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Mitochondria are organelles responsible for several crucial cell functions, including respiration, oxidative phosphorylation, and
regulation of apoptosis; they are also the main intracellular source of reactive oxygen species (ROS). In the last years, a particular
interest has been devoted to studying the e�ects on mitochondria of natural compounds of vegetal origin, quercetin (Qu),
resveratrol (RSV), and curcumin (Cur) being the most studied molecules. All these natural compounds modulate mitochondrial
functions by inhibiting organelle enzymes or metabolic pathways (such as oxidative phosphorylation), by altering the production
of mitochondrial ROS and by modulating the activity of transcription factors which regulate the expression of mitochondrial
proteins. While Qu displays both pro- and antioxidant activities, RSV and Cur are strong antioxidant, as they e�ciently scavenge
mitochondrial ROS andupregulate antioxidant transcriptional programmes in cells. All the three compounds display a proapoptotic
activity, mediated by the capability to directly cause the release of cytochrome c from mitochondria or indirectly by upregulating
the expression of proapoptotic proteins of Bcl-2 family and downregulating antiapoptotic proteins. Interestingly, these e�ects are
particularly evident on proliferating cancer cells and can have important therapeutic implications.

1. Introduction

Mitochondria are unique membrane-enclosed organelles
found in eukaryotic cells; they are usually described as
the “powerhouse” of the cell as they contain the molecular
machinery that governs many distinct metabolic pathways
taking place within these organelles, including (but not
limited to) pyruvate oxidation, fatty acid �-oxidation, Krebs
cycle, and oxidative phosphorylation (OXPHOS) [1]. Mito-
chondria importance is not limited to cell metabolism or
regulation of bioenergetics pathways. Indeed, during the last
decades, their role as master regulators controlling stress
responses and cell death has emerged [2–4]. Furthermore,
mitochondria are the main intracellular source of reactive
oxygen species (ROS) [5]. �e multiple functions of mito-
chondria have more andmore underlined the great relevance
of such organelle in biomedicine. Indeed, not only are they
responsible for several genetic diseases, due to inherited

mutations of mitochondrial DNA (mtDNA), but also they
play a main role in the processes of in
ammation, aging,
cancerogenesis, and neurodegeneration [3, 6–11].

In the last decades, a particular interest has been devoted
to studying the e�ects of natural compounds of vegetal origin
(oen referred to as phytochemicals, herbals, or phytocom-
pounds) on human cells, as these compounds are oen
taken with the diet at biologically active concentrations and
constitute fundamental components of traditional medicine
of several countries [8, 12–18]. Many of these compounds
turned out to exert their functions by a�ectingmitochondrial
functions, either directly, by inhibiting speci�c enzymes, or
indirectly, bymodulating signal fromor tomitochondria [19–
23].

In this review, we will discuss recent discoveries con-
cerning the e�ects of natural compounds on mitochondria,
with a major emphasis on resveratrol (RSV), the 
avonoid
quercetin (Qu), and curcumin (Cur) derivatives, probably the
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Figure 1: Chemical structure of quercetin (Qu), resveratrol (RSV),
and curcumin (Cur).

most studied plant-derived natural compounds (Figure 1).
Resveratrol (3,5,4-trihydroxystilbene) is a stilbenoid natu-
rally produced by several plants in response to environmental
stress or injury and present in many fresh fruits (includ-
ing grapes, blueberries, and raspberries) or fruit-derived
foods. Quercetin (3,3�,4�,5,7-pentahydroxy
avone) is a main
dietary 
avonoid, present in vegetables, fruits, seeds, nuts,
tea, and red wine [11, 24, 25]. Curcumin (1,7-bis(4-hydroxy-
3-methoxyphenyl)-1,6-heptadiene-3,5-dione) is a diarylhep-
tanoid derived from the rhizome of Curcuma longa, which
exhibits cancer growth inhibition both in vitro and in vivo
[26, 27], by suppressing cell proliferation and inhibiting
tumourigenesis [28–33].

