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Abstract

Post-translational modifications can affect gene expression in a long-term manner without changes 

in the primary nucleotide sequence of the DNA. These epigenetic alterations involve dynamic 

processes that occur in histones, chromatin-associated proteins and DNA. In response to 

environmental stimuli, abnormal epigenetic alterations cause disorders in the cell cycle, apoptosis 

and other cellular processes and thus contribute to the incidence of diverse diseases, including 

cancers. In this review, we will summarize recent studies focusing on certain epigenetic readers, 

writers, and erasers associated with cancer development and how newly discovered natural 

compounds and their derivatives could interact with these targets. These advances provide insights 

into epigenetic alterations in cancers and the potential utility of these alterations as therapeutic 

targets for the future development of chemopreventive and chemotherapeutic drugs.
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 1. Introduction

The classical definition of epigenetics was initially proposed by Conrad Waddington as 

heritable changes of a phenotype without alterations in the DNA sequence [1]. Recently, 

epigenetic studies have been frequently applied to chromatin biology. These types of 

epigenetic alterations have been identified during the stages of carcinogenesis by specific 

patterns and characteristics [2]. Heritable epigenetic changes in gene expression are 

transmitted through both mitosis and meiosis without any change in the nucleotide sequence 

of the DNA [3]; however, this concept remains contentious. In addition, abnormal epigenetic 

modifications have been identified in various diseases, including different types of cancers. 

It is important to understand the epigenetic mechanisms underlying states from tumor 

initiation to heritability to define epigenetic transmission and understand how the 

misreading, miswriting and miserasing of chromatin contribute to oncogenesis and 

progression [4, 5]. In this review, we will focus on the link between oncogenesis and 

epigenetic aberrations. We will also discuss natural compound-derived epigenetic regulators 

as potentially novel pharmaceutical candidates targeting epigenetic readers, writers and 

erasers with the current preclinical and clinical uses of these compounds.

 2. Epigenetics and chromatin biology

Generally, epigenetic changes can be categorized into several major biochemical 

mechanisms, including changes in DNA methylation, histone tail modification and non-

coding RNA functions. In this review, we will focus on DNA methylation and histone tail 

modification.

 2.1. DNA methylation

DNA methylation is a heritable modification of the DNA structure that involves adding a 

methyl group to the carbon 5 of cytosine (5mC) within the CpG dinucleotide. Regions of 

CpGs undergo methylation singularly or in clusters, so-called CpG islands [6]. Gene 
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silencing is usually due to the methylation of the promoter regions of the silenced genes [7]. 

The hypermethylation of the CpG islands in gene promoter regions has been commonly 

identified in cancer cells, resulting in the silencing of tumor suppressor genes [8, 9]. 

However, the overall hypomethylation of DNA has been reported in association with tumor 

progression. A balance of widespread hypomethylation and regional hypermethylation may 

be the key to human neoplasia [10]. The methylation of DNA is regulated by DNA 

methyltransferase (DNMT), including DNMT1, DNMT3a and DNMT3b. The DNMT3 

family methylates the CpG dinucleotide through de novo pathways [11], and the DNMT1 

family is reported to maintain the methylation during replication [8]. Additionally, 

methylated DNA can recruit members of the methyl CpG-binding domain (MBD) family, 

including methyl CpG-binding protein 2 (MeCP2) and MBD1 - 4 [12]. The MBD proteins 

can recruit histone deacetylases (HDACs), which act with DNA methylation to silence gene 

expression [13]. Discovery of Ten-eleven translocation (TET) enzymes helps to shed light on 

the mechanism of DNA demethylation. TET enzymes are dioxygenases which are dependent 

on 2-oxoglutarate (2OG) and Fe(II) to oxidize 5mC into 5-hydroxymethylcytosine (5hmC) 

[14–16].

 2.2. Histone modifications

In addition to DNA methylation, epigenetic alterations also include histone modifications 

[17]. The mechanism by which epigenetic alterations are translated into meaningful 

biological signals is important; therefore, the identification of factors involved in creating, 

reading and removing epigenetic modifications has received increasing attention. For 

example, changes in DNA packaging, which can result from epigenetic changes, affect gene 

expression directly [18]. Chromatin is the scaffold for packaging the genome, which 

contains heritable materials as a macromolecular complex of DNA and histone proteins. One 

of the primary functions of chromatin is to recruit epigenetic regulators. Chromatin 

modifications affect non-covalent interactions among histones or between histones and 

DNA. A histone octamer is composed of an H3/H4 tetramer and two H2A/H2B dimers, 

which are wrapped with DNA to form the nucleosome. The major histone modifications 

include acetylation, methylation, phosphorylation, ubiquitination and sumoylation (addition 

of small ubiquitin-like modifiers) [19, 20]. In histone modification, there are various histone-

modifying enzymes involved, including histone acetyltransferases (HATs), histone 

methyltransferases (HMTs), HDACs and histone demethylases (HDMs). These enzymes 

have different functions regarding the histone tails: HATs add acetyl groups; HMTs add 

methyl groups; HDACs remove acetyl groups; and HDMs remove methyl groups [21, 22]. 

Those histone modifications can either activate or repress transcription, depending on their 

location and type. Generally, histone modifications play a key role in maintaining the highly 

folded chromatin structure, which is closely linked to gene expression [23–25].

 2.3. microRNA

MicroRNAs (mi-RNAs or miRs) are single-stranded small RNA molecules (~19–22 

nucleotides long) involved in posttranscriptional gene regulation by either inhibition of 

translation or mRNA degradation [26, 27]. miRNAs have created new opportunities for the 

development of diagnostics, prognostics and targeted therapeutics in different cancer types 

including lung cancer [26], melanoma [27], prostate cancer [28] and others. These reviews 
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have summarized recent advances and approaches for identification of candidate miRNAs 

and their target genes in different types of cancers. For example, increased expression of 

enhancer of zeste homolog 2 (EZH2), a HMT of increasing importance, was associated with 

melanoma progression and overall patient survival and miRNA-31 overexpression resulted 

in down-regulation of EZH2. Down-regulation of miR-31 expression was also a result of 

epigenetic silencing by DNA methylation, and via EZH2-mediated histone methylation [29]. 

It appears that studying how epigenetic alterations involving DNA methylation, histone 

modifications and miRNA expression could provide new opportunity for the development of 

diagnostics, prognostics and targeted therapeutics in different cancer types.

 3. Epigenetic readers, writers and erasers in the use of epigenetic 

modifications as therapeutic targets in cancer

Epigenetic modification is a dynamic process involving “epigenetic readers”, “epigenetic 

writers” and “epigenetic erasers”. In this review, we will focus on these effectors of 

epigenetic modification and introduce recent advances regarding their mechanisms of action, 

as well as their potential as chemopreventive and therapeutic targets of small molecules and 

natural compound-derived epigenetic regulators (Table 1).

