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Abstract
Empirical work shows that networks of research and development

alliances are asymmetric, with a small number of firms involved in
the majority of partnerships. This article investigates the welfare-
relevant effects of such concentrated networks in a model of network
formation in an oligopolistic market. We find that concentration is
a typical characteristic of a socially efficient network, when the costs
of collaborative activity are significant. Moreover, expanding on prior
work relating to strategically stable inter-firm networks, we compare
the stable and the efficient structures. Our findings suggest that the
real-world networks might even exhibit too little concentration.

1 Introduction

In the literature on research and development (R&D) collaboration, there
is a long tradition of work focusing on the pros and cons of an industry-
wide agreement as compared to independently operating research labs (e.g.,
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d’Aspremont and Jacquemin, 1988; Leahy and Neary, 1997). Yet, empiri-
cal work on several high-tech industries suggests that not all companies, not
even direct competitors, are equally active in collaborating. Hagedoorn and
Schakenraad (1992), for example, identify seven key players in the informa-
tion and communication technology industries of the 1980s (AT&T, IBM,
Siemens, Philips, Fujitsu, NEC, and Olivetti), who are involved in many of
the collaborative partnerships in these industries. Similarly, for the global
biotech and pharmaceutical industries of the 1990s, Powell, Koput, White,
and Owen-Smith (2005) find that a group of 24 well-known players had each
formed more than twenty strategic alliances, whereas the majority of firms
formed less than two.

These observations raise a number of questions. Can we explain the emer-
gence of a concentrated market structure in a model of R&D collaboration
between firms? Is concentration welfare-efficient? Finally, in the light of the
favorable treatment of research joint ventures in the U.S. and in Europe, is
there a policy lesson to learn from such an analysis? For example, should
R&D collaboration be encouraged between the firms on the periphery of an
industry or rather between the central players?

Despite the empirical evidence, issues like these have not been sufficiently
addressed in the literature. Katz (1986) was the first to study a less than
industry-wide collaborative agreement. More recent contributions come from
Bloch (1995) and Yi (1998), who investigate the set of industry partitions
into research coalitions, and Goyal and Moraga-Gonzáles (2001) and Goyal
and Joshi (2003), who study networks of bilateral R&D alliances. A com-
mon finding is that less than industry-wide agreements are typical market
structures in equilibrium. Of particular interest are the analyses presented
by Goyal and Joshi (2003). The authors find highly asymmetric structures
in equilibrium, where some firms are even completely excluded from any
collaborative activity.

Goyal and Joshi (2003) investigate a game of network formation in a
homogeneous-product oligopoly. In the first stage of the game, the firms can
form bilateral collaborative links between each other, before in the second
stage all firms, even the collaborators, compete in the product market. A
collaborative tie leads to a reduction in marginal production costs for the
firms involved. However, the firms have to incur some costs of link formation.
The authors model this cost to be significant as compared to the returns from
the unit-cost reduction. Yet, the cost is fixed and remains the same across
all links.
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This article investigates the socially efficient networks in the model of
Goyal and Joshi (2003) and shows that asymmetric networks are typically
efficient as well.1 Our first result pertains to the architecture of the efficient
network (Proposition 1). The efficient network may be the empty network,
in which no firm collaborates, or the complete network with a collaborative
agreement between any pair of firms. But if it is neither of these, the efficient
network has a dominant group or an inter-linked star architecture, both of
which exhibit a strong asymmetry between firms.2

Second, we examine the density and the degree variance in the efficient
network. The results of this analysis show that social welfare in a network can
be expressed as an additive function of the density and the degree variance
in the network (Lemma 2). Whereas the density captures the welfare con-
tribution from the number of collaborative links, the degree variance depicts
the contribution from their dispersion among the firms. Moreover, as welfare
is positively associated with degree variance, our analysis implies that in an
efficient network a given number of collaborative ties is maximally concen-
trated around a subset of the firms in a market (Proposition 2). Even though
the exact values of the density and the degree variance depend on the char-
acteristics of demand and the costs of forming links, our subsequent steps
show that the characterization applies to a wide range of market settings.
There exists a generic set of parameters that supports an efficient network
with a highly unequal dispersion of links (Proposition 3).

The intuition underlying these findings is derived from a fundamental
property of the demand for cost-reducing R&D investments. The seminal
articles by Arrow (1962) and Dasgupta and Stiglitz (1980) already point
to the indivisibility of research output and its implications for the market
structure: an invention, for example a cost-reducing one, can be applied to
every unit of a firm’s product, regardless of its scale of production. The social
returns from an R&D investment are therefore higher, the larger the firm’s
scales. This motivates some properties of tie formation in a network between
oligopolistic firms. First, the social returns of creating a collaborative tie
between two firms are higher, the larger the firms’ market shares. Second,
the reallocation of ties from a firm at the fringe of the market to a dominant

1The notions of efficiency investigated in this article are the consumer surplus and the
total surplus. In fact, we analyze a more general market setting than the one investigated
in Goyal and Joshi (2003). Our model bases on Singh and Vives’ (1984) demand for
differentiated products and, therefore, considers richer types of product market interaction.

2The network structures are illustrated in Figure 1.
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market player is socially desirable. Furthermore, because a firm’s market
share improves in its stock of collaboration ties, the gradual construction
of the network is subject to a self-reinforcing dynamic, which favors the
formation of highly concentrated structures.

In a subsequent analysis, we compare the structure of the efficient network
with the one of the strategically stable networks characterized in Goyal and
Joshi (2003, 2006). The comparison shows that stable networks with a small
or moderate density are typically inefficient. However, because of the complex
structure of the efficient network in markets with a finite number of firms, our
formal results pertain only to the limiting case of markets with a continuum
of firms. In such a market, every stable network is inefficient that consists
of less than half of the maximal attainable links (Propositions 4 and 5). As
suggested by our previous findings, the reason for this failure in the network
structure is that, even though the stable networks may be highly asymmetric,
they still exhibit too little concentration.

Building on the last point, we develop some implications for the design
of effective policy programs to foster R&D collaboration between firms. The
major value of this article is, however, its contribution to the existing studies
on collaboration networks in oligopolistic markets, when the costs of link
formation are significant. Goyal and Moraga-Gonzáles (2001) and Deröıan
and Gannon (2006) provide a complete characterization of the strategically
stable and the efficient structures in the set of regular networks, where all
firms have an equal number of links. Moreover, Goyal and Joshi (2003,
2006) characterize the strategically stable structures among all (regular and
irregular) networks and show that they are typically irregular. The current
study identifies the efficient structures in the set of all networks.

Furthermore, the article is one of the few to point out the social benefits
from concentrating costly joint research activities around a small number of
firms in a market.3 An implication of our findings for the analyses in Bloch

3The analyses of some specific market settings in Goyal and Moraga-Gonzáles (2001)
and Goyal and Joshi (2003) point in this direction as well. On the one hand, Goyal
and Moraga-Gonzáles (2001) show for a Cournot-triopoly with significant costs of link
formation that an asymmetric collaboration network can be efficient. Goyal and Joshi
(2003), on the other hand, find for a Bertrand-oligopoly and insignificantly small linking
costs that the efficient network has an inter-linked star architecture. Our analysis indicates
that their findings carry over to more general market settings, where at the same time
there are an arbitrary number of firms, differentiated products, and significant linking
costs.
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(1995) and Yi (1998) is that the exclusion of some firms from collaborating
can be socially desirable. The authors point to the welfare losses from an
asymmetric market structure in a model, where the costs of collaboration
are insignificantly small and the industry-wide agreement is efficient. In
contrast, the current study investigates the situation of large costs, for which
the complete network is inefficient.

Finally, there is also a link between this article and the sociological liter-
ature on social networks. One of the focuses of this literature is to propose
different network measures and to assert the suitability of each of these mea-
sures to different situations.4 We provide a micro-economic foundation for
the use of two simple measures in the study of inter-firm alliance networks:
Lemma 2 suggests that the welfare-relevant properties of such a network are
completely captured by its density and degree variance, where the last is one
way to measure the centralization in a network (Snijders, 1981).

The remainder of the article is organized as follows. Section 2 intro-
duces some network terminology, and Section 3 contains the description of
the model. The efficient network is characterized in Section 4. Section 5
compares the efficient network with the structure of the strategically stable
networks, and Section 6 provides some robustness checks of the main findings.
Section 7 concludes.

2 Networks

Consider a set of initially identical firms, N = {1, 2, ..., n}, with n > 2. For
any distinct i, j ∈ N , a pairwise relationship between the firms is depicted
by a bilateral link ij, and a network g = {ij : i, j ∈ N, i 6= j} is the complete
collection of the links between firms. To denote network g ∪ {ij}, which is
obtained from g by adding link ij, write g + ij. Likewise, the network that
is obtained from g by subtracting link ij is depicted by g− ij. Furthermore,
denote by Ni(g) the set of firms, with which firm i has a link in g; firm i’s
degree is defined as the cardinality of this set, ηi(g) = |Ni(g)|.