2. Mitochondria, Oxidative Phosphorylation,
and Natural Compounds

Mitochondria are the organelle where cell respiration,
OXPHOS, and synthesis of most cellular ATP take place.
Since these metabolic processes involve dozens of proteins
or protein complexes, e�ects of phytochemicals on them are
very complex and oen di�cult to interpret and are subject of
intensive investigation. ATP is synthesized in mitochondria by
F0F1 ATP synthase, a multimeric complex consisting of the
catalytic F1 sector (a3b3cde) and the trans-membrane proton
pathway, the F0 sector (ab2c10). Several phytochemicals,
including piceatannol, Qu, RSV, Cur, (−)epigallocatechin
gallate, (−)epicatechin gallate, curcumin, genistein, or bio-
chanin, are able to inhibit F0F1 ATPase, both inmitochondria
of mammalian cells or in prokaryotic cells [19, 22, 23, 34, 35].

2.1. E�ects of Quercetin on Oxidative Phosphorylation. �e
e�ects of Qu on mitochondrial biochemical pathways are of
particular interest, since Qu can speci�cally accumulate in
these organelles [36]. More than 40 years ago it was shown
that Qu inhibits mitochondrial ATP synthase, similarly to
well-known inhibitors of mitochondrial electron transport.
Moreover, Qu strongly a�ects the succinate oxidase as well as
the NADH oxidase activities but has no e�ect on OXPHOS
in submitochondrial particles [37]. More recently, it has been
shown that Qu can uncouple OXPHOS at concentrations
as high as 30 �M. Interestingly, at concentration >50 �M,
Qu stimulates oxygen consumption, inhibits OXPHOS,
decreases mitochondrial membrane potential, and causes
Ca2+ release [38, 39]; the uncoupling e�ect, with a dose-
dependent stimulation of State 2 respiration rate, has also
been observed in rat heart mitochondria [40].

2.2. E�ects of Resveratrol on Oxidative Phosphorylation.
Resveratrol improvesmitochondrial function by inducing the
expression of genes for oxidative phosphorylation and mito-
chondrial biogenesis; this e�ect is mediated by a decrease in
the acetylation of PGC-1alpha—one of the master regulators
ofmitochondrial biogenesis—and by the subsequent increase
in its functional activity [41]. Several studies performed in
vivo on rats further demonstrated the bene�cial e�ect of RSV
onmitochondria. In particular, dietary supplementationwith
RSV causes an amelioration of several mitochondrial func-
tions (oxygen consumption, activity of respiratory enzymes,
and activity of lipid-oxidizing enzymes) [42–44]. It must be
noted, however, that in mitochondria isolated from rat brain
RSV inhibits the mitochondrial F0F1-ATPase activity in a
concentration-dependent manner, in the range of 0.7–70�m,
suggesting that RSV can also impairmitochondrialmetabolic
pathways [23].

2.3. E�ects of Curcumin onOxidative Phosphorylation. In iso-
latedmitochondria from rat liver, Cur acts as a protonophoric
uncoupler [45]. In this model, Cur decreases ATP biosyn-
thesis, activates F0F1-ATPase in a dose-dependent manner (a
common feature of protonophoric uncouplers), and inhibits
respiration at concentrations >50�M [45]. However, it is
interesting to note that Cur inhibits the F0F1-ATPase in rat
brain mitochondria, indicating that di�erent—in this case,
opposite—e�ects of this phytochemical can be observed in
the same organelle from di�erent tissues [23, 45]. A possible
mechanism of this action has been elucidated in Escherichia
coli, where Cur directly inhibits F1 ATPase activity by disrupt-
ing the beta subunit catalytic site conformational transitions
[22, 34].

3. Mitochondria, Reactive Oxygen Species, and
Natural Compounds

Quantitative date on isolated mitochondria indicates that
up to 5% of oxygen consumption is due to superoxide
anion (O2

∙−) generation [46]. However, superoxide genera-
tion is heavily in
uenced by the cell type and by the res-
piration steady state; under physiologic conditions, the
superoxide production is estimated to be about 0.1% of
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Table 1: Direct and indirect e�ects of Qu, RSV, and Cur on mitochondrial ROS.

