primarily an exercise to explore the kinds of language we wanted to include

in this thesis research. LOCO represented the world as a cellular grid, and assumed

that places were defined by the minimal aligned rectangular area that encloses all

the cells which LOCO was told were part of the place. LOCO could represent places

that had overlapping extent and find an appropriate description of any location in
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terms of the places that contain it.

In implementing places with extent in the physical robot system, there are a

few problems. One arises each time the robot is told that it is at a place it thought

it already knew about. Should it assume the place has extent, or that it had

experienced odometry error and that it is really now again at the same spot it had

learned previously? The answer probably depends on the amount of the error

the robot can detect between its present location and the place it had previously

learned. If this error is small, it might assume it had become slightly off and that

the place has no extent. If the error is large, perhaps it should assume that the place

has extent. In intermediate cases the best thing to do might be to ask the user for

clarification.

10.2.4 ROP Improvement

How can plans be relearned or improved over time? What level of control should

the user have in language over when the robot replaces an old ROP with a new one?

How can the system reason about space to optimize a ROP, or to correctly unify

more ROPs? How can the system fold knowledge about multiple ways to reach a

place into each other, and how can it use this knowledge to help invent better paths

to other places that are along the way? We recognize these interesting problems as

important areas for future research, but have not worked on them to date.
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Chapter 11

Conclusions

This chapter describes our findings after performing this research. We apply our

evaluation criteria as laid out in Section 1.6.

The solution we have developed exhibits the performance described in Sec-

tion 1.1. In particular, it is able to associate names provided by a tutor with places

in the environment based on direct or indirect descriptions. It is able to use those

names in responding appropriately to navigation requests or user queries.

Another user has worked with the system for more than an hour. His experi-

ences are described in Section 8.3.
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Appendix A

Simulation

This chapter describes the use of simulators in research on mobile robots. It draws

from material previously published in [Torrance, 1992].

Simulators used in research on autonomous mobile robots have been criticized

for their tendency to change the nature of the problems the robot control architecture

has to solve. In this chapter we address those arguments, and find that under

certain conditions simulators can be a valuable tool to supplement research with

physical robots. We conclude with guidelines for the successful design and use of

simulators in research on mobile robots.

A.1 Introduction

There is much active work in the field of robot control architectures for mobile

robots. Some have chosen to supplement or replace work on physical robots with

research using simulators–software programs designed to model the interaction of

a robot with its environment.

In some cases simulators are motivated strongly by the physical characteristics

of a particular robot and environment. More often, simulators idealize and abstract

certain parts of the problem.

The use of simulators as a substitute for experiments with physical robots has

been roundly criticized [Brooks, 1987, Brooks, 1991b]. In this chapter, we consider
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these criticisms, as well as positive reasons for using simulators. We go on to

discuss some existing simulators and the ways in which they have been used. We

conclude with some principles for the appropriate design and use of simulators in

mobile robot research.

A.2 Simulators Can Be Misused

Mobile robot simulators provide many features convenient for research, some of

which will be discussed below. Despite their advantages simulators have been

criticized for making it easy to solve some difficult problems, making it difficult to

solve other easy problems, and for creating false decompositions of robot control

problems. We shall consider these criticisms in turn.

In [Brooks, 1987], Brooks argues that simulation “requires a constant feedback

from real experiments to ensure that it is not being abused.” He goes on to say

that simulators create a temptation to simulate the perceptual system, creating

false decompositions which lead researchers to work on problems they claim will

be integratable into a general framework. In [Brooks, 1991a], Brooks adds that

cellular representations of space are problematic in simulations of physical robots.

We agree that real robots and environments must be used during the design

of simulators which attempt to model them. It is plausible, however, that once a

simulator has been demonstrated to model a certain robot and domain in many

respects, that simulator could then be used for extended periods without reference

to the physical robot. It is important that research which claims to be applicable

to physical robots be tested on such robots. However, the advantages of working

in simulation, discussed below, may make a substantial reliance on simulators a

worthwhile alternative.

As for the criticism that simulators tempt researchers to create false decompo-

sitions into which their research will fit, this is a problem not just with simulators

but with work in all fields on “part of a complete AI system,” including work on

vision, robotics, planning, reasoning, and learning. Our sense, however, is that
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scientists in these fields are coming to understand better and better the need to

make their claims accurate and not overgeneral. In some cases, such as Brooks’

work, this leads them to design different decompositions of the problem. In other

cases, such as work on planning, this leads researchers to back off from their claims

of generality to offer their work instead as solutions to more restricted problems.