A network partitions the set of firms according to their degrees. Dis-
tinct i, j ∈ N are members of the same group hl(g) of the degree partition
{h0(g), h1(g), ..., hm(g)} if and only if ηi(g) = ηj(g) = l, where 0 ≤ l ≤ m.
Define the degree distribution of a network as the function that assigns to

4See Wasserman and Faust (1994) for an overview of the measures used in social network
analysis.

5



every nonnegative integer l the frequency weight nl(g) = |hl(g)|/n. Two
important characteristics of the degree distribution are:

• the density D(g) = η̄(g)/(n − 1), where η̄(g) =
∑

i∈N ηi(g)/n denotes
the average degree and 0 ≤ D(g) ≤ 1, and

• the normalized degree variance C(g) = V (g)/V̂ (n), where the degree
variance, V (g) =

∑
i∈N(ηi(g)− η̄(g))2/n, is normalized by its maximum

given n firms, V̂ (n), such that 0 ≤ C(g) ≤ 1.5

The density measures the overall connectivity between the firms in a network,
whereas the (normalized) degree variance is a measure of network concen-
tration or network centralization, i.e. it captures the extent to which some
firms are more central than others in the network (Snijders, 1981).

In a regular network, gr, of density D every i ∈ N has a degree of
ηi(g

r) = (n− 1)D. Hence, gr does not exhibit any concentration, C(gr) = 0.
Otherwise, a network g is called irregular if and only if C(g) > 0. Two
examples of regular networks are the empty network, ge, where ηi(g

e) = 0
for all i ∈ N , and the complete network, gc, with ηi(g

c) = n− 1.
Another characteristic of a network is its architecture. Two networks g

and g′ share the same architecture, if there exists a permutation of firms, P ,
such that g′ = {P (i)P (j)|ij ∈ g}. Thus, network g′ should be attainable
from g by just relabeling the firms. An example of an irregular architecture,
which is important in this study, is the dominant group architecture of size n′,
gn′

, with 2 ≤ n′ ≤ n−1. The dominant group architecture is first introduced
in Goyal and Joshi (2003) and consists of two groups of firms, {h0, hn′−1};
one in which every firm is linked to every other firm in that group (denoted
by hn′−1), and a second group consisting of isolated firms (denoted by h0).
The authors also introduce the class of inter-linked star architectures. An
inter-linked star, gx, induces a degree partition, where there are two or more
groups of firms with a positive degree. The group of firms with the highest
degree in gx is denoted the center group, hc = hm(gx). Every other firm with
a positive degree belongs to the periphery, hp =

⋃
0<l<m

hl(g
x). Moreover, each

firm in the center group is linked to every firm with a link. Hence, let i ∈ hc.
If ηj(g

x) ≥ 1, then ij ∈ gx. A prominent example of an inter-linked star

5Snijders (1981) determines the maximum degree variance, which is given by V̂ (n) =
(3n−2)2(n−2)(3n+2)

256n2 for a network with n firms.
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Figure 1: Network structures

architecture is the star, gs, which consists of two groups of firms, {h1, hc},
with |hc| = 1. The defined networks are illustrated in Figure 1.

3 The model

In the following, we describe and investigate a generalized version of the
two-stage model introduced in Goyal and Joshi (2003). In the first stage,
a social planner forms a network of marginal cost-reducing links between
firms, which requires the investment of a fixed cost per link. In the second
stage, the firms compete in the product market. The model of the product
market investigated in this article is more general than the one of Goyal
and Joshi (2003). Whereas the authors investigate a homogeneous-product
Cournot oligopoly, we build on the market model by Singh and Vives (1984),
which allows for price or quantity competition between firms as well as for
differentiated products.

We first present the model and solve its second stage. Some of the ques-
tionable assumptions underlying the model are highlighted in the text and
discussed in Section 6. Let us point out already here that none of these

7



are essential and can all be relaxed without eroding the main results of this
study.

Market competition. In the second stage, each firm i ∈ N sells a single,
possibly differentiated, product to a continuum of homogeneous consumers,
who consume each a numeraire good I in addition. Let qi denote the quantity
and pi the price of good i. A representative consumer maximizes:

U(I, q1, ..., qn) = I + α
∑
i∈N

qi −
1

2

∑
i∈N

q2
i −

β

2

∑
i∈N

∑
j 6=i

qiqj , (1)

under the constraint I ≤ −
∑

i∈N piqi. The parameter α captures the to-
tal size of the market, whereas β, a real number from the interval (0, 1],
denotes the degree of substitutability between products. Thus, the analy-
sis is restricted to markets where the collaborating firms are competitors in
the product market. In particular, β = 1 depicts a market of perfect substi-
tutable goods, and β → 0 represents the case of almost independent markets.
From standard utility maximization, we arrive at a system of inverse demand
functions pi = α−qi−β

∑
j 6=i qj, i ∈ N. A firm’s profit, gross of linking costs,

is given by πi = (pi − ci)qi.
Let the firms compete either in quantities or in prices, but let us dis-

regard the case of perfect Bertrand competition, which means that under
price competition we assume β ∈ (0, 1). In either case, the Nash equilibrium
quantities can be expressed in the form λqi = µα − νci + ξ

∑
j 6=i cj. Using

subscript q and p to denote competition in quantities and prices respectively,
the parameters are given by:

λq = 1 , µq =
1

2 + (n− 1)β
, νq =

2 + (n− 2)β

(2 + (n− 1)β) (2− β)
(2a)

ξq =
β

(2 + (n− 1)β)(2− β)
,

and

λp =
(1− β)(1 + (n− 1)β)

1 + (n− 2)β
, µp =

(1− β)

2 + (n− 3)β
(2b)

νp =
2 + (3n− 6)β + (n2 − 5n+ 5)β2

(2 + (n− 3)β) (2 + (2n− 3)β)

ξp =
(1 + (n− 2)β)β

(2 + (n− 3)β)(2 + (2n− 3)β)
.
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Prices and profits are in equilibrium pi = λqi + ci and πi = λq2
i , respectively.

The following assumption ensures that, regardless of the precise network
structure, no firm exits the product market:

Assumption 1. No market exit: under any attainable profile of marginal
production costs, induced by a network of collaborative ties, all firms produce
positive quantities in equilibrium.6

Links and cost reduction. In the first stage of the model, the social plan-
ner designs a collaboration network between firms. We interpret a link in
this network as a bilateral R&D joint venture or a cross-licensing agreement,
where the purpose is the joint development or the exchange of a process tech-
nology. Hence, links are formed in order to reduce the marginal production
costs of the firms.

Throughout the article, we make the simplifying assumption that this
cost reduction is exogenous. Thus, a network g directly induces a vector of
marginal production costs, c(g) = {c1(g), c2(g), ..., cn(g)}. This assumption
is not uncommon in the literature on R&D collaboration and has been moti-
vated by more detailed models of collaborative agreements (e.g., Bloch, 1995;
Goyal and Joshi, 2003). Bloch (1995), for example, motivates exogeneity by
a simple model of a joint venture between a firms, a > 1. The members of
a venture can set up a joint research facility to which all of them have un-
restricted access. Bloch assumes that, due to capital market imperfections,
each firm can invest only a fixed amount r in the facility. Moreover, the
output of the facility, z(r), exhibits constant returns to scale and leads to
a reduction of the members’ marginal production costs. Hence, in a joint
venture of size a, the members’ costs are reduced by az(r). Adapting this
model to the case of bilateral agreements, it follows that each link leads to
an exogenous cost reduction of 2z(r). In addition, we make the following two
assumptions regarding the R&D technology. Denote the linking costs of firm
i in network g by Fi(g). For any network g and ij ∈ g:

Assumption 2. Constant link returns: ci(g+ij)−ci(g) = cj(g+ij)−cj(g) =
−γ and Fi(g+ij)−Fi(g) = Fj(g+ij)−Fj(g) = f/2, where γ > 0 and f > 0;

Assumption 3. No inadvertent spillovers: ck(g + ij) − ck(g) = 0 for any
k ∈ N\{i, j}.

6The precise condition depends on the mode of competition and the productivity of
collaborative ties. This condition will be specified in footnote 7.
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We therefore write more conveniently Fi(g) = 1
2
fηi(g) and ci(g) = γ0 −

γηi(g), where γ0 > (n− 1)γ. Both assumptions will be relaxed in Section 6.

Efficiency. It follows from the preceding that given a network g the net
profits and consumer utility can be expressed as functions of the firms’ de-
grees in g:7

Πi(g) = πi

[
ηi(g),

∑
j 6=i

ηj(g)
]
− 1

2
fηi(g) and U(g) = U [η1(g), ..., ηn(g)] . (3)

Networks are investigated in terms of both social welfare concepts, the con-
sumer surplus (net of linking costs) and the total surplus. A network g∗ is
therefore defined efficient, if respectively U(g∗) − 1

2
f
∑

i∈N ηi(g
∗) ≥ U(g) −

1
2
f
∑

i∈N ηi(g) or U(g∗) +
∑

i∈N Πi(g
∗) ≥ U(g) +

∑
i∈N Πi(g) for all g. For

expositional simplicity, we denote the total surplus and the consumer surplus
in a network by W (g) throughout the following sections, unless a distinction
is necessary.

