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Natural Continuous Extensions of Runge-Kutta Methods
for Volterra Integral Equations of the Second Kind

and Their Applications

By A. Bellen, Z. Jackiewicz, R. Vermiglio, and M. Zennaro*

Abstract. We consider a very general class of Runge-Kutta methods for the numerical
solution of Volterra integral equations of the second kind, which includes as special
cases all the more important methods which have been considered in the literature. The
main purpose of this paper is to define and prove the existence of the Natural Continuous
Extensions (NCE's) of Runge-Kutta methods, i.e., piecewise polynomial functions which
extend the approximation at the grid points to the whole interval of integration. The
particular properties required of the NCE's allow us to construct the tail approximations,
which are quite efficient in terms of kernel evaluations.

1. Introduction. Consider the Volterra integral equation (VIE) of the second
kind

(1.1) y(x) = g(x)+       k(x,s,y(s))ds,        xG[x0,X],
Jxo

where g: [x0,X] -* Rn and k: A x Rn -> Rn, A := {(x,s): x0 < s < x < X}, are
sufficiently smooth. We denote by Y the unique solution of this problem.

In recent years many papers have appeared on the numerical solution of VIE's
(1.1) by a Runge-Kutta (RK) type approach. Brunner, Hairer and N0rsett [8] inves-
tigated the general structure of order conditions for Volterra-Runge-Kutta (VRK)
methods using the theory of P-series developed by Hairer [12]. The convergence
and order of some classes of Runge-Kutta methods are also examined in Hairer, Lu-
bich and Ntfrsett [14], and van der Houwen, Wolkenfelt and Baker [18]. Asymptotic
stability analyses are given in Baker and Keech [1], Hairer and Lubich [13], and once
again in [18]. Many other useful references can be found in the papers mentioned
above. The recent book by Brunner and van der Houwen [10] presents the state
of the art in the numerical solution of the Volterra integral and integro-differential
equations, including equations with weakly singular kernels.

For VIE's the possible choice of parameters in a Runge-Kutta method is larger
than for ordinary differential equations (ODE's)

Í y'(x) = f(x, y(x)),      x g [x0, x],
I y(*o) = yo-
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50 A. BELLEN, Z. JACKIEWICZ, R. VERMIGLIO, AND M. ZENNARO

This is not surprising if one notes that (1.2) in its integrated form is equivalent to
a VIE, but the contrary is, in general, not true.

There is a natural way to get RK formulas from a collocation approach (see, for
example, [7], [9], [10], and Section 5 of this paper). However, many other classes
of RK methods which cannot be obtained in this way and which do not seem to
derive from an equally natural approach were considered in the literature (see [8],
[10], [14], [17], [18]). They are rather formulated in a way so as to include as special
cases the famous methods of Pouzet [16] and Bel'tyukov [6]. In this paper we
propose a unifying notation for RK formulas for VIE's by introducing a large set of
parameters. This will allow for a unique treatment of all these methods and for a
development of the theory of Natural Continuous Extensions (NCE's) (see Section
3). Moreover, the greater number of degrees of freedom leads to the construction
of methods which have better stability properties (see [4]).

Let a partition xq < x\ < • ■ • < x^ = X of the interval of integration [xo, X] be
given, and put hn = xn — xn_i, n = 1,2,..., TV. We consider the following very
general class of i^-stage VRK methods for VIE's:

(1.3)

Y%{n) = F^Xn-! + 0thn)
H / v

+ hn / jQjjk I xn—i + a,ijtin,xn—i + tijhn, / ßijV^i
j=i V ¡=i

yn = YwiY}n),

(n)

J Xn

¿=1

= 1,2,..., v, n = 1,2,..., TV, where Fn(x) is an approximation to the tail
rin-i

k(x,s,y(s))ds.
'x0

This tail approximation should be chosen in such a way that it preserves the order
of convergence and stability properties of the RK method and that it is as efficient
as possible in terms of the number of evaluations of the kernel function k (see
Section 4).

Since, in general, k(x, s, y) is defined only for s < x, we will always assume the
kernel condition e¿j < dij in (1.3).