Molecule
E�ects on mitochondrial

ROS
Model used Doses

Time of
treatment

References

Quercetin

Direct e�ects
Scavenging of O2

∙− Cell-free system; CHO
cells

10–200�M Up to 24 hours [49]

Scavenging of H2O2

Cell-free system; CHO
cells

10–200�M Up to 24 hours [49]

Direct e�ects as
prooxidant

Production of
semiquinone radical and

Qu-quinone, which
depletes GSH

Cell-free system; CHO,
U937, THP-1, HL-60,

and NB4 cells
10–200�M Up to 24 hours [49, 51–53]

Indirect e�ects on
antioxidant
systems

Inhibition of TrxR
Cell-free system;

A549 cells
25–100 �M 24 hours [56]

Resveratrol

Direct e�ects as
antioxidant

Scavenging of O2
∙−

U937, K562, HepG2
MCF-7, NHEK cells;
RAW 264.7, JB6 cells;
Wistar-Kyoto rats

0–150�M Up to 48 hours [65–67]

Scavenging of ∙OH
U937, K562 HepG2
MCF-7, NHEK cells

0–150�M Up to 48 hours [65, 66]

Scavenging of H2O2

N9 microglial cells, C6
astroglial cells

25–100 �M 0–600 secs [64]

Indirect e�ects on
antioxidant
systems

Upregulates glutathione
peroxidase and catalase

Rat coronary endothelial
cells

1–100 �M 48 hours [76]

Upregulates MnSOD
Human coronary
endothelial cells

1–10 �M 48 hours [77]

Activates Nrf2 mediated
antioxidant response

Normal human
epidermal keratinocytes

20–100�M 16 hours [73]

Curcumin

Direct e�ects as
antioxidant

Scavenging of O2
∙−

Cell-free system; heart
homogenate from

Wistar rats
0–200�M 48 hours [81, 82]

Scavenging of ∙OH Rat L-6 myoblasts 0–4 �M 30mins [84]

Scavenging of H2O2

Cell-free system; Rat L-6
myoblasts

15–45 �g/mL;
0–4 �M 30mins [82, 84]

Scavenging of ONOO− [85]

Scavenging of NO∙

Cell-free system;
G108-15

neuroblastoma-glioma
cells

1–25 �M [86]

Scavenging of ROO∙ Rat L-6 myoblasts 0–4 �M 30mins [84]

Indirect e�ects on
antioxidant
systems

Upregulation of
antioxidant enzymes
(SOD, CAT, and HO-1)

C6 rat glioma cells; rat
cerebellar granule
neurons; ECV304

human endothelial cells

0–100 �M Up to 48 hours [87–89]

Replenishment of
glutathione pool via
upregulation of GR,

GPx, and GST

Chick liver 74mg/kg Up to 21 days [90]

the respiratory rate [47]. Mitochondrial ROS are not just
dangerousmolecules: they also regulate several cell processes,
including (but not limited to) apoptosis, autophagy, and
unfolded protein response [5]. Quercetin, resveratrol, and
curcumin can modulate in several ways the levels of di�erent

ROS and other free radicals within the cell (Table 1). Never-
theless, it must be noted that the capability of phytochemicals
to directly scavenge ROS is probably not very relevant in
vivo as, at the concentrations that they can reach within the
cell, their scavenging e�ect is marginal if compared with
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detoxifying systems such asGSH.However, these compounds
can indirectly exert an antioxidant activity by modulating
antioxidant cell response—an e�ect that ismuchmore impor-
tant in vivo.

3.1. E�ects of Quercetin onMitochondrial ROS. Quercetin can
exert both antioxidant and prooxidant activity [11]. Because
of the high number of hydroxyl groups and conjugated �
orbitals, Qu can e�ciently scavenge mitochondrial ROS such
as O2

∙− and hydrogen peroxide (H2O2) [48]. �e reaction
of Qu with O2

∙− leads to the generation of the semiquinone
radical and H2O2. �en, Qu reacts with H2O2 and decreases
its levels in the presence of peroxidases [49]. During the same
process, potentially harmful reactive oxidation products can
also be formed: semiquinone radical, the �rst product of Qu,
is unstable and undergoes a second oxidation reaction that
produces Qu-quinone, a molecule capable of damaging DNA
and causing lipid peroxidation [50].

Qu can alter ROS metabolism by directly lowering
the intracellular pool of GSH [51–53]. Indeed, Qu reacts
with ROS and forms semiquinone and quinone radicals
[49], which are highly reactive toward thiols, and prefer-
entially react with GSH [54]. �us, Qu depletes GSH in
a concentration-dependent manner [54]. �is phenomenon
has been observed not only in cell lines, but also ex vivo:
in isolated rat liver nuclei, Qu reduces, in a dose-dependent
manner, nuclear GSH content [55]. Finally, Qu can indirectly
a�ect intracellular ROS levels by inhibiting enzymes related
with antioxidant activity, such as thioredoxin reductase and
the glutathione S-transferase (GST) activity [55, 56].