4 The efficient network

In this section, we characterize the efficient network structure of the model.
The difficulty with the analysis is that, even though we disregard knowledge
spillovers, the marginal social returns of any two collaborative links are in-
terrelated by the fact that the collaborating firms are, also at the same time,
competitors in the product market.

We show that this market-based interdependence between links has two
faces: the social welfare function is convex as well as submodular with re-
spect to collaborative links. We apply these properties to characterize the
architecture of the efficient network. Subsequently, we express social welfare
in a network as a function of two characteristics of its degree distribution,
the density and the degree variance. The specific form of this functional
dependence allows us to derive the important result that a concentration of
collaborative ties is a typical feature of the efficient network. We conclude
the section with an analysis of the dependence of the efficient network on the
precise cost and demand parameters.

7In order to satisfy Assumption 1, we need to assume that in the dominant group ar-
chitecture gn−1, where only firm i is isolated, qi(gn−1) > 0. This implies for quantity com-
petition α−γ0 >

γ(n−1)(n−2)β
2−β , and for price competition α−γ0 >

γ(1+(n−2)β)(n−1)(n−2)β
2+(2n−5)β−(2n−3)β2 .
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Network architecture. In a first step, we investigate the marginal so-
cial benefits of forming collaborative links between firms, taking an arbitrary
network structure as being given. For this purpose, it is helpful to think of
a collaborative tie ij as a cost-reducing investment by firms i and j. The
marginal social benefits of this investment increase with the scales of produc-
tion at the firms, prior to that link, because the output of the collaboration,
i.e. a process innovation, can be applied to every unit of their products.
However, in an oligopolistic market, the quantities of firms i and j are deter-
mined by all of their other collaborative ties as well as the links of all their
competitors, making the returns dependent on the structure of the whole
network. This market-based interdependence between collaboration links is
demonstrated in two properties of link formation.

Lemma 1. For any network g with ij, ik, kl /∈ g, any i, j ∈ N and k, l ∈
N\{i, j}:

(i) the total surplus and the consumer surplus are convex in links: if
ηj(g) ≥ ηk(g) + 1, W (g + ij + ik)−W (g + ik) > W (g + ik)−W (g);

(ii) the total surplus (under price and quantity competition) and the con-
sumer surplus under price competition are submodular in links: W (g+
ij + kl)−W (g + kl) < W (g + ij)−W (g).8

The proof of the lemma can be found in the Appendix. Convexity follows
from the fact that firm i attains a larger market share in network g+ ik than
in g. Hence, the subsequent process innovation aligned with the addition of
link ij affects a larger output of firm i. However, convexity requires that
firm i’s subsequent partner, firm j, is at least as well connected in network
g + ik as firm i’s previous partner, firm k, is and therefore produces at least
the same quantity. Submodularity means that the social returns to a link ij
deteriorate with the formation of a link between any other pair of firms. The
reason is that firm i’s and j’s market shares are declining in the number of
links of their rivals.9

8The consumer surplus is submodular under quantity competition as well, requiring
β < (n− 2)/(n− 1).

9Note that the central arguments behind convexity and submodularity are the constant
unit-cost reductions of the collaborating firms and the resulting changes in market shares.
Thus, Lemma 1 is likely to also hold in the context of a more general demand system than
the linear one chosen for this study.
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The two properties allow for a marginal check of efficiency, which is in
the same spirit as the stability check introduced in Goyal and Joshi (2003,
2006). The idea is to check whether a given network is socially desirable or
whether an additional collaboration tie can increase welfare. This results in
a meaningful selection among the network architectures.

Proposition 1. If the efficient network g∗ is regular, then it must be either
the empty network, ge, or the complete network, gc. If the efficient network
g∗ is irregular, it has either a dominant group architecture, gn′

, for some
2 ≤ n′ ≤ n− 1, or an inter-linked star architecture, gx.

The proof is presented in the Appendix, and the networks included in the
set of efficient architectures are illustrated in Figure 1. The proof is based
solely on the convexity of the social welfare function. Due to this property,
a firm i with at least a single link in network g, say to a firm k, should
be connected to every firm j with the highest degree in the network. The
reason is that ηj(g− ik) ≥ ηk(g− ik)+1, so that Lemma 1 (i) can be applied.
Hence, a commonality of all efficient network architectures is that there exists
a group of firms (the center group), where each firm in this group has the
highest degree and is connected to every other firm with a link.

An important class of architectures that is excluded by the proposition
are the regular networks, which are non-empty and incomplete. The reason
is that in a regular network the center group consists of every i ∈ N . Yet,
only in the complete network are the firms completely connected to each
other. From the class of irregular networks, any architecture is ruled out
that consists of a center group and a periphery of firms, but where either the
firms in the center are not completely connected with each other or where
any one firm in the periphery is not linked to all the center firms. Hence, in
an efficient architecture, the central firms are densely connected through a
web of direct links and, in the case of an inter-linked star, indirect links via
the peripheral firms.

Two remarks about Proposition 1 are noteworthy: first, as suggested by
our analysis below, the characterization of the result is tight in the sense that
there is no architecture included in the set of efficient architectures that is
not efficient for some parameters. Second, even though the proof of the result
does not take advantage of the submodularity of the welfare function, this
property crucially shapes the architecture of an efficient network. Whereas
convexity renders the formation of links between the firms that are already
involved in a lot of ties efficient, submodularity dilutes the benefits of also
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linking the poorly connected firms. Hence, submodularity favors the selec-
tion of highly concentrated dominant group architectures or inter-linked star
architectures, where collaborative activity is concentrated around a small
group of firms.

Because these architectures differ considerably in terms of the size of that
group and the degrees of the firms contained in it, it is still an open question
which architecture is desirable. Moreover, it is still not clear whether some
cost and demand parameters exist for which a dominant group or an inter-
linked star architecture can actually be supported as a welfare-maximizing
network. These issues are investigated below.

Degree distribution. Here, we determine the properties of the degree
distribution in a socially efficient inter-firm network. As it is assumed that the
marginal production costs only depend on the number of collaborative ties of
a firm, it is clear that any two networks with the same degree distribution also
produce the same total surplus. The analysis of the relationship between the
degree distribution and social welfare can, therefore, provide further insights
into the structure of an efficient network.

Generally, the welfare in any network g can be decomposed into two
additive terms:

W (g)−W (ge) =
[
W (gr)−W (ge)

]
+
[
W (g)−W (gr)

]
. (4)

Choosing the regular network gr such that D(gr) = D(g), the first summand
contains the contribution to welfare from the pure density in a network, as
ηi(g

′) = ηj(g
′) for any i, j ∈ N and g′ ∈ {ge, gr}. The welfare effects from

the dispersion of collaboration ties among the firms are, therefore, completely
captured by the second summand. The following result shows that, due to
the linear demand system in our model, we can go a step further and measure
the dispersion effect by another simple statistic of the degree distribution.

Lemma 2. The total surplus and the consumer surplus in network g can be
written as functions of the density and the normalized degree variance. In
particular, W (g) = Y [D(g), C(g)] with:

Y [D(g), C(g)] = Y [0, 0] +

(
φ1 + φ2D(g)− n(n− 1)

2
f

)
D(g) + φ3C(g), (5)

where Y [0, 0] > 0, φ1 > 0, φ2 > 0, and φ3 ≥ 0.
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The lemma states that the welfare-relevant properties of a network are
completely captured by its density and its (normalized) degree variance. The
proof and the precise specification of the parameters are given in the Ap-
pendix. As is shown in equation (5), the contribution to welfare from the
network density can be positive or negative depending on whether or not the
linking costs exceed the social returns to a marginal cost reduction. The den-
sity enters the welfare function quadratically (φ2 > 0), because every addi-
tional collaborative tie increases the effective market size, thereby generating
a larger accessible surplus for firms and consumers. Moreover, because φ3 is
typically strictly larger zero, it follows that, having fixed the density, social
welfare increases with the concentration of links in a network.

Proposition 2. Suppose that either the measure of welfare is the total surplus
or β ∈ (0, 1). An efficient network g∗ is maximally concentrated among the
networks with the same density: if D(g∗) = D for any 0 < D < 1, then
C(g∗) = max{C(g)|D(g) = D}.

The implications for the structure of an efficient network can be illustrated
with the help of Figure 1. The proposition implies that the inter-linked star
network in the figure attains a higher welfare than the ring, but also that
the star is more efficient than the dominant group. This suggests that, from
an efficiency point of view, it is desirable to maximally concentrate a given
number of cost-reducing links around the smallest number of firms possible.