In [1] RK formulas are examined with ii = u = p, dij = $i, e%j = 0j, 0P = 1,
ßiji = 6ji, Wi = 6P{. For the methods considered in [8], [10], and [14], which contain
as special cases the methods of Pouzet and Bel'tyukov, /i = v — 1 = m, a¿j• = a¿j,
am+ij = bj, dm+ij = ej, eij = Cj, ßiji = 6j¡, Wi = ¿TO+i,¿, cm+1 = 1. For the
methods given in [18], /z = v = m, e^ = Cj, ßiji = Sj¡, Wi = 6mi, 6m = cm = 1, and
in [17], n = v = m, /% = Sji, wt = ¿m¿, 6m = emm = 1, em0 = 0.

Observe that if the VRK method (1.3) is applied to the equation

y(x) = y0+       f(s,y(s))ds,        x>0,
Jxo

which is equivalent to the ODE (1.2), then the resulting method is not included in
the class of RK methods for (1.2). However, this method is included in the wider
class of general linear methods studied by Butcher [11].

In the next section we follow the approach of Brunner, Hairer and N0rsett [8] to
obtain the order conditions for the methods (1.3). In Section 3 we prove that these
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NATURAL CONTINUOUS EXTENSIONS OF VRK METHODS 51

methods possess NCE's as do the RK formulas for ODE's (see [19]). This allows
us, following the idea of Bellen [2], to construct quite efficient tail approximations
based on composite one-step quadrature formulas. Then, in Section 5, we briefly
analyze the collocation methods for (1.1) and prove that the collocation polynomial
is a NCE of the corresponding VRK method.

2. Order Conditions for VRK Methods. In this section we derive the order
conditions for the methods (1.3), using a generalization of the theory of Brunner,
Hairer and Norsett [8]. We introduce the following definition.

Definition 2.1. A i/-stage VRK method (1.3) for the numerical solution of the
VIE (1.1) has order p > 1 (local order p + 1) if on each subinterval [xn-i,xn] the
following error bound holds:

(2.1) \\yn(Xn)-yn\\=0(hn+1), hn - 0,

where yn(') is the solution of the equation

z(x) = Fn(x)+ k(x,s,z(s))ds,        x G \xn-i,xn).
Jxn-\

Here, || • || stands for a suitable vector norm and the function yn is called a local
solution on the subinterval [xn_i,xn].

Define

Oíiñ* t — 1, Z, . .î ^*i ■/ ,"u
j=i

Then it is easy to see that with
V

(2.2) el}=YßiHci'        i = l,2,...,v, j = l,2,...,p,
¡=i

the order conditions for the VRK method (1.3) applied to (1.1) are the same as the
order conditions for the same method applied to the simpler equation

(2.3) y(x) = g(x)+ i   k(x,y(s))ds,        xG[x0,X].
Jxn

Moreover, without loss of generality, we can restrict ourselves to the first interval
[xo,xo + h], h := hi, and the method (1.3) reduces to

Yi = g(x0 + Oih) + hYaijk   xo + dtJh, YßijM ) .

2/1 = YmYi'
i=l

where yt:=F,(1), t = l,2,...,i/.
In [8] Brunner, Hairer and N0rsett have considered the equation (2.3) with g(x) =

0. Since to approximate the local solution yn at the nth step (n > 2) we have to
deal with an equation of the form (2.3) in which xo is replaced by xn_i and g by Fn
which, in general, is nonzero, even if g = 0, we prefer not to adopt the simplification
in [8]. Moreover, g ^ 0 allows us to obtain the conditions on the coefficients 0¿.
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52 A. BELLEN, Z. JACKIEWICZ, R. VERMIGLIO, AND M. ZENNARO

As in [8] we transform (2.3) into an equivalent infinite system of differential
equations in order to use the theory of P-series developed by Hairer [12]. For this
purpose we set

A := {x} U {o,- : i = 0,1,...},        o := ao,
and define

' yx(x) ■■= x,
.   Vaix) := yix),

fx dl
yaiix) := gM(x) + /   ^-k(x,y(s)) ds,

V Jxo °Xl
i = 1,2,..., where y is the solution of (2.3). Then

f y'x(x) = fx := 1,        yx(x0) = x0,
(2-5)        { dl r,

{ Va, ix) = fa, ~ -fcikiyxi Va) + 2/«.+. ' Va, (^o) = 9W (x0),

i = 0,1,_This system differs slightly from the corresponding system in [8] since
we do not set g = 0 in (2.3).