 3.1. Epigenetic readers

Epigenetic readers, also known as “chromatin readers”, possess specialized domains that 

recognize specific covalent modifications of the nucleosome and respond to upstream 

signals [30]. Mutations in chromatin reader domains abolish the chromatin-reading capacity 

of certain epigenetic regulators in various diseases, including cancers [31]. In addition, these 

epigenetic readers can identify different modified amino acids as well as the same amino 

acid in different states. For example, as mentioned before, lysine residues can undergo 

different covalent modifications, including acetylation, methylation and phosphorylation. To 

add more complexity, the same lysine residue can have several degrees of methylation: 

monomethylation, dimethylation and trimethylation. Epigenetic readers have several types 

of methyl-lysine-recognizing motifs, including tumor domains, chromodomains and the 

plant homeodomain (PHD), within proteins. Each type is in a family of proteins with 

varying specificities and preferred binding sites. The PHD finger is capable of detecting 

methylated histones. For instance, the PHD fingers of the proteins BHC80 and DNMT3L 

detect and bind unmethylated lysine residues [32, 33].

By contrast, if a lysine residue undergoes acetylation, it will dock to proteins with acetyl-

lysine-binding residues such as bromodomains [34]. Bromodomains are highly conserved 

motifs that form a scaffold to facilitate DNA-templated processes. The knockout of 

particular bromodomain-containing proteins in mice induces embryonic lethality [35]. The 

bromodomain and extraterminal (BET) family of proteins includes four members: 

bromodomain-containing protein 2 (BRD2), BRD3, BRD4, and bromodomain testis-specific 

protein (BRDT). These proteins regulate transcription and cell growth, and the dysregulation 

of BET proteins has been demonstrated in cancers. For example, BRD2 is overexpressed in 

the lymphocytes of B-cell lymphoma patients [36]. BRD3 and BRD4 have been identified as 

drivers of proliferation in the malignancy NUT midline carcinoma [37]. These reports 
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suggest that BET proteins may be therapeutic targets in certain types of cancers using BET 

inhibitors, for example, the recently reported small molecules that specifically inhibit the 

BET family of proteins [37–39].

BET protein inhibitors are designed to block the interaction of the bromodomain with the 

acetylated residue by assembling a functional protein complex at the gene locus. The BET 

protein inhibitors developed to date include JQ1, I-BET151 and many others. For example, 

JQ1 can displace the aberrant fusion protein BRD4-NUT responsible for NUT midline 

carcinoma [37]. In addition, JQ1 prevents the binding of BRD4 to the upstream region of the 

MYC promoter region and subsequently reduces the expression of key oncogenes in 

myeloma cell lines [40, 41].

MBD proteins recognize methylated CpGs and bind to them to trigger methylation of H3K9, 

resulting in transcriptional repression [42]. Currently, the combination of 5- azacitidine and 

HDAC inhibitors has been used to treat hematological malignancies [43]. However, 5- 

azacitidine is a nonspecific demethylating agent and it may have the potential of 

demthylating promoter of silenced oncogenes and activate them to induce global 

hypomethylation. MBD1 appears to be a better candidate for cancer therapy. MBD1 

recognizes methylated DNA and induces chromatin remodeling, regulating transcription by 

decoding methylated DNA. MBD protein has been reported to be involved in specific genes 

in different types of cancer. For instance, Imke et al. analyzed the involvement of MBDs and 

histone modifications on the regulation of CD44, Cyclin D2, GLIPR1 and PTEN in the 

prostate cancer cells DU145 and LNCaP, and the breast cancer cells MCF-7 [44]. 

Comparison of the different promoters show that MeCP2 and MBD2a repress promoter-

specific Cyclin D2 in all cell lines, whereas in MCF-7 cells MeCP2 repressed cell-specific 

all methylated promoters [44]. However, the underlying mechanisms remain to be 

elucidated. If the abnormal DNA methylation cannot be recognized with inhibition of MBD 

proteins, the aberrant effect of DNA methylation status would be reduced to be less 

meaningful. Recently, Wyhs et al. has developed and compared fluorescence polarization 

and time-resolved fluorescence resonance energy transfer based high-throughput screening 

assays to identify small-molecule inhibitors of MBD2 and other DNA-protein interactions 

[45]. This include two known DNA intercalators, mitoxantrone and idarubicin, and two 

other inhibitory compounds, NF449 and aurintricarboxylic acid. They are reported to be 

nonspecifically inhibited the binding of a transcription factor to a methylated 

oligonucleotide [45].

 3.2. Epigenetic writers

Epigenetic writers are proteins that are capable of adding modifications to DNA or histones. 

These proteins include DNMTs, HATs, HMTs and others. The epigenetic writers operate on 

the chromatin platform and introduce rapid, dynamic modifications in response to the 

environment.

DNMTs are actively involved in the modification of cytosines mostly in the context of CpG 

dinucleotides. It is a potential cancer therapeutic approach by reversing the 

hypermethylation of DNA promoter and gene silencing. There are two major DNA 

demethylating drugs, decitabine (DAC) and its analogue azacitidine, as irreversible 
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inhibitors of DNMT1 and DNMT3 [46, 47]. Efficacy of azacitidine has been applied in the 

treatment of higher-risk myelodysplastic syndromes (MDS) as a randomized, open-label, 

phase III study [48]. Transient exposure of DNA methylation inhibitors decitabine and 

azacitidine at a low dose decreased genome-wide DNA promoter methylation without 

immediate cytotoxicity such as DNA damage, apoptosis, and cell-cycle arrest [49].

HATs transfer an acetyl group from acetyl coenzyme A (acetyl-CoA) to the ε-amino group 

of lysine residues to form ε-N-acetyl-lysine in histones, thereby opening the chromatin. 

HATs are classified as type A or type B. Type A HATs are located in the nucleus and 

acetylate histones and chromatin-associated proteins. There are three families of enzymes, 

including Gcn5-related N-acetyltransferases (GNATs) and MYST (named after the four 

founding members, Sas3, Sas2, and Tip60). Type B HATs (comprising only HAT1) operate 

in the nucleus and cytoplasm to acetylate cytoplasmic histones, facilitating the translocation 

of these histones to the nucleus and subsequent deposition onto DNA [50]. HATs require the 

presence of actyl-CoA for catalytic activity. HAT inhibitors include bisubstrate HAT 

inhibitors, natural product HAT inhibitors and low-molecular-weight HAT inhibitors.

HMTs are classified as protein arginine methyltransferases (PRMTs) and protein lysine 

methyltransferases (KMTs). These enzymes transfer a methyl group from the cofactor S-

adenosylmethionine (SAM) to arginine or lysine residues. The KMTs include DOT1-like 

histone H3K79 methyltransferase (DOT1L) containing the SET domain, a conserved 

catalytic domain also present in the PRMTs [52]. DOT1L is a key protein and an 

increasingly interesting therapeutic target in mixed-lineage leukemia (MLL)-rearranged 

leukemia. Daigle et al. reported that EPZ004777 acts as a selective inhibitor of the DOT1L 

H3K79 methyltransferase by imitating the cofactor SAM. EPZ004777 has anti-proliferative 

effects by blocking the expression of leukemogenic genes, with selectivity to kill cells 

bearing the MLL gene translocation [53]. However, the poor pharmacokinetic properties of 

this inhibitor limit its further application. Therefore, EPZ-5676, a second-generation DOT1L 

inhibitor, is undergoing clinical trials (ClincalTrials.gov identifier: NCT01684150) [54].