This result is surprising for several reasons. The first thing to note is that
the proposition applies to a wide range of market settings and is independent
of whether welfare is measured in terms of consumer surplus or total surplus.
In fact, there is only one case contained in our model, in which social welfare
does not increase in link concentration.10 Second, it is interesting to notice
that the proposition opts for a corner solution, where the only constraint
to concentration is the maximum degree that a group of firms can attain
in a network of a given density. Such a solution may not be so surprising
for a market, where products are homogeneous and prices are set by a social
planner, because the concentration of collaborative ties enables the planner to
reduce the production costs at his low-cost plant. However, as the firms in our
model are free to raise their prices above unit production costs, concentration

10As shown in the Appendix, it is φ3 = 0 if and only if firms compete a la Cournot
with homogeneous products and welfare is measured in terms of consumer surplus. That
the distribution of marginal production costs is irrelevant in this case is well known in the
literature (Bergstrom and Varian, 1985).
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is aligned with the exertion of market power. In this light, Proposition 2
suggests that, if it is for the purpose of concentrating some cost-reducing
collaborative ties, concentration in the product market is a tolerable side
effect.11

The first part of the explanation is that the concentration in a network
can be altered by rearranging some of its links, which is a linking cost-neutral
transformation of the network structure. The result bases, therefore, solely
on the effects of concentration on the distribution of marginal production
costs and, in turn, on gross industry profits and consumer surplus. Not
surprisingly, the concentration of links has a positive impact on industry
profits, because the overall level of market power increases. More interesting
is that consumers benefit from concentration as well, which is particularly
surprising considering that the firms sell differentiated products in our model.

An intuition can be gained from the following: consider a regular and
incomplete network, gr, where the unit production costs are given by ci = cj
and prices by pi = pj for any i, j ∈ N . A consumer with utility function
(1) splits his total consumption into equal parts. Suppose now that link ij
is removed and firm i is connected to another firm k instead. In this way,
concentration in the network increases and, given the products of the firms
are differentiated, pj increases and pk declines. Under quantity competition,
for example,

dpj = γ(1− νq − ξq) =
1− β
2− β

= −dpk > 0 (6)

for any β ∈ (0, 1). In the more concentrated network, the consumer can
still afford the old bundle of goods, because prices have changed at the same
absolute rate. However, he can save costs and still obtain the same utility by
shifting some of his consumption from good j to k. Hence, increasing network
concentration yields cost savings for the consumer. Moreover, because the
demand for good k has increased, a subsequent price reduction of pk, com-
pensated by a price increase of another good, is even more favorable than
the previous one. Thus, any subsequent increase in network concentration
leads to further cost savings, where the rate of savings is rising with every
link rewired. This shows that, even in a market with differentiated products,

11In fact, it can be shown for our model that, within the class of networks with a fixed
density, the normalized degree variance is proportional to the Herfindahl index of product
market concentration.
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it can be desirable to maximally concentrate a given number of collaboration
ties around a small group of firms.

Efficient networks and linking costs. In the following, we characterize
the structure of the efficient network in a comparative static analysis, where
we focus on the role of linking costs. First, a general result for industries
with an arbitrary number of firms is provided. Because a characterization
of the precise network structure is complicated in this case, we revert to an
analysis of the range of linking costs for which the efficient network exhibits
at least some concentration. A detailed characterization is provided later in
the section, where we assume some specific numbers of firms.

The following is our general result for markets with n > 2.

Proposition 3. Suppose the firms sell sufficiently close substitutes (β > β̃).
Suppose, moreover, that the measure of welfare is the total surplus (under
price or quantity competition) or the consumer surplus under price compe-
tition. There exist f1 and f2, with 0 < f1 < f2, such that in the efficient
network, C(g∗) > 0 if and only if f ∈ (f1, f2).12

The proof is deferred to the supplementary material to this article pub-
lished on the RJE website. In the proof, we exploit the fact that a particular
concentrated network, namely the star, dominates the empty and the com-
plete network in terms of welfare, if linking costs are on an intermediate level
and the firms sell sufficiently similar products. The proposition confirms the
findings of Goyal and Joshi (2003), who show that the efficient network is
the complete network, when the costs of linking are small. Moreover, it is
in line with the intuition that the efficient network is empty for large linking
costs. However, the main insight is that for intermediate linking costs the
efficient network is characterized by a concentration of collaborative ties.

The following examples fill the gaps in Proposition 3 by adding three
further insights: first of all, the proposition is not clear about the precise
structure of the efficient network for intermediate linking costs. The exam-
ples provide a detailed characterization. Second, it is yet not clear whether a
concentrated network might be efficient for small β as well. In the first exam-
ple, concentration is not desirable, when firms sell weak substitutes (β ≤ β̃).
In light of the discussion following Proposition 1, this is not very surprising.

12A concentrated network can also maximize the consumer surplus under quantity com-
petition (see Example 2 below). This, however, requires β̃ < β < β̂.
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The reason is that the welfare function needs to be sufficiently submodular
in order to obtain a concentrated efficient architecture. Yet, the strength of
submodularity increases with the intensity of product market competition.
Finally, the proposition does not comprise the case of the consumer surplus-
maximizing network under quantity competition. The second example shows
that the efficient network may be concentrated even in this case.13

Example 1. Suppose that n = 3 and moreover that the firms compete in
prices and welfare is measured in terms of total surplus. Let β ≤ 0.62. Then,
g∗ = gc, if f ≤ f2, and g∗ = ge otherwise. Moreover, let β > 0.62. Then:14

(
g∗, D(g∗) , C(g∗)

)
=


(
gc , 1 , 0

)
if 0 ≤ f ≤ f1(

gs , 2/3 , 1
)

if f1 ≤ f ≤ f2(
gn′
, 1/3 , 1

)
if f2 ≤ f ≤ f3(

ge , 0 , 0
)

if f3 ≤ f .

(7)

The following example characterizes the efficient network in the limit
case of market with a continuum of firms. For this purpose, let us depict
the effective market size in a large market by a parameter A, where A >
1, and the costs of link formation by ρ. We obtain the following network
characterization.

Example 2. Suppose that n → ∞ and moreover that the firms compete in
quantities and the welfare measure is the consumer surplus. Let β = 0.5,
γ = 1, and A = 2. Then:15

(
g∗, D(g∗) , C(g∗)

)
≈

(
gc , 1 , 0

)
if 0 ≤ ρ ≤ 2.4(

gn′
, 5.6− 1.9ρ , 1− 20(ρ− 2.7)2

)
if 2.4 ≤ ρ ≤ 2.7(

gx, 10.1− 3.5ρ , 1− 20(ρ− 2.7)2
)

if 2.7 ≤ ρ ≤ 2.9(
ge , 0 , 0

)
if 2.9 ≤ ρ .

(8)

13Due to space constraints, we only briefly summarize the examples here. More de-
tails on their derivation can be found in the supplementary material on the RJE website
(http://www.rje.org/sup-mat.html).

14The critical cost levels are given by f1 = (3−β)(1+β)(3α−3γ0+γ)γ
6(1+2β) + (3+5β)(1+β)γ2

3(2+3β)2(1−β)
, f2 =

(3−β)(1+β)(α−γ0+γ)γ
2(1+2β) , and f3 = (3−β)(1+β)(3α−3γ0+5γ)γ

6(1+2β) − (3+5β)(1+β)γ2

3(2+3β)2(1−β)
.

15The parameter specification is not necessary to obtain some closed-form expressions
for the density and degree variance in the efficient network, but the unspecified versions
are too lengthy to be presented here.
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Thus, both examples suggest that the efficient network has a highly con-
centrated structure, if linking costs are on intermediate levels.

To summarize the section, we have seen that an efficient network of cost-
reducing ties is characterized by a concentrated network structure in a wide
range of market settings. In particular, concentration is efficient, when link-
ing costs are on an intermediate level and competition in the product market
is sufficiently intense. Despite the fact that concentrated networks facilitate
the exertion of market power, the reason for their efficiency is that they
enable cost-efficient production of the market output.

5 Match of stable and efficient networks

In this section, we try to relate the previous findings to the structures of
inter-firm alliance networks in the real world. At first sight, our findings put
the observed, highly concentrated structures of several high-tech industries
in a rather positive light. However, because our analysis suggests that con-
centration should be maximal for a given number of links, it might still be
that the observed networks are not concentrated enough. Moreover, as the
efficient network can be empty or complete, they might be too dense or too
sparse.

In order to shed some light on this issue, this section compares the struc-
ture of the efficient network with the equilibrium predictions of the model.
The latter have been exhaustively characterized in Goyal and Joshi (2003,
2006), who investigate two different equilibrium concepts: network stability
and network stability against transfers. In the following, we compare the
efficient structures with each of these. Because a comparison is difficult for
markets with a finite number of firms, the section contains only formal state-
ments for the limit case of a market with a continuum of firms (n→∞). The
relevance of the results is discussed at the end of the section. However, let us
point out here that due to the focus on markets with differentiated products
and asymmetric costs the analysis of the limit case does not constitute a
breach with our fundamental premise of strategically interacting firms.

Match with stable networks. Goyal and Joshi (2003) define a stable
network as a network, where any firm that is linked to another has no incen-
tive to sever the link, and any two firms that are not linked should have no
incentive to establish a collaboration link. Moreover, no firm should have an
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incentive to delete all its links (Goyal and Joshi, 2003). It turns out that this
stability concept is very appealing in our context, because it sufficiently re-
stricts the set of equilibrium networks and enables a general characterization
of their efficiency. The following statement is a corollary of Proposition 3.1
in Goyal and Joshi (2006) and an immediate implication of the fact that a
firm’s profit function, as given in (3), satisfies their requirements of convexity
with respect to links and market-wide externalities.

Lemma 3. Suppose a large industry (n→∞). A stable network exists and
is empty, complete or has a dominant group architecture.