Denote by TP the set of all P-trees and by TPZ, z G A, the set of all P-trees
with root index z (see Brunner et al. [8] or Bellen et al. [3] for the definitions of
these notions). Define also the set TV of so-called Volterra trees as the smallest
subset of TPa which satisfies the following conditions:

(i) ipa G TV (ipa is the only tree of order zero in TPa).
(ii) o-fc := o[a, [■ • -a* [ ] • ■ • ]] e TV for every k > 0 (<r0 = a[ ] := ra is the only

tree of order one in TPa).
(iii) If ti,...,tm G TV then „fa^ti,...,««,] G TV for every k > 0, where r*

means that tx is repeated k times.
Observe that the set TV defined above is larger than the set TV defined in [8].

This is due to the fact that we do not assume g = 0 in (2.3), and hence in (2.5).
Put yo = (xo,g(xo),g'(xo),- ■ ■ ,g{r+1)(xo))- Let F(t)(y0) be an elementary dif-

ferential of fa at t/o corresponding to a P-tree t with root index a and an order p(t)
(see [12], [8], or [3]). We have the following theorems.

THEOREM  2.2.   Consider the following equivalence relation in TPa: u ~ t if
and only if F(u)(yo) = F(t)(yo) for all functions g and k in (2.5).  Then, denoting
by E(t) the equivalence class of t, we have:

(i) E(tpa) = {pa}.
(ii) E(ak) = {ak}, k > 0.

(iii) £(o[r£])M«[«,[••.«>£-'] •■•]]: 3 =0,l,...,fc-l},*>l.
(iv) Ift = a[T*,ti,...,tm] with m > 1, UGTV, p(U) > 1, andk>0, then

k

E(t)={){a[a,[...ai[T*-\ul,...,um\...\\:u]GE(tj)}.
t=0

(v) Ifu,t G TV andu^t then E(u) ¿ E(t).
(vi) u £ [j{E(t) : t G TV} if and only if F(u)(y0) = 0 for all functions g and k

in (2.5).

THEOREM 2.3.  For the solution y = ya of (2.3) we have

t-^ hpW(2-6) yix0 + h)= Y ßit)F(t)(yo)—^,
terv pyi>-
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where ß(t) can be computed recursively by.

ßiVa) = 1,
ßio-k) = 1, k > 0,
0(a[T¡¡]) = k, k > 1,

Pit)       í P{t)~l
m = ^kl^p(ti),...,p(tm))ß(t1)---ß(tm)-kh

V k times

Here, t = 9[r*,tif... ,tm], m > 1, p(í¿) > 1, A; > 0, and ßi,pz, ■ ■ ■ are the numbers
of mutually equal P-trees among ti,...,tm.

The proofs of these theorems are similar to those given in [8] and are therefore
omitted.

The expression for y(xo+h) appearing in Theorem 2.3 is an example of a V-series.
To obtain order conditions for the methods (1.3), we define for any $: TV -*Äa
V-series as a formal power series of the form

^ h-PWV[*,yo)= Y mßit)F(t)(yo)-^.
terv PKl>-

We are now in a position to formulate the main result of this section whose proof
can be found in Bellen et al. [3].

THEOREM 2.4.   Assume that

(2.7) Oi = cu        » = l,2,...,i/,
V

(2.8) Yßiß = h        » = l,2,...,i/, j = l,2,...,/i.
¿=i

Then for the numerical solutions given by (2.4) we have

Yi = V($i,yo),        i = l,2,...,u,
t/i = V($,y0),

where $i,$: TV —> R are defined recursively by.