Qu can also modulate the antioxidant pathway triggered
by nuclear factor-erythroid 2 related factor 2 (Nrf2, a master
regulator of antioxidant response). In normal conditions,
Nrf2 is bound to Keap-1, which represses its activity by
targeting it for ubiquitin degradation pathway [57, 58]. In
the presence of oxidative stress, NRf2 is released from Keap-
1 and translocates into the nucleus, where it activates the
antioxidant transcriptional programme; this leads to the
upregulation of genes involved, at least in part, in the increase
of cell glutathione content. In HepG2 cells, Qu at the dose
of 50 uM is able to rapidly (within 60 minutes) induce the
phosphorylation and translocation into the nucleus of Nrf2,
to later inhibit both e�ects. �is activation is correlated with
the activation of the GSH-related antioxidant/detoxifying
enzymes [59]. In longer exposition, Qu causes the increase of
Nrf2 levels by increasing its transcription, and by stabilizing
the protein through the inhibition of its ubiquitination and
degradation. Furthermore, Qu is able to decrease the levels
of Keap-1, the inhibitor of Nrf2, at the posttranslational level.
�us, the higher levels of Nrf2 determine an increase in
the activity of the Nrf2-dependent antioxidant-responsive
element/electrophile-responsive element (ARE/EpRE) and
the transcription of a series of genes involved in antioxi-
dant response, such as the NADPH:quinone oxidoreductase
(NQO1) [60].

Studies performed in vivo on rats have shown that
Qu can have a protecting role in ischemia/reperfusion
injury in di�erent brain and heart cell types, by attenuating

the cytotoxic e�ects of ROS and decreasing mitochondria-
mediated apoptosis [61–63].

3.2. E�ects of Resveratrol on Mitochondrial ROS. �e antiox-
idant activity of RSV has been shown by a considerable
number of reports and observed in transformed cells of dif-
ferent origin, as well as in nontransformed cells. Resveratrol
decreases ROS inmitochondria as it acts as a potent scavenger
of superoxide anion, hydrogen peroxide, and hydroxyl radical
(OH∙), inhibits lipid peroxidation, and helps to replenish glu-
tathione levels [64–67]; the antioxidant activity of RSV results
in a cytoprotective e�ect on several cell types, including (but
not limited to) keratinocytes, cardiomyocytes, adipocytes,
neurons, and brain tissue [67–74].

Resveratrol can also exert its antioxidant activity in an
indirect manner, by modulating the expression of mitochon-
drial proteins or by increasing the expression of ROS scav-
enging enzymes. As in the case of Qu, RSV is able, in a dose-
dependent manner, to activate the antioxidant pathway trig-
gered by Nrf2 in keratinocytes and in cultured coronary
arterial endothelial cells [73, 75]. Also in this case, Nrf2
activation determines a higher ARE activity and a signi�cant
upregulation of Nrf2 target genes, such as NQO1 and HO-1
[75].

In endothelial cells, RSV reducesmitochondrial ROS gen-
eration by increasing SIRT3 levels within the mitochondria,
which in turns leads to the to increased complex I activity and
ATP synthesis through the upregulation of mitochondrial
proteins ATP6, CO1, Cytb, ND2, and ND5 [74]. Concerning
scavenging enzymes, RSV is able to upregulate glutathione
peroxidase, catalase [76], and MnSOD [77] expression in
endothelial cells, in a SIRT1-dependent manner [77, 78].