Another HMT of increasing importance is EZH2. EZH2 is the catalytic component of the 

polycomb repressive complex 2 (PRC2), and these factors are critically responsible for the 

methylation of H3K27, silencing various genes and altering biological processes [55]. This 

HMT is overexpressed in various types of cancers, including prostate, breast, kidney and 

lung cancers [56–59], which highlights the importance of developing methylation inhibitors 

targeting H3K27. For example, 3-deazaneplanocin A (DZNep), a molecule derived from 

SAM, decreases H3K27 methylation and induces apoptosis in cancer cells as an EZH2 

inhibitor [60]. DZNep can reactivate silenced genes in cancer cells and selectively inhibit the 

trimethylation of H3K27me3 and H4K20me3 [61]. Most recently, several EZH2 inhibitors 

have been discovered with highly potent selectivity for EZH2 in vivo and in vitro, including 

EPZ-6438, GSK126 and EPZ005687 [62–64]. EPZ-6438 has already been utilized in 

clinical trials to treat patients with B-cell lymphoma (ClincalTrials.gov identifier: 

NCT01897571) and is the first EZH2 inhibitor that has been applied to solid malignant 

rhabdoid tumors [65].
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 3.3. Epigenetic erasers

Epigenetic erasers are proteins that are capable of removing modifications to DNA or 

histones that were produced by epigenetic writers to regulate gene expression. Epigenetic 

erasers include TET enzymes, HKMs and HDACs, targeting histones or other non-histone 

proteins.

TET family proteins help to uncover the mechanism of DNA demethylation, by limiting 

DNMT1’s recognition to 5-hmc, so DNMT1 will not be able to perform the methylation of 

the DNA strand to maintain methylation status. The methylation is lost gradually in dividing 

cells in a passive manner [66]. Abnormal patterns of cytosine methylation have been 

observed in melanoma in association with tumor progression and drownregulation of the 

TET family genes [67]. However, TET mutation is rare in solid tumors and acquired 

mutations are missense mutations without certain consequences on TET protein in many 

cases [68, 69].

Histone lysine methylation (HKM) is a dynamic modification regulated by the recruitment 

of methyltransferases and demethylases [70, 71]. Recently, several histone demethylases 

were identified as being overexpressed in some human tumors. There are two well-studied 

families, including the lysine-specific demethylase (LSD) [72] and JmjC domain-containing 

lysine demethylase families [73, 74]. Members of the LSD family of proteins include the 

histone demethylase LSD1 (KDM1A) and the histone demethylase LSD2 (KDM1B). These 

proteins have oxidase-like domains, which have catalytic activities to remove the methyl 

group from histone lysines [75]. The LSD enzymes are highly expressed and could be 

valuable therapeutic biomarkers in prostate, breast and colorectal cancers [76–78]. 

Tranylcypromine, an enzyme monoamine oxidase (MAO) inhibitor, also inhibits LSD1 

because of the similarity in the sequences of the catalytic domains of the LSD proteins and 

MAO enzymes [79, 80]. However, this non-selective characteristic reduces the application of 

this drug due to notable potential side effects. Therefore, derivatives of tranylcypromine 

have been developed. For example, ORY-1001 is in clinical trials for the treatment of 

relapsed or refractory acute leukemia (EudraCT Number: 2013–002447-29). Other studies 

have investigated a weak but selective LSD1 inhibitor that has in vitro and in vivo activity 

[81]. The JmjC domain-containing lysine demethylase family can remove methyl groups 

from mono-, di- and trimethylated lysines, in contrast to the LSD demethylases [74, 82]. 

GSK-J1, another promising compound, is an inhibitor of the JMJD3 subfamily. GSK-J1 

binds competitively to the 2-oxoglutarate cofactor and chelates the metal in the active site 

[83].

HDACs are enzymes that remove the acetyl group from lysine residues in histones. Histone 

deacetylation causes transcription repression in the chromatin. HDACs are categorized as 

class I (HDAC1, HDAC2, HDAC3, and HDAC8), class IIa (HDAC4, HDAC5, HDAC7, and 

HDAC9), class IIb (HDAC6 and HDAC10), class III (SIRT1 to SIRT7) or class IV 

(HDAC11). SIRT1 to SIRT7, the seven sirtuins share a conserved NAD-binding and 

catalytic core domain but with different N- or C-terminal extensions. They are involved in 

transcription regulation, metabolic regulation, cell survival and many other biological 

pathways [84]. SIRT1 to SIRT7 could be promising therapeutic targets to treat cancers, 

because many sirtuin inhibitors have been reported to have anticancer activities [85]. Hu et 
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al. have summarized different classes of sirtuin inhibitors based on their structural categories 

and mechanisms of action [85]. For example, nicotinamide inhibit SIRT1 to SIRT3, SIRT5 

and SIRT6. It has shown that nicotinamide can inhibit growth, promote apoptosis in 

leukemic cells and human prostate cancer cells [86–89]. Specific SIRT1 inhibitor cambinol 

can reduce tumorigeneisis in TH-MYCN transgenic mice by suppressing cancer cell 

proliferation [90].

In addition to histones, these HDACs can deacetylate non-histone proteins as well. For 

example, the tumor suppressor P53 protein is deacetylated by class I HDACs [91]. Recently, 

evidence has emerged indicating that HDAC expression has been altered in cancer cells and 

tumor tissues [92–94]. Therefore, HDACs are important targets for manipulating epigenetic 

modifications in cancer cells as a novel treatment strategy.

HDAC inhibitors bind to the catalytic site of HDACs and prevent these enzymes from 

binding to a substrate (histone or DNA). These HDAC inhibitors affect several biological 

processes, such as cell cycle arrest in the G1 stage, the inhibition of cell growth [95], cell 

differentiation and apoptosis [96], and HDAC inhibitor LBH589 (Panobinostat) induced 

sensitivity in combination with chemotherapeutic agents [97, 98].

HDAC inhibitors have been classified into four major classes based on their structures and 

different specificities for HDACs as follows: cyclic peptides, hydroxamates, short-chain 

fatty acids (SCFAs) and benzamides. For example, romidepsin (Isodax®) is a cyclic peptide 

that is isolated as a prodrug from Chromobacterium violaceum, a Gram-negative, anaerobic, 

non-sporing coccobacillus. Romidepsin is an HDAC-selective inhibitor that binds to the 

Zn2+ in the active site of HDACs. Romidepsin induces cell-cycle arrest and apoptosis, and 

this drug was approved by the US FDA to treat refractory cutaneous T-cell lymphoma in 

2009 [99, 100] and peripheral T-cell lymphoma in 2011 [101, 102]. Cyclic peptides target 

human cancer cell lines in vitro and could be precursors for developing new drugs [103]. 