Brooks’ argument that cellular representations of space are unsatisfactory is

compelling. Certain computational domains derive much of their interest from

just the interactions and constraints that make cellular representations unsuitable

for mobile robot simulators. The use of these representations in such domains

is fine, but some have tried to extend the use of cellular spaces to robot control

problems, particularly in the field of Distributed AI (see, for example[Durfee and

Montgomery, 1989]). We agree with Brooks that such simulations are unlikely to

model physical robots well enough to be useful research tools, and we recommend

continuous space simulation.

We feel that it is important to credit scientists with the responsibility to use their

tools wisely. A simulator is a powerful tool that clearly has the potential for misuse,

but with increased familiarity, we believe researchers will come to understand the

new responsibilities that come with the use of a simulator. In fact, we argue below

that one of the advantages of simulators is that they create increased accountability

by encouraging more independent verification and subsequent reuse of results.

Note also that the use of simulators comes with much higher responsibility for

clear separation between reporting of theoretical results, experimental results, and

conjecture.

Another criticism of simulators is that it is very hard to write a good one. If we

understood the domain well enough to build an accurate simulator, the argument

goes, we could use that understanding directly to write programs to control robots

in that domain.

This may actually be a good reason to build simulators, not to avoid them. If

we can gain some understanding of the domain by working hard to simulate it

accurately, that understanding can be valuable when it comes time to write control
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programs. This answer does not address the challenge of making good models.

We argue that good programmers should be able to build good models, and that

more important than simulating the world exactly is understanding the limitations

of the simulation.

A.3 Simulators Can Be Useful

If the responsibilities mentioned above are heeded, simulators can be a powerful

tool for the development of robot control architectures. Their use should increase

the verification and incremental progress that will make work in this field sci-

ence rather than engineering. Simulators will create an inexpensive, accessible

development environment, and can be useful for experiments with new robot con-

figurations before the robots are built. For all of these reasons, simulators can play

an ever more important role in mobile robot research.

Scientists using simulators can share code, robot designs, and error models with

one another. Research results can be more easily verified by other researchers with

access to the same simulator software. Results can be reported in the literature

with reference to the shared simulated environment with which other researchers

are familiar. In this way, a well-designed simulator may provide some “bench-

mark” tests for mobile robot control architectures, useful for comparisons between

different architectures.

One criticism we have of current work on the design of autonomous mobile

robot architectures is the large quantity of completely novel architectures which are

proposed each year. In most other sciences, great value is placed both on repeating

experiments to verify the results of others, and on building incrementally on the

results of others. One feature of work in mobile robots which may contribute to

this problem is that results with physical robots are very expensive and difficult to

reproduce. Another feature is that the standards for reporting are often not high

enough for readers of an article to actually implement or perform the experiments

suggested.
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We believe that widespread use of simulators to supplement work with physical

robots will help the field by making more experiments repeatable, facilitating

dialogue about the details of the experiment and the assumptions it makes. It will

also enable researchers to build on the implemented ideas of their peers directly,

actually reusing simulated robots, domains, and control architectures.

Simulators provide an inexpensive development environment. This can be

especially important for laboratories in which access to physical mobile robots is

a very limited resource. Furthermore, hardware has lots of problems which it is

perfectly reasonable to simulate away. These include physical connector problems,

short battery life, and the difficulty of reconfiguring the sensors and effectors on a

physical mobile robot.

Following this line, simulators may also be useful for experimenting with pro-

posed designs for robots to see which are useful for certain tasks. An example

is placement of sonars so a robot can effectively pass through a doorway. If the

environment, mobile base, and sonars were well modelled, a simulator would be

a good testbed for trying different robot configurations.

We have seen that simulators have the potential to be valuable as research tools.

Let’s go on to look at some existing simulators, and see the extent to which each

meets the goals just outlined.

A.4 Existing Simulators

We discuss here a few simulators for mobile robots. This list is not meant to be

complete or even representative. Rather, it suggests the character of some of what

has been done with simulators in mobile robot research.

A.4.1 Realistic Simulators

The simulators described below have in common the goal of realistic simulation of

particular physical mobile robots and their environment.