(2.10a)   *j(p0) = l,

(2.10b)   *<(**) = c?+1,        fc>0,

(2.10c)   *i(a[rí]) = i ((* + !)¿av4-c?+1J , fc> 1,

(2.10d)   *<(i) = (p(t) - k)Y<**A ¡YßijiMh) )■   \Y&ß*iitm) I ,
where t = 0[tÍ,íi,. •-,ím], m > 1, p(U) > 1, k > 0,

(2.10e)   *(í) = 53«'¿*i(í)-
¿=i

Now the order conditions for the VRK method (1.3) are expressed in the following
theorem, which is a trivial consequence of (2.1), Theorem 2.3 and Theorem 2.4.
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THEOREM 2.5. The VRK method (1.3) for the numerical solution of (2.3) has
order p if

(i) conditions (2.7) and (2.8) hold, and
(ii) $(i) = 1 for every t G TV such that p(t) < p, where $ is defined by (2.10).

We have also the following corollary.

COROLLARY 2.6. Assume that hypotheses (i)-(ii) of Theorem 2.5 are satisfied
and, in addition, the condition (2.2) holds. Then the VRK method (1.3) for the
numerical solution of the VIE (1.1) has order p.

To illustrate this theory, we have listed in Table 1 the P-trees from the set TV
and the corresponding order conditions up to order three.

TABLE 1

Order conditions for VRK methods up to order three.

p(t) t *(t)

fa Y"i
Y,wiCi =

i:  EM-«¿=i
v n

11    YwiJlai^ = 1
1=1       j=l

\l    Ywi^2ai^ = 2
i=l        j=l

a2

x\ ^x

■ O!       YWiC^ = X
i=l

Yw^y^d%=i
i=l      1=1

V ¡i

•=i j=i
V ¡i

v \x v

• a       YWi^a^Hßij'C^ = 3
i=i     j = i      1=1

V fi V Ii

■ a Yu'<Yai:>z2l3ij'¿2a"cdlk = 3
i=l     J=l      1=1       fc=l

v fi v ii

• a        YWi^2aij'^2l3^l^20tlkeik = 6
t=i     y=i       i=i       jt=i
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It is interesting to note that with p = v - 1 = m; a^■ = üíj, i,j = 1,2,... , m;
o^m+ij = Oj, j = i,¿,...,m; um+ij = ej, j = L,i,...,m; eij = Cj, i —
l,2,...,m + l, j = l,2,...,m; /% = 6jh i,l = 1,2,...,m + 1, j = 1,2,...,m;
Wi = ¿m+i,i, i = 1,2,..., m + 1, cm+i = 1, the VRK method (1.3) reduces to the
methods considered in [8], and the corresponding order conditions for the coeffi-
cients are the same.

3. Natural Continuous Extensions of VRK Methods. In this section
we consider a i/-stage VRK method (1.3) of order p > 1 and assume that all the
hypotheses of Corollary 2.6 hold. For such methods, similarly as in Zennaro [19],
where the RK formulas for ODE's are treated, we define and prove the existence of
Natural Continuous Extensions (NCE's).

Definition 3.1. The i^-stage VRK method (1.3) of order p for the numerical solu-
tion of (1.1) has a NCE u of degree d if there exist polynomials Wi, i = 1,2,...,v,
of degree less than or equal to d, independent of the functions g and k, such that
by putting

V

(3.1) «(iB_1+ÍAn):=2i«i(í)y/B)1        ÖS [0,1],
¿=i

the following statements hold on each subinterval [xn_i, xn], where yn(-) is the local
solution (see Definition 2.1):

(3.2) u(xn) = yn,

(3.3) max{||yn(x) - u(x)||: xn_! < x < xn) = 0(hdn+1),

(3.4) f"  G(x)(2/n(x)-c<(x))dx = 0(^+1)
Jxn-i

for every sufficiently smooth matrix-valued function G.
Remark 3.2. Observe that since, in general, u(xn_i) ^ yn-i, the NCE may have

jump discontinuities at the grid points xn.
Since « is a polynomial, the condition (3.3) implies the following error bound for

the derivatives of the NCE u:

max{||yW(x) - u^(x)\\: xn_j < x < xn} = 0(/i^fc+1),

k = 1,2,..., d, and obviously, u^ (x) = 0 for k > d + 1.
It is interesting to observe that if the NCE u has degree d = p — 1, then (3.4)

follows directly from (3.3). Moreover, if d = p (which, as will be shown in Theorem
3.3, is the highest possible degree of u), then the NCE u satisfies the stronger
condition