Note that each of the three architectures are also contained in the charac-
terization of the efficient networks in Proposition 1. In particular, one should
note that in a dominant group architecture all collaborative ties are concen-
trated around a subset of the firms. This gives room for the possibility that
the individual considerations of firms lead to the formation of an efficient
network structure. However, as Figure 1 illustrates for a market with seven
firms, a dominant group, g4, with four firms in the center does not attain
the same high degree variance as a star network of the same density. Thus,
as an implication of Proposition 2 architecture g4 is inefficient, because wel-
fare can be increased by rearranging some of its links. Furthermore, in some
unreported analyses, we constructed networks that have the same density
as some dominant group of size n′ ≥ 4, but attain a larger degree variance.
Even though all these networks had an inter-linked star architecture in com-
mon, it was hard to derive a general construction rule that can be applied to
arbitrary n and n′.

In contrast, for a market with a continuum of firms, we can take advan-
tage of the fact that the maximum variance in a network of given density
can be approximated by a simple expression. Formally, let Ĉ(D,n) depict
the maximum (normalized) degree variance, Ĉ(D,n) = max{C(g)|D(g) =
D,n = n′}. As we derive in the Appendix, it is:

lim
n→∞

Ĉ(D,n) =
256

27
max

{
D

3
2 (1−

√
D) , (1−D)

3
2 (1−

√
1−D)

}
. (9)

Comparing the expression with the variance in a dominant group architecture
(which is the first expression in the brackets) enables a welfare assessment of
stable networks.
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Figure 2: Network concentration in a large industry as a function of density

Proposition 4. Suppose a large industry (n→∞). Suppose moreover that
either the measure of welfare is the total surplus or β ∈ (0, 1). Every stable
network of density 0 < D(g) < 0.5 is inefficient.

Proof. The proof follows from Lemmas 2 and 3 in combination with Figure
2, which plots the normalized degree variances of a dominant group archi-
tecture gn′

(depicted by the dashed line) and a maximum-variance network
as functions of density.

The result states that any dominant group architecture consisting of less
than half of the maximal attainable links is inefficient. The reason is high-
lighted in Figure 2 which shows that, for each of these networks, there exists
a network of the same density that attains a larger degree variance and is,
therefore, more efficient. Hence, social welfare can be increased in a dominant
group architecture by rewiring some of the ties of the group of connected
firms. Which collaborative ties should replace the links of the connected
firms? Proposition 1 provides the answer. From the proposition, it follows
that a sparse maximum-variance network must have an inter-linked star ar-
chitecture. This suggests that the rewired ties should connect a subset of
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the group of connected firms with some of the firms that are isolated in a
dominant group architecture.

Despite the clear assertion concerning the sub-optimality of the sparse
stable networks, Proposition 4 leaves open the question of whether the effi-
cient network is indeed more concentrated or whether it is denser or sparser.
Moreover, the proposition does not allow for a welfare assessment of the dense
dominant groups, because these architectures already attain maximal degree
variance. Can a dense dominant group be stable and efficient at the same
time? It turns out that the answers to both issues depend on the precise cost
and demand parameters and, as is shown in an accompanying paper to this
article, in particular on the degree of product substitutability (Westbrock,
2008). For low degree of substitutability (small β), every sparse and stable
dominant group architecture consists of too few links, whereas every sparse
dominant group is too dense when products are close substitutes. Finally, for
intermediate levels of β, a sparse dominant group can be of proper density,
but it is certainly too little concentrated. Even though the variation of β
produces comparable tensions between the efficient network and the dense
and stable networks, the important difference is that for any 0 < β < 1 there
exists a dense and stable dominant group architecture that is efficient at the
same time.

Match with transfer-stable networks. Let us turn to a comparison be-
tween the efficient networks and the stable networks, when transfer payments
between firms are permitted. Motivated by the analysis in Goyal and Joshi
(2003), we suspect that transfers might mitigate the discrepancy outlined
above. As the authors conclude, dominant group architectures are stable
without transfers, because the isolated firms are reluctant to form some col-
laboration links with the connected firms. Hence, transfers might enable the
latter to sustain some additional links with the isolated firms and, there-
fore, increase concentration in equilibrium. In fact, the authors show that
transfer-stable networks may have highly concentrated inter-linked star ar-
chitectures.

In the following analysis, we apply Goyal and Joshi’s (2003) criterion of
stability against transfers. The question is whether a sparse efficient network
with an inter-linked star architecture can be supported in equilibrium of a
large industry.
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Proposition 5. Suppose a large industry (n → ∞). Every transfer-stable
network of density 0 < D(g) < 0.5 is inefficient.

The proof is provided in the Appendix. The result shows that, in contrast
to our expectations, transfers are not sufficient to sustain the desired network
structure. The reason is that in an inter-linked star architecture there are a
periphery of firms that supply the central firms with some additional cost-
reducing ties. However, as shown in the proof, there does not exist any
transfer payment satisfying the incentive compatibility constraint of a central
firm to sponsor such a tie, encouraging at the same time a peripheral firm to
propose it.

We conclude this section by observing that our attempt to reconcile
strategically stable and efficient networks results in an overall negative pic-
ture. Even though a stable network might be efficient, if it is sufficiently
dense, our analysis of the sparse networks shows that the desired, highly con-
centrated inter-linked star architectures are not incentive compatible. The
importance of the analysis in this section rests on the fact that sparse alliance
networks between a large number of firms are a typical phenomenon in many
high-tech industries. The network in the biotech and pharmaceutical indus-
try of the 1990s, for example, consisted of about 1, 400 companies and had a
density of just 0.002.16 Similar, Duysters and Vanhaverbeke (1996) report for
the DRAM industry of the 1980s a total of 72 suppliers and a density of 0.07.
These observations suggest that the networks characterized in Propositions
4 and 5 are of high empirical relevance.

6 Robustness

So far, we have disregarded some of the issues that might violate the favorable
assessment of highly concentrated networks. Here, we briefly discuss the
relationship of each of these issues to our results on the structure of the
efficient network.

Market exit. According to Assumption 1, no firm is forced out of the
market by occupying only a peripheral position in the network and thereby
having a comparative cost disadvantage. However, market exit of a peripheral

16The figures are calculated on base of Figure 3 in Powell, Koput, White, and Owen-
Smith (2005).
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firm can be detrimental, because (1) competition in the product market is
reduced, and (2) the central firms lose a valuable collaboration partner.

In the supplementary material to this article, we provide an example in
which the benefits of a concentrated network outweigh both of these concerns.
The underlying intuition is that, even in the model of Section 3, the cost
disadvantage of a peripheral firm may be so strong that it sells only an
insignificant small quantity in the market. Hence, from a welfare perspective
it is only a marginal loss, if this firm exits the market altogether. Moreover,
not every lost collaboration tie is necessarily detrimental. On the contrary,
Goyal and Moraga-Gonzáles (2001) show that competing firms might have an
incentive to form excessively many ties in order to seize their rivals’ market
shares.

Convex linking costs. The model in this article is simple as compared to
other studies on R&D collaboration by assuming linear demands and costs
(e.g., Katz, 1986; Leahy and Neary, 1997). Yet, a concave demand schedule
or convex costs might erode the favorable assessment of highly concentrated
networks. Here, we will briefly discuss the robustness of Propositions 1 and
2 with respect to the simplest modification in this direction: convex linking
costs. Let us therefore violate Assumption 2 by assuming Fi(g) = 1

2
fηi(g)2,

instead. Then, if:

W (g + ij + ik)−W (g + ik)− fηj − f > W (g + ik)−W (g)− fηk (10)

is satisfied for any g with ηj(g) ≥ ηk(g) + 1, Lemma 1 applies. Moreover, the
cost term in welfare function (5) is replaced by n

2
f
(
(n − 1)2D(g)2 + V (g)

)
.

Hence, as long as f is sufficiently small as compared to the social benefits
from concentration, both Propositions 1 and 2 carry over to a model with
convex linking costs. Otherwise, if n

2
V̂ (n)f > φ3, a network with an an equal

dispersion of links is more desirable.

Spillovers. The focus of a large body of the literature on research col-
laboration is the effect of knowledge spillovers to the whole industry (e.g.,
d’Aspremont and Jacquemin, 1988) or via the links in a network (Goyal and
Moraga-Gonzáles, 2001). A central finding is that the efficient market struc-
ture of collaborative agreements depends on the nature and the size of these
spillovers. However, Assumption 3 excludes spillovers from the model in this
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article. A modification in this direction is the following. Suppose a firm’s
marginal production cost in network g is given by:

ci(g) = γ0 − γ
[(

1− θ
)
ηi(g) +

(
θ − ϑ

) ∑
j∈Ni(g)

ηj(g) + ϑ
∑
k∈N

ηk(g)

]
(11)

where 0 < ϑ ≤ θ < 1. Hence, costs are additionally reduced by the collabo-
rative links of firm i’s neighbors at a rate θ and by the links of all other firms
in the network at a rate ϑ. For a market with Cournot competition and ho-
mogeneous products, we have checked the robustness of Propositions 1 and
2 with respect to a modification towards industry-wide spillovers (θ = ϑ).
The analysis is presented in the supplementary material to this article. It
turns out that both results carry over, if the rate of spillover is sufficiently
small. In contrast, our attempt to generalize the results to situations with
network-dependent spillovers (θ > ϑ) has not been very fruitful. The reason
is that, in this case, the social benefits to a single link or to a whole net-
work structure depend on richer network properties than the ones required
in Lemmas 1 and 2.