Erann Gat [Gat, 1991] implemented and used a simulator for some experiments
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as part of his Ph.D. thesis on his ATLANTIS architecture. In this case, the simulator

modelled an existing physical robot. Gat provides a good discussion of the appro-

priate use of simulators, and follows his own advice and our recommendations in

the clarity and quality of his reports on experiments performed with the simulator.

Jonas Karlsson and Patrick Teo have implemented a simulator called Botworld

[Nilsson, 1991] for Nils Nilsson at Stanford University to demonstrate his work

on Action Networks and Teleo-Reactive Sequences. This program uses a client-

server model, allowing robot control programs to be written in other languages

and run on different machines. The Botworld simulator is a good model of some

aspects of a frictionless 2-d navigation and manipulation problem being studied

with physical robots in the Aeronautics and Astronautics department at Stanford,

but a simplistic model of other aspects. In this case, the physical robot system is so

carefully engineered that a simulation can accurately model many aspects of the

problem. So far, this work has not addressed the issue of the effectiveness of these

strategies on low-level navigation of physical robots.

EDDIE is a testbed simulator written at Carnegie Mellon University for ex-

periments on outdoor road-following and navigation. This simulator provides

primitive sensor functions which approximate the mid-level output from vision

and laser range-finding sensors. It has been advocated by its authors as a general

purpose testbed which can be used for other work on mobile robots. While it is

well-designed for its purpose, at least one researcher (Lynne Parker at MIT) has

had difficulty adapting it to work in a different domain (multiple communicating

mobile robots in an indoor office environment). This may teach us something about

what is needed for a simulator to be truly reusable and general.

Lynn Stein has done some work on a program, MetaToto [Stein, 1991], which

models to a very rough approximation the environment of the robot Toto built by

Maja Mataric [Mataric, 1992]. In her paper, Stein maintains that when coupled

with a working robot system, rough simulation can help MetaToto to build an

approximate landmark map which can be useful while the robot learns about a

new physical topology. The simulation in MetaToto is not intended to accurately
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model the physical domain of Toto, or to be used in the initial design and testing of

a mobile robot architecture. It is interesting, however, in that it tests the hypothesis

that simulators can be designed well enough that the same robot control program

runs on both the simulator and the physical robot being simulated.

Early in the development of this Master’s research, we planned to extend the

work of Maja Mataric [Mataric, 1992, Mataric, 1990] on Toto to handle higher-level

linguistically described cognitive features. Toward this end, we built a simulator

for the sonar-based robot Toto in its indoor office environment. we succeeded in

making the simulator correct enough that the same robot control programs will

drive both the simulator and the robot. The problem is made easier by the fact that

the drive system, a holonomic Real World Interfaces B-12 base, is well designed.

Sonar modelling appears to be the hardest aspect of this simulator.

A.4.2 Idealized Simulators

Some simulators are not meant to simulate a real physical world at all, but merely

test the kinds of decision making and problem solving that robots might need to go

through. In some cases, these simulators abstract parts of the navigation problem

by assuming a cellular space.

Rich Sutton’s work on the DYNA learning architecture [Sutton, 1991a, Sutton,

1991b] uses a simulation which models some aspects of a dynamically changing

environment with spatial locality. As a simulator, this program suffers from the

criticism that it may allow a false decomposition of the problem of intelligent action

by allowing Sutton to focus on a reasoning problem in isolation. We argue that the

jury is still out on the question of how this problem of intelligent action may be

decomposed. For this reason, it is still worthwhile to pursue strategies for isolated

subproblems such as reasoning and perception. In this particular case, Sutton is

very clear about the limits of his work. Mark Drummond and Martha Pollack have

a simulator called Tileworld which, though different in some details, shares the

dynamic and unpredictable characteristics of Sutton’s simulator.

The video game domains Pengo and Amazon used by Phil Agre and David
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Chapman in their work on Pengi [Agre and Chapman, 1987] and Sonja [Agre,

1988] are another example of a less than realistic simulator. Agre argues that the

domain shares many of the problems of situated action found in the physical world,

while finessing certain hard problems such as vision. The perception this research

assumes is not as farfetched as a “magic recognition box,” but it is well beyond the

capabilities of current artificial vision systems.