(3.5) r  G(x)(yn(x)-u(x))dx = 0(hPn+2).
Jxn-i

We assume (2.2) and, as in the previous section, confine ourselves to studying the
NCE's of the method (2.4) on the interval [xo,xo + h]. It is obvious that the
following continuous version of (2.6) holds:

(3-6) y(x0 + 0h)=Y ßit)F(t)iyo){^^-.
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If a NCE u exists then, in view of (3.1), putting
v

(3.7) *(0){t) := Yw* (*)*i (0,        t 6 TV,
t=i

it is clear that for every 6 G [0,1] Theorem 2.4 holds with

(3.8) u{xQ + 0h) = V(*(0),yo)

in place of (2.9) and (3.7) in place of (2.10e). Comparing u(xn) and yn, it follows
that Wi(l) = Wi, i = 1,2,...,v; therefore, by (3.6) and (3.8), conditions (3.2),
(3.3), and (3.4) are equivalent to

(3.9) *(l)(f) = *(*),        tGTV;
(3.10) $(0)(i)=0"(t),

0 G [0,1], for every t G TV such that 0 < p(t) < d; and

(3.11) j\m(t)de=ml—
for every t G TV such that d + 1 < p(t) < p - 1 and r = 0,1,... ,p - p(t) - 1.
Condition (3.11) should be considered only for d < p - 2.

Define the integer q := [p/2], where [x] stands for the integer part of x, and let
v* be the number of distinct values of c¿, i = 1,2,...,v. We have the following
results concerning the existence of NCE's, which are similar to those given in [19].

THEOREM 3.3. If u is a NCE of the v-stage VRK method (1.3) of order p,
then its degree d satisfies the condition

(3.12) q< d<mïn{v* - l,p}.

Moreover, the polynomials Wi, i = 1,2,...,v, span the whole space n<¿ of polyno-
mials of degree less than or equal to d.

Proof. Observe that (2.1), (3.2), and (3.3) imply that d < p. By (2.10a-b), (3.7),
and (3.10) we have

if

Y^ie)ckt=ek,     k = o,i,...,d.
i=i

Thus, after setting C := [ck]^=1dk=0, WT := [w^)]^,^, and 0 := [^]£fc=0,
where 9j, j = 0,1,..., d, are distinct abscissae from the interval [0,1] (0° := 1), we
get the system of equations

WC = Q.
From this point on, the proof proceeds as the proof of Theorem 5 in [19], using
standard linear algebra arguments.    D

THEOREM 3.4. If the v-stage VRK method (1.3) of order p has a NCE u of
degree d> q, then it has also a NCE ü of degree d' for every a" = q,q + l,...,d — l.

Proof. It is easy to see that for every n = q,q + l,...,p — 1 there exists a
linear projector Pn : C°([0,1]) —► nn such that for every continuous function / the
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following conditions hold:

Pnf(l) = fil),
[ 6rPnf(6)dÔ= [ 6Tf(6)dO,        r = 0,1,... ,p- n - 2.
Jo Jo

The last condition should not be considered if n = p — 1. Similarly as in the proof
of Theorem 6 in [19], in view of (3.7) it follows that $(0) := ££=1 Wi(6)$i, where
Wi := PdWi, i = 1,2,... ,v, satisfies (3.9), (3.10), and (3.11) with d = d'.   D

The next theorem is an analog of Theorem 7 in [19]. However, to prove it we
do not adopt the strategy followed in [19] but instead we will prove the existence
of a NCE u of minimal degree q by a suitable modification of the idea given in
the proof of Theorem 10 of Bellen and Zennaro [5]. The theorem mentioned above
furnishes for any RK method for ODE's a NCE which possesses some good stability
properties. Hopefully, similar desirable features may be possessed also by the NCE's
of VRK methods defined in this paper.

THEOREM 3.5.   Every v-stage VRK method (1.3) of order p has a NCE u of
minimal degree d = q.

