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STELLINGEN

behorende bij het proefschrift van R.A.W.M. Henkes

Het gebruik van de alom bekende warmteoverdrachtswet voor de turbulente
natuurlijke convectie grenslaag langs een hete verticale plaat, waarbij het
Nusselt getal aan de wand met een /3 macht van het Rayleigh getal afhangt,
is af te raden voor Rayleigh getallen boven het beperkte gebied van Rayleigh
getallen waar experimenten bekend zijn.

Dit proefschrift.

De bronterm in de e-vergelijking van het lage Reynolds k—e turbulentie
model van Jones & Launder wordt in de berekeningen van To & Humphrey
voor de turbulente grenslaag langs een hete verticale plaat ten onrechte
verwaarloosd.

To, WM. & Humphrey, J.A.C. 1986 Int. J. Heat Mass Transfer 29, 573-592.

Het is een nadeel van het gebruik van lage Reynolds k —e modellen in natuur-
lijke convectie berekeningen dat de lage Reynolds termen, hoewel primair aan
het k—e model toegevoegd om de turbulentie dicht bij de wand te dempen,
ook de laminaire-turbulente omslag op niet-eenduidige wijze uitstellen.

Dit proefschrift.

Bij zijn afleiding van alle mogelijke gelijkvormige oplossingen van de
grenslaagvergelijkingen voor de verticale natuurlijke convectie grenslaag heeft
Semenov verzuimd zich af te vragen of al die oplossingen ook goed aansluiten
op de fysische omgeving.

Semenov, V.I. 1984 Heat Transfer - Sov. Res. 16, 69-85.

De grote waarden van de geschaalde verticale snelheid in de presentatie van
de natuurlijke convectie rekenresultaten van onder meer De Vahl Davis en
Markatos & Pericleous worden veroorzaakt door het gebruik van een
onkarakteristieke snelheidsschaal. Orde 1 waarden zouden gevonden zijn
indien niet de karakteristicke snelheidsschaal voor kleine Rayleigh getallen
maar de karakteristicke snelheidsschaal voor grote Rayleigh getallen gekozen
was.

De Vahl Davis, G. 1983 Int. J. Num. Meth. Fluids 3, 249-264.

Markatos, N.C. & Pericleous, K.A. 1984 Int. J. Heat Mass Transfer 27, 755-
772.
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De bechmark configuratie zoals geformuleerd in de GAMM workshop Numer-
ical Simulation of Oscillatory Convection in Low-Pr Fluids (Marseille, 1988),
ter berekening van de Hopf bifurcatie in de Navier-Stokes vergelijkingen,
vormt een duidelijk voorbeeld waarbij het gebruik van een (eerste orde)
upwind schema in de discretizatic van de convectie een veel onnauwkeuriger
resultaat geeft dan het gebruik van een centraal schema.

Henkes, R AW.M. & Hoogendoorn, C.J. 1990 Proc. GAMM workshop, B. Roux
(ed.), Notes on Numerical Fluid Mechanics, vol. 27, pp. 144-152. Vieweg.

De singulariteit die enige tijd na het plotseling in beweging brengen van een
cylinder ontstaat in de stroming beschreven door de grenslaagvergelijkingen
wordt uitgesteld door het toepassen van sterke visceuze-niet visceuze interac-
tie.

Henkes, RAW.M. & Veldman, A.E.P. 1987 J. Fluid Mech. 179, 513-529.

Veel tekstverwerkers maken een slecht onderscheid tussen het italic symbool
voor de v-snelheid (v) en het symbool dat doorgaans voor de kinematische
viscositeit gebruikt wordt (v), waardoor dergelijke tekstverwerkers minder
geschikt zijn voor de beschrijving van problemen uit de stromingsleer.

Het zoeken naar een contactlens vergt veelal een bril.

Uit de overweldigende belangstelling die momenteel voor het werk van de
schilder Van Gogh aan de dag wordt gelegd mag niet de conclusie worden
getrokken dat men heden ten dage veelal genuanceerder over moderne kunst
denkt dan honderd jaar geleden.

De ongeloofwaardige overacting die typerend is voor veel Nederlands toneel
kan mogelijk verholpen worden door op de toneelscholen meer aandacht te
besteden aan de methode van Stanislavski.

Mede doordat de meeste exemplaren van een proefschrift ongelezen blijven
moet extra veel zorg besteed worden aan de omslag.
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PRINCIPAL SYMBOLS

dimensionless wall-shear stress for cavity, 2v(9v/dx),,/(gBATH)
dimensionless wall-shear stress for plate, 2v(8v/dx),,/(g BATY)
frequency

also transformed stream function in chapter 3

gravitational acceleration

also transformed temperature in chapter 3

buoyant production of turbulent kinetic energy

height of cavity

turbulent kinetic energy

Nusselt number for cavity, —(H/AT) (87/3x),,

Nusselt number for plate, —(y/AT) (;9T/6x)w

averaged Nusselt number in cavity, f Nu d(y/H)
0

pressure

pressure correction in numerical iteration
shear production of turbulent kinetic energy
Prandtl number

Rayleigh number for cavity, g BATH Pr/v?
Rayleigh number for plate, g BATy>Pr/iv?
gradient of thermal stratification in cavity center, (H/AT) (3T/3y)
time

numerical time step

temperature

characteristic temperature difference, Tj, — T, for cavity,
T,—T, for plate

temperature of cold cavity wall

temperature of hot cavity wall or plate
horizontal velocity component

buoyant velocity scale for cavity, VgBATH
velocity scale for cavity, (gBATv)?

vertical velocity component

buoyant velocity scale for plate, VYV gBATy
velocity scale for plate, (gBAT V)3

velocity component perpendicular to # and v
horizontal coordinate

vertical coordinate

coefficient of thermal expansion
boundary-layer thickness

also amplitude of oscillation in chapter 5
Kronecker delta, =1 for i=j, =0 for i#j
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€ dissipation rate of turbulent kinetic energy
4 dimensionless length for plate, xNu,/y

v molecular kinematic viscosity

v, turbulent kinematic viscosity

p density

or turbulent Prandtl number for T

U stream function, u=-—3Y/dy, v=0/dx

U stream function at center of cavity
Superscripts

k iteration level

n time level

Subscripts

cr bifurcation in Navier-Stokes equations

i grid point in x-direction

J grid point in y-direction

max maximum of a quantity

trans laminar-turbulent transition in Reynolds equations
w wall condition

o0 environment condition



1. INTRODUCTION

1.1. Essence of natural convection

The Greek scientist Archimedes (287-212 b.C.) seems to be the first who related
the buoyant force to the influence of the earth’s gravitational field on density
differences. When Archimedes was getting into his bath-tub, maybe after a long
day of deep thinking, he felt how the bath water gave an upward force on his
body. The scientist became very enthusiastic and he cried out: eureka! (nﬁpn Ka),
I have found it. Archimedes formulated a law describing that a body immersed in
a fluid reveals an upward buoyant force that is equal (but opposite in direction) to
the gravity force on the fluid displaced by the body. Indeed Archimedes
discovered the buoyant force, but this was only the beginning. He left many
details to unravel by others, who were born after him.

An application of Archimedes’ law that clearly demonstrates the essence of
the physics that will be studied in this thesis is found in the rising of a hot-air bal-
loon. The air inside the balloon is heated, which decreases the density of the air.
Because now the density of the air inside the balloon becomes smaller than the
density of the surrounding air, Archimedes’ upward buoyant force will be larger
than the downward gravity force on the balloon. The disbalance of forces sets the
balloon into motion and causes it to rise. What happens to the large hot-air bal-
loon is what in essence also happens to every small particle in a fluid with density
differences. The density differences under influence of the gravity force give rise
to the natural-convection flow of the fluid. Particles of fluid that are less dense are
moved upward, and denser particles of fluid are moved downward. These
natural-convection flows are investigated in this study.

The adjective natural indicates that a density difference drives the flow, in
contrast to a forced-convection flow, where a pressure difference drives the flow.
Instead of natural convection some studies use the synonym free convection if the
external flow along a body in an open environment is concerned. Density differ-
ences can result from temperature differences, from differences in the concentra-
tions of chemical species in the fluid, or from the presence of multiple phases of a
fluid. In this study only natural-convection flows resulting from temperature
differences will be considered. Two elementary classes of natural-convection flows
with temperature differences are: heating (or cooling) from a horizontal wall
(heating-from-below) and heating (or cooling) from a vertical wall (heating-from-
the-side). The former class, for example, is characteristic for Rayleigh/Bénard
convection and for the meteorology of the earth’s atmospheric boundary layer.
Both classes of natural-convection flows play a role in different technical applica-
tions, like solar collectors, climate conditioning of rooms, isolation by double glaz-
ing, heat removal in micro electronics and cooling of nuclear reactors.

This thesis gives a theoretical study of the natural-convection flow belonging
to the heating-from-the-side class. We will solve the flow equations numerically.
The emphasis is on those situations in which the flow occurs in a thin layer close
to the wall, the so-called natural-convection boundary layer. Different flow
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FIGURE 1.1. The two geometries to be studied; (a) square cavity heated from
the side, (b) hot vertical plate.

phenomena related to the boundary layer will be investigated: laminar flow, bifur-
cation of the steady laminar flow to an unsteady flow, laminar-turbulent transition,
fully turbulent flow, wall functions, flow reversal in the boundary layer and the
thermal stratification in the environment of the boundary layer. The numerical
results will be compared with existing experimental data as reported in the litera-
ture. The study is restricted to two-dimensional flows.

1.2. Two geometries to be studied

Figure 1.1 shows the two heating-from-the-side geometries that are investigated
here: the square cavity and the vertical plate. In figure 1.1a we have the two-
dimensional square cavity (enclosure) that is differentially heated over the vertical
walls. The cavity has a hot left wall (with the temperature 7)) and a cold right
wall (with the temperature T,). The height of the cavity is H. x and y are the
coordinates in the horizontal and vertical direction respectively. Inside the cavity
is a fluid; both air and water will be considered. Figure 1.1b shows a further sim-
plification of the hot vertical wall of the cavity, namely the semi-infinite hot verti-
cal plate in an isothermal environment (in which T.. is the environment tempera-
ture). The temperature difference AT in both geometries (AT =T, —T, in the cav-
ity and AT=T,—T,, for the plate) gives density differences in the fluid. The den-
sity differences are proportional to AT and to the coefficient of thermal expansion
of the fluid (B). The density differences under influence of the gravitation force
(with the acceleration g) lead to buoyant forces, which set the fluid into motion.
The moving fluid gets a resistance force due to the viscosity of the fluid (v). Part
of the buoyant force is needed to overcome this resistance force. The natural-
convection flow depends on only two dimensionless parameters: the Rayleigh
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number (Ra) and the Prandtl number (Pr). The Rayleigh number is defined by
Ra=gBATH?Pr/v? and the Prandtl number is the ratio of the kinematic viscosity
and the thermal diffusivity of the fluid, Pr=v/a. Some natural-convection studies
introduce the Grashof number (Gr) instead of the Rayleigh number, with
Gr=Ra/Pr, but in this study we will consequently use the Rayleigh number. The
difference between the fluids air and water is expressed by a difference in the
Prandtl number; we use Pr=0.71 for air and Pr=7.0 for water. Because the plate
geometry in figure 1.1b does not have a fixed height H, the y-based Rayleigh
number will be used for the plate (Ra,=gBATy>Priv?).

We investigate the natural-convection flow up to Ra=10'> for the square cav-
ity and up to Ra,=10% for the plate. When the Rayleigh number is large (say
beyond 108 the natural-convection flow takes place in a thin natural-convection
boundary layer along the vertical wall. Besides the hydrodynamic boundary layer
(defining the velocity field, i.e. the flow) there also is a thermal boundary layer
(defining the temperature field). For both air and water, the hydrodynamic boun-
dary layer and the thermal boundary layer have the same order of thickness.
Because the Prandt]l number for water is larger than for air, the thermal boundary
layer for water is somewhat thinner than for air. The flow in the square cavity is
centro-symmetric with respect to the center of the cavity: the rising boundary layer
along the hot left vertical wall corresponds to the falling boundary layer along the
cold right vertical wall. Because of the centro-symmetry, it is sufficient to present
the results for the boundary layer along the hot wall only.

For the boundary layer along the vertical wall in figure 1.1b, the flow is
steady and laminar as long as the Rayleigh number is below a critical value
(Ray ). At Ra, ., the steady flow becomes unstable and an unsteady flow with
some characteristic frequencies results. When the Rayleigh number is further
increased more frequencies enter the flow, which gives a transition until a fully
turbulent boundary layer is found. The same occurs in the cavity of figure 1.1a:
up to Ra,, the flow is steady and laminar, at Ra,, the flow becomes unsteady oscil-
lating, and for higher Rayleigh numbers the boundary layers along the vertical
walls undergo a transition to a fully turbulent state.

1.3. Main questions

The main questions in this study are:

(i) What are the characteristics of the laminar and turbulent flow in the cavity and
along the plate, when the Rayleigh number is successively increased.

(i) What is the asymptotic structure of the laminar and turbulent flow in the limit
Ra — o for the cavity and in the limit Ra, - « for the plate.

(iif) How does the flow along the walls of the cavity compare to the flow along the
plate.

ad (i). The natural-convection flow is calculated by numerically solving the
incompressible Navier-Stokes equations, including the energy equation, for the
cavity and by numerically solving the boundary-layer equations for the plate. The
Boussinesq approximation is applied to the equations. The boundary-layer equa-
tions are a simplified formulation of the Navier-Stokes equations: diffusion in the



-4 -

y-direction of the vertical boundary is neglected with respect to the diffusion in the
x-direction, and also pressure gradients across the boundary-layer thickness are
neglected. These simplifications are only justified for a sufficiently large Rayleigh
number. The boundary-layer equations have a much simpler mathematical struc-
ture than the Navier-Stokes equations, and they require a far less computational
effort to solve. In particular the laminar flow along the plate in an isothermal
environment is very easy to calculate, because for this case the steady boundary-
layer equations (which actually are partial differential equations in the two space
coordinates x and y) reduce to ordinary differential equations (which depend on
only one transformed coordinate £). The laminar flow in the cavity will be calcu-
lated by solving the steady Navier-Stokes equations. The unsteady Navier-Stokes
equations in the cavity will be solved to determine at which critical Rayleigh
number the steady laminar flow becomes unstable. At Ra, the Navier-Stokes
equations at large time will show a bifurcation, implying that the steady solution
branches to an unsteady oscillating solution. We investigate whether the resulting
frequencies are related to an instability in the boundary layers along the vertical
cavity walls. If the Rayleigh number is gradually increased further beyond Ra,, the
flow becomes fully turbulent. The direct simulation of the fully turbulent flow at
large Rayleigh numbers, by solving the unsteady three-dimensional Navier-Stokes
equations, must await the development of a faster generation computers. There-
fore we have time-averaged the Navier-Stokes equations, which yields the Rey-
nolds equations. The correlations between fluctuating quantities in the Reynolds
equations are modelled by the k—e turbulence model. The performance of the
standard k—e model and different existing low-Reynolds-number k —e models will
be compared by solving the turbulent boundary-layer equations along the hot verti-
cal plate in an isothermal environment. The low-Reynolds-number models modify
the standard model to account for the low-turbulence levels which occur, for exam-
ple, very close to the wall. The k—e models use two partial differential equations
for the turbulent quantities k (the kinetic energy of the turbulence) and e (the dis-
sipation rate of turbulent kinetic energy). Next to the k—e models also the
Reynolds-stress model will be used to calculate the turbulent flow along the plate.
Besides the equations for k and €, the Reynolds-stress model uses partial differen-
tial equations for the turbulent stresses in all directions. The standard k—e model
and two of the best performing low-Reynolds-number k—e models for the plate
(the models of Chien and Jones & Launder) are applied in the Reynolds equations
to calculate the turbulent flow in the cavity.

ad (ii). The large-Rayleigh-number laminar and turbulent solutions are used to
detect whether the flow shows asymptotic structures in the limit of an infinitely
large Rayleigh number. In an asymptotic structure proper scalings for the velocity,
the temperature and the space coordinates exist which make the scaled solution
independent of the Rayleigh number. Actually the boundary-layer equations are an
asymptotic formulation of the Navier-Stokes equations. Also the boundary-layer
equations themselves might show an asymptotic behaviour in the limit Ra, - =.
An asymptotic solution of the boundary-layer equations is also referred to as a
similarity solution. If the environment is isothermal, the laminar boundary-layer
equations simplify to ordinary differential equations, defining the well-known
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similarity solution of Ostrach. In this study we will analyze all possible tempera-
ture distributions T,(y) of the environment that also admit a laminar similarity
solution. If a similarity solution of the turbulent boundary-layer equations exists it
can be used as a so-called wall function in turbulent computations. For the
forced-convection boundary layer these wall functions are well-known. On the
contrary, the wall functions for the vertical natural-convection boundary layer are
not fully known in the literature; we will investigate here whether we can directly
derive them from the numerical results for the turbulent boundary-layer equations.
Wall-functions can be valuable in calculations for more complicated configurations,
where the computational effort can be reduced by assuming that wall functions
correctly describe the flow along the walls, implying that no numerical grid points
are needed there. Not only for the plate, but also for the cavity, the proper scal-
ings and asymptotic behaviour of the laminar and turbulent flow will be studied.

ad (iii). The main difference between the plate in an open environment and the
cavity is that the plate environment is isothermal whereas the core of the cavity is
thermally stratified (the isotherms are horizontal and the temperature increases
with the height). By solving the boundary-layer equations for a stratified environ-
ment and by comparing this solution with the Navier-Stokes solutions, we will
study whether the laminar boundary layer along the vertical cavity wall indeed can
be interpreted as a boundary layer along a plate in a stratified environment. The
stratification in the cavity for the turbulent case turns out to be much smaller than
for the laminar case. Therefore, the turbulent boundary layer along the cavity
wall will be compared with the turbulent boundary layer along the plate in an
isothermal environment.



2. FLOW EQUATIONS

2.1. Introduction

A mathematical model for fluid flows that includes viscosity was originally pub-
lished by Navier (1822) and by Stokes (1845). For some special boundary condi-
tions and geometries analytical solutions of the so-called Navier-Stokes equations
exist. Apart from a few analytical solutions, for a long time the richness of other
solutions remained hidden in the Navier-Stokes equations. Nowadays these solu-
tions can be revealed with the help of a computer. The Computational Fluid
Dynamics (CFD) describes how a discrete representation (discretization) of the
Navier-Stokes equations can be made and how the solution of the discrete system
can be determined (solver).

In this chapter we introduce the Navier-Stokes equations and the simplifica-
tions applied in this study. In particular we will only consider incompressible
fluids and the Boussinesq approximation will be applied. In the case the flow is
turbulent (instead of laminar), we show how the turbulence can be modelled by a
k—e model. Possible boundary conditions for the equations are given. The princi-
ples of the finite-volume method, which is used to discretize the Navier-Stokes
equations, are outlined. The line Gauss-Seidel solver is used to iteratively deter-
mine the solution of the discrete system. The pressure is iteratively updated by the
SIMPLE pressure-correction method. Some relaxation methods to speed up the
convergence of the iterative process are summarized.

In the seventies computational packages were developed to numerically solve
the Navier-Stokes equations: TEACH, CHAMPION and PHOENICS. Recently
FLUENT was added to this list. All these packages use the finite-volume method
to discretize the Navier-Stokes equations and handle the pressure iteration by a
SIMPLE-like pressure-correction method. The iterative solver uses either a line-
coupling method or a field-coupling method. In the present study a code in the
same tradition was written to solve the Navier-Stokes equations. Also the code to
solve the boundary-layer equations, which are an approximation of the Navier-
Stokes equations, was especially developed for this study.

A lot of discretizations and solvers have been proposed in the literature.
Which one has to be preferred can be largely problem dependent. We do not
claim that the approaches used in our own codes are optimum, giving a desired
numerical accuracy of the solution against the lowest computational effort. New
methods appearing in the literature, however, have to be interpreted with care: the
Navier-Stokes equations are so complex that the superiority of a proposed modifi-
cation can often only be proved for a selected problem. An extended review of
discretizations and solvers for the Navier-Stokes equations is given in the book by
Peyret & Taylor (1983). Details about the finite-volume discretization and the
SIMPLE solver are given in the book by Patankar (1980).



2.2. Navier-Stokes equations

Considered is the flow of a fluid (with the velocity components u;) in time (¢) and
space (with the Cartesian coordinates x;). The three principal thermodynamic pro-
perties of the fluid are: density (p), pressure (p) and temperature (T'). The classi-
cal thermodynamics postulates that the thermodynamic state of a fluid is deter-
mined by only two independent thermodynamic properties. A third thermo-
dynamic property is related to the two independent properties by the equation of
state of the fluid. In differential form it reads

d
92— cydp - par @

where kr is the coefficient of isothermal compressibility and B is the coefficient of
thermal expansion. The enthalpy (k) is also frequently used as a thermodynamic
property. The equation of state for » is given by

dh = %(I—BT)dp + ¢,dl (2.2)

where ¢, is the specific heat at constant pressure. Gradients in the thermodynamic
properties can give rise to the flow of the fluid. Conservation laws define the par-
tial differential equations that describe the dependent variables (velocity com-
ponents and two thermodynamic properties) as a function of the independent vari-
ables (time and space coordinates). This system of flow equations is referred to as
the Navier-Stokes equations.
Conservation of mass is expressed by the continuity equation
d

o+t a—a—pu = 0. (2.3a)

Newton’s second law describes the conservation of momentum according to the
momentum equation

d 3

—pu; + — + ——P 2.3b

ar P ox; pujiy = p8; T 2 % (2.3b)
The first law of thermodynamics conserves energy according to the energy equation

3 D 3 )3 ou;  9g;

A - + Z2—0nu. lh- = pP.— = —L, 2.3¢

arP [ p ] 3x; PYj [ p ] 7 ox; ax; - (@3

In the energy equation we have excluded transport of energy by radiation. g; is
the gravitational acceleration. The stress tensor Pj; is modelled by the Newtonian
constitution equation

aui du;
N pp— —— + _aL s 2‘4
pU p8 ;J.iS,.lp 6x + [ o, ox, ] (2.4a)

The conduction vector g; is modelled by Fourier’s law

aT
q; = —)\a— (2.4b)
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According to the second law of thermodynamics the model parameters p (dynamic
viscosity) and A (thermal conductivity) have to be positive. The models treat them
as thermodynamic properties: they depend on only two independent thermo-
dynamic properties, for example the pressure and the temperature.

The equation of state for gases can be approximated by the gas law
p = p/RT. (2.5a)

Here R=RyM; Ry=8.313J K 'mole™! (universal gas constant) and M is the
mass of the gas per mole. The gas law is exact for all gases in the limit of vanish-
ingly small pressure. With equation (2.1) this gas law can also be written as

B = 1T, kr = l/p. (2.5b)

Gases satisfying this gas law for each pressure are referred to as ideal gases. The
kinetic gas theory shows that for two-atomic gases the Prandtl number
(Pr=pc,/\) is constant and equal to one, if vibration and rotation of the atoms
are neglected; this implies that for gases with constant c, the dynamic viscosity
and the thermal conductivity similarly depend on the two independent thermo-
dynamic properties. With good accuracy, air can be considered as an ideal gas
(M =0.029 kg mole™") with a constant ¢, value (c,=1006J kgTK™1y. The
Prandtl number of air equals 0.71 (almost independent of the temperature and
pressure). The dynamic viscosity for air is nearly independent of the pressure; it
increases with the temperature. For the liquid water as well the pressure depen-
dence of the properties B, ¢,, i and A (or Pr) is small and they mainly depend on
the temperature. Pr and . strongly decrease with the temperature, whereas ¢,
and N are almost constant (c,=4200J kg~1K~1). Figure 2.1 gives the tempera-
ture dependence of p, B, p and Pr for both air and water at a pressure of 1 bar.

2.3. Some simplifications

For air and water ¢, can be taken constant and the pressure dependence of the

enthalpy can be neglected (this is exact for ideal gases). This reduces equation
(2.2) to

h =c,T. (2.6)
With this relation the Navier-Stokes equations (2.3) can be rewritten as
at ax; PY (2.72)

(unsteady term—convection)

) ] ap 8 2 9 9 ou; Oy

ar P T oy P T Ty TP T 3 ey T e M ey T ey

(unsteady term-—convection—pressure—buoyancy—dilatation—diffusion) (2.7v)
—a-pT + -Q—puT -0 p T 1 }9p uj_aﬂ_ + 2o (270
at ax; ox; Pr dx; ¢, | O ax; <

(unsteady term—convection—diffusion—compressibility—viscous dissipation)
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with
_ Ou; duy ou; ﬂl_ 2 duy duy,
ax; ox;  ox; ox 3 3x; ox;

In this study we consider air and water under conditions for which these fluids can
be assumed to be incompressible: the density only depends on the temperature (ky
is set to zero in equation (2.1)) and the compressibility term in the energy balance
is neglected. Also the viscous dissipation in the energy balance can be neglected.
The density and the coefficients B, pu and Pr are evaluated at a pressure of 1 bar.
A detailed analysis of the conditions under which these neglectings hold is given
by Gebhart (1962) and by Eshghy & Morrison (1966).

Further simplifications are made in the Boussinesq approximation (for details
see Gray & Giorgini, 1976). The Boussinesq approximation treats the coefficients
B, » and Pr as constants, which are evaluated at a characteristic temperature T,.
With exception of the buoyancy term, also the density is assumed to be constant
(evaluated at Ty). The density in the buoyancy term is linearized according to

oM _ T—T
p(To) b= B -

In two dimensions, the Navier-Stokes equations under the Boussinesq approxima-
tion read (taking g,=0 and g,=—g)

(2.8)

du , oV _

ox ay

du du du 1 op u . 3%

R B A - S e~ 2.9
ar  Yax T Vay p ox V[axz ay? (29
av av av 1 op a%v | %

AR L AL A A Te Sy N Y [ A A

o ox Vay p 3y 8R( 0 v[axz ay?

2 2
a_T.+u_‘E+v§£=L[ﬂ+ﬂ]_
ax2  ay?

at ax ay Pr
Here v (= w/p) is the kinematic viscosity. In the isothermal, no-flow situation the
momentum equation (2.7b) reduces to —dp,/dx;+p(Ty)g;=0, in which p; is the
hydrostatic pressure based on the isothermal temperature T;,. Instead of the full
pressure we can also treat the corrected pressure p*=p—p, as a variable in the
Navier-Stokes formulation. This corrected pressure (with omission of the *-
superscript) is used in the Boussinesq formulation (2.9). Gray & Giorgini show
that the Boussinesq approximation requires that the characteristic temperature
difference (AT) is sufficiently small. If the averaged temperature is 15 °C, for
example, the error in the terms of the Boussinesq formulation (2.9) due to the
approximation is smaller than 10% as long as AT<28.6 °C for air and as long as
AT <1.25°C for water. This illustrates that the applicability of the Boussinesq
approximation is restricted to much smaller temperature differences for water than
for air. In particular B for water changes sign at 4 °C, implying that the Bous-
sinesq approximation totally fails if the averaged temperature for water comes
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close to this value.

2.4, Turbulence modelling
If the characteristic velocity of the flow is uy and the characteristic length is x, the
Reynolds number of the flow can be defined as Re=ugxy/v. If the Reynolds
number is sufficiently small the flow is laminar, but for larger Reynolds numbers
the flow becomes turbulent. Part of the turbulent structures are characterized by
small, short-living eddies, having the Kolmogorov time scale (xo Re V%/u,) and
length scale (xo Re”¥4). Both memory and speed of present-day computers are
insufficient to calculate the details of this turbulent flow: the turbulence has to be
modelled. In order to model the turbulence, the turbulent fluctuations in the
Navier-Stokes equations are_averaged in time. The Reynolds-averaging splits the
variable ¢ into a mean part ¢ and a fluctuating part ¢’
™2 ,
d(x;,t) = d(x) + &'(x;,1);  with ¢ = lim [ ﬂ’-;';il

te®

dr’. (2.10)

Rewriting the Navier-Stokes equations in terms of equation (2.10) and Reynolds-
averaging the result again simplifies the Navier-Stokes equations to the Reynolds
equations. If the density fluctuations are neglected, the Reynolds equations read

9 4 8 s
or " ax; 0
d —— [ —
—ou: — DU = A1
Pt o, pu;u; (2.11)
5 dug om o

..._GK.F‘,__Q_E_.J‘_.*._Q._ ._...‘_+_L..._§...".’.’

ax; P& x; 3 K Axy dx; H ax; ax; ax; Puy

057+ D= Sl 0o kg B

v J
ot axj axj Pr axj axj cp p

where € is the dissipation rate of turbulent kinetic energy

du;" ou;' + ou;' du;' 9 ' au,’]
v ax; ox; ax; ox; 3 ox ax )
Because v is small, both the viscous dissipation and the turbulent dissipation in the
energy equation can be neglected. The Reynolds averaging adds the gradients of
the so-called Reynolds stresses to the momentum equations and it adds the gra-
dients of the turbulent heat fluxes to the energy equation. A different averaging is
used in the Large Eddy Simulation of turbulent flows (see e.g. Rogallo & Moin,
1984); a filter is applied that only averages the smallest eddies, whereas the
representation of the evolution of the larger eddies by the unsteady terms remains
unchanged.

The cross-term correlations in the Reynolds equations have to be modelled:
this is the closure problem of turbulence. Reviews of existing models are given by
Reynolds (1976), Rodi (1980) and Lakshminarayana (1985). Two classes of
models can be distinguished: eddy-viscosity models and Reynolds-stress models.

(2.12)

€ =
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The eddy-viscosity models define a model for the turbulent viscosity v, in the
identities

du; du; 2 du
—g T = 44 k
U = + — =9, |k+tv,—
U u; v, [axj o, ] 3 i [k v, ox, ] (2.13a)
T v, oT
—u T = 2 .
u; o7 0%, (2.13b)

Here oz is the turbulent Prandtl number for the temperature and &k
(=(u'*+uy'>+u3'?)/2) is the kinetic energy of the turbulent fluctuations. Equa-
tions (2.13) have the same structure as equations (2.4). v, satisfies the identity

v=c¢c,VL (2.14)

where V and L are a characteristic velocity and length for the turbulence. In gen-
eral ¢,,, V and L can still be functions of time and space. v, can be approximated
in different ways:

(i) v, is constant (Boussinesq model). This is a very simplified approach, which
does not recognize that turbulence is a property of the flow rather than a property
of the fluid.