Hydroxamic acids are another important structural group, which includes trichostatin A 

(TSA) and others. TSA was the first compound found to inhibit HDACs [104] and has been 

reported to have a wide range of anti-cancer effects [105, 106]; however, TSA has been 

removed from clinical trials due to side effects. In 2006, vorinostat, suberoylanilide 

hydroxamic acid (SAHA), was approved by the FDA to treat cutaneous T-cell lymphoma 

[107] as a specific inhibitor of HDAC1, HDAC2, HDAC3 and HDAC6 [108].

Very recently, the HDAC inhibitors LBH589 (Panobinostat) and PXD101 (Belinostat) 

received FDA approval for patients with multiple myeloma and peripheral T-cell lymphoma, 

respectively. On July 3, 2014, the FDA granted accelerated approval for belinostat 

(BELEODAQ®; Spectrum Pharmaceuticals, Inc.), a HDAC inhibitor, for patients with 

relapsed or refractory peripheral T-cell lymphoma [109]. Novartis has developed oral and 

intravenous formulations of panobinostat (Farydak(®)), a HDAC inhibitor, for the treatment 

of cancer [110].
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 4. Natural compounds alter epigenetic modifications via epigenetic 

readers, writers and erasers - therapeutic targets

In this section, we will summarize and discuss certain epigenetic readers, writers, and 

erasers associated with cancer development and how newly discovered natural compounds 

and their derivatives could interact with these targets potentially resulting in cancer 

prevention and or treatment.

 4.1. Phenolic compounds

There are various dietary polyphenolic phytochemicals with chemopreventive and 

chemotherapeutic effects due to the anti-oxidant and anti-inflammatory effects of these 

compounds in immune and cancer cells [111]. Based on their structures, phenolic 

compounds can be divided into two main classes: flavonoids and nonflavonoids. Phenolic 

compounds are commonly found in soybeans, spices and other sources. Currently, these 

natural dietary polyphenols, including curcumin and genistein, have been shown to reverse 

adverse epigenetic modifications that act on a chromosomal level. Phenolic compounds can 

reportedly reverse abnormal epigenetic modifications by regulating the activity of HDACs, 

HATs, HMTs, HDMs and DNMTs in cancer cells.

 Curcumin—Curcumin is a well-characterized natural HAT inhibitor and a major active 

component from the rhizome of Curcuma longa. Curcumin has shown high efficacy in 

chemoprevention and as a chemotherapeutic in head, neck and lung cancers [112, 113]. 

Recently, it has been shown that curcumin decreased the expression of DNMTs and HDAC 

subtypes (HDAC4, 5, 6, and 8) and upregulated deleted in lung and esophageal cancer 1 

(DLEC1), a tumor suppressor gene, in HT29 cells [114]. In leukemia cells, curcumin 

downregulated HDAC6, a class IIb deacetylase, as well as heat shock proteins (HSPs), and 

resulting in cell cycle arrest and apoptosis [115]. In addition, treatment with derivatives of 

the curcumin-like curcumin analog C66 attenuated diabetes-related increases in histone 

acetylation, HAT activity, and p300/CBP HAT expression [116]. In addition, treatment with 

derivatives of the curcumin-like curcumin analog C66 attenuated diabetes-related increases 

in histone acetylation, HAT activity, and p300/CBP HAT expression [116]. Treatment of 

curcumin significantly inhibited the HAT activity human hepatoma Hep3B cells, but not 

HDACs, contributing to the histone hypoacetylation [117].

 EGCG—Epigallocatechin-3-gallate (EGCG) is one of the well-studied green tea 

polyphenols with many health beneficial biological effects including cancer 

chemoprevention and chemotherapy in prostate cancers [118], gastroenterological cancers 

[119] and others. Green tea polyphenols can activate p53 by inhibiting class I HDACs, 

resulting in acetylated Lys373 and Lys382 residues and inducing cell cycle arrest and 

apoptosis in LNCaP human prostate cancer cells [120, 121]. In addition, among these green 

tea polyphenols, EGCG has been identified as an inhibitor of HAT, whereas other 

polyphenol derivatives have lower HAT inhibitory effects, including catechin, epicatechin, 

and epigallocatechin [122]. EGCG is with more specificity for HATs but less specificity for 

other epigenetic writers, including HMTs; the inhibition of HAT by EGCG reduced NF-κB 

activity and decreased the binding of p300 to the IL-6 promoter, subsequently suppressing 
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pro-inflammatory response [122]. EGCG treatment decreased global DNA methylation 

levels, and HDAC activity in human skin cancer A431 cells with reactivation of silenced 

tumor suppressor genes, Cip1/p21 and p16INK4a [123]. Combination of EGCG with the 

HDAC inhibitor, TSA, showed a synergistic effect of reactivation of ERα expression in 

ERα-negative breast cancer cells. EGCG is reported to remodel the chromatin structure of 

the ERα promoter leading to ERα reactivation [124]. Combination of EGCG with cisplatin 

significantly inhibited proliferation, and induced cell cycle arrest in G1 phase in non-small-

cell lung cancer A549/DDP cells. They are reported to inhibit DNMT activity and HDAC 

activity, reversal of hypermethylated status and downregulated expression of GAS1, TIMP4, 

ICAM1 and WISP2 genes [125]. Very recently, EGCG is reported to reverse the expression 

of various tumor-suppressor genes (TSGs) by inhibiting DNMTs and HDACs in human 

cervical cancer cells [126].

In addition, EGCG has impacts on Bmi-1 and enhancer of zeste homolog 2 (Ezh2), two key 

PcG proteins as epigenetic regulators of chromatin. It is reported that EGCG reduced Bmi-1 

and Ezh2 level in SCC-13 cells. In addition, a global reduction in histone H3 lysine 27 

trimethylation was reported to be associated with reduction in survival [127]. EGCG with or 

without 3-deazaneplanocin A (DZNep) co-treatment in skin cancer cells reduce the level of 

PcG proteins including Ezh2, Bmi-1 and others. In addition, HDAC1 is also reduced, 

associated with increased tumor suppressor expression and reduced cell survival rates [128]. 

In a most recent report, green tea polyphenols (GTP) and EGCG induced TIMP-3 mRNA 

and protein levels by epigenetic silencing mechanism(s) involving increased EZH2 activity 

and class I HDACs in breast cancer cells [129]. In skin cancer cells, Bmi-1 is observed with 

increased expression contributing to skin cancer cells survival. EGCG treatment suppressed 

skin cancer cells survival [130].

 Genistein—Genistein is a phytoestrogen derived from soybeans and other sources. This 

compound has been reported to play an important role in the post-translational modification 

of histones. In LNCaP human prostate cancer cells, genistein inhibited HDAC6, a heat shock 

protein Hsp90 deacetylase, which in turn decreased the level of the androgen receptor (AR) 

by regulating the ability of the HDAC6-Hsp chaperone to stabilize the AR protein [131].

Quercetin is a dietary polyphenol derived primarily from buckwheat and citrus. Quercetin 

inhibited HAT activity and subsequently reduced the recruitment of cofactors to the 

chromatin associated with pro-inflammatory genes in epithelial cells [132]. In addition, 

quercetin inhibited the expression of the epigenetic markers HDAC-1 and DNMT1 to induce 

cell cycle arrest and apoptosis, thereby blocking invasion and angiogenesis [133].