Proof. Consider the matrix A whose elements are

(3.13) an:=Yaiißi]ii        i,l = 1,2,...,v,
j=i

and for all s > 1 consider the numbers Asn, n = 1,2,..., s, defined in Lemma 8 of
[5], which satisfy the relation

(3.14) YX
p\ 1

(p + n)\     p + s

for all p > 0. Then define the polynomials Wi, i = 1,2,... ,u, of degree less than or
equal to q by

(3.15a)

(3.15b)
¡■1 r+l

/   0rWi(6)d6=Y*r+i,n\(AT)nw]l,

Wi(l) = wx,

r = 0,1,. ..,9-1,
n=l

where w := [w\,W2,. ■■ ,wu]T and [(AT)nw]¿ denotes the ¿th component of the
vector (AT)nw. The last condition should not be considered for q = 0, i.e., p = 1, in
which case the theorem is trivial. Observe that the polynomials Wi, i = 1,2,..., u,
are uniquely determined by the conditions (3.15). For q > 1, i.e., p > 2 we will prove
that the mappings $(0) : TV —► R, 0 G [0,1], defined by (3.7) with w,'s determined
by (3.15a-b) satisfy (3.9), (3.10), and (3.11). Condition (3.9) is trivially satisfied
as a consequence of (3.15a). If we prove that

(3.16) /  6r$(0)(t)de = ^^-r--
K       J 7o p(t) + r + l
for 0 < p(t) < p - 1 and r = 0,1,... ,min{ç — l,p — p(t) - 1} then, since d = q
(hence for p(t) > q + 1 we have p — p(t) - 1 < q — 1), we will also prove (3.11).
Moreover, (3.9) and (3.16) will imply (3.10). Indeed, in this case, for p(t) < q the
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polynomial $(0)(i) - 0P^ of degree less than or equal to q lies in the kernel of q +1
linearly independent linear functional on Uq and hence it must be identically zero.
In order to prove (3.16), consider a P-tree t G TV such that 0 < p(t) < p - 1 and
an integer r such that 0 < r < min{g — l,p - p(t) - 1}. Then (3.15b) and (3.7)
yield

(3.17) /  0r$(0)(i) dö = Y Vu,. Yl(AT)nw]t^(t).
Jo rrr, ~~1'° n=l ¿=1

For n = 1,2,..., r + 1 define the P-tree

in :=«[„[...«[*]...]] € TV.
n times

We have p(tn) = p(t) + n < p, and by (2.10d-e) it follows that

Since by assumption the method (1.3) has order p, we have $(in) = 1 and hence

DUT-iÁW = j£hr:
Therefore, by (3.14) and (3.17) we get (3.16), which completes the proof.    D

4. Tail Approximations. Different types of numerical approximations Fn(x)
to the tail have been proposed in the literature. They can be divided mainly into two
classes: extended and mixed methods (compare Hairer, Lubich and N0rsett [14],
van der Houwen [17], van der Houwen, Wolkenfelt and Baker [18]). In this section
we define a new type of tail approximation Pn(x) by using the NCE's introduced
in the previous section. We will need the following lemma.

LEMMA 4.1.   Let u be a NCE (of degree d) of the VRK method (1.3) of order
p for the numerical solution of (1.1).  Then on each subinterval [xn_i,xn] we have

rxn
(4.1) /      [k(x,s,yn(s))-k(x,s,u(s))]ds = 0(hrn),

where

( p+1    if (3.4) holds,
(4.2) r=\H 1K     'I p + 2    if (3.5) holds.
Here, yn is the local solution defined in Section 2 (Definition 2.1).

Proof. By the smoothness of k (which was assumed in Section 1) and by (3.3)
we obtain

rxn
[k(x, s, yn(s)) - k(x, s, u(s))] dsIJ X.

fx"    ftk
= /       ^(x,s,u(s))[yn(s)-u(s)]ds + 0(hld+3).

Jxn-> oyr„_, dy

By (3.12) we have 2d + 3 > 2q + 3 > p + 2 and the lemma follows.    D
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Now consider a quadrature rule of polynomial order greater than or equal to
r - 2 on the interval [0,1] with weights vi,V2,-..,vm and abscissae fi, £2>- • -,£m-
Then, since all the derivatives of the NCE u are uniformly bounded as hn —> 0, by
(4.1) we obtain

fx" v^
(4.3) /       k(x,s,yn(s))ds-hnYv3kix,xn-1 + eijhn,u(xn-i+cljhn)) = 0(hrn),

where r is given by (4.2).
We propose the following tail approximation:

n —1 m

(4.4) Fn(x) = g(x) + YhkYvikix'Xk~l + Çjhk,u(xk-i + £jhk)).
fc=i     j'=i

With this choice we have the following result concerning the global error of the
method (1.3).