7 Conclusion

In his seminal article, Arrow (1962) points to the imperfections aligned with
the demand and the production of information, and to the consequences for
the efficient market structure in innovating industries. This article investi-
gates the implications for the structure of the efficient R&D collaboration
network in the model of Goyal and Joshi (2003).

A first important result is that the efficient network typically has a dom-
inant group or an inter-linked star architecture, both of which are highly
asymmetric network structures. Second, our analysis shows that it is opti-
mal to maximally concentrate all collaborative activities around a subset of
the firms in a network. Both findings follow from a fundamental property of
the demand for research output: the indivisibility in its use makes the accu-
mulation of costly joint research at a small group of firms efficient. Hence,
in the light of Goyal and Joshi’s (2003) characterization of the strategically
stable networks, which are asymmetric as well, our analysis suggests that
concentration is a natural characteristic of a collaboration network between
firms.
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The article also provides a comparison of stable and efficient networks,
where the focus is on the question of whether an efficient structure can be
supported in equilibrium. Our findings are unambiguous and negative for the
networks of low or moderate density: no sufficiently sparse network that is
efficient, is strategically stable at the same time. The reason for this failure
in the network structure lies in the individual considerations of the firms. A
sparse efficient network has an inter-linked star architecture, which consists
of some collaborative ties between the firms in the center and the periphery of
the network. Yet, our analysis shows that the peripheral firms are reluctant
to sustain these links.

Our findings might have some relevance for policy programs to foster col-
laborative activity, like the EU Framework Programmes on R&D. A general
implication from the analysis in this article is that a sensible program should
take into account the structural properties of the network of ongoing collab-
orations between firms. In particular, our analysis suggests that a program
should aim at expanding the ties of the already actively collaborating firms.
Moreover, as the findings from our comparison between stable and efficient
networks imply, this should be achieved by encouraging collaborative projects
between the active collaborators and the smaller and younger enterprises at
the periphery of the network.

As a caveat to our normative conclusions, let us remark that there are
some restrictive assumptions underlying the model in this article. We have
confined our analysis to collaborative ties between firms bearing an incremen-
tal innovation, meaning that a link aims to improve the current products of
the firms. However, collaborative ties may also enable drastic innovations
that replace old generations of products. The welfare assessment of asym-
metric network structures is a completely open issue in this context. Another
issue, which has only briefly been addressed in this study, is the assessment
of asymmetric networks under market exit and network-dependent spillovers.
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8 Appendix

The Appendix contains the proofs of Lemmas 1 and 2 and Propositions 1 and 5. Moreover,
we determine the normalized degree variance (used in Proposition 4) and the architecture
(used in Proposition 5) of an efficient network in a large industry.

Proof of Lemma 1. Given that the product market is in equilibrium, let us write qi(g)
to denote the equilibrium quantity of any firm i in network g. Moreover, let the term ∆qiju
depict the change in equilibrium quantity of firm u upon the formation of link ij. Thus,
for u ∈ {i, j}, it is ∆qiju = −γ(∂qi

∂ci
+ ∂qi

∂cj
), whereas for u ∈ N\{i, j}, ∆qiju = −2γ ∂qi

∂cj
. In

the supplementary material to this article (http://www.rje.org/sup-mat.html), it is shown
that for any network g with ij, ik /∈ g, one can write:∑

i∈N

[
Πi(g + ij + ik)− 2Πi(g + ik) + Πi(g)

]
= (12a)

2λ
[
∆qiji ∆qiki +

∑
u∈N\{i,j,k}

∆qiju ∆qiku + ∆qijj
(
qj(g + ik)− qk(g)

)
+∆qijk

(
qk(g + ik)− qj(g)

)]
U(g + ij + ik)− 2U(g + ik) + U(g) = (12b)

λ

[
∆qiji

(γ
λ
−∆qiki

)
−

∑
u∈N\{i,j,k}

∆qiju ∆qiku +
(γ
λ
−∆qijj

)(
qj(g + ik)− qk(g)

)
−∆qijk

(
qk(g + ik)− qj(g)

)]
.

If ηj(g) = ηk(g) + 1 the expressions simplify to:∑
i∈N

[
Πi(g + ij + ik)− 2Πi(g + ik) + Πi(g)

]
= (13a)

2λ
[ ∑
u∈{i,j}

(∆qiju )2 +
∑

v∈N\{i,j}

(∆qijv )2
]

U(g + ij + ik)− 2U(g + ik) + U(g) = (13b)

λ

[ ∑
u∈{i,j}

∆qiju
(γ
λ
−∆qiju

)
−

∑
v∈N\{i,j}

(
∆qijv

)2]
.

because then qj(g + ik) − qk(g) = ∆qijj and qk(g + ik) − qj(g) = ∆qikj . Convexity of
industry profits follows immediately from the fact that the summands in brackets of (13a)
are both positive and λ > 0. Although the terms in brackets of (13b) are of opposite sign,
it can be shown that their sum is positive for any n > 2 and β ∈ (0, 1] and regardless
of whether firms compete in quantities or in prices. Moreover, it can be verified that if
ηj(g) > ηk(g) + 1, (12a) is even greater than (13a), and (12b) is greater than (13b), which
establishes part (i) of the lemma. (On the other hand, for ηj(g) < ηk(g) + 1, we can find
cost and demand parameters for which convexity is not satisfied.)
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We now turn to part (ii) of the lemma. For any network g with ij, kl /∈ g and
k, l ∈ N\{i, j} we may write:∑

i∈N

[
Πi(g + ij + kl)−Πi(g + kl)−Πi(g + ij) + Πi(g)

]
= (14a)

2λ
[ ∑
u∈{i,j,k,l}

∆qiju ∆qklu +
∑

v∈N\{i,j,k,l}

∆qijv ∆qklv

]
U(g + ij + kl)− U(g + kl)− U(g + ij) + U(g) = (14b)

λ

[ ∑
u∈{i,j}

(γ
λ
−∆qiju

)
∆qklu −

∑
v∈{k,l}

∆qijv ∆qklv −
∑

w∈N\{i,j,k,l}

∆qijw∆qklw

]
.

It can easily be verified that the expressions in brackets of (14a) are negative for any
n > 2 and β ∈ (0, 1], and regardless of whether we consider price or quantity compe-
tition in the market. The term in brackets of (14b) equals under quantity competition
−4β2 n−2−(n−1)β

(2+(n−1)β)2(2−β)2 , which is smaller zero if and only if n > 2 and β < n−2
n−1 . Under

price competition, negativity requires again only n > 2 and β ∈ (0, 1).

Proof of Proposition 1. We first characterize the regular and efficient architectures.
Suppose a regular network g that is neither empty nor complete. Thus, there exist distinct
i, j, k ∈ N such that ij ∈ g and ik /∈ g. For efficiency of g, it must hold for any ij ∈ g
that W (g)−W (g − ij) ≥ 0. In network g − ij, however, ηk(g − ij) = ηj(g − ij) + 1 and
therefore, from convexity in links, W (g+ ik)−W (g) > W (g)−W (g− ij). This implies a
contradiction to network g having an efficient architecture. Hence, if the efficient network
is regular it must either be the empty or the complete network.

Let us turn to a characterization of irregular architectures. Suppose first that an
efficient and irregular network g∗ induces a two-point degree partition, {h0, hm}, and
suppose |hm| = 2. Then we have a dominant group architecture. Assume next a network
g that induces a degree partition, {h0, hm}, with |hm| > 2, and in which for every i ∈ hm,
ηi(g) < |hm| − 1. Hence, there exist distinct i, j, k ∈ hm with ik ∈ g and ij /∈ g. For g
having an efficient architecture, it must be W (g)−W (g− ik) ≥ 0. However, ηj(g− ik) =
ηk(g − ik) + 1. Hence, convexity in links applies and therefore W (g + ij) − W (g) >
W (g)−W (g − ik). This implies a contradiction. Thus, if an efficient network g∗ induces
a two-point degree partition with |hm| > 2, then ηi(g∗) = |hm| − 1 for every i ∈ hm. This
is a dominant group architecture.