(i) zero-equation (or: algebraic) models. These models use an algebraic relation
between v, and other variables. The most famous algebraic model is Prandtl’s
mixing-length model. It takes L proportional to the distance to the wall, whereas V
is taken as the product of L and the velocity gradient in the direction normal to
the wall. An extension of Prandtl’s mixing-length model is described by the alge-
braic model of Cebeci & Smith (see Cebeci & Bradshaw, 1984), which is often
used to model turbulent boundary layers. The Cebeci & Smith model is one of the
models which we will apply to the turbulent boundary layer along the hot vertical
plate in the isothermal environment (see chapter 6).

(iii) one-equation models. These models solve one partial differential equation for
a to v, related variable. For example, in equation (2.14) the model can use an
algebraic expression for V and a differential equation for L.

(iv) two-equation models. These models solve two partial differential equations for
two to v, related variables. The most famous two-equation model is the k—€
model, giving differential equations for k and €. Concerning equation (2.14), this
model uses a constant c,, and sets V=k'Z and L=k%e. 1In this study, most of the
calculations for the turbulent boundary layer along the hot vertical plate in the
isothermal environment (chapter 6) and all turbulent calculations in the cavity
(chapter 7) will apply the k—e model.

Reynolds-stress models derive transport equations, including convection and
diffusion, for all the Reynolds stresses u;';” and #;'T". Often some of the result-
ing partial differential equations are simplified to algebraic equations (giving an
algebraic-stress model). We will perform some of the calculations for the tur-
bulent boundary layer along the hot vertical plate in the isothermal environment
with the (fully differential) Reynolds-stress model. Details of this model will be
given in section 6.11.
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In this chapter we only explain the standard k —e model. Different modifica-
tions of the standard k—e model will be compared for the turbulent flow along the
plate and in the cavity. These modifications, giving so-called low-Reynolds-number
k—e models, account for the low turbulence levels in the flow. The precise form of
the low-Reynolds-number modifications will be given in the chapters 6 and 7. A
form of the (standard) k—e model was originally proposed by Harlow & Nakay-
ama (1967). The k—e model is very frequently used in the literature and is usu-

ally considered as a good compromise between physical accuracy and computa-
tional effort.

The turbulent structures consist of a spectrum of eddies. The size of the larg-
est eddies is often determined by the size of the configuration, whereas the smal-
lest eddies have the Kolmogorov length. The largest eddies extract their kinetic
energy from both the gradient-mean-velocity ficld and the gradient-mean-
temperature field. The smaller eddies extract their energy from the nearest larger
eddies. Finally, the energy reaches the smallest eddies where it is dissipated by
molecular viscosity with a rate € . Therefore k and € are two very characteristic
properties of the turbulence, which seem to be a good starting point for modelling
the characteristic turbulent velocity (V=k"2) and length (L=k%?%e€). Because the
k—e model treats ¢, V and L as scalars, also v, is a scalar. This absence of a
direction dependence implies that the k—e model cannot be expected to work well
in strongly anisotropic turbulence.

We derive the equations for k and €, neglecting the density fluctuations every-
where except in the buoyancy term. ¢, in equation (2.14) is taken constant. The
momentum equation in the Reynolds equations (2.11), multiplied with u;, and the
momentum equation in the Navier-Stokes equations (2.7), multiplied with u;, are

subtracted from each other. Afier Reynolds-averaging of the result an equation
for k is obtained

9 — § ——
3P ax, pu;k (2.15)

F) ;' 6141-' l 8 -, = - , 0p’
R P ~ LS ST + Py + G, —
i aij[ ox; ax; 2 3x; Pt ity PR T PRk boox;

1 1I 111 v A\
with

ou; _
Pr = —uu; a—xl s Ge = p'u; &ilp.
J
The left-hand side consists of an unsteady term and a convection term. The right-
hand side consists of viscous dissipation and diffusion (I), turbulent diffusion (II),
shearing production (III), buoyancy production (1V) and pressure diffusion V),
Term 1 is split into a viscous diffusion part and a viscous dissipation part

du;’ du;’ -
uy =2 L Y U T S ) (2.16a)
axj ax] ax,- ax! axj
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Term II is modelled according to

L 8 somrrr 8PVt 0k

; . (2.16b)
2 ox; ox; oy 0x;

Here oy is the turbulent Prandtl number for k. The Reynolds stress —u;u,” in III

is modelled according to equation (2.13a) and p'y;” in IV is modelled analogously
to equation (2.13b)

v —
o = —— 98 (2.16¢)
U'T axi
Under the Boussinesq approximation density fluctuations are rewritten as tempera-
ture fluctuations
—— == = Vi AT
u = —pPu,'T' = pp———. 2.16d
Yz PBu; pB or ox ( )
Term V is neglected. In the k—e model an approximated expression for € is used;
on the right-hand side of equation (2.12) neglected are the second term (which is
exact for homogeneous turbulence) and the third term (which indeed vanishes if
density fluctuations are neglected). What remains is

au,-' aui'
v .
6Xj axj

€= (2.17)

After some mathematical manipulations with the Navier-Stokes and Reynolds
equations an equation for e is found

iai + ._?_Blge =

at axj
du;' du;’ ' ap’ du;" du;' duy'
__[Mk’ : o+ 9y kﬁl’..._.u_a_e_]_zp L .
ax, dx; dx dx; Ox; Axy, dx, dx; ox;
I It
% 8w’ ' gp'
— 2yt R S S S (2.18)
dxy0x; 90X, 0x; dx; ox;
111 v
iy (u;” dw,’  au;’ ouy’ o o
N B o ML ]_ w2 T
ax, | ox; Ox; dx; Ox; 9x; 9x;0x;
v VI

Term I consists of three contributions: turbulent diffusion, pressure diffusion and
molecular diffusion. The pressure diffusion is neglected and the remaining part is
modelled as

du;" ou;’ pv
__9_ wi’ ui omi p’a_e = L[p+h]£ (2.19a)
axk

ax; 3x; x 3x; o, ) ox;
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Here o is the turbulent Prandtl number for €. Term II and III both explode for

increasing Reynolds number, but their sum remains finite. The sum is modelled
as

du;' du;' ouy’ — 5 o%u;’ &%u;’

v
axk axj axj P éxkaxj é‘xkaxj

= BlegPi—cae) L. (2.19)
¢¢p and c, are model constants. Term IV is modelled as

2,34 dp"

axj ij

-, €
8 = Ce10e3PGk;- (2.19¢)

C¢3 is a model parameter. Contributions V and VI can be neglected sufficiently far
from a wall; close to the wall low-Reynolds-number modifications have to be
applied. In the sequel bars to denote the averaged values will be omitted.

2.5, Boundary and initial conditions

According to the classification of Courant (1962) the partial differential equations
for u, v, T, k and € are parabolic in time and elliptic in space. Heuristically this
implies that initial values for all these variables have to be specified at =0 and a
boundary condition for each variable is required at the boundary of the spatial
domain.

For the velocity the following types of boundary conditions can be used:
(i) all velocity components are specified (i.e. Dirichlet boundary conditions).
(ii) both normal and tangential stress components are specified.
(iii) the normal stress component is specified in combination with the tangential
velocity components (i.e. Neumann or pressure boundary condition).
(iv) tangential stress components are specified in combination with the normal
velocity component.
If the boundary conditions (i) are used for the velocity, it is sufficient to fix only
the level of the pressure (for example by prescribing the pressure in one point).

For the temperature two types of boundary conditions can be used:
(i) temperature specified (Dirichlet boundary condition).
(ii) normal component of the conduction vector is specified (Neumann boundary
condition).

Boundary conditions for k and e can also be either of the Dirichlet or of the
Neumann type; their specification is part of the turbulence model. In turbulence
calculations, often k and € (and u, v and T) are not specified at the wall but at the
first inner grid point; the solution between this first inner point and the wall is
approximated by a universal profile which is known as a wall function. The form
of the wall function for the vertical natural-convection boundary layer is not
clearly known yet. The calculations for the plate in chapter 6 are performed totally
up to the wall, applying low-Reynolds-number modifications instead of wall func-
tions. These calculations will be used to derive wall functions for the turbulent
natural-convection boundary layer along the vertical plate.
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FIGURE 2.2. Finite-volume grid used to discretize the Navier-Stokes equations.

2.6. Discretization of the Navier-Stokes equations

In order to solve the Navier-Stokes (or Reynolds) equations numerically, the equa-
tions have to be replaced by a discrete system of algebraic relations between the
variables at a finite number of grid points. This discretization has to be consistent:
the deviation between the discrete equations and the Navier-Stokes equations has
to vanish if the number of grid points is increased to infinity. Mostly the differen-
tial equations themselves are directly discretized (e.g. with finite differences, finite
volumes, finite elements or spectral functions). It is also possible to discretize any
system that is consistent with the Navier-Stokes equations for an infinite number
of grid points (e.g. discrete-vortex method, method with cellular automata).
Numerical solutions for a problem make only sense if it has been checked that the
numerical truncation error, i.e. the difference between the finite-grid solution and
the zero-grid solution, is sufficiently small. An indication that this error is small
can be obtained by repeating the calculation with an increased number of grid
points and verifying that this leads to only a small change in the numerical solu-
tion.

The present study uses the finite-volume method as introduced by Patankar &
Spalding (1972). The finite-volume method divides the computational domain into
rectangular volumes, as depicted in figure 2.2. Unknown velocity components are
positioned in the middle of the sides of a volume and the scalar unknowns (p, T, k
and €) are positioned in the center of the volume. This staggered-grid concept was
introduced by Harlow & Welch (1965) and has advantages in discretizing the pres-
sure gradients in combination with the continuity equation.
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To explain the finite-volume method we consider a two-dimensional
convection-diffusion equation for a scalar transport unknown ¢ (= T, k or €).

aag; +divf = s°. (2.20a)

Here, f is the flux vector and s® is a source term. L is the sum of a convection
part f°=yd and a diffusion part f4=—v®Vd. Equation (2.20a) is integrated over
the finite volume around grid point (i, j), rewriting div £ as fluxes through the
sides of the (i, j)-volume with the help of Gauss’ divergence theorem. (The
integration is performed over the finite volumes around the staggered grid points

for the velocities u and v if the momentum equations are considered, see figure
2.2). We obtain

I 2 gy + [UE-Mdy +

vol. i, j) 9! side (2.200)
JU¥=fS1ax = [ s® dudy. :
side vol. (i, j)

The superscripts E, W, N and S refer to the east, west, north and south side of
the volume respectively. The remaining integrals are approximated as

d
[%] AxAy + fivin, j=fi-12, 1 Ay + Ui, jr1n—fi, j-10) Bx =
i, Jj

s®;, j Axdy + AxAy O(Ax?, Ay?) (2.200)

in which the size of the grid is Ax=x;,5—x;_1 and Ay=Yy;,;5=¥j-12. The
finite-volume method has the advantage that it gives a conservative discretization:
numerical mass, momentum and heat fluxes can be indicated that are conserved
over the domain. The integration in time in equation (2.20c) is performed fully
implicitly: all spatial derivatives are evaluated at the new time level n. The
unsteady term, the fluxes and the source are further discretized with finite differ-
ences. The unsteady term at the time level n is optionally discretized with two
time levels (B2 scheme) or with three time levels (B3 scheme) giving a first- and
second-order truncation error in time respectively

no_hn-l
_ai] _ 9T L o (2.21a)
a |, At

3$F —4dP5! + $r72
_a_i - ¢z,] ¢l‘j ¢h] + O(Atz). (2.21b)
6t i.j 2At

Here Ar=1"—¢""1, The source term and the diffusion part of the flux are discre-
tized with a second-order truncation error, for example
bit1,j

Bt mi 4 oard, (2210

1
d L= —=(p® 4+t
flein, j 2(":,1 %1, j) e

In order to discretize the convection flux it is rewritten as

fic+1/2,j = “i+1/2,j¢E (2.21d)
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where &£ is an approximation for ¢ at the east side of the volume (i, j). Dif-
ferent approximations for &£ are proposed in the literature, for example:
(i) central scheme

¢F = (&, j+disy, P2

(ii) first-order upwind scheme (B2 scheme)
. {¢i,j if w41, ;20
¢° = i1, i Upyp, ;<0
(iii) second-order upwind scheme (B3 scheme)
. {(3d>,-,j—d>,-_1,j)/2 if w41, ;=0
By, b, )2 0 w4 ;<0

(iv) QUICK scheme (Quadratic Upstream Interpolation for Convection Kinemat-
ics; introduced by Leonard, 1979)

{(¢i,j+¢i+1,j)/2 = (b, j720; jtdigg )8 A uyyp ;=0
TNy, i, )2 = (by 7204, j b2, )8 Uy ;<0

Schemes (i), (iii) and (iv) lead to a second-order truncation error in the approxi-
mation of div £°, whereas scheme (ii) gives only first-order accuracy. Shyy (1985)
solved the steady one-dimensional convection-diffusion equation with a zero source
term, and compared the different approximations for the convection. The central
scheme (i) shows wiggles (i.e. point-to-point oscillations) if the grid-Reynolds
number (Re, = |u |Ax/v®) becomes larger than two. As a remedy against wiggles
an upwind scheme (ii, iii or iv) can be used. The first-order upwind scheme (ii)
most effectively damps wiggles, in turn for a smaller order of the truncation error:
this scheme is said to show a large artificial (or: numerical) diffusion. De Vahl
Davis & Mallinson (1976) show that the artificial diffusion of the first-order
upwind scheme in a two-dimensional problem is maximum if the streamlines and
grid lines intersect with 45°. This cross-wind artificial diffusion is removed in the
Skew-Upstream-Difference-Scheme of Raithby (1976). This upwind scheme discre-
tizes the convection with first-order accuracy in the local direction of the stream-
line. Such a scheme makes only sense if the cross-wind artificial diffusion is indeed
larger than Shyy’s one-dimensional artificial diffusion. Besides accuracy, the
choice of the discretization scheme for the convection also influences the stability
of the numerical iteration process to solve the discrete system (see next section).
Numerical (in)stability indicates whether perturbations are amplified or suppressed
during the iteration process. The second-order schemes (and the central-scheme in
particular) are less stable than the first-order upwind scheme. In this study we
optionally use the central scheme or the hybrid scheme. If the grid-Reynolds
number exceeds the value 2, the hybrid scheme locally switches from the central
scheme (i) to the first-order upwind scheme (ii) and sets the diffusion contribu-
tions to zero.

¢E

The pressure plays a peculiar role in the incompressible Navier-Stokes equa-
tions, because the pressure does not appear in the continuity equation. Therefore,
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the continuity equation acts as a constraint on the velocity field: the pressure has to
be determined such that the velocity field in the momentum equation satisfies the
continuity equation. This implies that the divergence operator in the continuity
equation and the gradient operator for the pressure in the momentum equation are
closely related. Uncareful discretization of the continuity equation and the pres-
sure gradient can lead to a large numerical inaccuracy (wiggles) in the pressure.
Van Kan (1986) shows that the finite-volume method on a staggered grid leads to
a proper discretization. For constant p it gives

Uit12, j " Ui-112, j Vi, j+127 Vi, j-112 2 2
+ =
Ax Ay O(Ax*, Ay%)
[_ap_] = M‘.‘_L + O(sz) (2.21e)
0 Jivin, Ax

[Qﬂ] _ Pij+17Pi,; + 0(Ayd).
9 )i j+1n Ay

Here the discretization of the continuity equation is found by integration over the
finite volume (i, j).

The grid is constructed by firstly distributing the velocity grid lines such that
the boundaries of the physical domain coincide with velocity grid lines. Secondly,
the scalar points are placed in the center of the volumes. In order to discretize the
boundary conditions, the grid is extended across the boundaries, introducing vir-
tual grid points. The use of virtual points has the advantage that no modification
of the discretization of the equations is required in the volumes along the boun-
daries. A Dirichlet boundary condition for u on the west or east boundary is
treated by assigning the value to the unknown at the boundary. Similarly, the
value for v is assigned to the unknown at the north or south boundary. Dirichlet
boundary conditions for the scalars are discretized with second-order accuracy,
using the virtual point. For example

biay i+, .

¢D‘u— - imax, j ; imax+1, j + O(sz) (2‘2“_)
where imax+1 denotes the virtual point. The discretization of Neumann boundary
conditions with virtual points is straightforward.

2.7. Solving of the discretized system
Many methods exist to solve the discrete system of nonlinear algebraic equations
that results after the discretization of the Navier-Stokes equations:

£ =0 (2.22)

¢ consists of the unknowns for u, v, T, p, k and € at all the grid points. The
solving method (solver) concerns:

(i) the treatment of the nonlinearities, arising because equation (2.22) cannot be
rewritten as F¢=4, in which F and p are independent of .

(ii) the solving of the linear matrix equation Fb=p.

Nonlinearities are always treated iteratively, whereas the solution of the matrix
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equation F$=p can be either direct or iterative.

The Newton-Raphson method only iterates for the nonlinearities. The

method fully linearizes f(b) as Jr (2, in which J; is the Jacobian matrix of the
vector f£. The Newton-Raphson process iterates according to

Fk-1¢_k = Ek—l (2.23)
with

Fk-1 = Jf(Qk_l) , Lk—l — Fk—lﬁk—l _ﬁ(d?_k_l)-

k denotes the iteration level. ¢* can directly be solved from this expression by
Gauss elimination. The Newton-Raphson iteration process converges with a qua-
dratic speed if the initial guess of ¢ is chosen sufficiently close to the exact solu-
tion. To the author’s knowledge no examples exist in which the Reynolds equa-
tions, with a k—e model for turbulence, are solved with the Newton-Raphson
method. Vanka (1985) used the Newton-Raphson method, except for the k—e
equations for which a line-iterative method has to be used to prevent the diver-
gence of the iteration process. Disadvantages of the Newton-Raphson method are
the large computer memory that is required to store J; and its small range of con-
vergence (i.e. an accurate initial guess is required).

Because of these disadvantages, often the solving of the different transport
equations (for u, v, T, k and €) is decoupled. The coupling is achieved by itera-
tion with either a line-coupling or a field-coupling method. The line-coupling or
field-coupling method updates the solution of the different discretized transport
equations one after the other at a line or one after the other in the whole field
respectively. After decoupling the discrete systems belonging to the different tran-
sport equations are solved. The uncoupled discretized systems for u, v, k and €
still contain nonlinearities. Instead of fully linearizing these nonlinearities by using
the Jacobian matrix, often the convecting velocities in the convection terms of the
momentum equations, as well as all nonlinearities in the k and € equations, are
evaluated at the previous iteration level. A linear equation F¢=p for the unk-
nowns of each transport variable remains to be solved. This solving can be either
direct or iterative. Examples of iterative methods are point-Jacobi, line Gauss-
Seidel or the Strongly-Implicit Procedure (SIP; see Stone, 1968). In the present
study the uncoupled transport equations are iteratively solved with a line Gauss-
Seidel method. Alternating Gauss-Seidel sweeps are made from the west to the
east side and from the east to the west side of the computational domain. To
update the solution at line i in a sweep from the west side to the east side, contri-
butions of the lines i—1 and i are solved at the new iteration level (i.e. they are
treated implicitly), whereas contributions of the line i+1 are evaluated at the pre-
vious iteration level (i.e. they are treated explicitly). In a sweep from the east side
to the west side the lines i+ 1 and i are treated implicitly, whereas the line i —1 is
treated explicitly. Also all nonlinearities at the line i are evaluated at the previous
iteration level. As a result, during the sweep only a tridiagonal matrix for each
variable remains to be solved at line i. The tridiagonal matrix is solved directly.
Line coupling is used to iteratively couple the different transport equations: in each
Gauss-Seidel sweep the different variables (#, v, T, k and €) are updated one after
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the other at a line.

As explained in the previous section, the pressure and the continuity equation
are closely related. As a consequence, the iteration for the pressure has to be cou-
pled to the iteration for the continuity equation. All of these so-called pressure-
correction methods have in common that the pressure in a finite volume is
increased/decreased as long as there is a net inflow/outflow of mass through the
sides of the finite volume. A variety of pressure-correction methods exist: SIM-
PLE, SIMPLEC, SIMPLER, SIMPLEST, PISO et cetera. The SIMPLE method
(Semi-Implicit Method for Pressure-Linked Equations), which was introduced by
Patankar & Spalding (1972), is used in the present study. The working of SIM-
PLE is illustrated for the simplified system

ou | ov

+ X =p
ax ay

2 2
ou , pyou  yduw _ _1op |8 8w (2.24)
ot ax oy p ox ox?2 ay?

2 2
oy yov_ _1p |0V, OV
ot ox ay p dy ax?  gy?

Here U and V are a fixed convecting velocity field. The finite-volume method,
with the central scheme for the convection, gives the following discretization at an
equidistant grid

ivz, j " Ui-102, ) i Vi, j+127 Vi, j—-112

=0 (2.252)
Ax Ay
1 n—1 n=2 Uiva, j " %i~-112, §
E(Clui+1/2,j—CZui+1/2,j+(02 cQulin, ) + U e +
U4 j+17 Ui ,Jj=1 Pi+1,;7Pi, §
v i+1/2, j+1 i+1/2, f = _ 1 J [ + (225b)
2Ay pAx
Uivsn, i~ 21, jT U112, + Uis12, j+1 " 284102, j T Wi 12, j=1
Y Ax? Ay?
1 n—1 n=2 Vitl, j+127Vi—1, j+1/2
Ar Vi jrinT v jrint (e e Vi) F U A +
Vi, j+327 Vi, j- Pi, j+17Pi,j
v i, j+32 Vij-uvz __ Fij Loy (2.25¢0)
24y pAy
, Vitl, j+127 2V j1ntVi-1, 12 4 Vi,j+3/2_2vi,j+1/2+vi,j—1/2]
sz Ay2

Here ¢;=c,=1 for the B2 scheme in time and ¢;=3/2, ¢,=2 for the B3 scheme in
time. The superscript n denotes the time level (the superscript at the new time
level is omitted in the equations (2.25)). In this explanation U and V are fixed,
whereas in the actual formulation U=u and V=v, which have to be iteratively
updated as well. This part of the iteration, however, is not essential in the
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SIMPLE procedure. SIMPLE is a two-step predictor-corrector method for the
solution of the equations (2.25) at the new iteration level k. Firstly, it predicts the
velocity at the new iteration level k by solving the momentum equations (2.25b,c),
fixing the pressure at the previous iteration level k—1. (SIMPLE does not
prescribe how the velocity prediction from the momentum equations has to be
determined; the velocity prediction can be solved with a direct method, or a new
iteration process within SIMPLE can be set up). Secondly, the prediction of the
velocities (u* and v*) is corrected according to

k _ du ' '
Uivip,j = Wep,j T E;(P i,j " Pli+1, )
(2.26)
k _ dv._ ., )
Vi jr12 = V¥ jein T m @', ;=P j+0)

in which p’; ; (=p£‘, j—p,l‘,_jl) is the pressure correction. The quantities du/dp and
dv/dp follow from equations (2.25b,c)

du; ; cpAx -1
du _ O%i+in,j _ [ 1P +2“Ax[ 1,1 ]]

dp ap,-,j At sz Ay2

- 2.27
dv _ s _ (G@dy (1 1 ! (229
dp p;, j At Ax?  Ay? '

Substitution of equation (2.26) into the discretized continuity equation (2.25a)
gives an equation for the pressure correction

Pliv1,j=2Pi jtP i1, ; + Plijwr1 =2 4P -1 _

2.28
3 e (2.28)
Q_E__qu 1, .1 Wi, W1, 4+ V¥ 12"V j-1n .
At Ax?  Ay? Ax Ay
This is nothing but a discretization of a Poisson equation for p’
2,7 2,1 c * *
G S AP i [5L+_QL.]‘ (229
ox 3y At Ax2 Ay ax 3y

The equation for the pressure correction can be solved either directly or iteratively.
Besides the use of the line Gauss-Seidel method (with line-coupling) for the itera-
tive updating of the transport variables (u, v, T, k and €), it can also be used to
update the pressure correction. In the present study both this line Gauss-Seidel
iterative solver and the direct solver are optionally used to determine the pressure
correction. Even when the velocity prediction and the pressure correction are
solved exactly, the corrected velocity field and the corrected pressure at the new
iteration level in SIMPLE do not exactly satisfy the momentum equations
(2.25b,c). SIMPLEC, SIMPLER, SIMPLEST and PISO modify SIMPLE in order
to better solve the momentum equations: SIMPLEC introduces an underrelaxation
factor, whereas SIMPLER and PISO extend the two-step predictor-corrector
method to a three-step predictor-corrector method. In all these pressure-correction
methods, however, repeated k-iterations have to be made to exactly satisfy
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equations (2.25).

2.8. Convergence

When a certain iterative strategy has been chosen to solve the discretized system,
one hopes that the iteration process fastly converges to the discrete solution. Often
relaxation is required to prevent the iteration process from divergence or to speed
up convergence. Three forms of relaxation are used here:

(i) relaxation factor. The solution at the new iteration level is found as

of = ad** + (1—a)p* L. (2.30)

Here a is the relaxation factor: a<1 gives underrelaxation, =1 gives no relaxa-
tion and a>1 gives overrelaxation. ¢** is the solution without relaxation. o can
be any function of the dependent or independent variables.

(ii) relaxation with a false time step. The term (¢}“j—¢{‘,—jl)/AtF, in which At is
the false time step, is added to the transport equations. This false time step can be
any function of the dependent or independent variables.

(iif) source term manipulation. The source term is split as s=s,+s, and iterates
according to s% 1+ (s,/d)F "1k,

The values of a, Aty or s, and 5, are optimized by trial-and-error.

The speed of convergence of classical iteration processes, like Jacobi and
Gauss-Seidel, strongly decreases when the number of unknowns is increased. The
use of a multigrid method overcomes this problem (for a review see Stliiben & Lin-
den, 1986). The classical iteration methods fastly solve the short-wave components
of the solution (i.e. waves of only a few times the grid size), but they need many
iterations to solve the long-wave components. The multigrid method uses different
grids, stepping from one grid to the other by interpolation of the solution. Classical
iteration methods are used at each grid. Now the long-wave components no longer
delay the convergence because the multigrid method effectively solves them at the
coarser grids. The multigrid method has extensively been studied for the Poisson
equation, but their development for Navier-Stokes equations is still going on; the
multigrid method is not used in the present study.

A criterion has to be formulated to check whether the iteration process can be
stopped. When a computer is used, the best solution of the discrete system that
can be obtained only has the round-off error of the machine. This round-off-error
level is reached after a finite number of iterations. In practice the iteration is
stopped earlier, when the convergence error (deviation between the iterated solu-
tion and the machine-accurate solution) is sufficiently small. It is reasonable to
iterate long enough to get a convergence error that is much smaller than the physi-
cal error (error due to modelling of the physics, e.g. the turbulence model) and
much smaller than the numerical truncation error (error due to the finite grid size
in the discretization). Checking that the convergence error is sufficiently small
requires the knowledge of the machine-accurate solution, which usually is not
available. Therefore one has to rely on checks that indicate that the convergence
error is small rather than prove it: we will check that the residuals in the discre-
tized equations and the changes in the solution between two iterations are below a
small stop criterion.
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3. LAMINAR BOUNDARY-LAYER FLOW

3.1. Introduction

If the Rayleigh number is increased to infinity, the solution of the Navier-Stokes
equations along a hot vertical plate in an open environment (figure 1.1b) becomes
identical to the solution of the boundary-layer equations. When the environment
is isothermal and stagnant, a coordinate transformation exists that simplifies the
steady, laminar boundary-layer equations from partial differential equations to
ordinary differential equations. The solution of this system, which is a similarity
solution of the boundary-layer equations, was numerically determined by Ostrach
(1953). If the vertical plate is part of a cavity, the environment of the plate (the
core of the cavity) will not be isothermal, but stratified.

Semenov (1984) derived the system of ordinary differential equations for all
possible distributions of the wall and environment temperature leading to a similar-
ity solution of the steady, laminar boundary-layer equations. Some solutions of
Semenov’s system are already known in the literature: Ostrach (1953), giving the
solution for a constant wall and a constant environment temperature, Sparrow &
Gregg (1958), giving part of the class with a variable wall and a constant environ-
ment temperature, and Cheesewright (1967) and Yang ez al. (1972), giving part of
the class with a constant wall and a variable environment temperature. Recently
Merkin (1985) found that the similarity solution for a variable wall and a constant
environment temperature becomes singular if a critical value of the parameter
describing the wall temperature is exceeded.

In this chapter the similarity solutions, including the new class which was
detected in differential form by Semenov, are numerically calculated for air. In
particular it is investigated whether Merkin’s singular behaviour is also found for a
constant wall and a variable environment temperature. We also determine in
which part of the boundary layer the similarity solutions hold. Firstly, the solution
must be matchable with the environment solution: the velocity and temperature
profiles have to be independent of the position of the far outer edge of the boun-
dary layer. Secondly, a similarity solution holds for small y (coordinate along the
plate), if it is matchable to the solution in the small region at the leading edge of
the plate, where boundary-layer equations do not apply, but the full Navier-Stokes
equations have to be used. If this is not the case, the similarity solution found
might be the boundary-layer solution for large y. To check this, also the nonsimi-
lar boundary-layer equations are numerically solved.

When the research described in this chapter was just finished, a related study
by Kulkarni et al. (1987) was published. They determined a similarity solution for
a constant wall temperature and a linear, stably stratified environment. The
authors claimed to have found a new class of similarity solutions, but this class
was already detected by Semenov (1984). Actually Semenov’s new class is more
general, because the parameter describing the variation of the environment tem-
perature can be any real number, whereas it has to be an integer in the description
of Kulkarni ef al.. Our study determines the solution of the new class for the



- 25 -

whole range of the parameter describing the variation of the stratification. By com-
parison with a nonsimilar boundary-layer calculation we will show that the new
similarity solution for the stable, linear stratification does not fit in the boundary-
layer flow pattern along the hot vertical plate with a sharp leading edge. This is
not in line with Kulkarni et al., who suggest agreement between this similarity
solution and some numerical and experimental results in the literature.