3.3. E�ects of Curcumin on Mitochondrial ROS. Curcumin
displays antioxidant and cytoprotective e�ects on several cell
types, including hepatoma cell lines, retinal epithelial cells,
astrocytes, and spinal cord astrocytes [71, 78–80]. Curcumin
exerts its antioxidant properties through direct and indirect
mechanisms. Indeed, Cur is an e�ective scavenger of free
radicals such as hydroxyl radical (OH∙), O2

−, nitric oxide
(NO), H2O2, and peroxynitrite [81–86]. Concerning indirect
mechanisms, Cur is able to upregulate cytoprotective cell
response by modulating the expression of genes encoding
antioxidant proteins, such as superoxide dismutase (SOD),
catalase (CAT), heme oxygenase-1 (HO-1), or proteins that
replenish the glutathione pool such as glutathione reductase
(GR), glutathione peroxidase (GPx), and GST [87–90]. As in
the case of RSV, the upregulation of these genes is induced
by the Cur-mediated transactivation of Nrf2 and has been
demonstrated in several in vitro cell models [91, 92] as well
as in vivo ones [93, 94]. �e antioxidant and cytoprotective
e�ects of Cur have been proven to be bene�cial also in vivo.
Similarly to Qu, Cur protects cardiac cells from ischemia
reperfusion (I/R) damage by reducing oxidative stress and by
helping cells to maintain intact mitochondrial functions [81];
in an in vivomodel of chronic kidney disease, Cur displayed
cardioprotective e�ects that were mediated by diminished
ROS production and by the maintenance of mitochondrial
functions, such as OXPHOS [95, 96].
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Cur can also have a cytoprotective e�ect against toxic
compounds able to generate ROS and to cause lipid per-
oxidation and DNA damage, such as potassium dichromate
(K2Cr2O7). Indeed, several studies have shown that Cu pre-
treatment has a protective role against toxicity of K2Cr2O7 for
kidney, liver, and male reproductive system [97–99]. In vivo,
Cur prevents the decrease in body weight caused by K2Cr2O7
and increases liver weight and liver/body ratio and exerts
a protective e�ect against oxidative damage to liver tissue,
by preventing the decrease of hepatic antioxidant enzymes
caused by K2Cr2O7. �ese e�ects appear to be mediated
by a protective e�ect on mitochondria. Indeed, studies on
isolated organelles showed that Cur reduces mitochondrial
dysfunction by preventing the reduction of complex I activity
and the opening of the PTP induced by K2Cr2O7. �is
preventive activity blocks the release of cyt c, likely inhibiting
mitochondrial-induced apoptosis [99].

A similar, protective e�ect has been demonstrated in rats
treated with indomethacin, a potent ROS inducer: admin-
istration of Cur prevented oxidative stress and maintained
mitochondrial functions in cells from colon [100].

4. Effects of Natural Compounds on
Mitochondrial-Mediated Apoptosis and
Mitophagy and on Mitochondrial Biogenesis

In the last twenty years, the e�ects of natural compounds on
apoptosis have been subject of huge investigations, mainly
aimed at identifying molecules able to selectively cause death
of cancer cells [101]. However, it must be noted that the results
of this type of studies are oen di�cult to interpret, because
of the enormous variety of in vitro and in vivomodel used, the
dose dependency of the e�ects of many compounds, and the
capability of the same compounds to exert a prosurvival e�ect
in cancer cells, by favouring mitochondrial biogenesis and
cell proliferation.�e systematic reanalysis of this plethora of
studies goes further beyond the purpose of this review; in this
paragraph, we will summarize the direct and indirect mech-
anisms by which QU, RSV, and Cur modulate mitochondria-
mediated apoptosis (summarized in Table 2) or, conversely,
increase mitochondrial biogenesis.

4.1. Quercetin, Mitochondrial Biogenesis, and Apoptosis. Data
concerning the e�ects of Qu on mitochondrial biogenesis
are quite controversial. In HepG2 cells, Qu induces mito-
chondrial biogenesis through activation of HO-1 [102]. Con-
versely, in vivo data obtained on mice or rats gave opposite
results, depending on the experimental design and the cell
type taken into account. Higher expression of PPAR-gamma,
cytochrome c (cyt c) oxidase, and citrate synthase were
noted; furthermore, increased mitochondrial biogenesis was
accompanied by higher levels of mtDNA [103]. Conversely,
other authors have shown that muscle mitochondrial bio-
genesis should be attributed exclusively to exercise and
that Qu supplementation in the diet had negligible e�ect
on mitochondria in mice fed with high-fat diet [104]. �e
combination of oral Qu supplementation and exercise has
been shown to prevent brain mitochondrial biogenesis [105].

�e capability of Qu to trigger apoptosis via mitochon-
drial pathway has been shown in a variety of cell models
[38, 106–111]. It is particularly interesting to observe that, in
some cases, Qu causes cell death in cancer cells, but not in the
parental, nonmalignant cells [112].