Suppose next that a network g∗ with an efficient architecture induces a degree parti-
tion, {hl1 , hl2 , ..., hm}, with at least two groups of firms with a positive degree. We show
that for every firm i with ηi(g∗) > 0 it must be ij ∈ g∗, if j ∈ hm. Suppose not, then we
have a network g that induces a degree partition with more than one group of positive de-
gree, where there are distinct i, j ∈ N such that ηi(g) > 0 and j ∈ hm but ij /∈ g. Because
ηi(g) > 0, there must exist a firm k ∈ N with ik ∈ g. However, as ηk(g−ik) ≤ ηj(g−ik)−1,
convexity in links applies and, therefore, W (g + ij) −W (g) > W (g) −W (g − ik). This
implies a contradiction. Hence, in an efficient network g∗, it must be for any j ∈ hm that
ij ∈ g∗ for every firm i with ηi(g∗) > 0. This is an inter-linked star.
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Proof of Lemma 2. We will show that one may write:

U(g) = U(ge) + ϕ1D(g) + ϕ2D(g)2 + ϕ3C(g) (15a)∑
i∈N

Πi(g) =
∑
i∈N

Πi(ge) + ϕ4D(g) + ϕ5D(g)2 − 1
2
fn(n− 1)D(g) + ϕ6C(g) (15b)

where ϕ1 to ϕ6 are defined below. The claim follows immediately from this. In particular,
if Y [D,C] measures the consumer surplus it is Y [0, 0] = U(ge), φ1 = ϕ1, φ2 = ϕ2 and
φ3 = ϕ3, whereas if welfare is measured in terms of total surplus:

Y [0, 0] = U(ge) +
∑
i∈N

Πi(ge) , φ1 = ϕ1 + ϕ4 , φ2 = ϕ2 + ϕ5 , and φ3 = ϕ3 + ϕ6 .

Let us begin by decomposing the welfare in network g into:

W (g)−W (ge) =
[
W (g)−W (gr)

]
+
[
W (gr)−W (ge)

]
, (16)

where the regular network gr is such that D(gr) = D(g). Note moreover that C(gr) =
C(ge) = 0.

We derive each summand in turn and begin with W (gr)−W (ge). Using the fact that
in equilibrium pi = λqi + ci, we can write for utility and gross industry profits:

U(g) =
∑
i∈N

(
α− ci(g)

)
qi(g)−

(
λ+

1
2
)
qi(g)2 − β

2

∑
j 6=i

qi(g)qj(g) (17a)

∑
i∈N

πi(g) = λ
∑
i∈N

qi(g)2 . (17b)

Because in gr it holds qi(gr) = qj(gr) and ci(gr) = cj(gr) = γ0 − γ(n − 1)D(gr) for any
i, j ∈ N , the difference W (gr)−W (ge) may be written as:

U(gr)− U(ge) = n

[
α− γ0 + γ(n− 1)D(gr)

]
qi(gr) (18a)

−n
[
α− γ0

]
qi(ge)− n

2λ+ 1 + (n− 1)β
2

[
qi(gr)2 − qi(ge)2

]
∑
i∈N

Πi(gr)−
∑
i∈N

Πi(ge) = nλ

[
qi(gr)2 − qi(ge)2

]
− 1

2
fn(n− 1)D(gr) . (18b)

Substituting qi(gr)2 − qi(ge)2 =
[
qi(gr)− qi(ge)

][
qi(gr)− qi(ge) + 2qi(ge)

]
, we obtain:

U(gr)− U(ge) = γn(n− 1)D(gr)qi(ge) (19a)

+n
[
α− γ0 + γ(n− 1)D(gr)

][
qi(gr)− qi(ge)

]
−n2λ+ 1 + (n− 1)β

2

[
qi(gr)− qi(ge)

][
qi(gr)− qi(ge) + 2qi(ge)

]
∑
i∈N

Πi(gr)−
∑
i∈N

Πi(ge) = nλ

[
qi(gr)− qi(ge)

][
qi(gr)− qi(ge) + 2qi(ge)

]
(19b)

−1
2
fn(n− 1)D(gr) .
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It can be verified that:

qi(gr)− qi(ge) = (n− 1)D(gr)
[
∆qiji + (

n

2
− 1)∆qjki

]
and (20)

qi(ge) =
α− γ0

γ

[
∆qiji + (

n

2
− 1)∆qjki

]
,

where the terms ∆qiji and ∆qjki are defined in the proof of Lemma 1. Concerning the
left-hand term, for example, note that in gr a typical firm is involved in (n−1)D(gr) links
more than in ge, and the remaining firms, j ∈ N\{i}, are involved in (n2 − 1)(n− 1)D(gr)
more links. Upon substitution we can simplify the expressions to:

U(gr)− U(ge) = ϕ1D(gr) + ϕ2D(gr)2 , (21a)∑
i∈N

Πi(gr)−
∑
i∈N

Πi(ge) = ϕ4D(gr) + ϕ5D(gr)2 − 1
2
fn(n− 1)D(gr) (21b)

where

ϕ1 = n(n− 1)
(
α− γ0

)[
∆qiji + (

n

2
− 1)∆qjki

]2γ − [2λ+ 1 + (n− 1)β
][

∆qiji + (n2 − 1)∆qjki
]

γ

ϕ2 = n(n− 1)
[
∆qiji + (

n

2
− 1)∆qjki

]2γ − [2λ+ 1 + (n− 1)β
][

∆qiji + (n2 − 1)∆qjki
]

2

ϕ4 = 2n(n− 1)
(
α− γ0

)
λ

[
∆qiji + (n2 − 1)∆qjki

]2
γ

ϕ5 = n(n− 1)λ
[
∆qiji + (

n

2
− 1)∆qjki

]2
.

The reader might check that ∆qiji +
(
n
2 − 1

)
∆qjki > 0 and 2γ−

[
2λ+ 1 + (n− 1)β

][
∆qiji +

(n2 − 1)∆qjki
]
> 0 for any β ∈ (0, 1] and n > 2 and regardless of whether competition is in

quantities or in prices. Hence, ϕ1, ϕ2, ϕ4, and ϕ5 are all greater than zero.
Let us turn to the derivation of W (g)−W (gr) and start from:

U(g)− U(gr) =
∑
i∈N

[(
α− γ0 + γηi(g)

)
qi(g)

]
(22a)

−n
[
α− γ0 + γ(n− 1)D(gr)

]
qi(gr)

−
(
λ+

1
2
)∑
i∈N

qi(g)2 − β

2

∑
i∈N

∑
j 6=i

qi(g)qj(g)

+n
2λ+ 1 + (n− 1)β

2
qi(gr)2∑

i∈N
Πi(g)−

∑
i∈N

Πi(gr) = λ
∑
i∈N

[
qi(g)2 − qi(gr)2

]
. (22b)

The following properties help to simplify the expressions. For any D(g) = D(gr):
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(i) qi(g)− qi(gr) =
[
∆qiji −∆qjki

][
ηi(g)− η̄(gr)

]
(ii) qi(g)qj(g)− qi(gr)2 =

[
qi(g)− qi(gr)

][
qj(g)− qi(gr)

]
+ qi(gr)

[
qi(g)− qi(gr) + qj(g)−

qi(gr)
]

(iii)
∑
i∈N

[
ηi(g)− η̄(gr)

]
= 0

(iv)
∑
i∈N ηi(g)

[
ηi(g)− η̄(gr)

]
= nV (g)

(v)
∑
i∈N

∑
j 6=i
[
ηi(g)− η̄(gr)

]
= 0

(vi)
∑
i∈N

∑
j 6=i
[
ηi(g)− η̄(gr)

][
ηj(g)− η̄(gr)

]
= −nV (g).

Applying all of them, we obtain:

U(g)− U(gr) = ϕ3C(g) (23a)∑
i∈N

Πi(g)−
∑
i∈N

Πi(gr) = ϕ6C(g) , (23b)

with

ϕ3 = nV̂ (n)
[
∆qiji −∆qjki

]2γ − [2λ+ 1− β
][

∆qiji −∆qjki
]

2
ϕ6 = nλV̂ (n)

[
∆qiji −∆qjki

]2
.

The reader may check that ∆qiji −∆qjki > 0 and 2γ −
[
2λ+ 1− β

][
∆qiji −∆qjki

]
≥ 0 for

any β ∈ (0, 1] and regardless of the competition mode (the equality holds if and only if
the firms compete in quantities and β = 1). Thus, ϕ3 ≥ 0 and ϕ6 > 0.

The efficient network in a large industry. In the following, we determine the
normalized degree variance and the architecture of an efficient network in a large industry.
The normalized degree variance is determined in two steps: first, we replicate a result from
Snijders (1981) on the architecture of a variance-maximizing network for given density.
Then, we calculate the degree variance of this architecture.

Define the complementary network to network g by gc = {ij : i, j ∈ N, i 6= j, ij /∈ g},
which has its links exactly where g does not. Note thatD(gc) = 1−D(g) and C(gc) = C(g).
Snijders (1981) shows that for any n > 2 and for any 0 < D < 1, a variance-maximizing
network g̃ = argmax{C(g)|D(g) = D} satisfies the following properties:

Either g̃ has an architecture g′, or g̃c has an architecture g′′, where:
(i) g′ and g′′ both partition the set of firms into a four-point degree partition {h0, hl1 , hl2 , hl3},
with l1 = |hl3 |, l2 = |hl2 |+ |hl3 | − 1, and l3 = |hl1 |+ |hl2 |+ |hl3 | − 1.
Moreover, it is |hl1 | = 1 and:
(iia) in architecture g′, it is |hl2 |+ |hl3 | the largest integer I1 with I1(I1− 1) ≤ n(n− 1)D,
and
(iib) in architecture g′′, it is |hl2 | + |hl3 | the largest integer I2 with I2(I2 − 1) ≤ n(n −
1)(1−D).