3.2. Similarity equations

We consider the Navier-Stokes equations under the Boussinesq approximation
(2.9) for a steady, laminar flow. When the Rayleigh number of the flow is suffi-
ciently large, boundary layers appear along the fixed walls. The Rayleigh number
is defined here as Ra=gBATH>Pr/v?, in which AT and H are a characteristic tem-
perature difference and a characteristic length respectively. In the boundary layer
along a vertical wall the Navier-Stokes description can be simplified to boundary-
layer equations

oL v

ox dy

ov av 1 dp 9%v

—_t y— = —= + T—T,) + v—— 3.1
L Vay e 8B( ) vax2 (3.1

oT T _ v 8T
u— + y— = —=—,

ax dy Pr gx2
We are searching for solutions that describe the natural-convection boundary-layer
flow along a semi-infinite heated vertical plate, with its leading edge at y=0, in a
stratified environment:

y =0: v and T profile specified
x=0 u=0 v=0 T=T,Q) (3.2)
X=>% v=0, T=T.).

Because for x — o the temperature converges to T, and the convection and diffu-

sion terms exponentially decay to zero, it follows from the boundary-layer equa-
tions (3.1) that dp/dy=0.

For special distributions 7,,(y) and T.(y) a similarity solution of equations
(3.1) exists. Such a similarity solution depends on only one scaled coordinate &,
instead of the two independent x—y coordinates. Recently Semenov (1984) has
derived the differential equations for all possible similarity solutions. The tem-
perature is rewritten as

T =(m+ g(&) AT 7" + T, (3.3)
with

g=0 g& =1, T, = (m+1) AT n* + T,
£-%: g(§) =0, T, =m AT 0" + T, (3.4)

where n and m are parameters, that can have any real value. Ty is a fixed tem-
perature. The transformed, dimensionless coordinates in this expression are
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1/4 n—1
¢= [&%M] My +N) * x
14
n=My+N (n=z0) (33

where N and M are parameters (N is dimensionless and |M|~! has the length
dimension). A stream function is introduced as

AT /4 n+3

Y= [L3 n 4 f® (3.6)

|M|
which defines the u- and v-velocities as
14 n-1
_ 0y _ |gBATV? |, TG |azl .. nt3
u 3y T m 7 Y i
12 n+l 3.7
y= Ob _ 188AT n?f
ax |M |

Substitution of these expressions into equations (3.1) yields the following ordinary
differential equations for f and g:

n+3 _ nttl

[+ sgn(M) = Jr- )

f’2]+g=0

(3.8)
g’ + Pr sgn(M) [":3 fg& - n(g+m)f‘] =0

E=0. f=f"=0,g=1

E-o: f7=0, g =0.
Special situations are m=0, for the nonstratified environment, and m=—1 for the
constant wall temperature. The environment is stably stratified if aT./dy > 0

(provided B is positive), hence if mMn > 0. The branch with sgn(M)=—1 was
discovered by Semenov.

Solutions of equations (3.8) have been determined by Ostrach (1953) (m=0,
sgn(M)=1, n=0), Sparrow & Gregg (1958) (m=0, sgn(M)=1, limited n-range),
Cheesewright (1967) and Yang et al. (1972) (m=—1, sgn(M)=1, limited n-range)
and Merkin (1985) (m=0, sgn(M)=1, whole n-range). No solutions are known
for the whole n-range with m=—1 and for sgn(M)=—1: these solutions are given
here.

3.3. Numerical method

Two methods to solve the ordinary differential equations (3.8) were used: (i) the
shooting method with explicit integration, and (ii) the direct method. The outer
edge of the boundary layer is numerically taken at the finite distance . The
region O<&s<E . is covered with the equidistantly spaced grid points §;
(i =0,1,...,imax).
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Method (i) performs an explicit integration from the wall to the outer edge,
finding the solution at i+1 from a Taylor expansion around i

3 k
ba=d+ 3 B o s o=r0 3.9)
k=1 :

At is the grid size. The derivatives f*°°, g™ and g’* in this expression follow
from equations (3.8). The remaining derivatives are obtained by Taylor expansions
similar to equation (3.9). The integration can be started at the wall when the
values f(0), f£°(0), £7°(0), g(0) and g°(0) are known. The values f(0), f°(0) and
g(0) are given as boundary conditions, but f°°(0) and g°(0) have to be guessed.
Repeated integrations (shootings) are required to determine f”°(0) and g“(0) such
that the boundary conditions for £ and g at the outer edge £, are satisfied. The
iterative updating of f7(0) and g°(0) is performed with the Newton-Raphson
method, requiring the numerical evaluation of

Lo “(Emax) o = Of “(Emax)

1T T T a0

an = 98 (Emax) 98 (Emax) (3.10)
) = ek

P y g = P .
3g’(0) ~ "t af(0)
f7°(0) and g°(0) at the new iterative level k follow from the old level k—1 accord-
ing to

f‘(gmax) =
L ey + (€7F0) = g*710) ay + (fF7HO) — f£*70) ay
g(gmax) =
g W Ema) + (87%(0) = g*7H0)) ay + (FK(0) — £FHO) ay.

This Newton-Raphson converges with a quadratic speed. The explicit integration
(3.9) turned out to be very unstable: small deviations in the solution for f “k(0)
and g *(0) can lead to very large deviations in f *(£,,) and g¥(£n,,)-

(3.11)

The stability of method (ii) is much better. The equations are discretized
according to

fi —fiei b,
Ag
hivy = 2h + by +
(48)?
n+3 , hie1—hi-1 np41
8i+1 — 28 t 8i-1
(Ag)?

=0 (i=1,2,..,imax)

(3.12)
hiZ] + g =0 (i=1,2,..., imax—1)

”13 R LE . (ot S m)hi] =0 (i=1,2,.., imax—1)

Pr sgn(M) JAE
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FIGURE 3.1. Variable wall and constant environment temperature
(m=0, sgn(M)=1); (a) wall-shear stress, (b) wall-heat transfer.
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FIGURE 3.2. Constant wall and variable environment temperature
(m=-—1, sgn(M)=1); (a) wall-shear stress, (b) wall-heat transfer.
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fO = O’ h0= 09 80 = 0’ himax= 0’ 8imax = 0.

A system of 3(imax+ 1) nonlinear algebraic equations results, which is solved with
the Newton-Raphson method: at each iterative level the system is linearized and
the resulting matrix equation is solved directly to update the solution. The discret-
ization (3.12) yields only a sparse Jacobian matrix (having a block-tridiagonal
structure) in the matrix equation.

3.4. Calculated similarity solutions
Solutions of equations (3.8) have been determined for air (Pr=0.71).

Firstly the similarity solution for the situation with a variable wall tempera-
ture and a nonstratified environment (m=0, sgn(M)=1) has been determined.
OQur results in figure 3.1 confirm the results of Merkin (1985): the solution
becomes singular if n + —0.999, and no solution seems to exist for smaller values.

Secondly solutions have been determined for a constant wall temperature and
a stratified environment (m=—1, sgn(M)==*1). Similar to Merkin’s analysis for

m=0 in the limit n - %, the behaviour for m=—1 in the limit |n| - can be
found with the transformation
£=In|""¢
f® = In|"*F® (3.13)
g(®) = G(®.

Substitution of these expressions into equations (3.8) leads to
F”" + sgn(M) X

ﬁ- [sgn(n) + 1—3—1] FF~ — % [sgn(n) + Tl—l]fz] +G=0

n
G”" + Pr sgn(M) X (.14

In|

£E=0: F=F =0, G=1

t-0: F7=0, G=0.
This transformation gives the following relations for the wall-shear stress and the
wall-heat transfer

F7©@ = |n|"" F(0)

g’(0) = |n|"* G(0).
As follows from equations (3.14), F and G become independent of n in the limit
|n| = . For sgn(M)=1 the wall-shear stress and the wall-heat transfer are plot-
ted in figure 3.2. Some velocity and temperature profiles are given in figure 3.3.
We see that the whole n-range is free from singularities. As shown in detail in

figure 3.4, a region with small flow reversal and temperature deficit is found in the
outer part of the boundary layer in a stably stratified environment (n<<0). There is

L-LIT [sgn(n) + —3-] FG™ - sgn(n) (G + m) F'] =0

(3.15)
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FIGURE 3.3. Constant wall and variable environment temperature
(m=—1, sgn(M)=1); (a) velocity profiles, (b) temperature profiles.
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FIGURE 3.4. Flow reversal in the boundary layer for a stably stratified
environment (m=-—1, sgn(M)=1).

no flow reversal or temperature deficit in an unstably stratified environment
(n>0). The wall-shear stress and the wall-heat transfer for sgn(M)=-—1 are given
in figure 3.5. We note that in the limit |n| - %, the solution for sgn(M)=—1 with
sgn(n)==1 is identical to the solution for sgn(M)=1 with sgn(n)=F 1. Increasing
n from —ce to 0 (unstable stratification) gives a zero wall-heat transfer with a tem-
perature identical to 1 everywhere, except in a small region at the outer edge,
where the temperature rapidly falls to the zero boundary condition. As illustrated
in figure 3.6, the zero boundary condition for the velocity is satisfied in a small
region at the outer edge as well. Although the negative n-branch for sgn(M)=—1
describes similarity solutions of the boundary-layer equations, they cannot be part
of the flow along the hot plate, because the &-dependence of £ and g does not
vanish if & is increased to infinity. This is required for the matching of the
boundary-layer solution (inner solution) with the solution in the environment
(outer solution) within the Navier-Stokes description. On the contrary, the velo-
city and temperature profiles in figure 3.7 show that this matching condition is
satisfied for the solutions of the positive n-branch (stable stratification). As for the
stable stratification with sgn(M)=1, a region with flow reversal is found in the
outer part of the boundary layer which is plotted in figure 3.8. Approaching
n~0.6 shows an enormous growth of f"(0), g(0) and f";,, which seems to indi-
cate the appearance of a singularity in the sgn(M)=—1 branch.
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FIGURE 3.5. Constant wall and variable environment temperature
(m=-—1, sgn(M)=—1); (a) wall-shear stress, (b) wall-heat transfer.
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FIGURE 3.6. Velocity and temperature profile for a constant wall temperature
and an unstably stratified environment (m=—1, sgn(M)=—1, n=-1),
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FIGURE 3.7. Velocity and temperature profile for a constant wall temperaiure
and a stably stratified environment (m=-—1, sgn(M)=-1, n=1).
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FIGURE 3.8. Flow reversal in the boundary layer for a stably stratified
environment (m=—1, sgn(M)=-—1).

3.5. Meaning of the similarity solutions

For large Rayleigh numbers the Navier-Stokes solution along the vertical plate
becomes equal to the solution of the boundary-layer equations. These boundary-
layer equations do not hold in a small region, O(H Ra~™13), at y=0, where the
full Navier-Stokes equations have to be used. If the temperature difference at y=0
between the wall and the environment is nonzero, it has to be checked by solving
the Navier-Stokes equations whether the solution in the O (H Ra~'?) layer at y=0
matches with Ostrach’s similarity solution (n=0). We verified this for a problem
closely related to the vertical plate in a stratified environment, namely for the hot
vertical wall of a square cavity (see next chapter). If, however, the temperature
difference between the wall and the environment at y=0 is zero, the n=0 similar-
ity solution does not apply. Because a rising boundary layer at y=0 requires that
the wall temperature is not below the environment temperature, the zero tempera-
ture difference at y =0 can only occur for an unstably stratified environment. Simi-
larity solutions for this case indeed exist and are described by equations (3.8), with
sgn(M)=1 and n>0.

This implies that the other similarity solutions (the sgn(M)=1 class with n<0
and the sgn(M)=—1 class with n>0) cannot be the boundary-layer solution for
small y. In order to check the meaning of these similarity solutions we have
solved the full (nonsimilar) boundary-layer equations (3.1) for a stably stratified
environment. The n=0 similarity solution was used as a boundary condition at
the initial station y=0. We tried to solve the discretized boundary-layer equations
in a single sweep, going from one y-station to the next larger y-station. The
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numerical iteration process, however, failed to converge as soon as flow reversal
occurred at an y-station. The reason for this failure seems to be clear: if flow
reversal occurs, the boundary-layer equations locally change from a parabolic char-
acter to an elliptic character. This means that the single-sweep marching numeri-
cal solution technique has to be replaced by a repeated sweep procedure. Due to
the elliptic character of the solution of the boundary-layer equations in a stably
stratified environment, the solution at the last y-station has to be given as a boun-
dary condition.

Therefore, for a semi-infinite plate in a stable stratification the solution for
y - ® has to be known. We expect that the similarity class sgn(M)=1 with n<<0
forms that large y limit. The coefficient n describes how fast the environment
temperature approaches the wall temperature for increasing y. The value of N in
equations (3.5) is unimportant in the limit y - . The nonsimilar boundary-layer
equations (3.1) have been solved for the stable stratification
Ty T = 1 < =
AT VH 71 0<y/H== (3.16)
where AT=T,,—T.(0). At the leading edge of the vertical plate (y=0) the simi-
larity solution sgn(M)=1 with n=0 is prescribed. At a large y-value the similarity
solution sgn(M)=1 with n=—1 is prescribed. Repeated sweeps are made in the
numerical procedure. The calculated dimensionless wall-heat transfer, i.e. the
Nusselt number, is shown in figure 3.9. The Nusselt number is defined as

H (o1
Nu= -1 3.17
“ AT[ax]W @17

Figure 3.9 shows that the nonsimilar solution smoothly matches both similarity
limits

—1/4
lim y/H 10 Nu Ra~'* = 0.387 [—%]

-3 (3.18)
lim y/H - Nu Ra~Y* = 0.609 [% + 1] .

The environment temperature can become equal to the wall temperature at a finite
distance H. In this case the solving of the (nonsimilar) boundary-layer equations
requires a boundary condition at H. We expect that the similarity class
sgn(M)=—1 with n>0 matches the nonsimilar solution in the limit y t H. To
check this, the nonsimilar boundary-layer equations (3.1) have been solved for a
linear, stable stratification

nole 2y

AT H

where AT=T,—T.,(0). At y=0 the similarity solution sgn(M)=1 with n=0 is
prescribed. At y=H the similarity solution sgn(M)=—1 with n=1 is prescribed
(using M=—1/H, N=1). Actually only the v- and T-profiles have to be specified,
and not the u-profile: v=0 and T=T, at y=H. The same problem was also

O<y/H=1 (3.19)
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similarity solution
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FIGURE 3.9. Wall-heat transfer in the nonsimilar boundary layer along a semi-
infinite vertical plate in a stable stratification (T,,—T,)/AT = (y/H+1)"L.

solved by Eichhorn (1969) (with series expansions), by Chen & Eichhorn (1976)
(with the local nonsimilarity approximation method) and by Venkatachala & Nath
(1981) (with a finite-difference numerical method). None of these authors, how-
ever, discussed the elliptic character of the boundary-layer equations and the need
for a boundary condition at y=H. The calculated wall-heat transfer, velocity max-
imum and velocity minimum are depicted in figure 3.10. Despite the ignorance of
the boundary conditions at y=H in the calculation of Venkatachala & Nath
(1981), implying an incorrect treatment of the regions with flow reversal, figure
3.10a shows that their wall-heat transfer results agree up to at least a graphical
accuracy with our calculation. Very close to y=H we cannot compare the results,
because Venkatachala & Nath only presented results up to about y=0.95 H. Fig-
ure 3.10 shows that the (nonsimilar) solution smoothly matches the similarity solu-
tion for small y. In contrast with our expectation, the solution does not match the
similarity solution for y -~ H. In particular, the wall-heat transfer for small y fol-
lows Ostrach’s similarity solution

—-1/4
lim y/H +0 Nu Ra~'* = 0.387 [}%] (3.20)

whereas close to H the wall-heat transfer does not follow the similarity relation

lim y/H t1 Nu Ra~'* = 0.797 [1 - {7] (3.21)
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FIGURE 3.10. Nonsimilar boundary layer along a finite vertical plate in a stable,
linear stratification ((T,,—Tx)/AT = 1—y/H); (a) wall-heat transfer, (b) velocity
maximum, (c) velocity minimum.

3.6. Conclusion

Solving Semenov’s differential equations for air, describing all possible similarity
solutions of the steady, laminar natural-convection boundary-layer equations,
shows that no singularity occurs in the positive M class for a constant wall and a
variable environment temperature. Similarity solutions of the negative M class for
an unstable stratification are not usable because the solutions do not smoothly
match with the environment velocity and temperature.

Regions with flow reversal and temperature deficit are found in the similarity
solution for a stably stratified environment. The boundary-layer equations change
from the parabolic type to the elliptic type when regions with flow reversal occur,
implying that to determine a nonsimilar solution the single sweep marching numer-
ical technique has to be replaced by a multiple-sweep technique. Besides the solu-
tion at the first y-station, also the solution at the last y-station has to be given as a
boundary condition.

The similarity solution for a constant wall and environment temperature can
be used to initiate the nonsimilar boundary-layer calculation at the leading edge of
a hot vertical plate in a stably stratified environment. The similarity class with
positive M and n>0 gives the initial solution if the stratification is unstable and
the wall and environment temperature are equal at the leading edge. The similar-
ity class with positive M and n<O0 gives the solution in a stable stratification for
large y. On the contrary, if the environment temperature in a stable stratification
becomes equal to the wall temperature at a finite distance H, the solution close to
H does not match the similarity solution of the negative M class with n>0.
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4. LAMINAR FLOW IN THE CAVITY

4.1. Introduction

The natural-convection problem is characterized by two numbers, the Rayleigh
number and the Prandtl number. The proper scalings of the problem are those
scalings which make the solution independent of the Rayleigh number if the Ray-
leigh number is increased to infinity. In the limit of an infinitely large Rayleigh
number some terms disappear from the Navier-Stokes formulation, which now sim-
plifies to an asymptotic description. The proper scalings are given by the asymp-
totic description (for example the boundary-layer equations). In the cavity there
are several asymptotic regions, each with its own proper scalings.

There are both physical and computational advantages in the use of a properly
scaled Navier-Stokes formulation. The proper scalings split up the Navier-Stokes
flow into some elemental asymptotic structures, which help to understand the phy-
sics of the flow. In computations the properly scaled (nondimensionalized) formu-
lation diminishes round-off errors, because it prevents that the results fall in a
range of extremely small or large values. Another computational advantage is that
for large Rayleigh numbers it is sufficiently accurate to solve the asymptotic

description. This usually requires less computational effort than the solving of the
full Navier-Stokes equations.

Elder (1965) and Gill (1966) have formulated some ideas about the asymp-
totic equations, and hence the proper scalings, of the steady laminar flow in the
cavity with an adiabatic floor and ceiling, that is heated from the vertical side.
They distinguish a core and boundary layers along the vertical walls. The core is
thermally stratified and has a zero vertical flow. Gill assumes that for large Ray-
leigh numbers the Navier-Stokes equations reduce to boundary-layer equations.
He largely simplified the boundary-layer equations and determined the stratifica-
tion in such a way that the stream function at the edge of the boundary layer was
symmetric with respect to the position of half the cavity height.

In order to verify Gill’s asymptotic theory, in this chapter the asymptotic
structures, with the proper scalings, are derived by calculating the steady laminar
Navier-Stokes flow in the two-dimensional square cavity for air up to a Rayleigh
number of 10° and for water up to Ra=10'!. Further, the thermal stratification as
calculated in the large-Rayleigh-number Navier-Stokes solution is used as a boun-
dary condition to solve the boundary-layer equations.

4.2. Steady Navier-Stokes and boundary-layer equations
We consider the steady laminar flow in the square cavity (figure 1.1a) as described
by the Navier-Stokes equations under the Boussinesq approximation

du , v

+ &~
ox ay
2 2
ua_"+vi“_=__1__‘?ﬂ+ v.a_“_+a_“ (4.1)
ax dy p ox ax? ay?



-41 -

av v 1 op 3%y 3%y
U— + v— = —— +g(T—T)+v[-——-—+-—
ax dy b ay TP 0 ax? oyl
2 2
WO L 0T _ v |8T 8T}
dx ay Pr | ox2 ay?

These simply are equations (2.9) without the unsteady terms. The cavity has a hot
left vertical wall (T}, ) and a cold right vertical wall (7). The floor and ceiling are
both adiabatic (§7/dy=0). The height of the cavity is H.

The variables are nondimensionalized with the length scale x;, the velocity

scale ug, the characteristic temperature T, and the characteristic temperature
difference AT:

wov T p | fx y xBAT v o1
ug ug AT 7 pul Xg Xg ud UgXo

(4.2)

The geometry and boundary conditions for the temperature determine length and
temperature scales: xo = H, To = T,, AT =T, — T,. The zero boundary condi-
tion for the velocity does not define a velocity scale. Therefore the velocity scale
can be freely constructed with the help of H and the coefficients gBAT and v; a
possible choice is uy=(gBATv)'>. Because of the free choice of the velocity scale,
the number of independent variables in equation (4.2) reduces with one,

T-T,
LI c Pl _rplXx X Ra. P 4.3
{uo’uo’ AT ’pug} f{H’H’ S “.3)
In this relation the Rayleigh number is defined as Ra=gBATH?3Pr/v?. Hence, the

dimensionless Navier-Stokes solution depends on only two characteristic numbers,
namely the Rayleigh number and the Prandtl number.

With the large-Rayleigh-number Navier-Stokes solutions in the square cavity
it will be checked whether the hot vertical wall of the cavity can be considered as a
part of a semi-infinite hot vertical plate, placed in a stagnant, stratified environ-
ment., More precisely, in the asymptotic limit of Ra - o, the Navier-Stokes

description along the hot wall is expected to simplify to the boundary-layer equa-
tions

du oV _ 4

ox dy

av av 1 dp d%v

o vE == + T-T,) + v—r 4.4
Y Vay p dy 8B 2 vax2 “4
8T oT _ v 9°T
Uu— + v—>— = ———

ax dy Pr gx?

x=0: u=v=0, T=T,
x - v=0, T=T_(y).

Because for x - ® the temperature converges to T«(y) and the convection and the
diffusion terms vanish, the pressure in the boundary-layer equations (4.4) is only
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the hydrostatic pressure, which directly follows from the prescribed stratification:

p(x.y) =j- T-0N-T. ., p* is
0gBATH 4 ATH 0 7 pgBATH (4.5)

where p* is a fixed pressure level. The solution of the boundary-layer equations
does not explicitly depend on the Rayleigh number if it is scaled according to

u \4 T-T, X
X Ral/lz, YR -1/6’ _—c P_pa-izl_plX paia Y )
{"0 ‘o a AT ol a f T Ra'"*, T Pr (4.6)

4.3. Numerical method

In order to numerically determine the Navier-Stokes solution, the equations (4.1)
are discretized with the finite-volume method on a staggered grid as described in
section 2.6. The convection terms are discretized with the central scheme. The
equations are solved in the steady formulation, implying that the time step in the
B2 scheme for the time integration is set to infinity. The domain is covered with a
nonequidistant grid, having a concentration of grid lines along the walls. The u-
grid points are positioned in the x-direction according to

A B
H imax 2w

- ] i =0,1,...,imax. 4.7
imax

The same spacing is used for the v-grid points in the y-direction. The pressure is
updated with the SIMPLE pressure-correction method, taking At - % in equation
(2.28). The line Gauss-Seidel iteration is used to solve both the transport variables
(v, v and T) and the pressure correction. Convergence of the Navier-Stokes solu-
tion becomes more difficult the larger the Rayleigh number is, and relaxation is
required to prevent divergence. Part of the convergence problems are expected to
be due to the calculation of the pressure in the boundary layers along the vertical
walls. In contrast with the Navier-Stokes equations, the boundary-layer equations
do not have a transport equation for the normal velocity component u, but the u-
component directly follows from the continuity equation. This boundary-layer
feature is not reflected by the Navier-Stokes solver, which determines a pressure
correction via the continuity equation and which determines the u-component via
the u-transport equation.

The boundary-layer equations are parabolic as long as the environment is
isothermal or unstably stratified (dT./dy =< 0). Because of this parabolic charac-
ter, it is more suitable to modify the position of some of the grid points used to
discretize the elliptic Navier-Stokes equations (see figure 2.2), when the
boundary-layer equations are solved. To discretize the boundary-layer equations
we take the same grid points for v as in the discretization of the Navier-Stokes
equations, but the grid points for T are moved to the v-grid points and the grid
points for u are only staggered with respect to the v-grid points in the x-direction.
Further, a first-order upwind discretization is used for the convection in the y-
direction. In this way only one sweep from the beginning to the end of the
domain (in which the updating process at a line is repeated until a convergence
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criterion is satisfied) is required to solve the parabolic boundary-layer equations.
As ijllustrated in the previous chapter, regions of flow reversal and temperature
deficit appear if the temperature stratification is stable (dT./dy > 0), implying that
the boundary-layer equations lose their parabolic character and become elliptic.
Due to this elliptic character also on the modified grid repeated sweeps have to be
made. The flow reversal, however, is small and the equations are still nearby par-
abolic. Therefore also for the stable stratification the line-updating process in each
sweep on the modified grid is repeated until convergence at that line is reached.
This contrasts the Navier-Stokes solver, in which only one line-updating is made in
each sweep.

4.4, Gill’s asymptotic formulation

Since Prandtl (1904) derived the boundary-layer equations, and actually introduced
the mathematical technique of asymptotic series (singular perturbation theory) to
solve flow problems, a large literature on this subject has been established. The
asymptotic theory searches for the proper scalings in the asymptotic limit of an
infinitely large Rayleigh number, and it derives the corresponding asymptotic
equations. These scalings can be different in different regions, and the asymptotic
solutions have to be matched according to a certain matching principle. The
asymptotic solution holds exactly in the limit Ra - %, and can be used as a good
approximation of the Navier-Stokes solution for a large, but finite, Rayleigh
number,

The asymptotic theory for the natural-convection flow in cavities is still in
development. Ostrach (1972, 1982) has given reviews. Two basic configurations
have been considered in literature, the rectangular cavity and the horizontal
cylinder, for two basic modes, heating from the vertical side and heating from
below. For large Rayleigh numbers there seems to be a core with boundary layers
along the heated walls. There has been some doubt on the right structure of the
core flow; Batchelor (1954) suggested an isothermal core with constant vorticity
for the configuration with heating from the vertical side. At the moment it seems
(experiments Elder 1965, theoretical considerations Ostrach & Hantman 1981, and
different numerical studies including the present one) that the core becomes isoth-
ermal and rotating if the cavity is heated from below, whereas it becomes ther-
mally stratified and almost stagnant with horizontal streamlines if the cavity is
heated from the vertical side.

The vertical boundary layers and the core in rectangular cavities have been
calculated by Gill (1966) for infinitely large Rayleigh and Prandtl numbers. He
assumes that the core is stratified and has horizontal streamlines. Along the verti-
cal walls Gill approximately solves the boundary-layer equations (4.4) by lineariz-
ing them. After linearization the boundary-layer equations reduce to an ordinary
differential equation in x, in which the y-coordinate appears as a parameter only.
The core flow and boundary-layer flow are matched by the condition that the tem-
perature and the normal velocity at the edge of the boundary layer are equal to the
temperature and velocity in the core. The solution of equations (4.1), under the
given boundary conditions, is centro-symmetric with respect to the centre of the
cavity:
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T(x,y) —THRHR)=THIIH/I2) — T(H-x,H—y)
ulx,y) = —u(d—x,H-y). (4.8)

Because of the assumption that the streamlines are horizontal in the core, it also
follows that the normal velocity at the edge of the boundary layer along both verti-
cal walls is anti-symmetric around y=H/2. This symmetry condition dictates how
the asymptotic flow in the core and in the boundary layer interact: the stratifica-
tion in the core has to be such that the normal velocity at the outer edge of the
boundary layer is anti-symmetric. Using the symmetry conditions the linearized
boundary-layer solution and the core solution can be determined up to a constant.
Gill determines this constant by assuming that the vertical entrainment of mass at
the ceiling (y=H) equals zero. A modified procedure to determine this constant
has been proposed by Bejan (1979). He applies the condition that the vertical heat
flux through the ceiling is zero. The vertical flux consists of a convection and a
diffusion contribution, which are calculated with Gill's approximation of the
boundary-layer solution. The constant turns out to be a coefficient that depends
on the Rayleigh number; the coefficient converges to Gill’s constant in the limit
Ra - «. From an asymptotic point of view one might doubt the significance of
Bejan’s correction. The boundary-layer solution is used to calculate the y-
diffusion, which actually was neglected when the boundary-layer equations were
derived from the Navier-Stokes equations. Therefore Bejan's correction on Gill’s
constant is a second-order asymptotic effect, which can only be expected to be the
right second-order correction if it has been determined in combination with
second-order boundary-layer equations and core effects. Graebel (1981) extended
Gill’s analysis to variable Prandtl numbers. Blythe et al. (1983) repeated Gill’s
analysis (only for the limit Pr - ); instead of linearizing the boundary-layer equa-

tions, they accurately solved Gill’s asymptotic formulation with a numerical
method.

Gill’s asymptotic structure will be verified by comparison with large-
Rayleigh-number Navier-Stokes solutions. In the sequel the mentioned approxima-
tion, including Graebel’s finite-Prandtl-number correction, will be referred to as
the approximation of Gill’s formulation and the numerical solution of Blythe et al.
will be referred to as the exact solution of Gill’s formulation.

4.5. Navier-Stokes solutions

Steady, laminar Navier-Stokes solutions in the cavity are determined for air
(Pr=0.71) up to Ra=10° and for water (Pr=7.0) up to Ra=10'". Benchmark
numerical results were obtained by De Vahl Davis (1983) for air up to Ra=108.
Very recently Le Quéré (1990) revisited these benchmark results, and he also
added benchmark results for two new cases: air at Ra=10" and air at Ra=108. To
discretize the equations De Vahl Davis used a finite-difference method and Le
Quéré used a spectral method.