 Resveratrol—Resveratrol is a polyphenol derived from plants such as blueberries, 

cranberries, and grapes. Resveratrol has exhibited anti-inflammatory and other effects via 

the regulation of pathways such as the cell cycle, apoptosis, angiogenesis and tumor 

metastases [134]. Recent studies show that resveratrol can downregulate metastasis-

associated protein 1 (MTA1), which inactivates PTEN in prostate cancer cells. In addition, 

resveratrol could also activate the nicotinamide adenine dinucleotide (NAD+)-dependent 

deacetylase SIRT1 as one of the key features. Resveratrol activates sirtuins, as the class III 

HDAC. It’s reported that resveratrol could induce cell cycle arrest in the G1 phase and it 
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inhibits gastric cancer in a SIRT1-dependent manner [135]. In silico docking models was 

used to study resveratrol’s interaction with different types of HDACs [136]. In vitro analyses 

of solid tumor cell lines showed that resveratrol inhibited all eleven human HDACs of class 

I, II and IV in a dose-dependent manner. Resveratrol promotes acetylation and reactivation 

of PTEN via inhibition of the MTA1/HDAC complex, resulting in inhibition of cell survival 

pathway such as the Akt pathway [137].

 4.2. Organosulfur compounds

Organosulfur compounds are organic compounds that contain a variety of sulfur functional 

groups, such as C-S double and triple bonds, thioethers, disulfides, polysulfides, sulfonic 

acids, esters, amides, sulfuranes and persulfuranes [138]. Many organosulfur compounds 

have been investigated for roles in epigenetic regulation. For example, sulforaphane (SFN) 

has been widely proven to be involved in global DNA demethylation, HDAC inhibition, and 

mi-RNA modulation [139–142]; phenethyl isothiocyanate (PEITC) inhibits both HDAC and 

CpG methylation in various genes [143–145]; and diallyl disulfide (DADS) enhances 

histone acetylation by inhibiting HDAC [146, 147].

 SFN—SFN is an organosulfur compound containing an isothiocyanate group and can be 

found in many cruciferous vegetables. SFN has proapoptotic and antiproliferative properties 

[148]. Its diverse biological effects also include anticancer effects, cell cycle arrest, and the 

induction of heme oxygenase and phase-2 detoxifying enzyme [149]. SFN mediates its 

anticancer effects primarily via epigenetic mechanisms [149], which may include the 

inhibition of HDAC, which increases global and local histone acetylation [150, 151], the 

induction of demethylation [139] and the modulation of miRNA [142].

When tested in human embryonic kidney 293 cells, SFN was found to inhibit HDAC 

activity, increase histone acetylation, and increase the number of acetylated histones bound 

to the P21 promoter, thus increasing p21 (Cip1/Waf1) expression [152]. SFN has been 

demonstrated to prevent the TPA-induced neoplastic transformation of mouse epidermal JB6 

(JB6 P+) cells by inhibiting the activity of HDACs, especially HDAC1, HDAC2, HDAC3 

and HDAC4 [140]. In a clinical study, after the consumption of 68 g of broccoli sprouts 

containing approximately 105 mg of SFN, HDAC activity was significantly decreased in the 

peripheral blood mononuclear cells of all three subjects [153].

SFN has demonstrated DNMT-inhibiting effects. Meeran et al. first reported that SFN 

inhibits DNMT1 and DNMT3A in MCF-7 and MDA-MB-231 human breast cancer cells 

[154]. SFN was found to regulate the MSTN signaling pathway in porcine satellite cells by 

significantly inhibiting HDAC activity and DNMT1 expression [155]. SFN was observed to 

inhibit proliferation in MCF-7 and MDA-MB-231 breast cancer cells and to downregulate 

DNMT1 by 0.75-fold, DNMT3A by 0.0185-fold, and DNMT3B by 1.174-fold [156].

Recent studies have revealed the role of SFN in modulating miRNA. SFN was found to 

inhibit DCIS stem cell signaling by increasing exosomal miR-140 and decreasing exosomal 

miR-21 and miR-29 [142]. By inducing miR-200c, SFN inhibits the epithelial-

mesenchymal-transition and metastasis [157]. In a Chip-Seq assay, SFN was found to reduce 

miR-29B-1 expression [158].
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 PEITC—Similar to SFN, PEITC contains an isothiocyanate functional group and is 

widely found in a variety of cruciferous vegetables. PEITC exhibits the dual functions of 

HDAC inhibition and CpG demethylation in various genes [143–145].

Generally, PEITC acts as an HDAC inhibitor. In the LNCaP cell line, PEITC upregulated 

p21 gene expression by significantly enhancing histone acetylation via the inhibition of 

HDAC activity and by inducing histone methylation modifications, resulting in chromatin 

remodeling [159]. Wang LG et al. also found that PEITC increases histone acetylation in 

LNCaP cells by decreasing the activity of HDACs, especially HDAC1 [160].

Moreover, PEITC demethylates the promoter and restores the expression of glutathione S-

transferase Pi 1 (GSTP1) in both androgen-dependent and androgen-independent LNCaP 

cancer cells [160]. PEITC has also been demonstrated to have hypomethylation potential in 

vivo. In TRAMP mice that were given an oral dose of 15 μmol of PEITC daily for 13 weeks, 

prostate tumorigenesis was significantly retarded due to the demethylation of the MGMT 

promoter [145].

 DADS—DADS, a dietary disulfide, is found at high concentrations in garlic. DADS have 

been shown to enhance histone acetylation [146, 147]. Bioinformatics research suggests that 

both DADS and SFN have structural features compatible with HDAC inhibition [161].

After metabolic conversion, DADS is gradually converted to its main active metabolites, S-

allylmercaptocysteine (SAMC) and allyl mercaptan (AM) [162, 163]. DADS and SAMC 

were found to induce the differentiation of erythroleukemic cells by enhancing histone 

acetylation [164]. In vitro, AM was a more potent inhibitor of HDAC than the precursor 

compounds DADS and SAMC, leading to the hyperacetylation of H3 and H4, enhancement 

of the association of ac-H3 with the p21 promoter and upregulation of p21 [165]. DADS 

treatment can induce transient histone hyperacetylation, p21 induction and apoptosis in 

various types of cancer cells [166]. In Caco-2 and HT-29 cells, 200 μM DADS was found to 

significantly inhibit HDAC activity, inducing histone hyperacetylation and increasing 

p21waf1/cip1 expression [167]. In in vivo experiments, the injection of DADS (200 mg/kg 

b.w.) into male rats was reported to result in increased histone acetylation in normal 

hepatocytes and colonocytes [168].

 4.3. Triterpenoids

Triterpenoids, which are synthesized by the cyclization of squalene, are metabolites of 

isopentenyl pyrophosphate [169]. At least 20,000 triterpenoids exist in nature. To date, many 

natural fruits and medicinal plants such as apples, ballon flower, bearberry, blueberries, 

boswellia, cranberries, figs, ginseng, holy basil, lavender, mango, onions, olives, reishi, and 

rosemary, among others, have been found to be rich natural sources of triterpenoids [170]. 