THEOREM 4.2. The global error of the VRK method (1.3) of order p for the
numerical solution of (1.1) with the tail approximation given by (4.4) satisfies

max{||y(xn) - yn\\ : 1 < n < TV} = 0(hr-x),

where h := max{/in: 1 < n < TV} and r is given by (4.2).

Proof. The proof can be carried out by standard arguments such as, for example,
those given in [14], taking into account (2.1), (4.3), and (4.2).    D

Remark 4.3. The integer r - 1 is the global order of the VRK method (1.3). In
general it is equal to the order p of the method (compare Definition 2.1). However,
if the NCE u satisfies the condition (3.5) then the global order is higher and is
equal to the local order p + 1.

We conclude this section by comparing the new type of tail approximation de-
fined by (4.4) with the already known ones, for which the reader is referred to [14],
[17], and [18]. In extended methods (for which cv = 1) the tail approximation
Fn(x) is built up by a composite one-step quadrature rule which on each subinter-
val [xn_!,xn] is equal to that of the last stage of the method itself. This usually
implies (n — l)(v — 1) kernel evaluations for each value of x. This is in contrast to
the tail approximation (4.4), where we can choose a composite one-step Gaussian
quadrature rule and hence, in general, reduce the number of kernel evaluations.
Furthermore, while for our methods it is sometimes possible to attain the global
order p +1 (see Remark 4.3), for extended methods the global order is always equal
to p (see Theorem 4 in [14]). In mixed methods the tail approximation P„(x) is
constructed by means of multistep quadrature rules based only on the grid point
approximations yk- In principle, this approximation requires n kernel evaluations
for each value of x. Thus, with respect to the computational effort, the mixed meth-
ods can be more efficient than the methods (1.3), with the tail approximation given
by (4.4). However, the disadvantage of this approach is that multistep quadrature
rules destroy the one-step nature of the VRK methods and this can result in a loss
of stability. This does not happen for the type of methods we propose (see [4]).
Summing up the above discussion, we can say that the use of the tail approximation
given by (4.4) results in methods which are quite efficient and possess good stability
properties.
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5. Collocation Methods. In this section we treat a class of collocation meth-
ods for the numerical solution of (1.1). These methods were investigated in detail
by Brunner and N0rsett [9] (see also the survey paper by Brunner [7] and the book
by Brunner and van der Houwen [10] and the references contained there).

To define a collocation method, one chooses v collocation points 0 < ci < ci <
• • • < c„ < 1, and defines on each subinterval [x„_i,xn] a polynomial û of degree
v — 1 by the equations

rxn-i+Cihn

(5.1)   ù(xn_i + Cihn) = g(xn-i + Cihn) + / k(xn-i + Cihn,s,ü(s)) ds,
Jx0

i = 1,2,..., v. Observe that unless c\ = 0 and c„ = 1, û may have jump disconti-
nuities at the grid points xn.

Let quadrature rules

Jo

I
f(s)ds^Y(*ijf(eij),        2 = 1,2,... ,i/,

1 m

fis)ds*Yv}fitj)

be given which are of polynomial order s¿, i = 1,2,..., v, and t respectively. Ob-
viously, Si > p. — 1 and t > m — 1. In practice, we replace (5.1) by its discretized
version

U(xn_i + Cihn) = Pn(xn_i + Cihn)

(5.2) + hnYt ai]k(xn-i + Cihn, xn-i + eijhn, u(xn-i + eijhn)),
j=l

i = 1,2,... ,v, where Fn(x) is given by (4.4). Setting

(5.3a) rt(n) :=u(xn-i+Cihn),        1,2,...,v,

(5.3b) yn:=u(xn-i+hn),
ßiji :=L¡(eij),        i,l= 1,2,... ,v, j = 1,2,... ,p,

(5,4) wr.= Li(l),        i = l,2,...,v,

where the L,'s are the Lagrange fundamental polynomials

j=l,j¿i(Cl       C3>

the collocation method (5.2) takes the form (1.3) with 0¿ = d^ = c¿, i = 1,2,..., v,
and j = 1,2,...,p.