Most of the present calculations were made on a 60X60 grid. For Rayleigh
numbers up to 10* an equidistant grid was used, whereas for larger Rayleigh
numbers the nonequidistant grid (4.7) was used. In order to verify the accuracy
for larger Rayleigh numbers, we refined the grid up to 120x 120 points for air at
Ra=106 and for air at Ra=108. Table 4.1 summarizes the results at Ra=10° for
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TABLE 4.1. Accuracy of the solution for air at Ra=10° (central scheme).

study grid N Nu Ra™V* ~max Bma

VgBATH (gBATW)'A

15x15 0.9780 0.2773 0.2977 0.8422

present 30%30 0.9367 0.2782 0.2658 0.8174

60x 60 0.9190 0.2789 0.2633 0.8145

120%120 0.9144 0.2790 0.2621 0.8144

De Vahl Davis - - 0.2783 0.2603 0.8121

Le Quéré -- -- 0.2791 0.2618 0.8146

TABLE 4.2. Accuracy of the solution for air at Ra=10°.

scheme rid Nu Ra~ 14 ~max Hmax
g § N VgBATH (gBATW)?
15% 15 0.9336 0.3134 0.3790 0.6446
central 30%30 0.9908 0.2988 0.2827 0.7436
60x 60 0.9942 0.3014 0.2657 0.7421
120x 120 0.9943 0.3020 0.2646 0.8231
15%15 0.7732 0.2971 0.3712 0.9209
hybrid 30x30 0.9297 0.2937 0.2836 0.7670
60% 60 0.9714 0.2989 0.2667 0.7776
120% 120 0.9808 0.3010 0.2649 0.7937
15%15 0.5976 0.2995 0.3557 1.111
upwind 30%x30 0.8369 0.3014 0.2767 0.9139
60X 60 0.9121 0.3035 0.2633 0.8619
120% 120 0.9502 0.3034 0.2633 0.8321
Le Quéré -- -- 0.3023 0.2637 0.8714

several quantities: the averaged heat transfer through the hot vertical wall (Nu, in
which Nu is the Nusselt number as defined by equation (3.17)), the gradient of the
thermal stratification in the centre (S=(H/AT)oT/dy), the vertical velocity max-
imum at half the cavity height (vp,,) and the horizontal velocity maximum at half
the cavity width (up,,). The results, in particular at the finest grids, are in very
good agreement with the benchmark results of De Vahl Davis (1983), but the
agreement with the revisited benchmark results of Le Quéré (1990) is even better.
Table 4.2 refines the grid for Ra=10® and also compares different discretizations
for the convection (central, hybrid, first-order upwind). By strong grid refinement
Le Quéré can convince that his solution at Ra=10% is indeed very accurate and
that it can be used as a benchmark solution. He does not give a benchmark value
for the stratification. Therefore we use our value at the 120X120 grid with the
central scheme as a reference value for S; changes in S on the refined grids are
smallest with the central scheme, suggesting that this scheme has the highest accu-
racy. Differences between the schemes are small, with exception of the
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FIGURE 4.1. Structure of the Navicr-Stokes solution for increasing Rayleigh
number; (a) streamlines for air, (b) topology.
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stratification: the hybrid scheme and the upwind scheme considerably underpredict
the stratification at the coarser grids. Comparison with the benchmark solution at
Ra=10® shows that our values for the wall-heat transfer and for the vertical velo-
city maximum at the finest grids are very accurate. The accuracy of our horizon-
tal velocity maximum is somewhat smaller. Relaxation is required to prevent
divergence of the numerical iteration process: convergence becomes slower in the
sequence upwind scheme, hybrid scheme and central scheme. For air at Ra=10° a
converged solution with the central scheme could no longer be obtained and the
hybrid scheme had to be used.

Streamlines of the Navier-Stokes solution for air at increasing Rayleigh
number are shown in figure 4.1a. Streamlines are isolines of the stream function
Y, which is defined as u=—9¢/dy, v=0y/dx and y=0 at the wall. Special points
in the streamline patterns are the stagnant points, i.e. the points where u=v=0.
As indicated in figure 4.1b, a stagnant point can either be a centre or a saddle.
The stagnant points define the topological structure of the flow; the streamlines
through the saddles give the dividing streamlines of the flow. With the help of the
stagnant points, the following ranges can be distinguished (the streamlines are
centro-symmetric with respect to x=y=H/2):

I. Ra < 5x10% one centre at x=y=H/2, with unicellular, clockwise rotating flow.
II. 5X10* < Ra < 5X10°%; the centre has split up in a saddle, at x=y=H/2, and
two new centres, forming two clockwise rotating rolls.

III. 5x10° < Ra < 5% 105 the saddle at x=y=H/2 has further split up in a centre
and two new saddles, giving a total of three clockwise rotating rolls.

IV. Ra > 5%10% a centre-saddle combination is formed in the left upper and right
below corner, with fast clockwise rotating fluid (vortices). This corner vortex does
appear only for air. It does not appear for water up to Ra=10'!, which was the
largest Rayleigh number we calculated.

As indicated in figure 4.1b, four asymptotic regions can be distinguished in
the last streamline pattern: (i) vertical boundary layer along the heated wall, (ii)
core region, (iii) corner region, (iv) horizontal layer.

4.6. Solution of the boundary-layer equations

Figure 4.2 shows the isotherms in the Navier-Stokes solution for air at increasing
Rayleigh number. For very small Rayleigh numbers there is only conduction, giv-
ing a temperature which only depends on the x-coordinate (§=0). For increasing
Rayleigh number the temperature in the core of the cavity becomes stratified, i.e.
the temperature depends only on the vertical coordinate y. The stratification at
half the cavity width is shown in figure 4.3a and 4.3b, for air and water respec-
tively. The stratification at the centre (§) is shown in figure 4.3c. Part of the
curve in figure 4.3c is broken to indicate that the steady solution for these large
Rayleigh numbers is physically unstable (this will be shown in the next chapter).
Figure 4.3 shows that for Ra -~ » the core stratification converges to a limit state;
the limit stratification for air is roughly twice the limit stratification for water.
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FIGURE 4.2. Isotherms in the Navier-Stokes solution for increasing
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FIGURE 4.3(a). For caption see facing page.
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FIGURE 4.3. Stratification in the core; (a) at x=H/2 for air,
(b) at x=H/2 for water, (c) at the centre.
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FIGURE 4.4. Wall-heat transfer; (a) for air, (b) averaged wall-heat transfer.



—

‘_«!{ R 1712
a
ofl

4 \
0.3 // —— boundary-layer eq. "3 \
,/ Y, Navier-Stokes: N \
ro a—a Ra=10° N Y
,/ d x—x Ra=10° De\o \
! °/n/ o—o Ra=10" e
Iy A
Wi o—o Ra=10° R
/ 7 — — approximation Gill E‘\’\ﬁ9 \\
0.0 !
0.0 0.5 y/H 1.0
(a)
1.0
o Navier-Stokes:
-:Q o air
[ X water
=
10"
(b)
FIGURE 4.5. Stream function; (a) at x=H/2 for air, (b) at the centre.



-52 -

With the limit stratification of the Navier-Stokes solution prescribed as a
boundary condition at the outer edge, the boundary-layer equations (4.4) were
solved for air (actually the stratification for Ra=10% was taken). For y 10 the
solution of the boundary-layer equations simplifies to Ostrach’s (1953) similarity
solution. This solution was used as a boundary condition at the leading edge. As
shown in the previous chapter, regions with flow reversal and temperature deficit
are found in the outer part of the boundary layer if the environment is stably stra-
tified. This implies that also a boundary condition is required at the end of the
boundary layer at y=H. Because the solution at y=H is not known beforehand,
the calculation was extended to y>H, using the outer-edge temperature
T.(y) = T.(H) in this range. For y>>H the boundary layer returns to Ostrach’s
similarity solution. The outer edge of the boundary layer in the computational
domain was taken far enough to have a negligible effect on the development of the
boundary layer (namely at (x/H) Ra' = 40). 40 grid points were used in the y-
range 0 <y = H. A same number of grid points was used in the x-direction,
Calculations on 80X 80 grids gave only very small changes.

The wall-heat transfer in the boundary-layer solution and in the Navier-Stokes
solution for increasing Rayleigh number are compared in figure 4.4a for air: the
wall-heat transfer in the Navier-Stokes solution converges to the value of the
boundary-layer solution in the limit Ra - . In particular in figure 4.4b it is
checked that the wall-heat transfer —(37/dx),, in the Navier-Stokes solution for
large Rayleigh numbers scales with (AT/H) Ra'’*, which agrees with the
boundary-layer scaling (4.6). Finite-Rayleigh-number effects are restricted to the
corners at y + 0 and at y t+ H. If the Rayleigh number is increased, the position of
the maximum in the Navier-Stokes wall-heat transfer moves to y/H=0, and for
small y values beyond this maximum the wall-heat transfer follows Ostrach’s simi-
larity solution,

lim Nu Ra~V4 = C* (y/H)™"* lim

Ra - = Ra - =

4.

AT (4.9)
with C*=0.387 for air and 0.459 for water. Here the infinite-Rayleigh-number
limit of (T),—T(H/2,0))/AT is found by extrapolation of the results for the largest

calculated Rayleigh numbers to infinity, which gives about 0.86 for air and about
0.91 for water.

[Th—T(H/Z,O) ]5"‘

In figure 4.5a the stream function at the outer edge of the boundary-layer
solution for air is compared with the Navier-Stokes stream function at x=H/2 for
increasing Rayleigh number. The convergence of the Navier-Stokes stream func-
tion to the boundary-layer solution is only clear for y-values up to H/2. In particu-
lar in figure 4.5b it is checked that the Navier-Stokes stream function at the centre
(U,) scales with ugH Ra~Y'2, which agrees with the boundary-layer scaling (4.6)
(see also next section). For y>H/2 the deviation of the boundary-layer solution
from the Navier-Stokes solution is large and the stream function in the boundary-
layer solution is not symmetric around y=H/2. In order to verify the sensitivity of
the stream function to the stratification, the boundary-layer equations were solved
for different stratifications as sketched in figure 4.6a; both the linearized Ra=108
Navier-Stokes stratification and the linearized stratification with a sinus
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FIGURE 4.6(a,b). For caption see next page.
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edge.

TABLE 4.3. Comparison of the asymptotic behaviour.

(a) air
; Ny Ra~—1/4 e
formulation S Nu Ra _—
uOHRa—IIIZ
Navier-Stokes 0.99 0.30 0.66
boundary-layer eq. 0.99 0.31 0.67
Gill-exact 0.52 0.32 0.74
Gill-approximation 0.49 0.36 1.0
similarity solution 0. 0.22 1.17
(b) water
; Ny R~ 14 e
formulation S Nu Ra s
ugHRa ™V
Navier-Stokes 0.55 0.32 0.16
boundary-layer eq. -- -~ -
Gill-exact 0.52 0.32 0.16
Gill-approximation 0.42 0.36 0.21
similarity solution 0. 0.26 0.65
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perturbation were used. Changing the stratification has a small influence on the
wall-heat transfer (figure 4.6b), but it has a large influence on the stream function
for y>H/2 (figure 4.6c). The linearized stratification removes the deviation in the
stream function with the Navier-Stokes solution close to the ceiling, and the sinus
perturbation makes the stream function practically symmetric. The large sensi-
tivity of the stream function to the temperature stratification suggests that the
interaction between the core solution and the boundary-layer solution has to be
taken into account. This is precisely what is done in the asymptotic description of
Gill: as described in section 4.4, he uses the interaction principle of symmetry to
couple the stratification to the boundary-layer equations. Gill does not prescribe a
fixed stratification, but the stratification is part of the calculation. It remains to be
checked that applying the symmetry interaction in the present boundary-layer
approach (for example by setting up an iteration process that corrects the
prescribed stratification until a symmetric stream function at the outer edge of the
boundary-layer solution is found) gives a stratification which is close to the calcu-
lated large-Rayleigh-number Navier-Stokes limit.

Table 4.3 compares some asymptotic limits in the Navier-Stokes solution with
the boundary-layer solution, Gill’s formulation and Ostrach’s similarity solution.
The boundary-layer solution is found by prescription of the Navier-Stokes stratifi-
cation, Gill’s formulation uses interaction to calculate the stratification, and
Ostrach’s similarity solution applies a zero stratification to the boundary-layer
equations. The fixed outer-edge temperature in the similarity solution was chosen
as (T,+T,)/2. The agreement of the wall-heat transfer and the stream function at
the centre between the Navier-Stokes solution and the boundary-layer solution is
good, as just discussed. The agreement between the exact solution of Gill’s formu-
lation and the Navier-Stokes solution is very good for water, but for air a signifi-
cant deviation is found. The reason is that the Prandtl number for water is larger
than for air, and therefore closer to the infinite-Prandtl-number limit for which the
exact solution of Gill’s formulation is available. As expected, the deviation from
the Navier-Stokes solution is larger for the approximation of Gill’s formulation
than for the exact solution of Gill’s formulation. For water the accuracy of Gill’s
approximation is still reasonable, but for air the deviation is large. This shows
that Graebel’s finite-Prandtl-number corrections (which are included in the approx-
imation of Gill’s formulation in table 4.3) are not very accurate for air. Finally,
the averaged wall-heat transfer in Ostrach’s similarity solution is much too small
due to the negligence of the stratification and the fixing of the outer-edge tempera-
ture at (T, +7T,)/2.

4.7. Four asymptotic structures

In the previous section the asymptotic structure of the Navier-Stokes solution in
the vertical boundary layer and in the core was shown to satisfy Gill’s asymptotic
description. In this section some further details for the vertical boundary layer and
the core are given and the structure of the two other asymptotic regions, namely
the corner and the horizontal boundary layer, is described. The proper scalings as
calculated in the large-Rayleigh-number Navier-Stokes solution are summarized in
table 4.4.
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TABLE 4.4. Navier-Stokes scalings for the steady laminar flow.

region quantity scaling . examples'
quantity air water
5 u (gBATv) 3 Ra— V12 .,
g VZBATH 22— | 027 | 0.089
5| " gBATH VeBATH -
—
g8 T AT dvmax | s | g4
2 H Ra~/*
2 H Ra~1" "
y H Nu Ra~ V4= 0.30 0.32
u (gBATv)IIS Ra—1/12 ‘!}
_—..—..__.—.c —_—
v v<<u uoH Ra- V12 = 0.66 0.16
core
T AT
* H S= | 099 | 0.55
y H
r AT Nut nax Ra~13= 0.19 0.24
corner y H Ra~13 YNumax  _ 18 3.9
HRa—l/S ) .
u (gBATW)!?
u
E v v<u (—“[;A%ﬂ;: 0.82 | 0.24
[~ ] g v
S5 T AT
S
_8 x H Yumax - 23 1.6
H Ra~¥16
y H Ra=%'6

4.7.1. vertical boundary layer along the heated wall

The presence of the horizontal walls is felt by the vertical boundary layer via the
temperature stratification in the core. Firstly the stable stratification gives small
regions with flow reversal and temperature deficit in the outer part of the boun-
dary layer. The flow reversal changes the parabolic character of the boundary-
layer solution in an isothermal environment into an elliptic character. Secondly
the stable stratification achieves that mass is moved into the hot boundary layer at
heights smaller than H/2, and is moved out from the boundary layer at larger
heights. In figure 4.4 it was shown that the wall-heat transfer in the Navier-Stokes
solution for Ra - = satisfies the boundary-layer equations. In analogy, according
to the boundary-layer scalings, the x-coordinate, the vertical velocity, and the tem-
perature in the Navier-Stokes solution should scale with H Ra™4, u; Ra'® and
AT respectively in the limit Ra - ®. The velocity scale ug(Ra/Pr)® = (gBATH)?
is known as the buoyant velocity scale. The correctness of these scalings is veri-
fied for the v-profile at y=H/2 for air in figure 4.7a. The velocity maximum is
shown in figure 4.7b. For small y values the velocity maximum follows Ostrach’s
similarity solution
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12
v T, —T(H/2,0)
li DX = cx Vy/H i ["——— .
Ra~» VgBATH YT Ran AT (4.10)

with C*=0.555 for air and 0.263 for water. This similarity solution, which
assumes an isothermal environment, only moves mass into the boundary layer and
the velocity maximum increases with increasing y. No mass is moved out through
the outer edge of the boundary-layer edge as occurs in the case of a the stratified
environment for y>H. Hence, due to the stratification, the velocity maximum
deviates form Ostrach’s solution for larger y and the velocity maximum is largest
at y~H/2. Reaching y/H=1, the maximum in the boundary-layer solution devi-
ates from the Navier-Stokes solution; the Navier-Stokes solution smoothly falls
back to zero, whereas the boundary-layer solution hits the ceiling with a finite
velocity maximum. The minimum of the velocity, i.e. the maximum of the flow
reversal, is shown in figure 4.7c for air. Deviations in the minimum between the
boundary-layer solution and the Navier-Stokes solutions will be discussed in section
4.7.3. The scaling of the temperature profile at y=H/2 for air is verified in figure
4.7d.

4.7.2. core region

The Navier-Stokes solutions show that for increasing Rayleigh number the tem-
perature becomes stratified in the core and the velocities in the core become much
smaller compared to the velocities in the vertical boundary layers. Moreover the
streamlines become horizontal in the core. Therefore the core velocities can be fit-
ted to

lim -~ + Ra~° a>—1/6
Ra -= Uy
(4.11)
lim — +Ra=® b>a.
Ra -~ = uo

The length scale in the core is expected to be H; the horizontal velocity can tran-
sport the mass from the hot vertical boundary layer, which is proportional to
ug Ra'® x H Ra=!#, to the cold boundary layer if a=1/12. Integration of the
horizontal velocities at x=H/2 gives the stream function of figure 4.5a. The scal-
ing with a=1/12 for the horizontal velocity in the core agrees with the boundary-
layer scaling for the normal velocity (4.6) and is checked in figure 4.9a for water.
For increasing Rayleigh number the horizontal boundary layers along the horizon-
tal walls becomes thinner and the core becomes larger. Indeed figure 4.9a shows
that for increasing Rayleigh number an increasing part of the horizontal velocity
falls on a single curve that scales with the velocity ugRa~ Y12, The figure also
shows that the scaled horizontal velocity in the core, (u/uy) Ra v ‘2, becomes infin-
itely large at y/H +0 and y/H t1 for increasing Rayleigh number. Such a growth
without bound is also found in the normal velocity at the leading edge of Ostrach’s
similarity solution. The vertical core velocities are so small that the exponent b in
equations (4.11) cannot accurately be determined from the calculated Navier-
Stokes solutions. Nevertheless, it is clear that for large Rayleigh numbers we find
v<<u in the core. The core region for air seems to show the same scaling for the
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horizontal velocity as for water; for air, however, even the largest calculated Ray-
leigh numbers still give a rather thick horizontal boundary layer which makes the
verification of the scaling for the horizontal core velocity less clear than for water.

4.7.3. corner region

In the left upper corner the vertically rising boundary layer hits the ceiling with a
finite velocity maximum. In this region the flow can no longer be described with
boundary-layer equations. No clear scalings can be derived from the large-
Rayleigh-number Navier-Stokes solution, implying that full Navier-Stokes equa-
tions have to be used in this corner region. Pressure forces become important and
achieve that the boundary layer changes direction and is continued as a horizontal
layer. Because for large Rayleigh numbers the vertical boundary layers and the
core are described by the boundary-layer equations (4.4), the pressure plays only a
passive role in these regions and reduces to the hydrostatic pressure (4.5) in the
limit Ra - o, giving horizontal isobars. Figure 4.9 shows that the pressure
becomes active in the left upper corner (and the right below corner); for air at
Ra=10® we have plotted the isobars after subtraction of the hydrostatic pressure
with respect to the core stratification (T.(y) is evaluated at half the cavity width in
equation (4.5)). For air a vortex in the streamline pattern (figure 4.1a) character-
izes the bending of the vertical layer to the horizontal layer in the corner. The
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influence of the vortex is also clearly seen in the minimum velocity for air in figure
4.7c. In the Navier-Stokes solution for Ra=10° and Ra=10° the vortex is still
absent, and the minimum velocity is relatively close to the boundary-layer solution.
With the appearance of the vortex at Ra=107, a new peak arises in the velocity
minimum. It is expected that for increasing Rayleigh number the influence of the
vortex disappears and that the Navier-Stokes solution comes closer to the
boundary-layer solution. The influence of the vortex on the minimum, however, is
still large at Ra=10%. Figure 4.4a shows that the influence of the left below
corner (the starting corner of the vertical boundary layer) on the wall-heat transfer
fastly disappears with increasing Rayleigh number: the position y/H of the max-
imum in the wall-heat transfer comes closer to the floor. More precisely, its posi-
tion y turns out to scale with H Ra~' (= (gBATPr/v*)~1?). This scaling shows

that the size of the cavity (H) does not influence the flow structure at the starting
corner.

4.7.4. horizontal layer

The horizontal boundary layer along the adiabatic horizontal wall is of a different
type than the vertical boundary layer: the horizontal boundary layer is not
described by the boundary-layer equations (4.4). The horizontal layer forms the
connection between the core flow and the no-slip and adiabatic condition at the
horizontal wall. Similarly to the structure in the core, the isotherms and stream-
lines in the Navier-Stokes solution become horizontal for Ra - «. Because the
horizontal wall is adiabatic, the horizontal layer is even isothermal (with a tem-
perature below T}, in the horizontal ceiling layer). Considering the u-velocity in
figure 4.8a, the horizontal layer in the y-direction can be said to extend roughly
from the horizontal wall up to the velocity maximum. As checked in figure 4.8b,
the y-coordinate and u-velocity scale with H Ra~¥!6 and ug respectively. It is
remarkable that this velocity scale (xg=(gBATv)!?) is independent of H. The
mass that is transported through the horizontal layer is proportional to ugHRa =316,
whereas the mass through the core is proportional to ugHRa~12. This implies
that for an infinitely large Rayleigh number all the mass from the hot vertical
boundary layer is transported to the cold vertical boundary layer via the core. This
agrees with Gill’s assumptions about the asymptotic structure.

4.8. Conclusion

The steady laminar Navier-Stokes solution for air and water in the square cavity
heated from the vertical side and with an adiabatic floor and ceiling shows four
different streamline patterns (topological structures), when the Rayleigh number is
increased up to 10'!. The last streamline pattern (Ra > 5% 10% contains four
asymptotic structures: a vertical boundary layer along the heated wall, a core
region, a corner region and a horizontal layer.

For increasing Rayleigh number the core becomes thermally stratified and has
horizontal streamlines. The vertical temperature gradient in the center of the core
scales with AT/H and is roughly twice larger for air than for water. The horizontal
velocity in the core scales with (§BATv)> Ra~Y!2. Comparison with the solution
of the boundary-layer equations (using the large-Rayleigh-number temperature
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stratification in the core as a boundary condition) shows that for Ra - % the
Navier-Stokes solution along the vertical wall converges to the boundary-layer
solution. This means that the wall-heat transfer scales with (AT/H) Ra', the
vertical velocity with (¢BATH)!? and the boundary-layer thickness with H Ra ~'4.
Finite Rayleigh-number effects in the Navier-Stokes solution for the vertical layers
are restricted to influences in the corners. In the left upper corner the vertical
boundary-layer solution hits the ceiling with a nonzero maximum speed. For air a
vortex characterizes the process of bending the vertical layer to a horizontal layer.
No scalings can be derived in the left upper corner, implying that full Navier-
Stokes equations have to be used there. The horizontal layers along the horizontal
walls are not described by boundary-layer equations. They have horizontal stream-
lines and are isothermal. The y-distance to the horizontal wall scales with
H Ra~316 and the horizontal velocity scales with (gBATv) Y3,

The large-Rayleigh-number structures along the vertical walls and in the core,
as calculated with the Navier-Stokes equations and the boundary-layer equations,
agree with the asymptotic description proposed by Gill.
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5. LAMINAR-TURBULENT TRANSITION

5.1. Introduction

The natural-convection flow undergoes a gradual transition from a laminar to a
turbulent state when the Rayleigh number is increased above a critical value. This
transition can be calculated by numerically solving the unsteady, three-dimensional
Navier-Stokes equations. Because of the appearance of very fine eddy structures
in the final phase of the transition, such a calculation would require an enormous
computational effort. Therefore the present study is restricted to the calculation of
the initial phase of the transition: we calculate how the steady, two-dimensional

laminar flow looses its stability by solving the unsteady, two-dimensional Navier-
Stokes equations.

The stability can be examined by following the evolution of disturbances on a
steady laminar flow. Beyond a critical value these disturbances no longer die out
and a bifurcation to an unsteady flow is found. For very simple geometries some
classical results exist, referring to elementary instability mechanisms. For example
we know (i) the Rayleigh/Bénard instability in a horizontal fluid layer that is
heated from below, (ii) the instability after a hydraulic jump in a horizontal mov-
ing fluid layer and (iii) the Tollmien-Schlichting instability in a boundary layer. In
the present approach we only consider two-dimensional disturbances. Three-
dimensional effects are certainly important in the fully turbulent flow. Whether
the three-dimensional disturbances lead to an earlier instability of the steady, two-
dimensional natural-convection flow than the two-dimensional disturbances
remains to be investigated.

In this chapter the unsteady, two-dimensional Navier-Stokes equations are
numerically solved for the square cavity that is heated differentially over the verti-
cal walls. The stability is calculated for both the cases of conducting and adiabatic
horizontal walls. Both air and water are considered. We do not know of stability
calculations in the literature for water in the square cavity, neither with conducting
nor with adiabatic horizontal walls. The stability for air in the square cavity in the
case of conducting horizontal walls, however, was already calculated by Winters
(1987) and by Le Quéré & Alziary de Roquefort (1986, 1988). Further, the latter
authors (1985) also calculated the stability for air in a cavity with adiabatic hor-
izontal walls and a height-width ratio of 4 and larger. When our calculations on
the coarser grids had been finished, and the calculations on the fine 120X 120 grids
were under way, we received a preprint of a paper by Paolucci & Chenoweth
(1989). Their paper gives a detailed numerical study of the stability for air in the
square cavity with adiabatic horizontal walls. Our calculations are very similar to
those of Paolucci & Chenoweth; the results largely agree.

Although the cavity configuration is more complicated than any of the men-
tioned simple configurations, the present calculations suggest that mechanisms
leading to instabilities in the cavity are closely related to the RayleighBénard ins-
tability, the instability after a hydraulic jump and the Tollmien-Schlichting instabil-
ity. A better knowledge of the instability mechanisms is important, because they
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form the roots of turbulence: it can help to better model the turbulence.

5.2. Unsteady Navier-Stokes equations

We consider the unsteady, two-dimensional flow in the square cavity as described
by the Navier-Stokes equations under the Boussinesq approximation (2.9). The
cavity has a hot left vertical wall (T;) and a cold right vertical wall (T,). Two
cases are considered: the case with conducting horizontal walls (i.e. these walls
have a linear temperature profile: T=T,—(x/H)(T,—T,)) and the case with adia-
batic horizontal walls (87/3y=0).

The variables are nondimensionalized with the length scale H, the time scale
H/(gBATH)Y2, the temperature scale To=T, and the temperature difference
AT=T,—T,. For the vertical velocity the buoyant velocity scale u,=(g BATH)'?
is used, whereas for the horizontal velocity the velocity scale u0=(gBATv)”3 is
used. The nondimensionalization leads to

{_E__V_.T___TL_E_}=JC[MLLR‘1 pr} (5.1)
’ s ’ H ’H’ H’ s . .

Ug Uy AT pubz
The Prandtl number (Pr) and the Rayleigh number (Ra = gBATH 3Priv?) are the
only two characteristic numbers in this problem.

The evolution of the following quantities will be examined
Upax = Maximum of |u(y)| at x=H/2

Viax = Mmaximum of |v(x)| at y=H/2 (5.2)

— H

e oTAT)
0 0x x=0

Here Nu (Nusselt number) is the dimensionless averaged heat transfer through the
hot vertical wall. A single oscillation in a quantity ¢ can be characterized by its
maximum ¢,,,,, its amplitude 8 (=0 — i) and by its frequency f.

5.3. Numerical method

The spatial derivatives in the Navier-Stokes equations are discretized with the
finite-volume method on a staggered grid, as described in section 2.6. The use of
the central scheme for the convection, instead of the first-order upwind scheme, is
essential in the present stability calculations. The numerical diffusion in the
upwind scheme (or the hybrid scheme) damps oscillations and was often found to
give an evolution to a steady state in cases where the central scheme predicted an
oscillating final state. It is known that the central scheme easily gives wiggles on
coarse grids (i.e. numerical waves with a wave length of only twice the grid size).
These wiggles, however, will disappear if the grid is sufficiently refined. In the
present calculations, the appearance of thin boundary layers along the vertical
walls requires a nonequidistant grid. The u-grid points are positioned in the x-
direction according to equation (4.7) and a same spacing is used for the v-grid
points in the y-direction. The time dependence is treated implicitly; the spatial



- 66 -

derivatives are all evaluated at the new time level n, and the time derivatives are
approximated with three time levels using the B3 scheme (2.21b).