Increasing evidence demonstrates that triterpenoids are involved in a variety of biological 

activities, with anti-proliferative, pro-apoptotic, anti-oxidative, anti-inflammatory, anti-

allergic, anti-microbial, anti-viral, anti-pruritic, anti-angiogenic, anti-invasive, and anti-

tumor properties [170–172]. Nonetheless, it is not well understood whether triterpenoids act 

on epigenetic regulators and/or how triterpenoids interact with epigenetic regulators to exert 

their biological functions. We herein summarize some studies that illustrate the potential of 
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triterpenoids to produce epigenetic alterations that protect against a variety of human 

diseases, including cancer.

 Oleanolic acid—Oleanolic acid (OA, 3β-hydroxyolean-12-en-28-oic acid) is a 

pentacyclic triterpenoid that can be obtained from approximately 1,600 different plants 

[173]. Of note, OA is used as the backbone for a new synthetic oleanane triterpenoid, 2-

cyano-3, 12-dioxooleana-1, 9(11)-dien-28-oic acid (CDDO) and its derivatives, such as 

CDDO-methyl ester (CDDO-Me) and CDDO-imidazole (CDDO-Im) [173, 174]. OA is a 

typical triterpenoid that exerts protective effects on the liver, heart, and stomach and 

functions as an anti-viral, anti-oxidative, anti-inflammatory, and anti-cancer agent [174, 

175]. A very recent report revealed that miR-122 is a potential target in cancer prevention 

[176]; miR-122 has anti-tumor activity, and its promoter is hypermethylated in liver cancer 

cells [177, 178]. OA treatment enhanced miR-122 expression, thereby suppressing the 

growth of lung cancer cells and lung cancer xenografts in mice. OA displays anti-diabetic 

activity by reducing hyperglycemia [179]. Zhou and his colleagues determined the 

hypoglycemic mechanisms of OA in a mouse model of type 2 diabetes [180]. The 

administration of OA to diabetic mice increased phosphorylation and acetylation at lysines 

259, 262, and 271 in Forkhead box O1 (FoxO1). These modifications of FoxO1 were 

accompanied by an increase of HAT1 and the inhibitory phosphorylation of HDAC4 and 

HDAC5. Notably, the effect of OA lasted up to 4 weeks after suspending OA treatment.

 Ursolic acid—As an isomer of OA, ursolic acid (UA; 3b-hydroxy-12-urs-12-en-28-oic 

acid), is present in variety of fruits and medicinal herbs, including apple peels, cranberry, 

bearberry, lavender, peppermint leaves, and holy basil [181]. UA has been used only as an 

emulsifying agent in pharmaceutics, cosmetics, and food and thus has not historically 

attracted much attention; however, robust studies have been performed since the discovery 

that UA protects against inflammation from carrageen-induced paw edema [182]. To date, 

UA has been found to be useful in treating various pathological conditions, including 

oxidative stress, DNA damage, hyperlipidemia, and inflammation [181–183]. UA is one of 

the triterpenoids exhibiting anti-cancer activity through diverse signaling pathways, such as 

the apoptotic pathway [184]. In a study identifying the effect of UA on human acute myeloid 

leukemia HL-60 cells, the cytotoxicity of UA was attributed to increased acetylation of 

histones H3, H3K18, and H3K9 and decreased expression of HDAC 1, 3, 4, 5, and 6 [185]. 

In human glioma cells, UA induced apoptosis by decreasing levels of miR-21, which is 

regulated by DNA methylation [186, 187]. The reduction in miR-21 activated a cell death 

pathway via caspase-3 and programmed cell death 4 (PDCD4).

 CDDO and its derivatives—CDDO is a synthetic oleanane triterpenoid (SO) and the 

most potent triterpenoid with activity in the nanomolar and/or picomolar range. CDDC was 

developed by the chemical modification of three sites in OA, the C-28 carboxyl group, the 

C-12-C-13 double bond, and the C-3 hydroxy group [188]. Moreover, additional changes at 

the C17 of CDDO have yielded several types of derivatives, such as a methyl ester (CDDO-

Me), imidazolides (CDDO-Im), amides (methyl amide, CDDO-MA; ethyl amide, CDDO-

EA; trifluoroethyl amide, CDDO-TFEA), and a dinitrile (di-CDDO) [188, 189]. In addition 

to the use of SOs for treating cancer, a growing list of in vitro and in vivo data demonstrate 
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that they are involved in a broad spectrum of biological mechanisms, including 

differentiation, proliferation, growth arrest, apoptosis, and inflammation [190]. After SOs 

were first synthesized in the late 90s [191], the role of SO in epigenetic modulation was 

quickly discovered. Treatment of acute promyelocytic leukemia ATRA-sensitive NB4 and 

resistant MR2 cells with CDDO and all-trans-retinoic acid (ATRA) increased H3-Lys9 

acetylation in the RARβ2 promoter. This histone acetylation induced expression of the 

peroxisome proliferator-activated receptor-γ (PPARγ), resulting in enhanced apoptosis and 

differentiation [192]. CDDO-Me has stronger anti-cancer potency than CDDO [193]. An 

investigation demonstrated that CDDO-Me inhibits proliferation and induces apoptosis in 

human pancreatic cancer cells by downregulating hTERT expression, which was mediated 

through a decrease in DNMT1 and DNMT3a, the demethylation of CpGs in the hTERT 

promoter, and a reduction in acetylated H3-Lys9, acetylated H4, dimethyl-H3-Lys4, and 

trimethyl-H3-Lys9 at the hTERT promoter [194].

 Boswellic acid—Boswellic acid (BA), the most abundant exudate from the gum resin of 

Boswellia serrate, has been used in India to treat inflammatory disorders such as arthritis and 

inflammatory bowel disease because of its potent anti-oxidative capacity [195, 196]. Based 

on these positive effects, clinical trials have been conducted using BA to treat Crohn’s 

disease, chronic colitis, ulcerative colitis, and brain tumors [197]. BA consists of four 

components, β-boswellic acid (β-BA), acetyl-β-boswellic acid (ABA), 11-keto-boswellic 

acid (KBA), and 11-keto-β-acetyl-11-keto-β-boswellic acid (AKBA) [198]. KBA and AKBA 

are among the main compounds responsible for the pharmacologic effects of BA. AKBA has 

been found to have anti-tumor effects in several forms of cancers in the brain, bone marrow, 

colon, liver, pancreas, and prostate [199, 200]. The mechanism for AKBA’s cytotoxicity to 

cancer cells seems in part to be epigenetic modulation. Human colorectal cancer SW48 cells 

that have undergone AKBA-induced growth inhibition and apoptosis exhibit a loss of 

methylation in a large number of CpG sites [201]. In addition, AKBA treatment caused two 

tumor suppressor genes, SAMD14 and SMPD3, to be demethylated and DNMT activities to 

decrease in SW48 and SW480 cells. The same group also demonstrated that AKBA 

increased let-7b, let-7i, miR-200b, and miR-200c in human colorectal cells and nude mice 

transplanted with HCT116 cells, leading to the inhibition of cell growth, proliferation, and 

migration, as well as the induction of apoptosis in colorectal cancer [202].