Qu is able to trigger mitochondria-mediated apoptosis
both by direct and indirect mechanisms [11]. Concern-
ing direct mechanisms, Qu induces loss of mitochondrial
membrane potential (MMP), release of cytochrome c from
mitochondria, and the subsequent activation of caspase-3 and
caspase-7 [106, 108]. Experiments on isolated mitochondria
from rat liver have shown that Qu causes the release of cyt
c by inhibiting adenine nucleotide translocase (ANT), which
in turn determines the opening of the permeability transition
pore (PTP), through a cyclosporin A insensitive mechanism
[38]. In several cell models, the capability to induce apoptosis
appears to be correlated with the capability of Qu to deplete
GSH, an event that precedes loss ofMMP, phosphatidylserine
exposure, decrease of mitochondrial mass, and subsequent
cell death [11, 112].

Qu can also favour apoptosis by modulating the expres-
sion of pro- and antiapoptotic proteins belonging to the Bcl-
2 family. In particular, Qu upregulates Bax and Bak and
downregulates Bcl-2 and Bcl-xL [108, 110], thus determining
the multimerization of Bax to the mitochondrial membrane.

Another indirect mechanism by which Qu exerts a pro-
apoptotic activity is the generation of ROS. As stated above,
Qu can increase intracellular ROS levels, as Qu radicals can
be formed aer peroxidase-catalyzed oxidation in order to
scavenge reactive peroxyl radicals [113]. In some conditions,
Qu generates enough ROS to trigger free radical-induced
apoptosis, through the activation of the AMPK1/ASK1/p38
pathway [114]. Accordingly, the generation of ROS deter-
mines the subsequent activation of AMPKalpha1 and ASK1,
which are accompanied by activation of p38 and recruitment
of caspases [115–117].

4.2. Resveratrol, Mitochondrial Biogenesis, and Apoptosis.
Several studies indicate that RSV can have some bene�cial
e�ects on mitochondrial biogenesis and activity [41]. In
particular, it has been shown that RSV supplementation in
the diet of rodents is associated with an increase in mtDNA
content and of protein levels of mitochondrial transcription
factor A (Tfam) and PGC-1�; this increase is mirrored
by an increase in oxygen consumption and in the activity
of respiratory and lipid-oxidizing mitochondrial enzymes
[42–44, 118]. Concerning mitochondrial biogenesis, RSV-
stimulating e�ects are mediated by a mechanism involving
three main actors, namely, PGC1a, SIRT1, and AMPK [41,
119]. As mentioned above, SIRT1 is activated in cells exposed
to RSV and other polyphenols, including 
avonoids, butein,
catechins, and Cur [120].Whether RSV acts directly on SIRT1
or its action is indirect is still matter of debate. While some
authors have shown that RSV can directly act on Sir2, the
yeast ortholog of human SIRT1 in Saccharomyces cerevisiae,
[121] others did not evidence any direct e�ect and ascribed
the observed phenomenon to technical problems [122, 123].
Accumulating data now indicate that the e�ects on SIRT1 are
mediated by AMPK activation. Finally, it must be noted that
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a recent study casted some doubts on the e�ects of RSV on
mitochondrial biogenesis, at least in muscle cells [124].

RSV has the capability to induce apoptosis in di�erent
manners. At high concentration (100�M), RSV induces
apoptosis in breast cancer cell lines [125], by provoking rapid

depolarization of mitochondria, release of Ca2+ from the ER,
followed by opening of PTP, release of cyt c, and activation
of caspases; xenogra experiments further con�rm that RSV
treatment inhibits breast cancer growth [125].�e same e�ect
has been observed in hepatocarcinoma cells [126]. RSV acts
as an antagonist of antiapoptotic proteins, therefore favouring
the induction of apoptosis in cancer cells. In particular,
it induces the upregulation of p21 in a p53-independent
manner, which in turn determines cell cycle arrest, depletion
of the antiapoptotic protein survivin, and sensitization to
TRAIL-mediated apoptosis [127]. RSV also suppresses the
expression of the antiapoptotic proteins Bcl-xL, Mcl-1, and
Bcl-2 in di�erent human cancer cell lines [128, 129]; in U937
cells, this e�ect is due to the suppression of constitutively
active NF-kB, through RSV-mediated inhibition of IkB. �e
ectopic overexpression of Bcl-2 attenuates RSV proapoptotic
e�ect, con�rming the proapoptotic e�ect of this molecule
through the downregulation of antiapoptotic genes [130].
Furthermore, RSV can favour apoptosis by increasing the
expression of the proapoptotic protein Bax [131, 132] or by
inducing oligomerization of Bax on mitochondria [133].