We will prove that the collocation polynomial u is a NCE of the equivalent VRK
method (1.3), provided that the polynomial orders s¿ and t of the quadrature rules
employed for the discretization of (5.1) are sufficiently high. We have the following
theorem.
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THEOREM 5.1. Assume that the collocation points Ci appearing in (5.2) are the
abscissae of a quadrature rule of polynomial order 6 (6 > v — 1).  We have:

(i) If cv = 1, Si > 6, i = 1,2,... ,v, and t > 6, then the corresponding VRK
method (1.3) has order p = 6 + 1, u is a NCE of degree d = v — 1, and the global
order of the method is also 6 + 1.

(ii) If cu < 1, Si > v — 2, i = 1,2,..., v, and t > v — 1, then the corresponding
VRK method (1.3) has order p = v — 1, u is a NCE of degree d = v — 1 satisfying
the condition (3.5), and the global order of the method is p+ 1 = v.

Proof. Observe first that by (5.3a) u is given by (3.1) with

(5.6) Wi = Li,        i = 1,2,...,u,

where the L¿'s are defined by (5.5), and (5.3b) is exactly the condition (3.2). It was
shown in [9] that there exists a function Hn(x,s) whose derivatives are uniformly
bounded as hn —* 0, such that

(5.7) y„(x) - u(x) = rn(x) + /       Hn(x, s)rn(s) ds,
Jx„-i

x G [xn_i,xn]. Here, yn is the local solution given in Definition 2.1 and rn is the
local defect defined by

(5.8) rn(x) := Fn(x) + k(x,s,u(s))ds - u(x).

By standard analysis we can prove that the derivatives of the collocation solution
u are uniformly bounded as hn —► 0. Therefore, comparing (5.8) with (5.2), we
obtain

(5.9) mzx{\\rn(xn-i + Clhn)\\ :l<i<v} = 0(hsn+2),

where

(5.10) s :=min{s¿: 1 < i < v).

Thus, since rn is sufficiently smooth, we get

max{||rn(x)||: xn-i <x<xn} = 0(h™n{">*+2>),

and, by (5.7),

(5.11) max{||j/n(x) - ti(x)|| : xn-i <x<xn} = 0(Cin{"'s+2})-

Moreover, if G is a sufficiently smooth matrix-valued function, then in view of (5.7)
we obtain

(5.12) [ "  G(x)(yn(x)-u(x))dx= Í "   Rn(x)rn(x)dx,
Jxn-i Jxn-i

where
Pn(x) := G(x) + j   " G(s)Hn(s,x)ds.

J X

(i) Since cu = 1 and, by (5.10), s > 6, (5.3b), (5.7), and (5.9) yield

(5.13) yn(xn)-yn= f "  Hn(xn,s)rn(s)dS + 0(hn+2).
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On the other hand, the Ci's are the abscissae of a quadrature rule of polynomial
order 6 on [0,1], and thus, by (5.9) and (5.13), we get

\\yn(Xn)-yn\\=0(hn+2),

which means that p = 6 + 1. Moreover, since s + 2>¿> + 2>f + l, (5.11) implies
(3.3) with d = v - 1, while as before, (5.9) and (5.12) imply (3.4). Finally, in view
of (4.2), t>6 = p-l = r-2, and it follows from Theorem 4.2 that the global
order of the method is p = 6 + 1.

(ii) Since c„ < 1 we cannot take advantage of (5.9) to estimate the order of the
method. However, since by (5.10) we have s > v — 2, the relation (5.11) yields

\\yn(xn)-yn\\ = 0(K),

which means that the order of the method (1.3) is p = v — 1. We have also (3.3)
with d = v — 1 and (3.5). Finally, in view of (4.2), t > v — 1 = p = r — 2, and
it follows from Theorem 4.2 that the global order of the method (1.3) is
p+l = v.    D
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