 4.4. Ginsenosides

Ginseng (Panax ginseng C.A. Meyer) is a very common medicinal herb and food 

supplement in Asia, particularly in China, Japan, and South Korea, and is even currently 

used in Western countries [203, 204]. Ginseng has long been used to maintain physical 

health and combat aging and is a main ingredient in traditional medicine. Ginsenosides are 

triterpenoid saponins, the primary active components of ginseng [205]. Diverse structural 

modifications classify ginsenosides into three groups: i) the oleanolic acid group (Ro); ii) the 

20(S)-protopanaxadiol group (e.g., Ra, Rb, Rc, Rd, Rg3, Rh2 and Rs); and iii) the 20(S)-

protopanaxatriol group (e.g., Re, Rf, Rg1, Rg2 and Rh1) (G-6, 7). Each ginsenoside plays a 

unique role in human disease. As part of a chemopreventive and anti-cancer regimen, 

ginsenosides have many advantages, including fewer side effects, low rates of recurrence, 
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and a reduction in cancer-related symptoms [206]. As a result, such regimens increase the 

cure rate in cancer patients.

Rh2 is a member of the 20(S)-protopanaxatriol group of ginsenosides. The treatment of 

human non-small cell lung cancer A549 cells with Rh2 upregulated 44 miRNAs, including 

let7 and miR-196, and downregulated 24 miRNAs, such as miR-193 [207]. Because let-7, 

miR-196, and miR-193 are miRNAs regulated by epigenetic mechanisms, these results 

suggest that Rh2 may modulate epigenetic alterations in lung cancer cells. Indeed, Rh2 

increased HDAC4 expression in human liver carcinoma HepG2 cells [206]. The increased 

HDAC4 caused the repression of AP-1 and MMP3 expression, leading to reduced survival 

and migration. Rg2 may affect the epigenetic regulation of genes, as seen from a study of 

brain tumors. Human glioma cells treated with Rg2 displayed growth inhibition and 

apoptosis through increased miR-128 expression [208]. The repression of miR-128 induces 

upregulation of Bim-1, which is highly expressed in cancer cells [209].

Unlike Rh2, the relevance of Rg1 to epigenetic pathways has been confirmed through its 

effects on angiogenesis. Rg1 is another bioactive member of the 20(S)-protopanaxatriol 

ginsenosides. In human umbilical vein endothelial cells (HUVECs), Rg1 repressed the 

expression of miR-214, accelerating eNOS expression and angiogenesis [210]; however, 

miR-214 is a negative regulator of EZH2, which is elevated in cancers [211]. Lately, it has 

been proposed that miR-15b inhibits 5-hydroxymethylcytosine (5hmc) by decreasing TET3 

[212]. The levels of 5hmc are low [213, 214] during tumor progression but are high in low-

grade brain tumors and liver cancer patients with high survival rates and low recurrence rates 

[215, 216]. Notably, Rg1 downregulated miR-15b, which is involved in angiogenesis in 

HUVECs [217].

Compound K, a metabolite of 20(S)-protopanaxadiol ginsenosides, impaired the RUNX3 re-

expression-induced growth of human colorectal cancer HT-29 cells through the 

demethylation of a RUNX3 promoter, which is known to be hypermethylated in colon 

cancer cells and patients. The decrease in RUNX3 methylation was associated with the 

decreased expression and activity of DNMT1. In addition, an IC50 concentration of 

Compound K acetylated the RUNX3 promoter with diminished HDAC1 expression and 

HDAC activity, and increased the acetylation of histones H3 and H4, which arrested the cell 

cycle at the G0/G1 phase [218].

Two stereoisomers of Rg3, 20(S)-Rg3 and 20(R)-Rg3, are members of the protopanaxadiol 

group [219]. Recently, it was found that Rg3 acts as an HDAC3 inhibitor in melanoma cells 

[220]. The treatment of human melanoma A375 and C8161 cells with Rg3 produced cell 

cycle arrest at the G0/G1 phase through decreased HDAC3 expression and increased 

acetylation of p53 on Lysine-373 and Lysine-382. These epigenetic events led to a reduction 

in PRB, cyclin E, cyclin D1, CDK2, and CDK4 and the induction of p21 expression. In 

these studies, Rg3 administration to nude mice inoculated with A375 cells conferred lower 

expression levels of HDAC3 and higher levels of acetylation of p53 (Lys-373/Lys-382), 

which resulted in reduced xenograft tumor volume and tumor weight.
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 4.5. Other phytochemicals and their derivatives

 3, 3′-Diindolylmethane—3, 3′-Diindolylmethane (DIM) is a byproduct of the 

digestion of indole-3-carbinol (I3C), which is found in cruciferous vegetables, including 

broccoli, cabbage, kale and Brussels sprouts. DIM acts as an anticancer agent by inducing 

cell cycle arrest and apoptosis and is undergoing clinical trials [221]. DIM can selectively 

inhibit class I HDACs by inducing their proteasome-mediated degradation, revealing the 

potential of DIM as a chemoprevention agent [222]. Both DIM and I3C counteract the 

effects of enterotoxin B (SEB)-induced activation of T cells in mice as inhibitors of class I 

HDACs, but not class II HDACs [223]. Notably, DIM, but not I3C, specifically decreases 

HDAC2 activity in LNCaP and PC-3 prostate cancer cells [224]. Recently, the effects of 

DIM and SFN on genome-wide promoter methylation have been tested in normal prostate 

epithelial cells and prostate cancer cells, and the results indicated that DIM reversed 

abnormal methylation in cancer-associated genes [225]. All of these investigations suggest 

that DIM can exert cancer preventive and even therapeutic effects via the reversal of 

abnormal epigenetic alterations.

 Valproic acid—SCFAs are produced from the fermentation of dietary fiber in the colon 

[226]. SCFAs can be categorized based on the number of lipids and include butyric and 

valeric acid. Valproic acid (VPA) was first synthesized in 1882 by Burton as an analog of 

valeric acid. VPA has been shown to be an HDAC inhibitor in several clinical studies when 

used in combination with all-trans retinoic acid to treat acute myeloid leukemia (AML) 

patients with intensive chemotherapy [227]. VPA has been reported to show anti-leukemic 

effects in combination with other demethylating agents such as decitabine and 5-azacitidine 

(5-AZA) [228]. In addition, VPA is in a phase III clinical trial as an HDAC inhibitor in solid 

tumors [229]. Those trials illustrate the emerging importance of targeting epigenetic erasers 

in the classical standard combination chemotherapy [229]. Recently, VPA has been shown to 

attenuate cardiac hypertrophy and fibrosis by inhibiting HDACs to acetylate the 

mineralocorticoid receptor (MR) in spontaneously hypertensive rats [230]. Amide 

derivatives of valproate are being considered as potential follow-up compounds, including 

valproyl glycinamide, 3-methylbutanamide or isovaleramide and SPD421 (DP-valproate) 

[231, 232].