The discrete equations for the transport variables u, v and T are iteratively
solved at each new time level with the line Gauss-Seidel method. The pressure is
updated with the SIMPLE pressure-correction method. For small time steps the
pressure-correction equation (2.29) reduces to

2.0 2 ¢ . *
i%+i22_= EL[Q_JriV_]_ (5.3)
ox dy 2 Ar | ox dy

At the walls a zero gradient for the pressure correction is prescribed. The *-
superscript refers to the iterating velocity field in the Gauss-Seidel process. When
the Gauss-Seidel process is fully converged the right-hand-side of equation (5.3)
vanishes, giving a zero pressure correction. Originally we updated the pressure
correction with the line Gauss-Seidel method in the same way as for the transport
variables. Even for a small time step, many sweeps were required to reach a
close-to-zero pressure correction; it is known that the speed of convergence for the
Gauss-Seidel iteration decreases when the Poisson equation is solved on a grid with
strongly stretched finite volumes. Therefore, instead of using an iterative solver,
we decided to solve the pressure correction directly. Discretization of equation
(5.3) gives a symmetric band matrix for the Laplace operator, having fixed coeffi-
cients which only depend on the geometry. The Choleski decomposition of this
matrix (which actually is a LU decomposition that takes the symmetry of the
matrix into account) has to be determined only once and can be stored. After
each Gauss-Seidel sweep for the transport variables the pressure is determined with
the direct solver, implying that the discretized continuity equation is exactly satis-
fied. The sweep process at the new time level is stopped when the pressure correc-
tion in each cell and the net heat flux through the boundaries are below a certain
criterion. Typically 5 to 10 sweeps at each time level are sufficient.

5.4. Stability and bifurcation

Although the boundary conditions are steady, this does not necessarily mean that
the solution of the Navier-Stokes equations converges to a steady solution at large
time. Its large-time behaviour is studied in the qualitative theory of partial dif-
ferential equations. This theory distinguishes the following solutions to which an
initial solution can be attracted for large time: (i) steady-state attractor, (ii)
periodic attractor, (iii) quasi-periodic attractor, (iv) strange attractor. All these
attractors, except the first, show an essentially unsteady behaviour at large time.
The attractors (ii) and (iii) give a solution with only discrete frequencies (spikes)
in the Fourier spectrum. The periodic attractor (ii) gives a single-frequency oscil-
lation (or so-called limit cycle). The quasi-periodic attractor (iii) consists of
several incommensurate frequencies. The strange attractor, which is also referred
to as chaos, is nonperiodic, showing a broad-band spectrum. The occurring attrac-
tor might depend on the initial solution at #+=0; multiple steady or unsteady solu-
tions of the unsteady Navier-Stokes equations can exist for ¢t - », Therefore, vari-
ation of the Rayleigh number can give different branches of solutions. These
branches can be either stable or unstable against very small disturbances. The
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stability against very small disturbances is denoted as the linear stability of the
solution. The phenomenon that a solution remains on its branch as long as distur-
bances are small, and only jumps to another branch for sufficiently large distur-
bances, is referred to as hysteresis. Hysteresis is related to the nonlinear stability
of the solution.

The large-time behaviour of the Navier-Stokes solution can be studied by
increasing the Rayleigh number for a fixed Prandtl number. It can be proved that
the solution is steady and unique up to a critical Rayleigh number (see Temam,
1977). Above the critical Rayleigh number the steady solution becomes unstable,
i.e. disturbances no longer decay for increasing time. The linear stability theory
predicts an exponential growth of the unstable disturbances. During the growth of
the disturbances, however, nonlinear effects become important and the solution
ends up in a new solution that has a linear stability. The Rayleigh number Ra,, at
which a certain large-time solution branches to another large-time solution is a
bifurcation point of the unsteady Navier-Stokes equations. Different types of
bifurcation exist; two well-known types are the pitchfork bifurcation (branching
from one steady to another steady solution) and the Hopf bifurcation (branching
from a steady solution to an unsteady solution with a single-frequency oscillation).
The Hopf bifurcation is related to the periodic attractor (ii).

Winters (1987) describes how the bifurcation from a steady solution can
numerically be determined. The unsteady Navier-Stokes equations are linearized
around a steady discrete solution. After discretization a system of linear algebraic
equations results

aai;+1¢=o (5.4)

where J is the Jacobian matrix of the steady part. The steady solution ¢ has a
linear stability if all eigenvalues o of J have Re(o) > 0. If Re(o)=Im(o)=0 (i.e.
det(J)=0), the steady solution shows the pitchfork bifurcation. If Re(o)=0 and
Im(o)=tiw, the steady solution shows a Hopf bifurcation, giving the single fre-
quency f=w/(2m). Winters’ method has the advantage that it can locate the posi-
tion of the Hopf bifurcation without the calculation of the unsteady oscillating
solution. If, on the other hand, one wants to determine the bifurcation by the cal-
culation of the unsteady solution, the position of the Hopf bifurcation can be extra-
polated from the supercritical oscillating solution with the help of the series expan-
sions of Joseph & Sattinger (1972). For the amplitude and the frequency of the
unsteady Navier-Stokes solution at a Rayleigh number sufficiently close to the crit-
ical Rayleigh number the series expansions give

3 + (Ra—Ra,)"?
f~fo + Ra—Ra,. G-5)

Winters’ method of examining the eigenvalues to determine a bifurcation can also
be generalized to determine the linear stability of a single-frequency oscillation; in
this case the Floquet multipliers of the system have to be determined (see Guck-
enheimer & Holmes, 1983). Determining the stability by examining the eigen-
values for less simple unsteady solutions is complicated. The calculation of the
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unsteady solution, instead of Winters’ steady approach, has the advantage that
besides the Hopf bifurcation it can also determine the bifurcation and nonlinear
stability for any steady or unsteady solution. In the present study the stability is
examined by the calculation of the unsteady Navier-Stokes solution.

Recently a workshop was organized to obtain benchmark numerical results for
the Hopf bifurcation in the Navier-Stokes solution at low Prandtl numbers in a
shallow cavity with conducting horizontal walls and differentially heated vertical
walls (Roux, 1990). We participated in this workshop and our computational code

turned out to give good results for this benchmark case (see Henkes & Hoogen-
doorn, 1990).

The Hopf bifurcation introduces an unsteady solution. Because its spectrum is
discrete, we cannot denote this as a turbulent solution. The occurrence of a Hopf
bifurcation, however, can be seen as the initial phase of the transition to tur-
bulence. The total path to turbulence seems to consist of different transitions
between the attractors (ii), (iii) and (iv) (a review is given by Yang, 1988). If the
Rayleigh number is increased sufficiently far, chaos is found, which has the
broad-band spectrum that is characteristic for turbulence.

5.5. Instability mechanisms

The present study investigates the stability for air (Pr=0.71) and water (Pr=7.0)
in a square cavity that is heated from the vertical side. Both the cases of conduct-
ing and adiabatic horizontal walls are considered.

For increasing Rayleigh number the steady solution in the cavity shows boun-
dary layers along the vertical and horizontal walls and an almost stagnant core
with horizontal streamlines. Further, the core is thermally stratified. Gill (1966)
has suggested that the vertical velocity in the vertical boundary layers scales with
(gBATH)Y2, whereas the boundary-layer thickness scales with H Ra~ . The hor-
izontal velocity in the core scales with (§BATv)Y? Ra~V12, and the characteristic
length scale in the core is H. In the previous chapter we showed, by comparison
with the steady large-Rayleigh-number solutions of the Navier-Stokes equations,
that these indeed are the proper scalings. With the help of these spatial scalings
Patterson & Imberger (1980) proposed time scales (i.e. the ratio of a length and
velocity scale) which are expected to be important in an unsteady evolution. The
vertical length scale H and the vertical velocity scale (gBATH)Y? in the vertical
boundary layer give the time scale (H%v) Ra~12, The horizontal length scale H
and the horizontal velocity scale (¢BATv)"? Ra~V1? in the core give the time scale
(H%v) Ra~"®. For large Rayleigh numbers the time scale in the core is largest.
The present calculations confirm that the time scale in the core is indeed charac-
teristic for the time required for the initial solution to reach its final state (see also
Yewell et al. 1982, Hyun 1985). The molecular time scale (Hz/v) Ra® is the dom-
inant time scale at moderate Rayleigh numbers, but it is of minor importance at
the large Rayleigh numbers as considered in the present study.

The distinction of the steady solution in a stratified core region, corners, hor-
izontal boundary layers and vertical boundary layers gives at least three possible
instability mechanisms: (i) a Rayleigh/Bénard instability in the horizontal boundary
layer or core, (ii) an instability in the horizontal boundary layer or core in the flow
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directly after the hydraulic jump in the corner and (iii) a Tollmien-Schlichting ins-
tability in the vertical boundary layer.

5.5.1. Rayleigh/Bénard instability

For large Rayleigh numbers the stratified core can be considered as inviscid. Sta-
bility analysis on the inviscid equations for the stagnant core, as was originally
performed by Rayleigh (1883), shows that the stratification is stable if the density
decreases with the height (or, if B is positive: if the temperature increases with the
height). Moreover the analysis shows that if the steady solution in a stable stratifi-
cation is disturbed, the flow returns to its original state in an oscillatory way,
showing damped internal gravity waves with frequencies that scale with the
Brunt-Viisdld frequency (§BATH)Y%H. Rayleigh (1916) also showed that viscos-
ity can delay the instability in the unstably stratified environment until a critical
Rayleigh number is exceeded. He calculated a pitchfork bifurcation at Ra,,=1708
in the classical problem of an infinite horizontal fluid layer that is heated from
below. (Both the horizontal walls, confining the horizontal layer, are rigid and the
Rayleigh number is based on the thickness of the layer and the temperature differ-
ence across the layer.) Below Ra,, there is a linear thermal stratification and zero
convection. Above Ra,, there is convection, showing the well-known Bénard cells,
as firstly measured by Bénard (1900). More details about the thermal instability
in the stratified environment, which will be referred to here as the
Rayleigh/Bénard instability, are given in the book by Drazin & Reid (1981).

5.5.2. instability after a hydraulic jump

The hydraulic jump is the phenomenon that a thin high-speed horizontal layer
(with a free surface) almost discontinuously jumps to a broader low-speed horizon-
tal layer. The hydraulic jump occurs if the local Froude number (Fr) in the hor-
izontal layer exceeds the value one (Fr=U/(gd)"?, where U is the averaged velo-
city in the layer and d is the thickness of the layer; see for example Turner, 1973).
The hydraulic jump can occur in the horizontal layer close to the corner of the cav-
ity, where the vertical boundary layer hits the horizontal wall and bends to a
high-speed horizontal layer. If the jump is too strong the flow after the jump
becomes unstable and the free-coming jump energy is dissipated via an unsteady
oscillating wave pattern. Ivey (1984) has observed such a hydraulic jump during
the time evolution to a steady state of water in the heated square cavity at large
Rayleigh numbers. The hydraulic jump was also mentioned as a possible instabil-

ity mechanism in the cavity in the computational study of Paolucci & Chenoweth
(1989).

5.5.3. Tollmien-Schlichting instability

The Tollmien-Schlichting instability generates so-called traveling waves with the
wave length N\ in the vertical boundary layer. The waves move upwards with the
wave speed Af. The Tollmien-Schlichting instability of the natural-convection
boundary layer along a semi-infinite, hot vertical plate in an isothermal environ-
ment has been studied theoretically by Nachtsheim (1963). He numerically solved
the Orr-Sommerfeld equations. These equations approximately describe the evolu-
tion of disturbances on the steady solution of the boundary-layer equations. The
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approximations are: linear disturbances, locally parallel flow (i.e. zero normal
velocity) and certain assumptions about the shape of the disturbances (both in
space and time). Some studies have made a similar stability analysis, but without
the parallel-flow assumption (Haaland & Sparrow 1973, Tzuoo et al. 1985, Lee et
al. 1987). The critical Rayleigh number (Ra, ), the frequency (f) and the wave
length (A\) are summarized in table 5.1. The Rayleigh number in the table is based
on the y-coordinate along the vertical plate and on AT=2(T,—T,), where T, is
the isothermal environment temperature. The factor 2 is introduced to make a
senseful comparison with the cavity geometry: replacing T,, by the centre tempera-
ture in the cavity, (T}, +7T,)/2, gives the earlier definition AT=T,—T.,.

Of course, because of the horizontal walls, the boundary layer along the hot
wall in the cavity differs from the boundary layer along the hot vertical plate in an
open isothermal environment. In the previous chapter we showed that the main
influence of these horizontal walls on the development of the vertical boundary
layer is via the thermal stratification in the core. The linear stability analysis of
Gill & Davey (1969) takes the stratification into account. It determines the stabil-
ity against small disturbances of the boundary layer in an infinitely tall vertical slot
with a stably stratified core, in which the temperature linearly increases with the
height. The differences with the present square cavity situation are that the steady
basic flow of Gill & Davey is a parallel flow (and therefore it does not describe the
development of the boundary-layer flow starting at the bottom) and that the wall
temperature is not isothermal, but increases with the height in the same linear way
as the core. The core stratification is described by the temperature gradient §.
Their results in table 5.1 show that the critical Rayleigh number strongly depends
on the stratification.

Jaluria & Gebhart (1974), Gebhart & Mahajan (1975) and Gebhart (1988)
have experimentally studied the transition of the natural-convection boundary layer
for water along a vertical plate with a constant wall-heat flux placed in an isother-
mal environment. The first unsteadiness in the experiments shows a single-
frequency oscillation. The time oscillation corresponds to traveling waves, which
move upward through the vertical boundary layer. Moreover the unsteadiness for
larger Ra, values still shows a single oscillation, in which the frequency is indepen-
dent of y. This y-independence implies that the dimensionless frequency
fv'?(gBAT)?? is independent of Ra,. Gebhart & Mahajan (1975) indicate this
dimensionless frequency as the ’'characteristic frequency’ of the boundary layer.
The Orr-Sommerfeld stability analyses do not find a single frequency for supercrit-
ical Ray, values, but a continuous spectrum of unstable modes. Of course, one has
to realize that the Orr-Sommerfeld equations only describe the linear stability of a
simplified boundary-layer flow. Gebhart & Mahajan, however, note that the fre-
quency which is most strongly amplified in the Orr-Sommerfeld solution for super-
critical Ra, values closely follows a curve in which f v131(g BAT)?? is independent
of Ra,. In particular this is true for Ra, values sufficiently far beyond Ra, .,
whereas the deviation for values closer to Ra, ., is a bit larger. As indicated in
table 5.1, the theoretical frequency fv'/(gBAT)?? for water, as found by Gebhart
& Mahajan on the mentioned curve, is close to the experimental result of Jaluria &
Gebhart (1974). The agreement for air between this theoretical value and the
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TABLE 5.1. Comparison of the Tollmien-Schlichting instability in the vertical

boundary layer.

(a) air
173 113
study Ray ., fv MgBAT)
' (8 BAT)Z/B v2/3
plate, theoretical:
Nachtsheim (1963) 3.82%x10° 0.0162 211
Gill & Davey (1969) 1.13x 108 §3 %) 0.0239 161
Gebhart & Mahajan (1975) -- 0.0351 --
Lee et al. (1987) 1.73% 108 0.0263 156
plate, experimental.
Eckert & Soehnghen (1951) 6x108 0.0415 --
Kitamura et al. (1985) -- 0.0063 100
adiabatic cavity:
present 2.25x 108 %) 0.0226 94
Paolucci & Chenoweth (1989) 2.55%10% *) 0.0228 --
(b) water
1/3 13
study Ray ., Ly MgBAT)
' (g BAT)Z/E! v2/3
plate, theoretical:
Nachtsheim (1963) 2.82%10° 0.0228 57
Gill & Davey (1969) 2.21x108 53 %) 0.0234 56
Gebhart & Mahajan (1975) -- 0.0251 -
Lee et al. (1987) 1.12x10° 0.0293 53
plate, experimental:
Jaluria & Gebhart (1973) 2x10° 0.0248 -
Kitamura er al. (1985) -- 0.0063 100
adiabatic cavity:
resent ~1010 *) 0.0328 56
*) y=H

experimental value of Eckert & Soehnghen (1951) is a bit worse. If Ray is further
increased the experiments show that more frequencies enter the flow and the tran-
sition to the turbulent state is found. The precise transition is a complicated pro-
cess. Jaluria & Gebhart (1974) emphasize that the whole transition process can
not be described as a function of Ra, alone (for a fixed Prandtl number). In
mathematical terms, they suggest that several stable solutions exist in the transition
regime; whether the experiments give the one or the other solution depends on the
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precise experimental situation. This can explain the large difference between the
theoretical and experimental critical Rayleigh numbers in table 5.1. Although the
fully turbulent natural-convection boundary-layer flow shows a broad-band spec-
trum of frequencies, Kitamura et al. (1985) experimentally observed coherent
structures in the turbulence. The main characteristic of this coherent structure is a
motion of large eddies, with a dominant frequency that can be fitted to
v (gBAT)#3=0.0063 (see table 5.1).

We conclude from table 5.1 that, with exception of the experiments of
Kitamura et al. in the turbulent regime, both the theoretical stability analyses and
the experiments more or less predict the same frequency fv'3/(g BAT)?? and wave
length N(gBAT)Y3v?3 for the first unsteadiness. This is in particular true for
water, whereas the agreement for air is less good. The critical Rayleigh numbers
in the different studies largely deviate.

All the theoretical stability analyses mentioned in the last three sections have in
common that they are simplified linear stability analyses for simple configurations.
It is not beforehand clear how these results relate to the stability of the flow in the
square cavity heated from the side. Therefore in the next two sections we give the
stability results for the cavity flow, as calculated from the unsteady, two-
dimensional Navier-Stokes equations.

5.6. Conducting horizontal walls

The stability for air in the case of conducting horizontal walls has already been
investigated in different other studies, but no studies are known for water. Le
Quéré & Alziary de Roquefort (1986, 1988) treated the problem by a similar
approach as used in the present study, namely by solving the unsteady, two-
dimensional Navier-Stokes equations. They used a spectral method to discretize
the equations. Increasing the Rayleigh number from 106 up to 107, they find tran-
sitions (showing hysteresis) from the steady solution for air to three unsteady oscil-
lating branches, with the dimensionless frequencies fH/(g BATH)?= 0.255, 0.29
and 0.32 respectively. The frequency of the oscillation for supercritical Rayleigh
numbers is almost independent of the Rayleigh number if it is nondimensionalized
with the Brunt-Vdiisald frequency (gBATH)Y%H. The intermediate frequency
corresponds to a centro-symmetry breaking solution. These frequencies were
experimentally verified by Briggs & Jones (1985). These authors (Jones & Briggs,
1989) also numerically calculated the frequencies by solving the unsteady Navier-
Stokes equations. Jones & Briggs used the finite-volume method to discretize the
equations. Winters (1987) detected five Hopf bifurcations in the steady solution
for air, increasing the Rayleigh number from 2x10% up to 3x10% He used a
finite-element method to discretize the steady equations. His dimensionless fre-
quencies for increasing Rayleigh number are 0.254, 0.215, 0.290, 0.173 and 0.325
respectively. The three highest frequencies seem to correspond to those found in
the mentioned unsteady calculations and experiments.

In the gresent study calculations were made in the Rayleigh number range
106 — 3x105 for air and in the range 10° — 6x10° for water. The large-time
solution for a slightly smaller Rayleigh number was used as an initial condition at
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FIGURE 5.1. Time evolution of u,,, for air at Ra=2.25X 105 in the case
of conducting horizontal walls.

TABLE 5.2 Bifurcation in the case of conducting horizontal walls.

air water
study Ra,, fH Ra,, [H
gRATH 2RATH

present:
30% 30 grid 1.27x 108 0.272 1.72x 108 0.128
60x 60 grid 2.07%106 0.247 4.65x10° 0.157
80 80 grid 2.10%106 0.248 5.13x 108 0.158
Le Quéré & AdR (1986) 2.2x10° 0.255 - -
Winters (1987) 2.1092% 108 0.254 -- --
Jones & Briggs (1989) 2.2x108 0.249 - --
experimental,
Briggs & Jones (1985) 3% 105 0.248 -- -

t=0. The integration in time was performed until the new large-time behaviour
was fully reached. Figure 5.1, for example, shows the time evolution to a periodic
state for air at Ra=2.25% 105, using the steady solution at Ra=2x 10% as an initial
solution.

By time-step refinement, the time step At(gBATH)Y¥H=1/8 was checked to
give almost time-step-independent results. In table 5.2 and figure 5.2 the spatial
accuracy is verified by refining the grid up to 80 80 grid points. The critical Ray-
leigh number in table 5.2 was determined by extrapolating the amplitude (3) to
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FIGURE 5.2. Bifurcation in the case of conducting horizontal walls;
(a) air, (b) water.
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FIGURE 5.3. Frequency in the case of conducting horizontal walls.

zero with the help of equations (5.5). If a Hopf bifurcation in the Navier-Stokes
equations occurs, equations (5.5) say that a straight line is found sufficiently close
beyond Ra,, when 82 is plotted vs Ra. Figure 5.2 shows that this is indeed the
case at all grids, with exception of the 30X30 grid for water. The latter grid is too
coarse to accurately solve the Navier-Stokes equations close to Ra,. The critical
Rayleigh number and frequency at our two finest grids for air are very close.
Moreover table 5.2 shows a good accuracy with the existing numerical and experi-
mental studies. In particular Winters (1987) has shown by grid refinement that his
results are very accurate; our 80X80 grid for air gives Ra,=2.10X10° with
fH/(gBATH)Y2=0.248, whereas Winters finds Ra,=2.1092X10% with
fH/I(gBATH)*=0.254. The difference between the values for Ra, at the two
finest grids is larger for water than for air, but the difference for the frequency is
small for both air and water. Comparison of the critical Rayleigh number on the
finest grid for air and water shows that increasing the Prandtl number delays the
instability.

In the range of Rayleigh number where the calculations were performed we
found either an evolution to a steady state (for Ra<<Ra,) or an evolution to a
periodic oscillating state (for Ra>Ra,). Beyond Ra, the same periodicity was
found in the quantities u,,, V., and Nu. Figure 5.3 verifies that the frequency
for supercritical Rayleigh numbers scales with the Brunt-Vaisild frequency
(gBATH)VY/H. At a fixed grid the frequency in figure 5.3 remains on a single
branch; we did not calculate that the frequency jumped to another branch when
the Rayleigh number was changed. This contrasts the calculations of Le Quéré &



-76 -

(a) (b)

FIGURE 5.4. Steady flow for air at Ra=10% in the case of conducting horizontal
walls; (a) streamlines, (b) isotherms.

(the broken line indicates up to where the unstable thermal layer extends).

Alziary de Roquefort (1988) and Jones & Briggs (1989), who found different
branches of frequencies for air. Hysteresis effects seem to prevent that our
periodic solution jumps to another branch and changes frequency. We also calcu-
lated the unsteady large-time solution for air at Ra=5% 108, which is far beyond
Ra.. The solution for this large Rayleigh number is no longer periodic, but
chaotic. The dominant frequency, fH/(gBATH)2, in this unsteady solution is
about 0.2—0.25, which is still close to the frequency at Ra,,.

As will be shown in the next section, the instability in the case of adiabatic
horizontal walls is delayed until Ra, =1.7%x10® for air and until Ra,~10' for
water. In order to interpret the nature of the instability in the case of conducting
horizontal walls we have compared the steady solution for air at Ra=10% with the
solution for adiabatic horizontal walls at the same Rayleigh number: figure 5.4
shows the streamlines and the isotherms, whereas figure 5.5 compares the velocity
at half the cavity height and the temperature at half the cavity width. (The
streamlines and isotherms at Ra=10° for the adiabatic case were already shown in
the figures 4.1a and 4.2). Ra=100 is just below the critical Rayleigh number for
air in the conducting case. Both the conducting and the adiabatic solutions show
boundary layers along the vertical walls and a stably stratified core. In these
regions the solutions only slightly deviate. For example, the velocity maximum at
half the cavity height (v,,,/(§BATH)Y?) is 0.304 in the conducting case and 0.263
in the adiabatic case, and the temperature gradient in the cavity centre (§) is 0.71
in the conducting case and 0.92 in the adiabatic case. The main difference is
found along the horizontal walls: in the conducting case the temperature decreases
with the height in the layer along the horizontal walls. The broken line in figure
5.4b, having dT/9y=0, indicates up to where this unstable layer extends. In the



-77 -

conducting

— — — — adiabatic

= Ra' 10.
(a)

1.0

7 conducting
R — - — — adiabatic
0.0 +
0.0 0.5 y/H 1.0
(b)

FIGURE 5.5. Steady flow for air at Ra=108; (a) vertical velocity at y=H/2,

(b) temperature at x=H/2.



FIGURE 5.6(a). For caption sce facing page.
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FIGURE 5.6. Limit cycle for water at Ra=6x 10° in the case of conducting
horizontal walls; (a) streamlines, (b) perturbation in the temperature.
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adiabatic case this line coincides with the horizontal wall. As explained in section
5.5, viscosity can stabilize this unstable temperature up to a critical Rayleigh
number. The maximum local Rayleigh number at the broken line (based on the
local temperature difference with the T(x) temperature at the floor and based on
the local height) is 6.1x 10* for air (and 6.0%10% for water at Ra=4x10°%). This
maximum is indicated with a dot in figure 5.4b. This value is in order of magni-
tude comparable to 1708, which is the critical Rayleigh number for the infinite
horizontal fluid layer heated from below. If, instead of the maximum in the Ray-
leigh number, the averaged Rayleigh number on the line is compared, we find
Ra=1334 for air (and 1148 for water). Hence the averaged Rayleigh number is
even closer to 1708 than the maximum Rayleigh number. This agreement suggests
that the instability in the cavity with conducting horizontal walls is related to the
Rayleigh/Bénard instability in the infinite horizontal fluid layer that is heated from
below. For supercritical Rayleigh numbers the frequency in the cavity scales with
the Brunt-Vaisild frequency. This indicates that, although the instability seems to
be introduced in the viscous horizontal layer, the selected frequency is determined
by the wave mode of the inviscid core.

Once the instability has been introduced the unsteady physics can be exam-
ined from the evolution of the streamlines and the isotherms in figure 5.6. The
figure shows time-lapse pictures after 8 equidistant time intervals. In the first pic-
ture, in the right upper corner of figure 5.6a, a vortex is found close to the floor at
the outer edge of the vertical boundary layer along the hot wall. During the cycle
the vortex rises along the outer edge of the vertical boundary layer. Finally the
vortex reaches the ceiling, where it is mixed up with the horizontal layer. Figure
5.6b shows the circulation of small regions (spots) with a locally higher or lower
temperature. This figure follows the perturbation in the isotherms, i.e. it considers
the instantaneous temperature after subtraction of the averaged temperature during
the cycle. Only the hot spots are shown; because the flow remains centro-
symmetric during the cycle, the cold spots are positioned diagonally opposite to the
hot spots. The vertical boundary layer contains both hot and cold spots. The posi-
tion of the instability is indicated with an arrow in the right upper picture: we see
the birth of a hot spot. If the reader follows this spot through the sequence of pic-
tures, it can be checked that the spot disappears in the left upper corner after
about 2.5 cycles. The instability generates alternating hot and cold spots, which
are convected by the vertical boundary layers. A clockwise circulation of hot and
cold spots results. The same physics are found for both air and water.

5.7. Adiabatic horizontal walls

The stability for air in cavities with adiabatic horizontal walls and an aspect ratio
A (=height-width ratio) in the range 4 to 10 has been calculated by Le Quéré &
Alziary de Roquefort (1985). They used a spectral method to discretize the
unsteady Navier-Stokes equations. They calculated that the critical Rayleigh
number (based on the cavity height) is almost independent of the aspect ratio,
namely Ra,~10%. The frequency increases from fH/(gBATH)2=0.478 at A=4
to 0.847 at A=10. Further, the frequency for supercritical Rayleigh numbers in a
cavity with a given aspect ratio is almost independent of the Rayleigh number if it
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FIGURE 5.7(a). For caption see next page.

is scaled with the Brunt-Vaisald frequency. Le Quéré & Penot (1987) have veri-
fied the calculated stability for air in the A =4 cavity experimentally. The boun-
dary conditions along the horizontal walls in the experiment were not clearly
known, but were expected to be somewhere between the conducting case and the
adiabatic case. They measured Ra,,=1.1x10% with fH/(gBATH)Y?=0.522, which
reasonably agrees with their calculations (Ra,,=4.5% 107 with
fH/(gBATH)'?=0.578 for the conducting case, and Ra,=1.1X108 with
fHI(gBATH)Y?=0.478 for the adiabatic case). When the calculations for air in
the square cavity in the present study were under way, Paolucci & Chenoweth
(1989) published their stability results for air in the cavity for the aspect ratios
A=0.5, 1, 2 and 3. They used a finite-difference method on a staggered grid to
discretize the unsteady Navier-Stokes equations.

We have calculated the stability for air in the square cavity (4 =1) with adia-
batic horizontal walls by performing unsteady calculations in the Rayleigh-number
range 108—10%. The flow at Ra=10% converges to a steady state. As described in
the previous chapter, the steady large-Rayleigh-number flow shows thin boundary
layers along the vertical walls, and an almost stagnant, thermally stratified core.
In line with the theory of Patterson & Imberger (1980), this large-Rayleigh-number
flow reaches its steady state in an oscillatory way. The damped oscillations are
internal gravity waves in the core. We calculate that these waves have a frequency
fH/(gBATH)Y2=0.107, which is almost independent of the Rayleigh number if it
is scaled with the Brunt-Vaisidld frequency. When the Rayleigh number is
increased above 10%, the flow no longer reaches a steady state at Ra=1.75x108.
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FIGURE 5.7. Large-time behaviour of the vertical velocity maximum at y=H/2
for air in the case of adiabatic horizontal walls; (a) Ra=2x 108, (b) Ra=3x108,
(c) Ra=4x 108
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Ra=3%x108 Ra=4x108

FIGURE 5.8. Streamlines for air in the case of adiabatic horizontal walls.

A Hopf bifurcation occurs at 1.7x108<RaC,,1<1.75><108. At Ra , the flow
becomes periodic with a frequency le/(gBATH)”2=O.O488. The periodicity in
the vertical velocity maximum at half the cavity height at Ra=2x10® is shown in
figure 5.7a. If the Rayleigh number is further increased a second instability is
found at 2X108<Rac,’2<2.25>< 10%. The large-time solution for the velocity max-
imum at Ra=3X10% is shown in figure 5.7b. At Ra,, , the flow becomes quasi-
periodic, in which the higher frequency f,H/(gBATH)"?=0.590 is added to the
lower frequency. The values of the two frequencies in this solution were derived
directly from the time-dependent solution. The frequencies could have been deter-
mined more accurately as the spikes in the Fourier-transformed spectrum of the
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TABLE 5.3. Bifurcation for air in the case of adiabatic horizontal walls.