30



According to this, either g̃ or its complement g̃c have a dominant group-like architec-
ture, where the size of the group of connected firms, |hl2 | + |hl3 |, is maximal given the
density. The remaining links originate from a single peripheral firm in hl1 that is connected
only to the group of connected firms.

The (normalized) degree variance of the maximally concentrated network is now de-
termined by C(g̃) = Ĉ(D,n) = max {C(g′) , C(g′′)}, where:

C(g′) =
1

V̂ (n)

(
|hl3 | − η̄

)2 + |hl3 |
(
I1 − η̄

)2 +
(
I1 − |hl3 |

)(
I1 − 1− η̄

)2 +
(
n− I1 − 1

)
η̄2

n
(24)

and C(g′′) is obtained by replacing I1 by I2 and η̄ by (n− 1− η̄). If n is a finite number
determining C(g̃) is difficult, because it involves a constrained maximization with respect
to I1 and I2. However, for n → ∞, architecture g′ has approximately the normalized
degree variance of a dominant group gn

′
, which is obtained from g′ by removing the links

of the peripheral firm in hl1 . More precisely, for the dominant group architecture gn
′
, with

n′ = I1, and for any 0 ≤ |hl3 | ≤ n′ < n, it is:

lim
n→∞

[
C(g′)− C(gn

′
)
]

= lim
n→∞

[
256|hl3 |

n(2n′ − 1)− 4n′(n′ − 1) + |hl3 |(n− 4)
(3n− 2)2 (n− 2) (3n+ 2)

]
= 0 . (25)

Similarly, one can approximate C(g′′) by the normalized variance of the sparser dominant
group gn

′′
. We obtain for the maximum variance of a network of density D:

lim
n→∞

Ĉ(D,n) = lim
[
max

{
C(gn

′
) , C(gn

′′
)
}]

(26)

=
256
27

lim
[

max
{
D(

√
1− 8|hl3 |+ 4Dn(n− 1)− 1

2n
−D) ,

(1−D)(

√
1− 8|hl3 |+ 4(1−D)n(n− 1)− 1

2n
− 1 +D)

}]
=

256
27

max
{
D

3
2 (1−

√
D) , (1−D)

3
2 (1−

√
1−D)

}
.

The first equality follows from the approximation described above. To establish the second
equality, we rewrite limC(gn

′
) = lim n2

V̂ (n)
× lim 1

n2V (gn
′
) and solve lim n2

V̂ (n)
= 27

256 and:

lim
1
n2
V (gn

′
) = lim

1
n2

n′
(
n′ − 1− n′(n′−1)

n

)2 +
(
n− n′

)(n′(n′−1)
n

)2
n

(27)

= lim
1
n2

n′(n′ − 1)
n

(
n′ − 1− n′(n′ − 1)

n

)
= limD

(n′ − 1
n
−D

)
.

This follows from D(gn
′
) = n′(n′−1)

n(n−1) = D− 2|hl3 |
n(n−1) , and hence limn′(n′ − 1)/n2 = D. The

second equality is now established by replacing n′ = 1
2 + 1

2

√
1− 8|hl3 |+ 4Dn(n− 1). The

third equality follows from noticing that lim
√

1− 8|hl3 |+ 4Dn(n− 1)/n equals
lim
√

(1− 8|hl3 |)/n2 − 4D/n+ 4D = 2
√
D. Note that the final expression for lim Ĉ(D,n)
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is continuous in density and differentiable almost everywhere (with the only exception
being D = 0.5).

Concerning the architecture of the variance-maximizing network, g̃, note that if D ≥
0.5 the maximum of the two values in the final expression for lim Ĉ(D,n) is given by
D

3
2 (1−

√
D). Hence, g̃ has (approximately) the architecture of the dominant group, gn

′
,

described above, where a share of n′/n =
√
D firms is in the group of connected firms. For

D ≤ 0.5, the maximum is (1 −D)
3
2 (1 −

√
1−D). As an implication of Proposition 1, g̃

must have an inter-linked star architecture. Because the complementary network has the
dominant group architecture, gn

′′
, network g̃ consists of a center group of firms, hc, and a

single peripheral group, hp. Moreover, the periphery of g̃ comprises a share of
√

1−D of
the total of firms and for each i ∈ hp, ij ∈ g̃ if and only if j ∈ hc.

In the following, we investigate transfer-stable networks between a large number of
firms and present the proof of Proposition 5. Denote by ti = {t1i , t2i , ..., tni } the transfers
offered by firm i to other firms, where tji ≥ 0 for all j ∈ N with ij ∈ g, and tki = 0 for k ∈ N
with ik /∈ g. Moreover, denote by g−i the network that is obtained from g by deleting all
links of firm i. Goyal and Joshi (2003) define network g stable against transfers, if

(i) for all ij ∈ g : πi(g) + πj(g)− f ≥ πi(g − ij) + πj(g − ij) (28)
(ii) for all ij /∈ g : πi(g) + πj(g) + f ≥ πi(g + ij) + πj(g + ij)
(iii) there exist transfers ti, i ∈ {1, 2, ..., n}, such that

πi(g) +
∑

j∈Ni(g)

(
tij − t

j
i

)
− 1

2
fηi(g) ≥ πi(g−i) .

In order to obtain a suitable stability criterion for a network between a a large number
of firms, let the transfer payments and the linking costs in condition (28) be proportional
to the number of firms in the industry. Hence, let us specify f = nρ and tji = nτ ji , with
τ ji ≥ 0, for any i, j ∈ N . Moreover, depict the effective market size by a parameter A,
where A = (α − γ0)/σ and σ denotes the minimum market size of footnote 7. Finally,
multiply the inequalities in condition (28) by 1/n. The limit of the obtained condition is
necessary and sufficient for stability of network g and both sides of the inequalities have
finite limit values as n grows large.

The following result investigates the stability of an efficient network with respect to a
profile τi, i ∈ {1, 2, ..., n}, linking cost ρ, and market size A.

Proposition 5. Suppose a large industry (n→∞). Every transfer-stable network of
density 0 < D(g) < 0.5 is inefficient.

Proof. Suppose to the contrary a network g∗, with 0 < D(g∗) < 0.5, that is efficient.
As shown above, network g∗ has an inter-linked star architecture that induces a degree
partition, {hp, hc}. Moreover, the peripheral group, hp, comprises a share of

√
1−D of

the total number of firms and for each i ∈ hp, ik ∈ g∗ if and only if k ∈ hc. In the
following, we prove that g∗ is not stable against transfers, when firms compete in prices.
(The proof for quantity competition follows in the same way and is therefore omitted.)
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For stability of g∗, any two k, l ∈ hc should sustain their link kl ∈ g∗,

lim
n→∞

2
πk(g∗)− πk(g∗ − kl)

n
= γ2A+ 1−D

1− β
≥ ρ , (29)

such as any i ∈ hp and k ∈ hc should sustain ik ∈ g∗,

lim
n→∞

πi(g∗)− πi(g∗ − ik)
n

+
πk(g∗)− πk(g∗ − ik)

n
= γ2A+ 1−D − 1

2

√
1−D

1− β
≥ ρ , (30)

and for any two i, j ∈ hp with ij /∈ g∗,

lim
n→∞

2
πi(g∗ + ij)− πi(g∗)

n
= γ2A− 1 +D +

√
1−D

1− β
≤ ρ . (31)

Details on the derivation of the limit values can be found in the supplement to this article
published on the RJE website (http://www.rje.org/sup-mat.html). It can be readily seen
that inequality (30) implies (29), which is a consequence of the convexity of profits in
links. Hence, the cost interval is bounded by (30) and (31).

Moreover, stability of g∗ requires some profile of transfers such that every i ∈ N
maintains its links. It is natural to focus on transfer profiles, which only depend on the
position of a firm in g∗. Hence, for any k, l ∈ hc: τ lk − τkl = 0. Moreover, the net flows
from the firms in the center to the peripheral firms are identical across all links. Thus, for
any i ∈ hp and k ∈ hc: τ ik − τki = τ . Stability of g∗ requires that a τ ∈ R exists such that
any peripheral firm does not delete all its n(1−

√
1−D) links,

lim
n→∞

πi(g∗)− πi(g∗−i)
n2(1−

√
1−D)

+ τ = γ2 2A+ 1− 2D −
√

1−D
4(1− β)

+ τ ≥ ρ . (32)

Furthermore, any firm in the center should not delete all its n− 1 links,

lim
n→∞

πk(g∗)− πk(g∗−k)
n(n− 1)

− lim
n→∞

n
√

1−D
n− 1

τ = γ2 2A+ 1 + 2D
4(1− β)

− τ
√

1−D ≥ ρ . (33)

On the one hand, by comparison of (31) and (32) it follows that an appropriate τ must
be positive, which means that the center firms sponsor links to the periphery. In fact,

τ ≥ γ2 2A− 5 + 6D + 5
√

(1−D)
4(1− β)

. (34)

On the other hand, τ is bounded from above by (33). It can be easily verified that for
any A > 1 and 0 < D < 0.5, there does not exist any τ satisfying inequalities (31), (33),
and (34) simultaneously, which shows that the inter-linked star architecture is not stable
against transfers.
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