 Anacardic acid—Anacardic acid, a bioactive phytochemical found in the shell of nuts 

from Anacardium occidentale, is a non-competitive inhibitor of p300, PCAF and Tip60 

[233]. Anacardic acid is structurally related to salicylic acid. Anacardic acid still has limited 

applications, similar to most natural compounds, because of its low cell permeability [234]. 

In contrast to anacardic acid, garcinol is a highly permeable but non-specific HAT inhibitor 

that is extracted from the rinds of the Garcinia indica fruit [235]. This non-specific nature of 

garcinol increases toxicity; therefore, more specific, less toxic HAT inhibitors, LTK14 and 

LTK15, were derived from garcinol [236].

 5. Conclusions and perspectives

Individual phenotypes appear to be a complex record of interactions with the environment, 

that is, lifelong exposure to stimuli and the consequential reactions of the genome and 
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epigenome. Recently, understanding how epigenetic mechanisms record environmental 

changes within individuals and contribute to the development of various types of diseases 

including cancers has gained increasing importance. These studies enhance our 

understanding and ability to manipulate the epigenome, especially to reverse abnormal 

epigenetic modifications and restore normal biological function.

Natural compounds in the diet or herbal medicinal phytochemicals are promising epigenome 

modifiers targeting epigenetic readers, writers and erasers resulting in diseases prevention 

including cancer chemoprevention or chemotherapeutic treatment. In addition to these 

characteristics as epigenetic regulators, natural compounds are generally characterized with 

low toxicity and easy access in daily life. All these advantages have placed bioactive natural 

compounds as important health beneficial and potential diseases prevention agents including 

cancer chemoprevention. Our current review provides a brief insight into some selected 

dietary phytochemicals on their potential epigenetic targets. A summary of these alterations 

is provided in Table 1, which includes accumulating evidence of dietary chemopreventive 

compounds’ role in preventing and reversing these abnormal epigenetic modifications in cell 

culture or animal model systems. Understanding the potential differences in different cell 

types and organs will be crucial in designing future personalized dietary strategy in diseases 

prevention including cancer. Furthermore, combination of some of these selective epigenetic 

regulators with more targeted epigenetic drugs could potentially yield synergistic effects in 

cancer prevention and therapy. For instance, butyrate, an HDAC inhibitor, in combination 

with a dietary vitamin A derivative, is used in the treatment of acute promyelocytic 

leukemias [238]. Some epigenetic drugs are currently used in combination with cancer 

chemotherapeutic agents in reversing transcriptional resistance mechanisms in cancers 

[239]. In addition, although miRNA and long non-coding RNA are not the focus of this 

review, they have been important targets of many natural dietary compounds, including 

polyphenols [240].

In conclusion, it is important to fully understand the biological functions and detailed 

mechanisms of action of chromatin proteins. Further exploration of natural compounds 

alone or in combination will be important to move forward evidence-based clinical trials 

using natural products as modifiers targeting epigenetic readers, writers and erasers resulting 

in cancer chemoprevention or even chemotherapeutic treatment.
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 Abbreviations

AM allyl mercaptan

AML acute myeloid leukaemia

BA boswellic acid
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BET bromodomain and extraterminal family of proteins

BRD bromodomain-containing protein

BRDT bromodomain testis-specific protein

CDDO 2-cyano-3, 12-dioxooleana-1, 9(11)-dien-28-oic acid

DADS Diallyl disulfide

DNMT DNA methyltransferase

DOT1L DOT1-like histone H3K79 methyltransferases

EZH2 enhancer of zeste homolog 2

FDA Food and Drug Administration

FoxO1 forkhead box O1

HAT histone acetyltransferase

GSTP1 glutathione S-transferase Pi 1

GNATs Gcn5-related N-acetyltransferases

HDAC histone deacetylase

HDM histone demethylases

HMT histone methyltransferase

KMT lysine methyltransferase

HSP heat shock proteins

LSD1 lysine-specific demethylase 1

MR mineralocorticoid receptor

MBD methyl CpG-binding domain

MeCP2 methyl CpG binding protein 2

OA Oleanolic acid

PEITC Phenethyl isothiocyanate

PHD plant homeodomain

PRMTs protein arginine methyltransferases

PTM post-translational modification

PRC2 polycomb repressive complex 2

PDCD4 programmed cell death 4
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SCFAs short-chain fatty acids

VPA valproic acid

SAM S-adenosylmethionine

SAMC S-allylmercaptocysteine

SFN Sulforaphane

TSA trichostatin A

TET Ten-eleven translocation enzymes

UA ursolic acid
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Table 1

Natural dietary compounds and derivatives with targets at epigenetic writers, readers and erasers in cancers.

Compound Epigenetic targets Phase Cancer types Reference

Curcumin Decrease expression of DNMTs, HDACs Preclinical Colon, leukemia, head, neck 
and lung

[112–116]

EGCG Decrease expression of class I HDACs 
and HATs; decrease EZH2 protein level; 
decrease DNMT activity

Preclinical Prostate, skin, breast and 
cervical cancers

[121, 123–127]

Genistein Decrease expression HDAC6 Preclinical Prostate [131]

Quercetin Decrease expression of HDAC1 and 
DNMT1; decrease HAT activity

Preclinical Prostate [132, 133]

Resveratrol Inhibit the MTA1/HDAC complex Preclinical Prostate [134, 137]

Sulforaphane Decrease HDACs and DNMTs activity Preclinical Breast and skin [140, 153–156]

Phenethyl isothiocyanate Decrease HDACs and CpG methylation Preclinical Prostate, colon, [143–145, 162–168]

Oleanolic acid Increase HAT1 activity; decrease 
phosphorylation of HDAC4 and HDAC5

Preclinical type 2 Diabetes [180]

Ursolic acid Decrease expression of HDAC 1, 3, 4, 5, 
and 6

Preclinical human acute myeloid 
leukemia

[185]

Boswellic acid Loss of methylation in lots of CpG sites; 
decrease DNMTs activities

Preclinical human colorectal cancer [201, 202]

Ginsenosides Rh2 Rh2 increased HDAC4 expression Preclinical human liver carcinoma 
HepG2 cells

[206]

Ginsenosides Rg1 Rg1 repressed expression of miR-214 
and miR-214 is a negative regulator of 
EZH2

Preclinical human umbilical vein 
endothelial cells

[210, 211]

Compound K Decrease HDAC1 and DNMT1 activities Preclinical human colorectal cancer cells [218, 230]

3, 3′-Diindolylmethane Decrease HDACs activities Preclinical Prostate cancers cells [222]

Valproic acid Decrease HDACs activities phase III 
clinical trial

solid tumors [229]

Anacardic acid Inhibit p300, PCAF and Tip60 Preclinical Breast [233]

Garcinol Decrease HAT activities Preclinical Hepatocellular carcinoma [237]

LTK14, LTK 15 Decrease HAT activities Preclinical [236]
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