(a) critical Rayleigh number

study Ra,, Ra,, ,
present:
40% 40 grid 2x108-2.25% 108 2.25%10%-2.5% 108
60x 60 grid 1.6x10%—1.7%x108 2.25x108-2.5% 108
80% 80 grid 1.6x108—1.7x 108 2%108-2.25%x 108
120X 120 grid 1.7x108—1.75x 108 2x108-2.25% 108
Paolucci & Chenoweth (1989) 1.93x 108 2.55%108
(b) frequency and amplitude at Ra=3% 10%
H H 3
study \/ fl f2 umax
gBATH VgBATH (gBATV)!?
present:
40X 40 grid 0.0223 0.665 0.0398
60% 60 grid 0.0385 0.543 0.129
80 80 grid 0.0378 0.594 0.169
120X 120 grid 0.0453 0.625 0.264
Paolucci & Chenoweth (1989) 0.0505 0.607 -

solution. As illustrated in figure 5.7c for Ra=4x10%, increasing the Rayleigh
number above Ra=3x 10® breaks the quasi-periodicity and gives a chaotic solution.
Figure 5.8 shows some instantaneous streamline patterns from the large-time solu-
tion at different Rayleigh numbers. At Ra=1.7x10® the steady core has horizon-
tal streamlines. If the Rayleigh number is increased a wavy pattern is found in the
core and in the horizontal layers. In the chaotic solution at Ra=4X 108 the centro
symmetry has been broken.

By time-step refinement the time step A7(gBAT. H)?/H=1/32 was checked to
give almost time-step-independent results. The spatial accuracy is studied by refin-
ing the grid up to 120x 120 grid points. In table 5.3 the critical Rayleigh numbers
as well as the frequencies and the amplitude at Ra=3X 108 are summarized for dif-
ferent grids. The critical Rayleigh numbers only slightly depend on the grid used,
and the values closely agree with the results of Paolucci & Chenoweth (1989).
Also the higher frequency (f,) only weakly depends on the grid and the value at
the finest grids is close to the calculation of Paolucci & Chenoweth. The lower
frequency (f;) shows a larger grid dependence. The lower frequency at our
120x 120 grid differs by 10% with the frequency of Paolucci & Chenoweth, who
also used a 120x120 grid. The amplitude of the oscillation is even still largely
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FIGURE 5.9. Grid dependence of the amplitude in the oscillation for air
in the case of adiabatic horizontal walls.

grid dependent on our finest grid. Because Paolucci & Chenoweth do not give
results for different grids, we cannot say whether their or our 120 120-grid solu-
tion is more accurate. From table 5.3 we conclude that further grid refinement is
required as far as the amplitude is concerned, whereas the critical Rayleigh
numbers and frequencies do not need further grid refinement.

We have plotted 52 for u,,,, vs the Rayleigh number at different grids in fig-
ure 5.9. Hysteresis was found on the 60x60 and 80%80 grids up to Ra~2.5% 108:
if the Rayleigh number was increased the solution did not give the lower fre-
quency, which was found when the Rayleigh number was decreased. In contrast
to the expectation, the amplitude for the 60X60 and 80X80 grids in figure 5.9
does not gradually decrease to zero when the Rayleigh number is decreased below
Ra=1.7%x108 the amplitude abruptly becomes zero and always gives a steady solu-
tion. Therefore the 60X60 and 80% 80 grids do not describe the Hopf bifurcation
very accurately. The 40X40 and 120X 120 grids do not show hysteresis, and the
amplitude smoothly vanishes for Ra ¢ Ra,,. If the first bifurcation is indeed a Hopf
bifurcation a straight line has to be found in the 8%—Ra curve sufficiently close to
Ra,. With reasonable accuracy this indeed is the case for all grids. From the
results on the finest grid we conclude that the first bifurcation is a Hopf bifurca-
tion. Paolucci & Chenoweth draw the same conclusion.

The large-time behaviour of the averaged heat-transfer through the hot verti-
cal wall and of the horizontal velocity maximum at half the cavity height are
shown in figure 5.10 for air at Ra=3x108. Nu and v, show both the lower and
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higher frequency, whereas u_,, only shows the lower frequency. Because Nu and
Vmax are quantities of the vertical boundary layer, and up,, is not, this suggests
that the higher frequency is related to an instability in the vertical boundary layer.
The lower frequency can be related to the waves in the streamline pattern in the
core and in the horizontal boundary layers of the cavity (figure 5.8). Because the
left upper corner shows a hydraulic jump, with a recirculation region, the lower
frequency is expected to be related to an instability in the flow directly after the
hydraulic jump. The lower (f,) and higher (f,) frequency between the critical
Rayleigh numbers and Ra=10" are given in figure 5.11. Both the lower and
higher frequency turn out to be almost independent of the Rayleigh number if they
are scaled with the Brunt-Viisild frequency (¢BATH)YYH. Although the solution
beyond Ra=3X10% is chaotic, it still contains a dominant frequency. The dom-
inant frequency in the chaotic evolution of v,  and Nu is not equal. The upper
branch in figure 5.11b gives the frequency for v, ,, and the lower branch gives the
frequency for Nu; for the largest Rayleigh numbers the dominant frequency for
Vmax 1S about twice the dominant frequency for Nu. It is remarkable that the dom-
inant frequency, scaled with (gBATH)VYH, for Nu remains close to the f, fre-
quency as calculated directly beyond the second bifurcation. Because Nu
represents an averaged quantity, this suggests that the averaged structures in the
chaotic solution do not differ very much from the structure in the quasi-periodic
solution.

Ivey (1984) performed experiments for the unsteady flow of water in the
heated square cavity with adiabatic horizontal walls up to Ra=1.2X 10°. For these
Rayleigh numbers he finds an evolution to a steady state. Ivey starts with a flow
in rest and suddenly switches on the temperature difference over the vertical walls
at t=0. The initial phase of the evolution shows oscillations, which finally are
damped. The flow visualization shows that these oscillations are initiated in the
left upper corner of the cavity, where the hot vertical boundary layer turns to a
horizontal layer. During the evolution a hydraulic jump is found in the corner.
The released jump energy is dissipated via damped oscillations in the flow beyond
the jump. It is emphasized that the hydraulic jump for water at Ra=1.2%10°
appears only in the initial phase of the evolution, but is absent in the steady final
state. Numerical stability studies for the case with water, however, are not
reported in the literature.

We have calculated the stability for water by performing unsteady calculations
in the Rayleigh number range 10°—10'!. In contrast with Ivey’s experiments, the
time evolution for a certain Rayleigh number was initiated with the large-time
solution for a slightly smaller Rayleigh number. For Ra= 10° we calculate that the
flow converges to a steady state in an oscillatory way. The damped oscillations are
internal gravity waves in the «core which have the frequency
fH/(gBATH)Y2=0.088. This frequency is almost independent of the Rayleigh
number if it is scaled with the Brunt-Viisdld frequency. The steady solution does
not show the hydraulic jump, which was found for air. The numerical result that
the critical Rayleigh number is larger than 107 agrees with Ivey’s experiments, who
also finds a steady solution up to at least this value. When we further increased
the Rayleigh number, a critical Rayleigh number was found beyond which the flow
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FIGURE 5.12. Grid dependence of the oscillation for water in the case of
adiabatic horizontal walls; (a) critical Rayleigh number, (b) frequency.
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FIGURE 5.13. Time evolution for water at Ra=5x10° in the case of adiabatic
horizontal walls at the 160X 160 grid, sinusoidal in both the x and y coordinates;
(a) vertical velocity maximum at y=H/2, (b) averaged wall-heat transfer.
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FIGURE 5.14. Time evolution for water at Ra=2x 10" in the case of adiabatic
horizontal walls at the 80X 160 grid, sinusoidal in the x and equidistant in the y

coordinate; (a) vertical velocity maximum at y=H/2, (b) averaged wall-heat
transfer.
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no longer reached a steady final state. The critical Rayleigh number and fre-
quency turns out to be very grid dependent: even the grid dependence of the
results on the 160X 160 grid is not negligible. Once an oscillation is found for a
fixed grid, the frequency is almost independent of the Rayleigh number if it is
scaled with the Brunt-Vaisald frequency.

By refining the time step we verified that the time step
At(gBATH)Y2H=1/32 gives almost time-step-independent results. The spatial
accuracy is determined by refining the grid from 40x40 up to 160x160 grid
points. Besides the sinusoidal grid (4.7) for the x and y coordinates, we also tried
two other grid types: a type that has the sinusoidal grid (4.7) for the x-coordinate
and an equidistant grid for the y-coordinate, and a type that also has an equidis-
tant grid for the y-coordinate but uses the following exponential (tangent-
hyperbolic) grid for the x-coordinate

X1 tanh[a,(i/imax—1/2)] ;
tanh(a,/2)

H 2

= 0,1,...,imax. (5.6)

Here o, follows from the expression a,=a,/sinh(e;), in which o, is chosen as
0.0015. This grid gives more grid points in the vertical boundary layers than the
sinusoidal grid. Figure 5.12 gives the critical Rayleigh number and frequency as
calculated at the different grids. As shown in figure 5.13a, the use of the
sinusoidal grid for x and y gives a periodic solution beyond Ra, for large time.
The oscillation is only visible in v,, (figure 5.13a), but not in Nu (figure 5.13b)
and not in ug,,, which both show a time-independent behaviour for large time.
This suggests that the oscillation is due to an instability in the vertical boundary
layer. The frequency of the oscillation increases from fH/(g BATH)Y2=0.32 at the
40x40 grid to 1.04 at the 160X 160 grid, whereas the critical Rayleigh number
increases from 2.5%108 to 4x10°. The Ra—28? curve for the oscillation at this
type of grid (not shown here) is a straight line closely beyond Ra,,, which indicates
that a Hopf bifurcation is calculated. The averaged wall-heat transfer itself at this
grid type remains time-independent at supercritical Rayleigh numbers, but figure
5.13b shows that Nu Ra™ ' for supercritical Rayleigh numbers is larger than for
the steady solution below Ra,. Up to the largest Rayleigh number for which the
unsteady calculations were performed (10'!) the unsteady solution for large time
never showed the lower frequency which was found for air. Because the solution
for water does not show the hydraulic jump, which occurred for air, the absence of
the lower frequency supports the assumption that the lower frequency for air is
related to an instability in the flow after the hydraulic jump. The two grid types
which use an equidistant grid for the y-coordinate do not give a periodic solution
for supercritical Rayleigh numbers. Just below Ra,, the solution at the equidistant
y-grids reaches the steady state after a long evolution with intermittency: during
finite time intervals the solution oscillates with a single frequency. This frequency
was used in figure 5.12b. As shown in figure 5.14a, slightly beyond Ra,, the ini-
tial phase of the time evolution also shows intermittency until the solution sud-
denly becomes chaotic. If the time evolution for the averaged wall-heat transfer in
figure 5.14b is compared with the evolution for the maximum vertical velocity in
figure 5.14a, we see that Nu Ra~!" falls back to a level close to the steady
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FIGURE 5.15. Traveling temperature waves in the vertical boundary layer along
the hot cavity wall (the boundary layer is 20 times enlarged in the x-direction); (a)
air at Ra=3x 108, (b) water at Ra=5x10°.

solution for subcritical Rayleigh numbers during the time interval that the oscilla-
tion in v, is absent. As soon as the solution for v ,, becomes chaotic, also the
averaged wall-heat transfer considerably increases, but it becomes almost time-
independent for large time. This clearly illustrates that time fluctuations in the
velocity and temperature field lead to an increase of the averaged wall-heat
transfer. From figure 5.12 we conclude that further grid refinement (or a better
distribution of grid points) is required to calculate the critical Rayleigh number
and frequency for water in the case of adiabatic horizontal walls. This can also
answer whether the first bifurcation is a Hopf bifurcation or whether it leads to
intermittency. Up to now the results at our finest grids approximately give
Ra,,=10'0 with fH/(g BATH)?=1.15.

It turns out that much more grid points are required for water than for air.
The number of grid points required is determined by the wave length of the spatial
waves which are introduced by the instability; figure 5.15 shows that the wave
length in the vertical boundary layer, which is 20 times enlarged in the x-direction
in the figure, is larger for water than for air. This figure gives the lines of zero
temperature perturbation for air at Ra=3x10® (120% 120 grid) and for water at
Ra=5x%10° (160 160 grid, sinusoidal in x and y). The temperature perturbation
is defined as the instantaneous temperature minus the averaged temperature during
a time oscillation (for air the time averaging was performed over the period of one
higher-frequency oscillation, and not over the period of the lower frequency). The
zero-perturbation lines give the boundaries of alternating hot and cold spots in the
vertical boundary layer. A hot and cold spot together give one wave length. We
checked that the zero-perturbation lines at y>H/2 are moving upward, which
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shows that the instability leads to traveling waves in the vertical boundary layer.
The wave speed at y=0.75H is 0.086(g BATH)"? for air and 0.052(g BATH)Y? for
water. Combining the wave speed (vy,,.) Wwith the frequency
((fH/(¢BATH)Y?=0.625 for air and 1.04 for water) gives the wave length
(N=Vyave/f); N=0.14 H for air and A=0.05 H for water. These wave lengths are
indeed close to the distance between two zero-perturbation lines as indicated in fig-
ure 5.15b. One wave length in the figure approximately contains 17 grid points
for air, but only 8 for water. At y<<H/2 the wave length for water in the figure is
smaller than for y>H/2. Close to y=0 the wave length is only twice the grid size,
which indicates that the waves close to the leading edge of the vertical boundary
layer are not physical waves, but numerical wiggles in the central scheme.

The appearance of traveling waves in the vertical boundary layer of the cavity
strongly supports the belief that the instability in the cavity with adiabatic horizon-
tal walls is related to the Tollmien-Schlichting instability in the vertical boundary
layer along the hot vertical plate (see section 5.5). The cavity results are added to
the summary of existing theoretical and experimental stability results for the plate
in table 5.1. The calculated frequencies for air and water in the cavity are reason-
ably close to the theoretical stability results for the plate. The wave length for
water in the cavity is also close to the theoretical wave lengths for the plate, but
the wave length for air in the cavity is considerably lower than the plate results.
Paolucci & Chenoweth (1989) have compared Ra,, for air in the cavity with the
result of Gill & Davey for the plate in a stratified environment. Paolucci &
Chenoweth used the stratification gradient §=1.0 (which is practically the same as
our value §=0.99 in table 4.3) in Gill & Davey’s expression for Ra,,. This gives
Ra,,=1.13x 108, which is close to the calculated critical Rayleigh number for air in
the cavity. We can make the same comparison for water, and substitute $=0.55
(see table 4.3) in Gill & Davey’s expression for Ra,,. The value Ra,=3.7X107 is
found, which is considerably below the calculated critical Rayleigh number for
water in the cavity. A remarkable difference between the oscillation in the boun-
dary layer along the heated cavity wall with the stratified core environment and
the oscillation in the boundary layer along the heated vertical plate in the isother-
mal environment (Gebhart & Mahajan, 1975) is that the oscillation for the cavity
scales with (gBATH)Y*H, whereas the oscillation for the plate scales with
(gBAT)Y??w13, The former is an inviscid scale, but the latter is viscous scale.
Hence, although the instability in the cavity seems (o be initiated by an unstable
viscous Tollmien-Schlichting wave as for the plate configuration, the selected fre-

quency at supercritical Rayleigh numbers is determined by the wave mode of the
inviscid core.

5.8. Conclusion

By numerically solving the unsteady, two-dimensional Navier-Stokes equations, we
have calculated the stability of the steady laminar natural-convection flow of air
(Pr=0.71) and water (Pr=7.0) in a square cavity that is differentially heated over
the vertical walls.

For conducting horizontal walls, the steady flow of air and water looses its
stability via a Hopf bifurcation at Ra,,=2.1x10% and 5.1x10% respectively. At
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supercritical Rayleigh numbers the unsteady flow is periodic with a frequency
fH/(gBATH)Y2=0.248 for air and 0.158 for water. The steady solution at subcrit-
ical Rayleigh numbers shows an unstable temperature profile (the temperature
decreases with the height) close to the horizontal walls. This indicates that the ins-
tability is related to the Rayleigh/Bénard instability. The frequency is almost
independent of the Rayleigh number if it is scaled with the Brunt-Vaisald fre-
quency (gBATH)V%/H .

For adiabatic horizontal walls, the steady flow of air looses its stability at
Ra,,=1.7x10® via a Hopf bifurcation. Below this value the evolution to the steady
state shows damped internal gravity waves in the core with a frequency
fH/(gBATH)Y2=0.107. Beyond Ra,,, the unsteady large-time solution is periodic
with the frequency f,H/(gBATH)'2=0.0488. Slightly above the first critical Ray-
leigh number a second critical Rayleigh number is found at Ra,=2.25x108.
Beyond this second critical Rayleigh number the solution becomes quasi-periodic,
in which the higher frequency f,H/(gBATH)Y*=0.590 is added to the lower fre-
quency. The lower frequency which appears most clearly in the core and in the
horizontal layers, seems to be related to an instability in the flow after the
hydraulic jump in the corner. The higher frequency, which corresponds to travel-
ing waves in the natural-convection boundary layer along the vertical walls, seems
to be related to the Tollmien-Schlichting instability as found in the boundary layer
along a semi-infinite hot vertical plate.

In the cavity with adiabatic horizontal walls, the solution for water at
Rac,=109 reaches a steady state after internal gravity waves with a frequency
FH/(gBATH)Y2=0.088 have been damped. A bifurcation to an unsteady state is
found at a larger Rayleigh number, but the calculated values for the critical Ray-
leigh number and frequency show grid dependence even on our finest 160X 160
grid. Moreover the use of a sinusoidal grid in the y-coordinate gives a Hopf bifur-
cation whereas the use of an equidistant grid in the y-coordinate leads to intermit-
tency. The finest grids give Ra,,~10'° and fH/(gBATH)"2~1.15, but further grid
refinement is required to determine these values more accurately. The frequency
corresponds to traveling waves in the vertical boundary layer. In contrast to air,
water does not show the hydraulic jump and no lower frequency is found. Much
more grid points are required for water than for air, because the wave length of
the travelling waves is smaller for water (A~0.05 H) than for air (A=0.14 H).
The frequencies for both air and water are almost independent of the Rayleigh
number when they are scaled with the Brunt-Vaiisild frequency.
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6. TURBULENT BOUNDARY-LAYER FLOW

6.1. Introduction

When the Rayleigh number is increased far enough the flow becomes fully tur-
bulent. The two-equation k~e model is often used to model the turbulence. The
k—e model is usually applied in combination with analytical wall functions for the
velocity and temperature close to a fixed wall to avoid the numerical calculation of
the steep gradients in the thin wall region. The wall functions also give boundary
conditions for the differential equations for the turbulent kinetic energy k and the
dissipation rate of turbulent kinetic energy €. In many flows the use of wall func-
tions actually is not fully justified and Launder (1984) has suggested that it might
has become ’time to abandon wall functions’. In the thin wall region the tur-
bulence level is low, and the standard k—e model has to be corrected for the low-
Reynolds-number effects. Different modifications, which lead to so-called low-
Reynolds-number & —e models, have been proposed in the literature.

To compare the performance of the different low-Reynolds-number k—e
models near to a wall, Patel et al. (1981, 1985) have solved the turbulent
boundary-layer equations for the flow along a flat plate in a uniform oncoming
flow, which gives a forced-convection boundary layer. In this chapter a similar
comparison will be made for the flow of both air and water along a hot vertical
plate placed in an isothermal environment, which gives a natural-convection boun-
dary layer. We determine the accuracy of the models by comparison of the wall-
heat transfer and the vertical velocity maximum with existing experimental data.
Experimental data for the turbulent natural-convection boundary layer for air were
obtained by Cheesewright (1968, 1986), Cheesewright & lerokipiotis (1981, 1982)
and Miyamoto et al. (1982, 1983). Furthermore, recently Tsuji & Nagano
(1988a,b, 1989) accurately measured the boundary layer for air up to very close to
the wall. Besides a comparison of the low-Reynolds-number k—e models, also
comparisons will be given for the standard k—e model (which applies no low-
Reynolds-number modifications) and for the well-known algebraic model of Cebeci
& Smith.

When one does not want to extend the calculations up to the wall, the diffi-
culty is that the search for wall functions for the turbulent natural-convection
boundary layer along the hot vertical plate has not been completed yet in the
literature. Analytically George & Capp (1979) and Cheesewright (1986; Cheese-
wright & Mirzai, 1988) have given some first proposals for these wall functions.
George & Capp divided the boundary layer into an inner and an outer layer. The
inner layer starts at the vertical wall and ends at the velocity maximum. This layer
was further split into a conductive/thermo-viscous sublayer, directly touching the
wall, and into a buoyant sublayer extending to the velocity maximum. They pro-
posed a I/3-power wall function for the velocity and a ~1/3-power wall function
for the temperature in the buoyant sublayer. A wall function (defect law) was also
given in the outer layer, which extends from the velocity maximum up to the outer
edge. The analysis of Cheesewright differs from the analysis of George & Capp



-97-

on some points. The form of the flow in the conductive/thermo-viscous sublayer
remains unchanged. Cheesewright derived wall functions in the lower part of the
outer layer (i.e. the fully turbulent region between the maxima of the velocity and
the turbulent viscosity). These wall functions do not show the 1/3-power depen-
dence, but have logarithmic terms. Cheesewright did not formulate a wall func-
tion for the upper part of the outer layer.

Unfortunately experimental data only exist up to an y-based Rayleigh number
(Ra,) of about 5x10'!, which might be too low for possible wall functions to
appear. In contrast with the experimental approach, the numerical approach can
easily follow the boundary-layer flow up to much larger Rayleigh numbers. Once
we have determined which low-Reynolds-number models most closely predict the
experimental data up to Ra,=10'., it is reasonable to expect these models to work
well for larger Rayleigh numbers too. The calculations with the best performing
low-Reynolds-number models, namely the models of Chien (1980, 1982) and Jones
& Launder (1972), will be extended up to Ray=1025. These large-Rayleigh-
number calculations enable us to study the asymptotic behaviour of the turbulent
natural-convection boundary layer. Different quantities are examined and they are
fitted with asymptotic curves of the form aRay. If y becomes constant for increas-
ing Rayleigh number the proper scaling is found. These proper scalings define the
wall functions for the turbulent natural-convection boundary layer. The calculated
asymptotic behaviour and the calculated wall functions are compared with the
theory of George & Capp and Cheesewright.

It is known that the k—e model might fail to correctly describe strongly aniso-
tropic turbulent flows, for which it has to be replaced by a Reynolds-stress model.
Because the turbulence in the boundary layer along the hot vertical plate shows
anisotropy due to the boundary-layer character of the flow and due to the presence
of a unidirectional volume force (gravity), this chapter will be closed with a com-
parison between the k—e model and the Reynolds-stress model. The low-
Reynolds-number modifications of Chien are applied to both models. We do not
expect that the Reynolds-stress model can further improve the prediction of the
mean-flow quantities in the inner layer, where turbulence is almost absent. We are
mainly interested in how it predicts the turbulent quantities in the outer layer. In
particular the Reynolds-stress model can answer whether the eddy-viscosity con-
cept in the k—e model holds.

6.2. Turbulent boundary-layer equations

The time-averaged, two-dimensional, turbulent boundary-layer equations under the
Boussinesq approximation read

dx dy

dv av 1 dp v 9

ov Loy L + gB(T—Ty) + v— — —U'V 6.1

U Vay o dy gB( 0) vax2 9% (6.1)
2 _—

L LT v T8 e

ox dy Pr §x2 dx
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The eddy-viscosity model (2.13) is used to model the Reynolds stress and the tur-
bulent heat flux. Application of the boundary-layer simplifications gives

iV =y, &
" oox
(6.2)
— v
- u'T' = _’.QI.
or Ox

The following models for the turbulent viscosity are tested:

6.2.1. algebraic model of Cebeci & Smith

Cebeci & Smith (1974) formulated an algebraic model to describe the turbulence in
a forced-convection boundary layer. This model was slightly modified by Cebeci &
Khattab (1975) for a natural-convection boundary layer:

2ovidx |y, if x<x,
(0.0758)%|ov/ox | vy, if x=x, (6.3)

v, =

with

| = kx[1—exp(—x*/26)] (Van Driest length)

k = 041 (Von Karman constant)
xv

xt = =2 v, = (v(aviox), )2
v

8 is the x-position of vgs; vgs = 0.05 v,,,, (boundary-layer thickness).

X, is chosen such that v, is continuous at x.. <, is a function to describe the tran-
sition from the laminar (y, =0) to the turbulent (y,=1) state. This model takes
the turbulent Prandtl number for the temperature o according to
- _0.4 (1—exp(—x7/26))
0.44 (1—exp(—xT/C*))

with

s .
ct = V;—rz ¢; ( logyo(Pr))i!

i=1
cy = 3496, c, = 28.79, c3 = 33.95, ¢4 = 6.33, ¢5= —1.186.

6.2.2. standard k —e€ model
Two differential equations are introduced to describe the kinetic energy of the tur-
bulent velocity fluctuations k and the dissipation rate of turbulent kinetic energy e

(see also section 2.4). Under the boundary-layer simplifications these equations
read

v
u%+v%=iv+—t%+Pk+Gk—e
ax dy ox oy ) ox
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J€ de d Vi | 3¢ €
ua_ 4+ yv— = g [1} + —e]a—x + (CEI Pl(+ Cei Ce3 Gk — Ce € ); (6'4)

with

2
av v 9T k?
R R AT

As a consequence of the boundary-layer simplifications, the buoyancy-production
term G, can be neglected with respect to the shearing-production term P,; Lin &
Churchill (1978), however, retained the term to model fluids with a Prandtl
number larger than 1 (water, oil), but they replaced the temperature’s y-gradient
by its x-gradient. In the present k—e calculations for the plate G, is omitted.

In most existing natural-convection calculations boundary conditions for k and
€ at the wall are found from the forced-convection wall functions. It is known (see
for example Cebeci & Smith, 1974) that close to a fixed wall velocity and tempera-
ture profiles in a forced-convection boundary layer, with negligible pressure gra-
dient, can be approximated by logarithmic wall functions,

vt = % In9x*)  (xk=0.41)

T =2.195 In(x*) + 13.2 Pr — 5.66 (6.5)
with
x+=xv,r Y T+=TW—T
v v T, ’
— 112 - __v_|oT
v, = (v(av/dx),,)"“ , T, Prv. [ax ]W.

These wall functions can be used in the fully turbulent inertial sublayer at
x+¥>11.5. In the viscous sublayer close to the wall, at x*<11.5, turbulence can be
neglected. Assuming that convection and diffusion of k can be neglected in the
inertial sublayer, the differential equation for k in equations (6.4) simplifies to

Pk = €. (6‘6)

Hence, it is assumed that there is an equilibrium of production and dissipation of
turbulent energy in the inertial sublayer. Further, Prandtl’s mixing-length model is
assumed to hold:

v, = (kx)? % (k=0.41). (6.7)

With the energy equilibrium (6.6), Prandtl’s mixing-length model (6.7) and the
expression for v, in the k—e model (6.4), wall functions for k and € are found

K o1
2 12
\ c,
6.8
e 1 ©®
v i kxt
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The wall functions (6.5) and (6.8) do not hold for forced-convection boundary
layers with large pressure gradients, or if the condition x*>11.5 is not satisfied.
They also do not hold for natural-convection boundary layers. Because of lack of
natural-convection wall functions for k and €, turbulent natural-convection compu-
tational studies still use wall functions like (6.5) and (6.8) in the standard k—e
model. In the present study of the natural-convection boundary layer we do not
apply the wall functions (6.5) for the velocity and the temperature. We originally
only applied the wall functions (6.8) for k and €. Moreover we took the first inner
grid point at x*<11.5; satisfying the condition x¥>11.5 gives unrealistic results,
because x*=11.5 turns out to be close to the velocity maximum in the natural-
convection boundary layer (for example x*=41 at the velocity maximum for
Ra,=10", as calculated for air with the Chien model). This kind of use of the
wall functions is in line with some other natural-convection computations like those
of Ozoe et al. (1985) and Coulter & Guceri (1985). The only difference is that
these studies use wall functions for k and € which are slightly different from (6.8),
namely

k=20 at the wall
c 430 (6.9
V) . . . .

at the first inner gridpoint.

e =
KX
Grid refinement blows up the € value at the first inner grid point in equations
(6.8) and (6.9). Despite this unbounded increase of the € value, we checked that
grid refinement still gives the convergence to a grid-independent velocity and tem-
perature field. For a given grid, however, the use of the e wall function gives a
much larger numerical error for the solution in the inner layer (for example for the
wall-heat transfer) as compared to the case in which we directly set € to infinity at
the wall. The use of e=%« at the wall implies that replacing the wall function for k
(6.8) by k=0 at the wall leads to identical results. Therefore in order to increase
the numerical accuracy, we decided to replace the wall functions (6.8) in the stan-
dard k—e model by the Dirichlet boundary conditions k=0 and e=c at the wall.
The numerical values taken for the constants in the standard k—e model (6.4) are
given in table 6.1, o is taken as 0.9. These values are adopted from the recent
literature (see for example Launder, 1988).

6.2.3. low-Reynolds-number k —e models
The standard k—e model only holds if the turbulence intensity v, /v is large. A
measure for the turbulence intensity is given by the turbulence-based Reynolds
number, for example Re,=k2/(ve). If this Reynolds number is low, for example
close to a fixed wall, a modification of the standard k£ —e model has to be applied.
Low-Reynolds-number effects are modelled by the introduction of the functions
f1» f2» fu» D and E:

ok |, ok _ & [

_ Ve | 3k
u +v—=—|v+ —|—+ P, —e€+ D
ox dy dx o, ) ox

de Jde d Vi | de €
L i vE=s L+ L= s P, — — + E (6.10
“or T Vay = o [v Ue] o (cer f1 Pk C£2f2€)k (6.10)
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with
2
_ v _ k2
P, —v,[a] s Vi =cuf o

The low-Reynolds-number models are summarized in table 6.1. All these models
are applied with 7=0.9. Most low-Reynolds-number k —e models were originally
developed for forced-convection boundary layers. Only the To & Humphrey (1986)
model, which actually is a modified Jones & Launder model, was developed for
natural-convection boundary layers. Lin & Churchill (1978) used the Jones &
Launder (1972) model to calculate the natural-convection boundary layer for air.