MICE is an experimental testbed offered by Durfee and Montgomery for dis-

tributed artificial intelligence research[Durfee and Montgomery, 1989]. It contains

many features which make it attractive for experiments with multiple communi-

cating robots with heterogenous skills. It uses multiple asynchronous processes to

simulate each robot, so the simulation of multiple robots may potentially start many

processes. Its cellular representation of space may make it unsuitable for detailed

physical simulation. Its separation of the simulation from the implementation of

the agent control programs is a positive contribution.

These idealized simulators are less interesting from the perspective of mobile

robot research, as they make no attempt to accurately model the problems of

navigation physical robots encounter. Still, it is important to evaluate them with

respect to their author’s claims about the realistic nature of the problems they

model.

So far no simulator, realistic or otherwise, is a competitive substitute for exper-

iments on physical robots. What would it take to build such a simulator?

A.5 Principles for Design

We conclude by presenting a set of principles which may be followed in the design

and use of mobile robot simulators. The powerful simulator we call for here has

its origins in the discussion of better simulators as a future direction Erann Gat’s

dissertation [Gat, 1991]. Our hope is that by making some features of this proposed

simulator concrete, we may encourage others to join our efforts to develop such a

simulator.
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First and foremost, a simulator must come with a clear sense of the assumptions

made about the domain it models, and of the capabilities and limits of the simu-

lation. Claims about the generality, scalability and usefulness of results demon-

strated on a simulator must always be made with respect to the relationship of the

simulator to the real world.

Another important characteristic of an effective simulator is modularity and

extensibility. As Gat describes, an ideal simulator will “allow the user to con-

struct customized robots by mixing and matching sensors and actuators which are

actually software objects.” Models of error used in these devices should also be

customizable by the user. These components should be described in an easy to

understand language, either declarative, procedural, or some combination, so that

they can be shared between different implementations of the simulator running on

different platforms.

The simulator should provide models of the types of sensors commonly used

on mobile robots, including sonars, pyroelectric and infrared sensors, microphones

and photocells, all preprocessed in various ways. For effectors, holonomic bases

such as the RWI B-12 base and non-holonomic bases such as four and six-wheeled

cars, treaded vehicles such as bulldozers and tanks, and legged robots should all be

offered. In addition to “canned” sensors and actuators, submodules should also be

provided at a variety of levels to facilitate implementation of new sensors and ac-

tuators. It should be possible to configure simulated robots in any reasonable way,

including the mounting of sensors on articulated parts such as arms or actuated

pivots.

The user should have as many choices as possible, both at design time—when

constructing the robot and the environment—and at run time, in the characteristics

and performance of the simulation. The simulator should provide both precise

algorithms and faster approximation algorithms, and allow the user to choose

between them to trade off precision against speed in the simulation. The user

should be able to control the granularity of the simulation in both space and time.

Continuous motion simulation should be used wherever possible, as unintended
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effects from discrete simulation have been documented [Brooks, 1991a].

Pseudorandom sequences used to generate data for simulated sensors should be

repeatable exactly. If the simulator has control over the robot control architecture,

and if that architecture is deterministic, this will allow a repeatability not possible

in the physical world that can reveal elusive bugs in the control programs or in the

simulator itself.

Surfaces and obstacles in the simulated environment should be able to have

different response characteristics with respect to each sensor, to model things like

different specular reflective response to sound or light. Different surfaces should

be able to have different responses to the same sensor, to model the differences

between walls of different colors, textured objects, and so on.

An interactive graphical interface is desirable for ease of use, development, and

debugging user robot control programs, new robot models, and other new simu-

lator modules. The simulator should provide for multiple possibly heterogenous

robots, including “drones” or moving obstacles, controlled by the user at run time

or by simple programs. Different robots should be able to be driven by different

robot control architectures, potentially even implemented in different program-

ming languages. A client-server model or other distributed systems approach may

be helpful here. This can foster separation of the simulation from the robot control

programs, as well as potentially distributing the computational load over several

computers.

Finally, in using the simulator the scientific community should work toward

generally accepted “toolkit parts,” including error models, environments, sensors

and effectors, parts of robots and whole robots which the community agrees are

reasonable models of actual physical robots in particular domains.

A.6 Conclusion

Simulators can be a powerful tool for the development and testing of robot control

architectures. We hope they will continue grow in number, power, flexibility and
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acceptance as the field working on autonomous mobile robots comes to understand

their strengths and to use them wisely.
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Appendix B

Text of Human-Robot Dialogue Study

This chapter contains the text of the questionnaire from a small study we performed

on just two subjects, and the dialogues they wrote in response. Analysis of the

results of this study are in Section 3.3.