4.3. Curcumin,Mitochondrial Biogenesis, andApoptosis. Data
concerning Cur e�ects on mitochondrial biogenesis are
scarce and mainly obtained by in vivo studies [134–137].
In hepatocytes isolated from rats, Cur treatment increases
mtDNA copy number and upregulates transcriptional factors
that regulate mitochondrial biogenesis, including PGC1�,
Nrf1, and Tfam [134]. In vivo studies on rats subjected to
I/R injury further con�rm that Cur increases mitochondrial
biogenesis. Indeed, Cur pretreatment reverts the reduction
in Nrf-1 and Tfam and in the number of mitochondria
observed with I/R and helps in reducing infarct volume and
in maintaining neuron functionality, in a dose-dependent
manner [138].

As mentioned above, the anticancer properties of Cur
rely on its capacity to inhibit proliferation and induce cancer
cell death. Many studies, performed on di�erent human and
murine cell types, indicate thatCur, likeQu andRSV, canhave
both proapoptotic and cytoprotective e�ects, depending on
the dose or cell model used [139].

�e mechanisms by which Cur induces cancer cell death
are not clearly de�ned and are likely mediated by di�erent
pathways; nevertheless, the crucial role of mitochondria-
mediated apoptosis is well established in di�erent cell mod-
els. At high concentration (80�M), Cur has a prooxidant
activity, as it leads to increased levels of O2

−∙ and causes
cell death in human colon cancer cells in a p53-independent
manner [140]. �e crucial role of mitochondria in Cur-
mediated apoptosis has been demonstrated in isolated rat
liver organelles: in this model, Cur induces an increase
in the membrane permeability, resulting in swelling, loss
of membrane potential, and inhibition of ATP synthesis;
this e�ect is mediated by PTP opening [141]. In human

glioblastoma cells, treatment with Cur at relatively low
concentrations (25–50�M) causes release of cyt c and AIF
frommitochondria and subsequent cell death [142]; a similar
e�ect has been observed in colorectal cancer cells [143]. Like
other proapoptotic phytochemicals, Cur targets proliferative
cells more e�ciently than di�erentiated cells. For instance,
Cur induces a rapid decrease in MMP and the release of cyt
c followed by cell death in growing murine neural 2a (N2a)
cells, but not in di�erentiated N2a cells [144].

�e proapoptotic e�ects of Cur are also exerted in an
indirect manner, through the upregulation of proapoptotic
proteins located in mitochondria. In human breast cancer
cells, Cur induces apoptosis via a p53-dependent pathway in
which Bax is upregulated and renders cells more prone to
apoptosis [145]. �e crucial role of proapoptotic proteins of
Bcl-2 family, such as Bax, Bak, Bim, and Bid in Cur-mediated
apoptosis, has been further con�rmed in other cell models
[143, 146, 147]. In colorectal cancer cells, Cur sensitizes cells to
apoptosis by upregulating of Bax, Bak, Bim, andBid, as well as
Apaf-1, and by inducing the oligomerization of Bax, which in
turn favours the release of cyt c frommitochondria [143]. Cur
can also favour apoptosis by downregulating antiapoptotic
proteins, such as Bcl-2 [137], or by downregulating NF-
kappaB, which in turn determines the downregulation of
both Bcl-2 and Bcl-XL [148].

Finally, Cur exerts an indirect proapoptotic activity by
damaging mtDNA. Indeed, the prooxidant activity of Cur
at high concentrations damages both mtDNA and nDNA in
HepG2 cells, but with amore dramatic e�ect onmtDNA [135,
136]. Such damage causes impairment of OXPHOS, reduces
ATP synthesis, and renders cells more prone to cell death.
�e observation that mtDNA-depleted cells are resistant to
Cur-induced apoptosis further con�rms the essential role of
mtDNA in the sensitivity to cell death [137].