The choice of the functions f,, f,, f,, D and E should depend on the fol-
lowing considerations (see also Patel er al. 1981, 1985):

(i) limit for small x. For small x, the velocity fluctuations can be expanded accord-
ing to

w' = b1x2 + ...
Vi=ayx + byx? + ... (6.11)
w'=a3x+b3x2+ ers

With these series, the quantities k (= #;'y;" / 2), € (= v du;'/3x; u;'/ox; ) and v,

(= — u'v' [/ (dv/dx)) become (assuming that the turbulence is homogeneous in the
y-direction)

k=Ax*+Bx3+ ..

e=v(R2A +4Bx + ... ) (6.12)

- alex3 + ..

Yt T T Gviax),
with

A=(a}+al)l2, B =ab,+ ap;

(ii) D function and boundary conditions for k and €. Using series (6.12), the k-
equation close to the wall reduces to

2
Wk e D =00 (6.13)
x2
with
2
-g—k=2A+6Bx+....
ax2

All models apply k=0 as a wall condition, which is consistent with series expan-
sion (6.12) for k. Not all models apply the nonzero value €=2vA4 as a boundary
condition; in order to satisfy equation (6.13) for at least the O(1) terms, models
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applying €,=0 introduce a function D. In this case the effective dissipation
becomes €—D.

(iii) f, and E functions. Close to the wall the e-equation reduces to

62 2
Vs T cafa HE=O0W. (6.14)

The choice for f, and E should be such that 3%€/3x2=0(1) for small x. For exam-
ple, if E=0 and a nonzero €,, value is prescribed (implying that € is O(1) for small
x), consistency is only found with f,=0(x?) for small x. Some models introduce a
nonzero E term, but its physical meaning is not very clear. Most models choose
f2 such that the decay of isotropic grid turbulence is modelled in agreement with

experiments. These experiments show that the turbulent kinetic energy k decays as
—-n

y~ ", with n=1.25 for large Re, (i.e. for small y; Re,=k2/(ve)) and n=2.5 for
small Re, (i.e. for large y). The decay is described by

Sk _

dy

e _ e & (6.15)
Substitution of k=c; y ™" and e=c, y~™ into equations (6.14) leads to

+ 1
Cafr = T (6.16)

n

For Re, ~ = all models have f,=1, implying (with n=1.25) that ¢, should be 1.8.
Indeed all models apply this value, or a value close to it. All models, except the
Lam & Bremhorst (1981) model, also approximately reproduce the low-Reynolds-
number decay limit, i.e. (with n=2.5) f,=1.4/c., in the limit Re, - 0.

(iv) f,, function. This function should be such that the behaviour v,=0(x% in
equations (6.10) is reproduced for small x. All models give a power 3 or 4, with
the exception of the Reynolds (1976) model which gives a power of 6.

In (i)-(iv) some restrictions for the low-Reynolds-number functions have been
formulated. An inconsistency occurs for the Lam & Bremhorst model and for the
Reynolds model; the consequences of these inconsistencies and the accuracy of all
other models require a comparison with experiments.

6.3. Numerical method

The turbulent boundary-layer equations (6.1) are solved for a semi-infinite hot
vertical plate in an isothermal environment. The plate temperature is T, and the
environment temperature is T.

The variables are nondimensionalized with the length scale yq, the velocity
scale vg, the reference temperature T and the characteristic temperature difference
AT:

(6.17)
f[_x_, X ___gBATyo = Pr].
0
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The boundary conditions for the temperature determine temperature scales:
Ty=Tx, AT=T,—Tx. The semi-infinite plate geometry and the zero boundary
conditions for the velocity do not define a length and velocity scale. Therefore
these scales are formed with the coordinate y and the coefficients g BAT and v. A
possible choice is yo=y and vo=(gBATv)!. Because of the free choice of both
the length and velocity scale, the number of independent variables in equation
(6.17) reduces with two,

T-T
v = k & M|_ cjx
{Vo’ VO’ AT ’ v(%a vg, Voy} f[y, Ra}" Pr]. (6.18)
The Prandtl number (Pr) is the only characteristic number of the problem. The y-

based Rayleigh number (Ra,=gBAT: y3Pr/v?) is nothing but a scaled y-coordinate.
The following initial and boundary conditions are applied:

Y = Ygare - laminar v- and T-profiles specified
Y = Ywans - DOnzero perturbation in k and e, typically

k2

_ 2 .12 4|9V - KZ
k=0.5v§ , e=c k p v,=c, .

x=0 :u=v=0, T=T, (6.19)
k and e specified by the considered k—e model
X = Xy : v=0, T=T,

perturbation in k and €, typically

k2
k=0.5 v}, e=c,— with v,=10.

by,

The calculations are started at a height corresponding to Ray=109. At Ygan
Ostrach’s laminar similarity solution for the hot vertical plate is prescribed. Tur-
bulence is introduced at the height y.,,, (corresponding to Ray=1.5><109 for air
and to Ray=1.5><1010 for water) by switching on the turbulence model and by
prescribing an amount of turbulent kinetic energy if a k—e model is used. The
infinitely far outer edge of the boundary layer (x,) in formulation (6.19) is moved
to the finite distance (x;,,,) in the computational domain; x;.,. is taken far
enough to neglect its influence on the development of the boundary layer. Values
for k and € close to zero (but such that also k%/e remains small) are prescribed at
this outer edge.

The boundary layer becomes thicker for increasing Ra,. A disadvantage of the
application of our rectangular grid is that the grid line x;,, is not boundary fitted
with the thickness of the boundary layer; x;,, is chosen such that it still just cov-
ers the boundary-layer thickness at the maximum Ra, value up to where the calcu-
lation is performed. Therefore at the beginning of the boundary-layer calculation
at yare many grid points fall outside the boundary-layer thickness, giving there an
inefficient use of grid points. Despite this disadvantage, we apply the rectangular

grid. A grid similar to distribution (5.6), as was used in the previous chapter for
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some of the stability calculations in the cavity, is also applied here to cover the
boundary-layer thickness:

X; ) tanh[o(i/imax—1)/2]}

=1+ i = 0,1,...,imax. _
Ximax tanh(a,/2) l jmax (6.20)

a; is derived from the expression a,=a/sinh(e;), in which a, is chosen close to
zero; the smaller o, the stronger the grid refinement along the wall. The first
inner grid point is approximately positioned at x;/x; . =a,/imax. The suitable
choice for a; depends on the Ra, value up to which the calculation is made. For
example, a,=1.5X1072 is used if the calculation is ended at Ra,=10'2, and a, is
decreased to 1.5% 1077 if the calculation is ended at Ray=1025. The vertical grid
spacing is optionally chosen to be equidistant in y or equidistant in log(y).

The boundary-layer equations are discretized as described in section 4.3.
Because the boundary-layer equations are parabolic for an isothermal environment,
they can be solved in a single sweep, going from one y-station to the next down-
stream station. We originally tried to solve the system of nonlinear equations at
each y-station with the Newton-Raphson method. This method linearizes the
equations at each iterative level, and solves the resulting block tri-diagonal matrix
equation with a direct Gauss-elimination. The method converges with a quadratic
speed, which was checked for the laminar solution. The turbulence models are so
complex that they were only partially linearized; still a fast convergence was found
with the Cebeci & Smith model. The k—e models, however, required a very accu-
rate initial guess to prevent divergence. Therefore we switched over to an uncou-
pled solution method; during an iteration the different differential equations in the
boundary-layer equations are updated one after the other, solving only tri-diagonal
matrix equations for each variable. Some relaxation was required to prevent diver-
gence and to obtain a reasonable speed of convergence. We checked that the stop
criterion for the iteration process was taken sharp enough to have a negligible
influence on the solution. Typically about 50 iterations were sufficient at y-
stations in the turbulent region, but much more iterations, up to 500, were
required for stations in the transitional region.

6.4. Transition regime

Difficulties can arise to achieve a laminar-turbulent transition with the low-
Reynolds-number k—e models. If the turbulence model is switched on at y, ...,
without introducing turbulent energy at this station or at the outer edge, the solu-
tion remains laminar (with k=e=v,=0 everywhere). If a nonzero k is prescribed
at Y,ans and at the outer edge of the boundary layer, the laminar solution might
become turbulent. The solution in the transitional region largely depends on (i)
the turbulence model, (ii) the grid and (iii) how much and where energy is intro-
duced. For example, concerning the model used, the standard k—e most easily
becomes turbulent, the transition with the Chien model is a bit more difficult, and
the transition with the Jones & Launder model is difficult; it is clear that low-
Reynolds-number modifications not only damp turbulence in the inner layer close
to the wall, but they also tend to delay the transition. In general, grid refinement
as well delays the transition. As illustrated in figure 6.1, a transition can occur if
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10
k*'=0.5v¢
Nuy — k/k*=0
a—a kik*=0.5
x—x k/k*=0.75
3 o—o k/k*=0.9
10°+ o—o kik' =1
+—t kK" =2
—. k/k"=10

-~ k/k"=100

10 10'° 10" Ra 10"

FIGURE 6.1. Transition for air with different amounts of energy at the first sta-
tion upstream from y,,,. (Chien model, 100x 100 grid, a;=1.5%X1072 in x-grid,
equidistant grid in log(y), k=v,=0 at outer edge).

a sufficient amount of energy is prescribed as a boundary condition at the first y-
station upstream of y..,.. For the calculations in this figure y.,, was fixed at
Ra,=1.5% 10% and no energy was introduced via the outer edge (i.e. k=e=v,=0 at
X;max)- Increasing the introduced energy at this station gives a faster transition
and it helps to prevent a relaminarization of the flow during the transition. We
also checked that the introduction of some energy via the outer edge enhances the
transition, but it is not required to maintain the turbulent state. If y.,., is chosen
at a too low Ra, value (for example at Ra,= 10° for water) the introduced energy
is damped irrespective of its magnitude, which illustrates that below a critical Ra,
value a transition is not possible. Fortunately, once a full transition occurs, the
turbulent solution for increasing Ra, becomes independent of the way the transi-
tion is established.

The calculated complicated transition behaviour is due to the existence of two
solutions of the turbulent boundary-layer equations (6.1), if a low-Reynolds-
number k—e model (6.10) is used in combination with homogeneous boundary
conditions for k and € at the outer edge: in the limit Ra, - % the equations admit
both a laminar solution (with k=e=v,=0 everywhere) and a turbulent solution.
That the laminar solution indeed is a solution can be verified by substitution of
k=e=v,=0 in equations (6.1) and (6.10). Maybe also the standard k—e model
contains nonuniqueness for Ra, -, but the laminar solution is not a solution due
to the nonzero boundary condition for € at the wall. The turbulent boundary-layer
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equations in the isothermal environment are parabolic in the Ra, coordinate. We
assume that the boundary-layer equations give a unique solution for increasing Ra,
once the initial condition at y,., (for v and T) and at y,,.. (for k and €), as well
as boundary conditions at the wall and at the outer edge, are specified (this is dif-
ficult to prove due to the nonlinearity of the equations). Whether, however, a lam-
inar or a turbulent state is found at Ra, - % depends on the precise choice of the
initial conditions and the boundary conditions. The transition between the laminar
and turbulent solution results from the complicated nonlinear stability in Ra, with
respect to the initial and boundary conditions. In particular the laminar solution
becomes less stable for increasing Ra,. Mathematically the boundary-layer equa-
tions show a close resemblance with the unsteady Navier-Stokes equations, which
are parabolic in time. For example, nonuniqueness as found for the solution at
large Ra, in the turbulent boundary-layer equations, was also found for the large-
time Navier-Stokes solution in the previous chapter, where both a steady, although
unstable, and an oscillating solution could occur beyond a critical Rayleigh
number.

6.5. Existing theory on wall functions
The dimensionless velocity and temperature in the turbulent natural-convection
boundary-layer solution (6.18) are

v
@Barn® 7 [ ey Pr]
T—T,

AT fT[ Ra, Pr]

If the Rayleigh number becomes infinitely large, a rescaling might exist, which
makes the solution independent of the Rayleigh number. In general, such a simi-
larity solution is described by

(6.21)

m fiRay) = [, [';C‘f3(Ray), Pr]

(6.22)

AT = fa(Ray) = fs [—fs(Ra )s PVJ
For a laminar flow the similarity scalings are well known (see also equation (4.6)):
fi = Ra“”6 f3=fe=Ra' and f, = 1. The proper velocity scale for laminar
flows, (gBATy)m( vo Ra, 16py =116 , with vo=(gBATv)3), is here further referred
to as the buoyant ve10c1ty v,,. The similarity scalings for the turbulent boundary
layer are more complicated than for the laminar boundary layer. In particular this
is because for large Ra, the solution across the boundary-layer thickness is split up
into several regions, where different scalings hold. For a forced-convection tur-
bulent boundary layer these scalings are well-known: a viscous sublayer close to
the wall, an inertial sublayer where the logarithmic wall functions (6.5) hold, and
an outer layer at the edge of the boundary layer where defect laws hold. A first
analysis to detect the different regions and scalings in the turbulent natural-
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convection boundary layer was given by George & Capp (1979) and by Cheese-
wright (1986). The main steps of their analyses are summarized here.

George & Capp assume that the length scale 8 and the velocity scales v, and
Qr are important for the proper scaling,

8 = boundary-layer thickness
v, = (v(av/ex),)"? (6.23)

or = -2=|%&
T Pr AT | ox w-
In general (with vy=(gBATV)!3),

L = fAL x*, N, x/3, RalB, Pr)
VO Y

T-T, (6.24)
= fT(C» x+s )\, 1/8, Rayl/39 Pr)

AT
with the five dimensionless lengths
(o Mo _ xer
y . VviPr
o= XV,
v
13
A &BATPr = Ral3
Vz *
x/3
3, )13
Rl = [M]
y 2 :
v

In the inner layer the dependence on x/8 is neglected. Moreover a ’local equili-
brium state’ is assumed in this layer, implying that only v./vy and Qy/vy depend on
Ra,. Therefore the explicit dependence on Ra, can be removed from equations
(6.24). If it is further assumed that there is only one length scale in the inner layer
(i.e. { = N and x* + \) the velocity scales v,/vy and Q/v, are even independent
of Ra,. Under these assumptions the wall-shear stress law (with ¢4 =
2v(6v/ax)w/v§) and the wall-heat transfer law (with Nu,= —(y/AT)(8T/dx),,) read

¢y =€ Ray'lB (6.25a)
Nu, = ¢, Ra)”. (6.25b)

The coefficients ¢; and ¢, only depend on the Prandtl number. In the lower part
of the inner layer, the conductive/thermo-viscous sublayer, both convection and
turbulence can be neglected. Using Taylor-series expansions in equations (6.1)
gives

2 2
vy _ ¥ Pro3 ) — A [pr—2/3 - L_Q_T] + o (6.26a)
Vo Vg 2 3 Vo
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T _ 1 +
AT { (6.26b)

The assumption of one length scale gives wall functions in the upper part of the
inner layer (the buoyant sublayer):

=~ = fi(g, Pr)
Vo
T-T (6.27)

*

AT = f P,

In the outer layer George & Capp assume that the proper length, velocity and tem-

perature scales depend on 8, g and QrAT only. This gives the following wall
functions (defect laws) in the outer layer

Vinax—V _ ol x

(eBATSO 7 [3]

[T—h](gBATSQT)lB o x 628
AT Or = [E]'

These wall functions are independent of the Prandtl number. For a smooth match-
ing of the conductive/thermo-viscous sublayer with the outer layer the equations
(6.27) and (6.28) must hold in an intermediate layer, i.e. the buoyant sublayer.
This gives George & Capp’s wall functions for the buoyant sublayer

VO =c, B+, (6.29a)

v
T-T. =, 0B+ ¢, (6.29b)
AT

The coefficients ¢y, ¢,, c3 and ¢4 only depend on the Prandtl number. These /3
and —1/3 power laws in the buoyant sublayer should be the natural-convection ver-
sion of the log-law in the inertial sublayer of the forced-convection boundary layer.

Cheesewright has proposed a different wall function. The conductive/thermo-
viscous sublayer in his analysis remains, of course, the same as in equations
(6.26). He assumes that equations (6.27) still hold in the lower part of the outer
layer (i.e the region between the positions of the maxima of the velocity and the
turbulent viscosity; see section 6.7) and that there is no dependence on v, which
leads to

TAT” = ¢, In{ + 5. (6.30)

Neglecting convection and molecular diffusion in equations (6.1) gives (taking
or =1

v - ATIXT_Txdx
I e W Vs
x v,
(6.31)
i[T'Tw] _ o
ax | AT v,
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Substitution of equation (6.30) into equations (6.31) gives

- = = 0 P 3 IC"( —Z)C“ 1;1 + c 6.32
C n C C C n . .
v IP QZ Y 3 2 1 1 C 3 ( )

The coefficients ¢, ¢, and c; only depend on the Prandtl number. Cheesewright
proposed equation (6.30) and equation (6.32) as wall functions in the lower part of

the outer layer. He did not formulate a wall function in the upper part of the outer
layer.

6.6. Existing experimental and numerical data

It is difficult to accurately measure the natural-convection boundary layer, because
of the thinness of the inner layer. Available experimental data are restricted to
about Ra,=5x10'! for air and to about Ra,=5X10'? for water. The measure-
ments are either performed with a hot-wire technique or with laser-Doppler
anemometry. Regarding the information provided in the literature, it is usually
difficult to judge the accuracy of the measurements. At least it has to be realized
that the experimental situation is never the semi-infinite vertical plate in an infin-
itely large, isothermal environment. The plate is placed in a box with finite dimen-
sions, introducing a temperature stratification along the outer edge of the boun-
dary layer. We have got the ’feeling’ that the recent measurements of Tsuji &
Nagano (1988a,b, 1989) are the most accurate experimental data at the moment.
An argument for this is that Tsuji & Nagano used a much larger box than others,
which gives only a slight stratification in the core. Tsuji & Nagano themselves
claim that their measurements are accurate because of the use of the hot-wire tech-
nique, whereas other recent studies use laser-Doppler anemometry; they argue that
laser-Doppler anemometry gives a too large measuring volume close to the wall,
which leads to inaccurate results in the inner layer.

Wall-heat transfer measurements for air, as obtained by Cheesewright &
Ierokipiotis (1981), Miyamoto et al. (1982, 1983) and Tsuji & Nagano (1989) are
compared in figure 6.2. The data of Tsuji & Nagano clearly show the laminar-
turbulent transition. With reasonably accuracy we can fit all the experiments for
the turbulent wall-heat transfer to the curve

Nuy = 0.119 Ra)”. (6.33)

Experimental data for water are scarcer than for air. Further, the deviations
between the different studies are larger for water than for air. Within this experi-
mental uncertainty the wall-heat transfer for water is close to the best fit curve
(6.33) for air; for example at Ray=1012 Vliet & Liu (1969) and Fujii ef al. (1970)
measure a wall-heat transfer which is respectively 2% below and 9% above this
curve. Therefore we assume that equation (6.33) fits the turbulent wall-heat
transfer for both air and water.

Miyamoto et al. (1983) have measured velocity and temperature profiles for
air in the boundary layer along a vertical plate with a constant wall-heat flux.
Because Nuy/y is independent of y according to the best-fit curve (6.33), these
measurements are also representative for the vertical plate with a constant wall
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FIGURE 6.2. Comparison of existing experiments for the

wall-heat transfer for air.

temperature. Cheesewright (1968, 1986), Cheesewright & Ierokipiotis (1981,
1982) and Tsuji & Nagano (1988a, 1989) have measured velocity and temperature
profiles for air along a vertical plate with a constant wall temperature. The meas-
ured velocity and temperature profiles are compared in figure 6.3. The profiles
were obtained at slightly different Ra, values, which implies that they can only be
expected to coincide if the quantities are nondimensionalized with the proper scal-
ings. In the literature the dimensionless length is usually taken as { (=xNuy/y),
whereas the velocity and the temperature are scaled with v, and AT respectively.
The numerical results in section 6.9 will show that { is not the proper dimension-
less coordinate in the limit Ra - «. Nevertheless, for the Rayleigh-number range
where the experiments were obtained, the numerical results predict that { is a rea-
sonably suitable dimensionless length for the temperature profiles and, to a less
extent, also for the velocity profiles. Also AT turns out to be a good temperature
scale in the experimental Rayleigh-number range. The numerical results will show
that v, is the proper scaling, not only in the expcrimental Rayleigh-number
range, but even up to Ra, ~ . Tsuji & Nagano (1989) fit their experimental velo-
city maxima for air to

Vma

X _
= 0.407 Ra,0-0067, 6.34)
VgBATY Y (

Because the power in the Rayleigh-number dependence is close to zero, which is
confirmed by the numerical calculations in section 6.9, the velocity maximum
approximately scales with the buoyant velocity v,=(gBATy)!?. This implies that,
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besides v, also v, is a proper velocity scale. Regarding these arguments, we
expect that the scalings as applied in figure 6.3 are sufficiently accurate to exclude
that differences in the experimental results are due to differences in the Rayleigh
number. The velocity measurements of Miyamoto er al. in figure 6.3a fall some-
what below the experiments of Cheesewright & Ierokipiotis and of Tsuji &
Nagano. Because the latter two series of data almost coincide, the velocity data of
Miyamoto et al. are expected to be the less accurate. The temperature profiles in
figure 6.3b, as obtained in the different studies, practically coincide.

Numerical calculations of the turbulent natural-convection boundary layer in
the literature are restricted to about Ra,= 10'2. A first numerical study of the tur-
bulent natural-convection boundary layer was made by Eckert & Jackson (1951).
They approximated the solution of the boundary-layer equations with an integral
method, assuming some similarity in the profiles and assuming a strong analogy
with the forced-convection boundary-layer. Some of their assumptions do not
agree with the more recent studies, including the present one. The results of Eck-
ert & Jackson for the wall-heat transfer are good, but the results for the velocity
maximum are not; for example, the wall-heat transfer for air at Ra,= 10 is 15%
above the experimental curve (6.33), the wall-heat transfer for water at Ra).=1012
is 18% above this curve, and the velocity maximum for air at Ray=1011 is 57%
above the experimental curve (6.34). More refined calculations, in which differen-
tial equations were used to model the turbulence and in which the boundary-layer
equations were solved with a finite-difference numecrical method, were made by
Mason & Seban (1974) and by Plumb & Kennedy (1977). Mason & Seban calcu-
lated the boundary layer for air and water, applying an algebraic model for the
turbulent mixing length and a differential equation for the turbulent kinetic
energy. A reasonably good accuracy is obtained; for example, the wall-heat
transfer for air at Ray=1011 is 12% below the experimental value (6.33) and the
velocity maximum for air at Ra,=3x10'® is 11% higher than the experiment
(6.34). Plumb & Kennedy extended the Jones & Launder low-Reynolds-number
k—e model with a differential equation for the temperature fluctuations 7' and
calculated the boundary layer for air. Their results are close to the experiments
(the wall-heat transfer at Ray=1011 is 11% above the experiment and the velocity
maximum at Ra},='}'><1010 is 7% below the experiment). Finally a few models,
which are also compared in this chapter, were alrecady applied to the natural-
convection boundary layer along the hot vertical plate in the following studies:
Cebeci & Khattab (1975) using the Cebeci & Smith model, Lin & Churchill (1978)
using the Jones & Launder model, and To & Humphrey (1986) using their own
model.

6.7. Comparison of the models

Patel et al. (1981, 1985) have compared the performance of some of the low-
Reynolds-number k—e models from table 6.1 for the forced-convection boundary
layer along a flat plate. In order to check our numerical code, these calculations
were repeated, and a very good agreement was found with their tabulated wall-
shear stress coefficients. Our natural-convection boundary layer calculations with
the Cebeci & Smith model, the Jones & Launder model and the To & Humphrey




-114 -

TABLE 6.2. Numerical accuracy for air at Ra, =10

model grid —LNu Jmax Vtmax
Rayll3 \/gBATy v

25%25 0.1750 0.3622 257.3

50 50 0.1789 0.3570 241.1

standard k—e 100x100 0.1806 0.3549 233.4

200x% 200 0.1814 0.3540 229.7

400% 400 0.1817 0.3537 226.9

25%25 0.1396 0.3358 291.4

50X 50 0.1381 0.3309 270.7

Chien 100x 100 0.1376 0.3290 261.2

200% 200 0.1375 0.3281 256.8

400 % 400 0.1373 0.3278 253.5

25%25 0.1165 0.3421 191.2

50X 50 0.1145 0.3367 183.3

Jones & Launder 100X 100 0.1138 0.3345 175.4

200x 200 0.1128 0.3350 154.2

400X 400 0.0689 0.4579 22.7

model were compared with the calculations of Cebcci & Khattab (1975), Lin &
Churchill (1978) and To & Humphrey (1986) respectively. Present results agree

up to at least graphical accuracy, except for the results with the To & Humphrey
model, which considerably deviate.

In order to verify the numerical accuracy of the results, we have refined the
grid from 25X25 up to 400X400 points. Table 6.2 shows the results for air at
Ra,=10"" with the standard k—e model, the Chien model and the Jones &
Launder model. To obtain a fast transition, the calculations were started at
Ray=109 with a turbulent velocity and temperature profile that fit the experimental
data in figure 6.3. Some kinetic energy was introduced both at the initial station
and at the outer edge. The constant a,=1.5x10"% was applied in the x-grid
(6.20), and the grid was equidistant in y. The calculation was ended at Ra,=10'".
Table 6.2 shows that the results indeed become grid independent if the number of
grid points is increased, and that the 50X 50 grid already gives an accurate solu-
tion. An exception forms the 400X400 grid in the Jones & Launder model. Grid
refinement in the Jones & Launder model delays the transition, as can be seen in
the decreasing value of the maximum in the turbulent viscosity at Ra,=10!!. At
the 400x400 grid the transition is so late, that the solution at Ra,=10" is still
close to the laminar state. The results to be presented in the sequel are all
checked to be accurate; typically a 100X 100 grid is used for the calculations up to
Ra,=10"3, and a 200x200 grid is used for calculations up to larger Rayleigh
numbers.
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TABLE 36.3. Comparison of the models for air at Ray=1011 and for water at
Ra,=10!
y .

(a) air
model Nuy Vmax V¢, max
Ray”3 Vg BATy v
experiment 0.119 0.344 120
Cebeci & Smith 0.089 0.413 48
standard k—e 0.181 0.355 233
To & Humphrey 0.164 0.346 210
Lam & Bremhorst (Dirichlet) 0.132 0.320 241
Lam & Bremhorst (Neumann) 0.132 0.320 240
Chien 0.138 0.329 261
Hassid & Poreh 0.161 0.323 231
Hoffman 0.083 0.422 26
Jones & Launder 0.114 0.335 175
(b) water
model Nuy Vmax V¢, max
Ral® | VgBATy v
experiment 0.119 -- --
Cebeci & Smith 0.127 0.251 85
standard k—e€ 0.381 0.243 544
To & Humphrey 0.218 0.208 459
Lam & Bremhorst (Dirichlet) 0.088 0.166 436
Lam & Bremhorst (Neumann) 0.088 0.166 435
Chien 0.137 0.184 509
Hassid & Poreh 0.161 0.184 461
Hoffman 0.082 0.218 60
Jones & Launder 0.085 0.175 373

Table 6.3 summarizes the turbulent results with the different models for air at
Ray=1011 and for water at Ra,= 1013, The wall-heat transfer for air and water are
compared with the experiment (6.33), the velocity maximum for air is compared
with the experiment (6.34) and the maximum in the turbulent viscosity for air is
compared with the experiments at Ra,=6.4X 1019 of Tsuji & Nagano (1988b). No
converged results could be obtained with the Reynolds model. Using the Lam &
Brembhorst model, the results with the Dirichlet and Neumann boundary condition
for € at the wall are indistinguishable. The wall-heat transfer for air at Ra,=10'!
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FIGURE 6.4. Wall-heat transfer for air.

is best predicted by the low-Reynolds-number models of Jones & Launder (4% too
low), Lam & Brembhorst (11% too high) and Chien (16% too high). In predicting
the wall-heat transfer for water at Ra,=10'? the best performing low-Reynolds-
number k—e model is the model of Chien (15% too high), followed by the Lam &
Bremhorst model (26% too low) and the Jones & Launder model (29% too low).
The standard k—e model largely overpredicts the wall-heat transfer (by 52% for
air at Ra,=10'" and by 220% for water at Ra,=10"%). The Cebeci & Smith model
is closest to the experimental wall-heat transfer for water; this cannot surprise
because Cebeci & Khattab (1975) fitted the constants to the water experiments.
All models, with exception of the models of Cebeci & Smith and Hoffman, closely
predict the experimental velocity maximum for air. Deviations between the models
for this quantity are larger for water than for air. By variation of the energy to
trigger the transition it was checked that, in contrast to the wall-heat transfer and
the velocity maximum, the maximum of the turbulent viscosity for air at Ray=1011
and for water at Ray=1013 is still not fully independent of the introduced energy.
Therefore an incomplete transition effect accounts for part of the differences in the
turbulent viscosity maximum between the models. All models, with exception of
the models of Cebeci & Smith and Hoffman, give for air at Ra,=10'" a turbulent
viscosity maximum, which is roughly twice the experimental value. The large
difference for the turbulent viscosity between the k —e models and the experiment
will be further investigated in section 6.11, where calculations with the Reynolds-
stress model will be compared.