B.1 Talking to Loco

Mark Torrance is working on a Master’s Thesis which involves building a restricted

Natural Language system for communication between a person and a robot about

their shared physical environment as described by the person. To help me incorpo-

rate a useful subset of English, I’m asking you to contribute some sentences and/or

dialogue fragments which you might expect to be supported by a robot that claims

to speak your language.

Scenario: You have just purchased LOCO, a robot which can understand some

English. You can tell LOCO about places in your office building by describing them

or by showing them to the robot. Then LOCO can follow your directions, answer

questions about where it is or where it’s been, or about the spatial relationships of

places you’ve taught it.

Please write some sentences and/or short dialogue fragments which illustrate

the kind of interactions you would expect to have with LOCO. Precede sentences

said by the user with “User:” or “U:”, those said by LOCO with “Loco:” or “L:”,
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and add any other comments or clarification on subsequent lines or in parentheses.

If possible, put sentences you consider easy or basic first, and more challenging

sentences later.

If you do this on paper, feel free to use more paper if you choose, and please

return it to Mark Torrance, NE43-705, 545 Tech Square, Cambridge, MA 02139. If

you do this online, please send your response in email to torrance@ai.mit.edu

with the word dialogue in the subject of your message. Thank you very much

for your participation!

1. Initial training–teaching LOCO about your environment.

2. Questions and answers about relationships among places LOCO has been

taught (these may include things you didn’t write down in 1.)

3. Examples of instructions you might give LOCO.

4. Questions and answers about where LOCO is and/or where it has been.

B.2 Dialogue by Michael Frank

This dialogue was written by Michael Frank on November 18, 1992.

B.2.1 Initial Training

Initial tranining–teaching Loco about your environment

(Loco is delivered to 1st floor lobby)

U: Hello, Loco. I am Michael.

L: Nice to meet you.

U: Come with me so I an show you around.
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L: Okay.

(U walks into an elevator. Loco follows. It stops on the 4th floor. They get out.)

U: This is the 4th floor. All our offices are on this floor.

L: Good. I can’t use elevators very well.

(U Opens door, enters hallway, walks down hallway. Loco follows.)

U: These are the FSF offices.

L: The doors on the right?

U: Yes.

(U walks a while longer. Stops at an office door.)

U: This is my office.

L: Okay.

(U steps down the hall a bit further.)

U: This is Bill’s office.

L: Where exactly?

U: That door in the corner.

L: Okay. I’m unused to doors in corners.

(U walks on)

U: This is Jon Doyle’s office.

L: Okay.

U: This is the MEDG Lounge.

L: The large open area on the left?

U: Yes.

(U walks through a door)

U: This is the main MEDG office. To your right is Scott’s office. Annette’s desk is

in front of you. Peter Szolovits’s office is over here. (walks toward it) The

machine room is here. (stands in front of it)

L: Okay.

U: Let’s go back outside

(L Leaves MEDG office, user following. They continue.)

U: This is Steve and Jennifer’s office... This is Ira and Yeona’s office... and this is
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Carl and Kevin’s office.

L: Okay.

U: That’s it for now. Stand by in the lounge until needed.

L: Okay. Thank you for training me.

B.2.2 Relationships Among Places

Questions and responses about relationships among places Loco has been taught.

U: Hello. Can you tell me where Jon Doyle’s office is?

L: Follow me.

(L leads U to the office.)

L: Here it is.

U: Thanks. How about Jennifer Wu’s office?

L: It’s across the lounge from here.

B.2.3 Statements of Goals

Statements of goals for Loco to execute.

U: Loco, take this letter to Annette and ask her to mail it.

(U puts letter on tray carried by Loco)

...

U: Loco, can you go around the MEDG offices and see who’s in? Report back to

me.

B.2.4 Questions About Location

Questions and responses about where Loco is and/or where it has been.

U: Loco, where have you been?

L: I was exploring the other end of the 4th floor.

U: Oh. Did you give Dave that donut?

L: Yes. He was in Carl’s office.

...
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U: Hello. What is this place?

L: This is the MEDG lounge. Can I help you?

B.3 Dialogue by Christopher Lefelhocz

This dialogue was written by Christopher Lefelhocz on November 1, 1992.