5. Concluding Remarks

Natural compounds display a panoply of e�ects on mito-
chondria, a�ecting virtually every function correlated with
the biology of the organelle. Data concerning di�erential
e�ects on cancerous and normal, nontransformed cells are
particularly interesting for possible, therapeutic use of these
molecules as chemotherapeutics or chemopreventers. Fur-
thermore, as aging in mammals is associated with mito-
chondrial oxidative stress in virtually every tissue [149–
153], the use of these molecules, and particularly RSV, as
antiaging agents is considered of particular interest [154–
157]. Nevertheless, several problems must be solved before
thinking of awide, systematic use of these natural compounds
in the clinical practice.

First, contradictory data have been obtained in di�erent
cell models, and these discrepancies need urgent clari�cation,
particularly to understand which are the doses that display
bene�ciary onmitochondria, without causing collateral, dan-
gerous e�ects. Second, rigorous studies on large cohorts of
subjects are urgently needed to clearly de�ne the daily intake
and bioavailability of these natural compounds. Indeed,
the actual clinical potential of these molecules cannot be
fully established until proper protocols providing optimal
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bioavailability to ensure su�cient tissue distribution are
established. �ird, studies on natural compounds of vegetal
origin are usually focused on few, well-known molecules
or on herbal extracts whose composition is barely known
and oen nonstandardized. �e expansion of the array of
molecules analysed in depth asQu, RSV, orCurwill open new
perspectives in the modulation of mitochondrial functions
related with the onset of human diseases.
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[73] J. Soeur, J. Eilstein, G. Léreaux, C. Jones, and L. Marrot, “Skin
resistance to oxidative stress induced by resveratrol: from
Nrf2 activation to GSH biosynthesis,” Free Radical Biology and
Medicine, vol. 78, pp. 213–223, 2015.

[74] X. Zhou, M. Chen, X. Zeng et al., “Resveratrol regulates mito-
chondrial reactive oxygen species homeostasis through Sirt3
signaling pathway in human vascular endothelial cells,” Cell
Death and Disease, vol. 5, no. 12, Article ID e1576, 2014.

[75] Z. Ungvari, Z. Bagi, A. Feher et al., “Resveratrol confers endo-
thelial protection via activation of the antioxidant transcription
factor Nrf2,” American Journal of Physiology—Heart and Circu-
latory Physiology, vol. 299, no. 1, pp. H18–H24, 2010.

[76] Z. Ungvari, Z. Orosz, A. Rivera et al., “Resveratrol increases
vascular oxidative stress resistance,” 
e American Journal of
Physiology—Heart and Circulatory Physiology, vol. 292, no. 5,
pp. H2417–H2424, 2007.

[77] Z. Ungvari, N. Labinskyy, P. Mukhopadhyay et al., “Resveratrol
attenuates mitochondrial oxidative stress in coronary arterial
endothelial cells,” 
e American Journal of Physiology—Heart
and Circulatory Physiology, vol. 297, no. 5, pp. H1876–H1881,
2009.

[78] W.-H. Chan, H.-J. Wu, and Y.-D. Hsuuw, “Curcumin inhibits
ROS formation and apoptosis in methylglyoxal-treated human
hepatomaG2 cells,”Annals of the NewYork Academy of Sciences,
vol. 1042, pp. 372–378, 2005.

[79] J. M.Woo, D.-Y. Shin, S. J. Lee et al., “Curcumin protects retinal
pigment epithelial cells against oxidative stress via induction of
heme oxygenase-1 expression and reduction of reactive oxygen,”
Molecular Vision, vol. 18, pp. 901–908, 2012.

[80] H. Jiang, X. Tian, Y. Guo,W. Duan, H. Bu, and C. Li, “Activation
of nuclear factor erythroid 2-related factor 2 cytoprotective
signaling by curcumin protect primary spinal cord astrocytes
against oxidative toxicity,” Biological and Pharmaceutical Bul-
letin, vol. 34, no. 8, pp. 1194–1197, 2011.

[81] P. Manikandan, M. Sumitra, S. Aishwarya, B. M. Manohar,
B. Lokanadam, and R. Puvanakrishnan, “Curcumin modulates
free radical quenching in myocardial ischaemia in rats,” 
e
International Journal of Biochemistry & Cell Biology, vol. 36, no.
10, pp. 1967–1980, 2004.
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