Anyway, here’s something that I thought might help which may or may not be

what you want. If you are giving the robot natural language then I would think

that Joe average would give it directions on how to get places so I think that’s

where I’ll start.

So...

Let’s assume the Robot is names Jake and Joe is the "programmer". Starting in the

Elevator Lobby...

Joe: We are in the Elevator Lobby.

Jake: Okay.

Joe: We go north and east.

Jake: Is there a door?

Joe: Yes, there is a door with a no smoking sign next to it.

Jake: Okay.

Joe: Going through the doorway we go down the hall to where it splits.

Jake: Okay, are we at the split?

Joe: No, (they walk), now we are.

Jake: Okay.

Joe: We go left and go past a bunch of doors.

Jake: Define bunch.

Joe: More than one.

Joe: Wait, we’ve now reached a "hole" in the wall.

Jake: What’s this "hole" in the wall?

Joe: It’s not a room, but there is more space than the size of the hallway.

Jake: What’s here?
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Joe: A computer, and also, Mark’s office is off to the right?

Jake: Who’s Mark and right of what is the office?

Joe: Mark is a friend of mine and to the right of the hallway is his office.

Jake: Could you be more specific?

Joe: Mark’s office is the door that is 1 2 doors from the split in the hallway.

Jake: Okay.

Joe: We go down the rest of the hallway to the playroom.

Jake: This is the Playroom?

Joe: Yes.

Jake: What’s here?

Joe: Posters, framed pictures, and some furniture.

Jake: How big is this area?

Joe: Bigger than the Hall, and Bigger than an office.

Jake: How big is an office?

Joe: 8X10 Feet.

Jake: Okay.

Joe: At the end of the playroom is another hallway.

Jake: Okay.

Joe: We can go down the hallway till we hit a wall.

Jake: How do we know we’ve hit a wall.

Joe: We can keep walking straight, because the hallway splits.

Jake: Is this the same split as before?

Joe: No this one is has a door to the left, and the hallway continues to the right.

Jake: What’s behind the door?

Joe: The Elevator Lobby.

Jake: You mean the same elevator lobby where we started?

Joe: Yeah, the same one.

Jake: So we have gone in a circle?

Joe: Yes.

Jake: Okay.
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Joe: Let’s down the rest of the hallway.

Jake: Okay, tell me what’s in this hallway.

Joe: More doors, we go right and then we have to go left.

Jake: Wait, what do you mean?

Joe: Oh sorry, we go right at the split then the hallway corners and we go left.

Jake: What do you mean by corner?

Joe: (annoyed) A corner to a hallway is where the hallway turns and doesn’t split,

into two hallways.

Jake: So a corner is a split with only one direction to go in the hallway?

Joe: Yes.

Jake: Okay.

Joe: We’ve just come on another split.

Jake: Which directions can we go?

Joe: We can go to the left, and straght.

Jake: So this is like the split after the elevator, but we are coming up on it from the

continuing hallway, not the ending hallway.

Joe: Yes (impressed by the Jake’s ability).

Jake: Where should we go?

Joe: To the left.

Jake: Okay.

Joe: We are now going down a wider hallway.

Jake: What’s here?

Joe: A door to the right that says "stairs" on it.

Jake: What are stairs?

Joe: Don’t worry about it, you don’t have legs?

Jake: What are legs?

Joe: Forget it, it was a joke.

Jake: What’s a joke?

Joe: Never mind.

Jake: Okay.
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Joe: So we keep walking and reach another split.

Jake: Are we continuing along the hallway?

Joe: No, we going to go left.

Jake: Does our hallway end?

Joe: Yes.

Jake: Okay.

Joe: We can now walk past a bunch of doors to another split that has an exit.

Jake: Does this split continue?

Joe: Yes, but you might notice that we’ve been here before.

Jake: Where are we?

Joe: The split continues on to Mark’s office, and goes to the left to the elevator

lobby.

Jake: Oh, now I know where we are.

Joe: Good.

Well there you go, sorry for the humor, but I think this might or might not help. I

assumed some type of interface where the machine asks questions since it needs

more pertainent information. I’m trying to give you a flavor for what I would

expect. It took me about 25 mins. to type in the commands and think about what

was going on. The length of the sentences is probably about as long as you’re

going to get given that people don’t like to type a lot.
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