Figure 6.4 shows the wall-heat transfer for air at increasing Rayleigh number.
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In this figure the calculation is started with a laminar profile to illustrate the dif-
ferent transition behaviour of the models: the stronger the damping of the low-
Reynolds-number functions, the lower the turbulent wall-heat transfer, but also,
the later the transition. Comparison of the velocity and temperature profiles for
air in figure 6.5 shows that all models, with exception of the models of Cebeci &
Smith and Hoffman, are close to the experiments of Tsuji & Nagano (1988a, 1989)
at Ra,=5.99x 100, The velocity profiles for the Cebeci & Smith model and the
Hoffman model are laminar-like: the velocity maximum is too high and the boun-
dary layer is too thin. The turbulent quantities k, € and v, for air are compared in
figure 6.6. In order to exclude incomplete transition effects, the turbulent quanti-
ties are presented at Ray=1015. In the outer layer low-Reynolds-number effects
are absent; differences between the profiles (scaled with the velocity scale v, ,, and
the length scale y) are totally due to different choices for the high-Reynolds-
number constants (c,,, ¢y, €z, O and o; see table 6.1). In particular the strange
choice of these constants in the Hoffman model leads to the laminar-like solution
(low turbulence, low wall-heat transfer, high velocity). For all models the tur-
bulence becomes fully developed in the outer layer, where k and v, reach a max-
imum, whereas € is almost constant. In the inner layer the turbulent viscosity is
almost zero. The low-Reynolds-number functions, however, become active in the
inner layer; although they only slightly modify the turbulent quantities there, large
changes occur in inner-layer quantities like the wall-heat transfer.
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TABLE 6.4. Influence of the different terms in the low-Reynolds-number k—e
models; air at Ra, = 10!,

variation Nuy Ymax
Ra}? VgBATy
(a) Lam & Bremhorst model
none 0.132 0.320
fu =1, but f, unchanged +11% +8%
f1=1 +50% +3%
f2=1 0% 0%
€, =0, D = —2u(8Vk/dx)? 0% —-2%
€, =0, D = —2vk/x? —9% 0%
€, =0 0% 0%
(b) Chien model
none 0.138 0.329
fu=1 +13% +6%
fa=1 0% 0%
E=0 0% 0%
D = DChien/4 +21% +1%
€, = 20(8Vk/9x)2, D =0 +16% +1%
Ceg =144, ¢, =192 —-3% +1%
Ce1 = 1.44, Cer = 1.92, E = 0, f2=1 —3% +1%
(¢) Jones & Launder model
none 0.114 0.335
fu=1 +24% +3%
fa=1 0% 0%
E=0 +52% +3%
D=0 +8% 0%
e, = 2v(dVk/9x)2, D =0 +5% 0%

6.8. Sensitivity of the model parameters

We have made a sensitivity study for those low-Reynolds-number k—e models,
which turned out to agree best with the experiments in the previous section: the
models of Lam & Bremhorst, Chien, and Jones & Launder (these models were
also found to perform best for the forced-convection boundary layer by Patel et al.,
1981, 1985). The influence on the wall-heat transfer and the velocity maximum of
the different terms in these models is given in table 6.4 for air at Ra,=10'!. In
general, the influence becomes weaker the further a quantity is removed from the
wall: the influence is much larger for the wall-heat transfer than for the velocity
maximum. In all three models the standard choice f,=1 does not change the
wall-heat transfer. Further, the interchange of a nonzero boundary condition for €
with a nonzero D term does not drastically change the wall-heat transfer. Setting
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€, =0 (with D=0) in the Lam & Bremhorst model or setting D=0 (with €,,=0) in
the Jones & Launder model also leads to only small changes; decreasing |D | (with
€,,=0) in the Chien model, however, enormously increases the wall-heat transfer.
Omitting the E term (which has not a clear physical meaning) in the Jones &
Launder model drastically increases the wall-heat transfer by 52%. The influence
of E in the Chien model, however, can be neglected. Only the Lam & Bremhorst
model takes the f; function (which also has not a very clear physical meaning)
unequal to 1; its influence turns out to be very large. The influence of the f "
function is large for all models.

The poor performance of the To & Humphrey model, which actually is a
modified Jones & Launder model, has also been investigated. Firstly, To & Hum-
phrey exchanged the D term with a nonzero boundary condition for € at the wall,
which only leads to small differences. Secondly they added a correction f5 to the
f, function, which we also checked to have a negligible effect. Lastly To & Hum-
phrey omitted the E term in the Jones & Launder model; our calculations show
that retaining the E term in the To & Humphrey model decreases the wall-heat
transfer for air at Ra,=10'! by 28%, giving a value close to the experimental one.

6.9. Numerical determination of wall functions

To find the proper scalings of the turbulent natural-convection boundary layer, the
calculations with the standard k—e model, the Chien model and the Jones &
Launder model are extended up to Ra,=10%. The Ra, dependence of a quantity
¢ is written as a Ra}'f, with y=(Ra,/d)[0d/dRa,]. The coefficient y turns out to
be almost independent of the turbulence model used, but a in the inner layer
shows a larger model dependence. The infinite-Rayleigh-number limit of v, in the
case it exists, defines the proper scaling for a quantity. Figure 6.7 gives the Ra,
dependence for some characteristic quantities in the inner layer (Nu, and cg),
between the inner and outer layer (v,,,) and in the outer layer ((2Kkmay/3)"/V;0axs
the position x/y of k., and $./(vy.»)). Here . is the stream function at the
outer edge of the boundary layer (d¥/dx=v, 0Y/dy=—u, y=0 at x=0). The solu-
tion in figure 6.7 starts with Ostrach’s laminar similarity solution, which is plotted
as an unbroken line. Although the calculations were performed up to Ra,=10%,
figure 6.7 only shows the solution up to Ra,=10">. Quantitative results for the
inner layer are given in table 6.5 up to Ra, = 1025

The wall-heat transfer Nu, for air in figure 6.7a gives about y=3/8 at
Ra,=10'2 for all models. This value is slightly higher than the experimental value
of 1/3. Table 6.5 shows that vy for Nu, does not seem to become Ra, independent
and v increases to 0.435 for the Chien model at Ra,=10%°. Besides the turbulent
solution, the table also gives the laminar solution. Tsuji & Nagano (1988) meas-
ured the velocity for air up to very close to the wall, leading to the following best-
fit curve for the wall-shear stress (cfy—2v(av/ax) /vb)

¢, = 1.256 Ra}_-°-249. (6.35)

The wall-shear stress data for air of Cheesewright & Mirzai (1988) are more scat-
tered, but they derived a best-fit curve with a power dependence close to equation
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bulent kinetic energy, (e) position of the maximum of the turbulent kinetic energy,
(f) stream function at the outer edge.
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(6.35), namely c;,=1.84 Ra;"%%. The —1/4 power dependence is also calculated
by the low-Reynolds-number models in the experimental Rayleigh-number range
(see figure 6.7b), but y remains Ra, dependent and it decreases to —0.0871 at
Ra,=10% (table 6.5). The scaling with the buoyant velocity v, =(gBATy)"? for
the velocity maximum in the experiments of Tsuji & Nagano (1989) is confirmed
by the calculations in figure 6.7c. According to table 6.5, only a very small Ra,
dependence in vy persists. The table also shows that a larger Ra, dependence in vy
remains for the position of the velocity maximum. From table 6.5 we conclude
that for both air and water none of the inner-layer quantities give fully Ra,
independent vy values in the limit Ra, - . Also the differences between the
models for the inner-layer quantities (mainly differences in «) do not disappear in
the limit Ra, ~ . For example, the wall-heat transfer with the Jones & Launder
model is a bit below the Chien model up to Ra).=1014, but for larger Rayleigh
numbers the Jones & Launder model remains a bit above the Chien model up to at
least Ra}.=1025. The standard k—e model remains significantly above both the
Jones & Launder model and the Chien model up to at least Ra,= 10%,

In contrast to the inner-layer quantities, all the outer-layer quantities give a
constant <y for increasing Rayleigh number. In particular, the quantities
(2k max/3)*/Vmax, its position x/y and Y./(Vmay) in the figures 6.7d.e,f become
even constant for increasing Rayleigh number. This implies that y and v, are
the proper length and velocity scale in the outer layer. The experiments of Tsuji &
Nagano (1989) for (v'?)!”2 are slightly above the calculations of (2k,,/3)"/?, which
is expected to be due to the anisotropy of the turbulecnce. The experimental values
of Tsuji & Nagano (1989) for ¥, in the turbulent regime are somewhat below the
calculated turbulent values. The slight stratification in the experiments (about
0.6 °C per meter) might account for this difference. The asymptotic values for the
outer-layer quantities are summarized in table 6.6; there is no Prandtl number
dependence, and deviations between the models (figures 6.7d,e,f) are only due to
differences in the choice for the high-Reynolds-number coefficients.

Because we calculate that y and v,,,, are the proper length and velocity scale
in the outer layer, the buoyant term in the boundary-layer equations (6.1) is of the
same order of magnitude as the other terms if the characteristic temperature differ-
ence is taken as v2,,/(gBy). The calculated outer-layer scalings lead to the follow-
ing wall functions in the outer layer:

\ X
- fo [_]
Vmax Y y

(6.36)
[T*Tx].&g_XAT = fo X
ar )z, L)

The existence of these wall functions for increasing Rayleigh number is checked in
figure 6.8 for air with the Chien model. The wall functions for the turbulent
quantities are verified in figure 6.9. The wall functions in figure 6.8 and 6.9 hold
irrespective of the Prandtl number. George & Capp proposed the wall functions
(6.28) for the outer layer, which are also irrespective of the Prandtl number. The
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TABLE 6.6. Outer-layer scaling of the boundary layer (Chien model).

. laminar turbulent
quantity : -
air water air and water
Us
” —2.11 Ra,¥* | —3.61 Ra; —0.0702
max
» - 2.82 Ra;" 14 4.81 Ra; 0.0497
(2k m/a3x)1’2
— 0. 0. 0.183
vmax
X
ZXkmax - - 0.0354
o7
—Lmax 0. 0. 0.00202
Y Vmax
X
—Loen - - 0.0487
y

calculated wall functions are consistent with George & Capp’s wall functions if
5-+y and if (g BATSQT)IB-I- Vmax- The boundary-layer thickness is usually defined
as

2

8 = [ ViVpax d% = Ya/Vipay- (6.37)
0

This indeed is proportional to y according to table 6.6. The proportionality for the
velocities holds if

3
Nuy = C* Pr1/2 Rayl/Z [ Vmax ] (6.38)
gBATy
in which C* is a constant (also independent of Pr). Comparison of the calcula-
tions for Nu, and v, in table 6.5 shows that this relation indeed holds for
increasing Rayleigh number; the large-Rayleigh-number calculations (Ra,=10%%)
with the Chien model give a Ra, independent, and also practically Pr independent,
value for C*, namely 0.0506 for air and 0.0529 for water. Therefore George &
Capp’s outer-layer length scale, 8, and velocity scale, (§BAT8Q;)!3, are similar to
the calculated length scale, y, and velocity scale, vy,,: this gives a full consistency
between George & Capp’s wall functions and the calculated wall functions. As a
consequence the calculations do not agree with Cheesewright’s proposal (6.30) and
(6.32) for the wall functions in the outer layer. Equation (6.38) is important for
the practical use of wall functions (see next section), because it relates a quantity
at the wall to a quantity at the outer edge of the inner layer. If Nu, scales with
Ra!3, as is found in the experiments up to Ra,~5x10", v, scales with
(gBATy)"2 Ra V'8 Pr=16 according to equation (6.38). Further, if for a fixed
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FIGURE 6.9. Wall functions for the turbulent quantities in the outer layer (Chien

model); (a) turbulent kinetic energy, (b) dissipation rate of turbulent kinetic ener-
gy, (c) turbulent viscosity.

Prandtl number vp,, scales with (gBATy)"? (which seems to be the limit in the
large-Rayleigh-number calculations of table 6.5), Nu, should scale with Ra}"2.

The inner layer, which extends from the wall up to the velocity maximum, is
much thinner than the outer layer. The velocity and the temperature in the part of
the inner layer closest to the wall, the conductive/thermo-viscous sublayer, is given
by equations (6.26). Substitution of the experimental relation for the wall-heat
transfer (6.33) and the wall-shear stress (6.35) (we take the power 1/4 instead of

0.249) into equations (6.26) gives for air in the conductive/thermo-viscous sub-
layer:

\ X X
v = 0.745 (T Ray™) — 0.593 (< Ra/™)? +
gBATy 5 y
0.0235 Ra,/'2 (? Ra}®3+ ... (6.39)
T-T.
Tar T

The first two terms in the series expansion of the velocity show the laminar velo-
city and length scale, v, and y Ra, ' respectively. These laminar scalings are
firstly slightly disturbed in the third term, having a Ra!? contribution. The velo-

city profiles in the inner layer at increasing Rayleigh numbers, as calculated with
the Chien model for air, are shown in figure 6.10a. In this figure we have



- 131 -

max

0.5

0.0 s + s o D Dt
107 107! 10° 10' 102 ¢ 10
(b)

FIGURE 6.10. Profiles in the inner layer (Chien model, air);
(a) velocity, (b) temperature.
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modified the laminar scalings a bit: we use v, for the velocity and v,,,/(dv/éx),,
for the length. Because vy, is close to v, (figure 6.7¢), the modified scalings are
consistent with the laminar scalings as long as the wall-shear stress coefficient has
a —1/4 power dependence on Ra,. Up to Ra,=10'° the profiles in figure 6.7b
almost coincide in whole the inner layer, i.e. up to the velocity maximum. The
calculated wall-shear stress for air (figure 6.7b) only approximately shows the
—1/4 power up to about Ray=1012, implying that for larger Rayleigh numbers the
laminar scalings no longer hold. Moreover, beyond Ra=10'> the profiles in figure
6.10a do not coincide. Therefore, the scalings vy,,, and vp,,/(dv/dx),, are not the
proper inner-layer scalings for the velocity profile in the limit Ra, ~ . Whatever
we tried, the calculations did not give a single velocity and length scale: a wall
function for the velocity in the inner layer does not scem to exist. Hence, George
& Capp’s proposal for the velocity wall function in the buoyant sublayer, (6.27a)
or {6.29a), is not confirmed by the calculations. George & Capp’s wall function
does not even give a reasonable scaling for the lower Rayleigh numbers up to 1012,
because vo=(gBATv)!? is a bad velocity scale (vp or vy.x are much better). Also
the —1/3 power dependence on Ra, in George & Capp’s wall-shear stress (6.252)
is not confirmed by the experiments, nor by the calculations. On the contrary, the
173 power dependence on Ra, in the wall-heat transfer of George & Capp (6.25b)
is confirmed by the experiments, and also by the calculations at moderate Rayleigh
numbers. The 13 power gives {+x/(yRa,” ") in equation (6.25b), which does not
show the laminar length scale. The calculations in figure 6.10b show that the tem-
perature profiles (T—T,)/AT as a function of { only approximately coincide up to
Ray=1015. This temperature profile agrees with the wall function (6.27) as pro-
posed by George & Capp and by Cheesewright for the buoyant sublayer. We
could even more or less recognize the —1/3 power in the calculations, as appearing
in George & Capp’s temperature wall function (6.29b) in the buoyant sublayer.
For Rayleigh numbers beyond Ray= 1013, however, the temperature profiles in fig-
ure 6.10b deviate from each other, implying that AT and AT/(87T/dx),, are also not
the proper inner-layer scalings for the temperature profile in the limit Ra, - ». As
for the velocity, we could not derive proper scalings from the calculations. This
suggests that a wall function for the temperature in the inner layer does not exist.

6.10. Practical use of wall functions

The existence of wall functions for the vertical natural-convection boundary layer
is important for at least two reasons. In the first place it facilitates the verification
of (new) high-Reynolds-number turbulence models for the hot vertical plate.
Instead of verifying for a large number of Rayleigh numbers that there is agree-
ment between the calculations and the experiments, only the agreement with the
measured profile of the wall function has to be verified. In the second place the
application of wall functions in calculations of complicated turbulent natural-
convection flows can save grid points. This requires the assumption that the wall
functions, which could be verified for the hot vertical plate in the isothermal
environment, can also be applied to more complicated natural-convection flows,
like the boundary-layer flow along a wall with a variable temperature or in a stra-
tified environment (cavities). In this section we give some ideas about how the
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wall functions can be implemented in a general natural-convection computation.
The actual implementation of the new wall functions in our computational codes
has not been performed yet in the present study.

The following formulation is expected to be most suitable for general natural-
convection flows (of the heating-from-the-side class);

for the inner layer:

\4 _ X a_V
Viax =/ [vmax [ax ]w] (6.40a)
T-T, _

for the outer layer:

Vmax—V X
=f (6.41a)
vout: 3 xout
T—T, gRATxyy, _ X 6.41b
AT 2 R " (6.415)
Vout out
k x
=f [ (6.41¢c)
Vgut : xout
€x
—SOUt =f6[ X ] (6.41d)
Vaut Xout
14
_t = 7 X (6.41¢)
Vout¥out Xout
with
€
Xout = 0 = fvv dx
0 Ymax
Vout = Vmax

In the previous section the profiles (6.40) for the inncr layer were only checked to
reasonably fit the velocity and temperature in the inner layer of the natural-
convection boundary layer along the hot vertical plate in the isothermal environ-
ment. These profiles are not similarity profiles (wall functions) in the limit
Ra, -, but they only fit the turbulent results up to about Ray=1015. For-
tunately, only few engineering natural-convection applications have their Rayleigh
number beyond 10'5. The profiles (6.41) for the outer layer are wall functions for
the vertical natural-convection boundary layer in the outer layer. In the previous
scction they were checked for the hot vertical plate in the isothermal environment
up to Ray=1025. This value is far beyond the Rayleigh numbers appearing in most
practical natural-convection applications. Instead of v, George & Capp
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FIGURE 6.11. Different contributions to the k-equation in the outer layer
(Chien model, air at Ra,=10"%).

proposed Vggc=(—gBdv(8T/dx),,/Pr)'? for v,,. The velocity scale vgge, how-
ever, was checked to be similar to v,,,,. For the plate we found that 8+y; we do
not substitute this in the general formulation of the wall functions (6.41), as this
would probably restrict the general applicability.

A remarkable difference between the inertial sublayer of the forced-
convection boundary layer and the outer layer of the natural-convection boundary
layer is that convection and diffusion for the turbulent kinetic energy can be
neglected in the inertial sublayer but not in the outer layer. Neglecting these terms
in the forced-convection boundary layer leads to an equilibrium of production and
dissipation of turbulent kinetic energy (6.6) in the inertial sublayer. The impor-
tance of convection and diffusion in the balance of the kinetic energy in the outer
layer of the natural-convection boundary layer is shown in figure 6.11 (the balance
is given for air with the Chien model at Ra,= 10'5; because the proper scalings are
used, the balance is actually independent of the Prandtl number and the Rayleigh
number). The figure shows that there is no equilibrium of production and dissipa-
tion in the natural-convection boundary layer. Therefore the derivation of an
analytical representation of the profiles of the wall functions for the natural-
convection boundary-layer is more complicated than for the forced-convection
boundary layer. For the forced-convection wall functions the equilibrium assump-
tion was used to obtain the analytical forms (6.5) and (6.8). An analytical
representation, however, is not essential for the implementation of wall functions
in a general computation, because the profiles of the wall functions as calculated
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FIGURE 6.12. Total heat flux through the inner and outer layer
(Chien model, air).

for the vertical plate can also be used in tabulated form.

When the wall functions (6.41) are used in a general natural-convection com-
putation, the first inner grid point is positioned in the outer layer, i.e. beyond the
position of the velocity maximum. At the first inner grid point the wall functions
(6.41) give Dirichlet boundary conditions for v, T, k and €. At each y grid line in
the boundary layer additional equations are required to determine v.,, and 8.
Because 3 is related to vy,,, via equation (6.37), actually only an additional equa-
tion for v, is required.

The additional equation we are searching for must couple v, .. to a quantity
in the outer layer. Equation (6.38) couples v,,,, to the wall-heat transfer, which is
a quantity for the inner layer. The wall-heat transfer in turn can be related to the
temperature gradient at the first inner grid point in the outer layer by assuming
that convection in the boundary-layer equation for the temperature (6.1) can be
neglected. This yields

-1
L _ fy42e B 19T (6.422)
dx Vv Oor ax ),

Figure 6.12 verifies that the convection can indeed be neglected for the tempera-
ture equation in the inner layer and in part of the outer layer for the plate: in
these parts the total heat flux remains constant. Moreover the form of the flux in
the figure is chosen such that the constant level converges to the value C*=0.0506
for increasing Rayleigh number, as we also calculated for equations (6.38) in the
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previous section. With the help of equation (6.38) for the plate (with C*=0.0506
and 3/y =0.0497, see table 6.6) expression (6.42a) can be rewritten as

173
v 7.35 V: Pr |aT

Tax = 7 [-— [1+—:' —’:‘]—5—} (6.42b)
(gB3dv) Pr v O )ox first inner grid point.

This can be used as the additional equation for v,,.

6.11. Reynolds-stress calculations

The k—e model uses the eddy-viscosity concept in the equations (2.13) to model
the Reynolds stresses and the turbulent heat fluxes. The eddy-viscosity based k—e
model has the following characteristics:

(i) The turbulence is modelled by a local isotropic effective_turbulent viscosity.

(i) The model gives isotropic turbulent intensities, i.e. u;'>=2k/3. (Actually the
model also adds a contribution —2v,(du;/dx;), which is negligibly small in
boundary-layer flows).

(iii) There is a strict analogy between the Reynolds stresses and the turbulent heat
fluxes, as expressed by a constant value for or.

(iv) The turbulent flux vector —u;'d’ ( i=1,2,3) for a quantity ¢ has the same
direction as the mean gradient vector of ¢.

Tsuji & Nagano (1988b, 1989) have measured the turbulence characteristics in
the natural-convection boundary layer. In contrast with (ii), the boundary layer
turns out to be anisotropic; for example, the maximum of the turbulent intensity in
flow direction ((v'2)2) is about 1.5 times the maximum intensity normal to the
wall ((u'$H'?). Also characteristic (iii) does not hold through the whole
boundary-layer thickness, and in some parts o is not constant. Further, in con-
trast to (iv), the turbulent fluxes do not have the direction of the mean gradient
field: fluxes in the flow direction have the same order of magnitude as the fluxes
normal to the wall. In particular the Reynolds stress u'v’ does not vanish at the
position of the velocity maximum. Characteristic (iv) also leads to a zero G,
source in the natural-convection boundary layer. It does not seem to be very real-
istic that the turbulence in the k—e model only extracts its energy from the mean
velocity field (via P,), but not from the mean temperature field (via Gy).

It is clear that some of the characteristics of the k —e model do not agree with
the measured turbulence characteristics. Of course, inaccuracies in the turbulence
model do not necessarily lead to an erroneous prediction of the mean velocity and
temperature field. Actually, as described in the previous sections, some of the
low-Reynolds-number models give a very good prediction for the mean velocity
field and the mean temperature field, including the wall-heat transfer and the
wall-shear stress. To check the consequences of the use of the eddy-viscosity con-
cept in the k—e model for the turbulent characteristics, we have also calculated the
turbulent natural-convection boundary layer with the Reynolds-stress model, which
does not make the restrictions (i)-(iv). Details of the calculations are given in a
separate paper by Peeters and the present author (1990); in this section only the
main features of the Reynolds-stress results are described. A review of the essen-
tials of Reynolds-stress models is given by Launder (1988). Only To & Humphrey
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(1986) have already applied the Reynolds-stress model to the turbulent natural-
convection boundary layer along a hot vertical plate. In contrast to our study, in
which the fully differential Reynolds-stress model is solved, To & Humphrey used
the algebraic Reynolds-stress model, implying that convection and diffusion are
neglected in the Reynolds-stress equations. We mentioned in section 6.7 that
repeating the k—e calculations of To & Humphrey with our own computational
code led to large deviations; also the results which To & Humphrey presented for
the algebraic-stress model could not be reproduced with our code. The use of an
algebraic-stress model, however, is not justified in the natural-convection boundary
layer, because convection and diffusion processes are important as was illustrated
in figure 6.11.

Similar to the derivation of the k-equation in section 2.4, equations for the
Reynolds stresses —u;’u;” and the turbulent heat fluxes —u;'T’ can directly be

derived from the Navier-Stokes equations (2.7) and the Reynolds equations (2.11):

ou; ' u;
== = dy + Py + Gy + @y =gy (6.43a)
X
ou,'T'
Uy alx]( = die + Pie + Gie + cDig — € (643b)

with d= diffusion, P= shear-stress production, G= buoyant production, &=
correlation with pressure fluctuations including pressure reflections at the wall and
€= dissipation. The expressions for the different terms and the way they are
modelled are given in the Appendix. The Appendix also gives the boundary-layer
simplifications which are applied to the Reynolds-stress equations along the hot
vertical plate. The boundary-layer equations for the Reynolds stresses were solved
numerically. The system consists of 12 parabolic partial differential equations:
besides the continuity equation, we have an equation for v, T, u'v’, u'?, v w2,
w'T' , v'T', T2, € and €.

If the sum of the equations for the normal stresses (6.43a) is taken, and the
result is divided by 2, an equation for k is obtained

LA, S O AT KL S R X (6.44)
dx dy ax € ox
with
1 v 1 Tl

The D term is the low-Reynolds-number modification from the Chien model (see
table 6.1). In contrast to the k-equation in the k—e€ model (6.10), the G, term in
the turbulent kinetic-energy balance (6.44) for the Reynolds-stress model is
nonzero. The term @;; in equation (6.43a) contains pressure fluctuations, which
redistribute energy over the normal stresses. The total kinetic energy is not directly
altered by ®, as expressed by ®;=0, causing that ¢ is absent in the k-equation
(6.44).
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The boundary-layer equations for the Reynolds stresses (6.43) were solved for
air up to Ra,=6.38X10%, which is the Rayleigh number at which Tsuji & Nagano
measured the turbulence characteristics. The numerical grid was successively
refined up to 200X200 points, showing that the finest grids give almost grid-
independent results. A difficulty of using the Reynolds-stress model is that there
is no consensus in the literature on the best choice for the numerical values of the
model constants. The sensitivity of Nu,, vp,, and v, ., ( the maximum of
—u'V'/(8v/ox) ) to these constants was determmed by varying the constants in the
range of values reported in the literature. The constants appearing in the model
for the pressure fluctuations @ have the largest influence. For example varying C,
in @ (see the Appendix) between 2.0 and 2.4 gives at Ra,=6.38x10'%:
0.116<Nu,/Ra,*<0.128, 0.364>v,,,,/(gBATy)!2>0.363 and 119>v, max/v>109.
These vanatlons are not very large. The values for the constants apphed in the
sequel of this section were mainly taken from Hossain & Rodi (1982), who recom-
mended these values for buoyant flows. At Ra,=6.38x 100 this set of constants
gives: Nu,/Ra 1/3—0 122, vmx/(gBATy)l/z—O 363 and v,/v=114. These values are
close to the experunents which give Nuy/Ra,?=0.119, v,,,,/(¢BATy)2=0.345 and
v,/v=120. Another difficulty of the use of a Reynolds-stress model close to a
fixed wall is that low-Reynolds-number modifications for this model are not well
investigated yet in the literature. In the present Reynolds-stress calculations we
simply assumed that the low-Reynolds-number modifications of Chien, as origi-
nally proposed for the k—e model, could also be generalized to the Reynolds-stress
model (see the Appendix).

Figure 6.13 compares the normal stresses for the Reynolds-stress model with
the experimental values._Tsuji & Nagano only measured the normal stresses per-
pendicular to the wall (#'?) and in the flow direction (v'%). The Reynolds-stress
model predicts (u'%)Y?%/vy,, close to the experiment, but the maximum of
(v'®)Y2y .. is overpredicted by 25%. Figure 6.13 also shows that the total tur-
bulent kinetic energy in the Reynolds-stress model is close to the value in the k—e¢
model (the k—e model uses the low-Reynolds-number modification of Chien).
Therefore, the inclusion of anisotropy in the Reynolds-stress model does not affect
the total turbulent kinetic-energy level.

Figure 6.14 compares_the measured Reynolds shear stress &'V’ and the meas-
ured turbulent heat flux u'T’ with the calculations for both the Reynolds-stress
model and the k—e model. The Reynolds-stress model closely predicts the meas-
urements in the outer layer, but the k—e model overpredicts the maximum in
w Vvl by 38% and the maximum in u'T'/(vy,,AT) by 32%. Differences
between the Reynolds-stress model and the experiments only occur in the inner
layer. In contrast to the experiments both the Reynolds-stress model and the k—e
model give a negative stress in the inner layer; the k —e model changes the sign of
the stress precisely at the position of the velocity maximum, whereas the
Reynolds-stress model changes the sign at a position very close to the position of
the velocity maximum. A possible explanation for the difference between the cal-
culations and the experiments might be an insufficient accuracy of the turbulence
measurements in the inner layer. For example, in contrast to the experlments of
Tsuji & Nagano, Miyamoto er al. (1982, 1983) measured a slightly negative v
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FIGURE 6.13. Anisotropy for air at Ra,=6.38x 100,

in the inner layer, but less negative than in the calculations. On the other hand,
proper near-wall modifications for the Reynolds-stress model have not been fully
established yet in the literature, and the modifications applied in the present study
might cause an insufficient accuracy in the inner layer.

Closely related to the turbulence quantities #’v’ and u'T’ are the turbulent
viscosity v, (=—u'v'/(3v/dx)) and the turbulent Prandtl number for the tempera-
ture oy (=v,(8T/dx)/u’'T"). These quantities are compared with the experiments
of Tsuji & Nagano in figure 6.15. Because u'v’ does not vanish precisely at the
position of the velocity maximum, the experiments and the Reynolds-stress model
give a singularity for v, and o at this position. Of course, the kK —e model does
not show a singularity because the eddy-viscosity concept prescribes that x'v =0 if
dv/ax=0, as occurs for the velocity maximum. As we already noted in section
6.7, the maximum of v, in the k—e model is about twice the experimental value.
Figure 6.15a shows that this difference is fully corrected by the Reynolds-stress
model. Comparison in figure 6.15b of the Reynolds-stress calculation for o with
the measured value shows that differences are restricted to the inner layer. In the
part of the outer layer close to the position of the velocity maximum the o, value
as calculated by the Reynolds-stress model is somewhat above the value 0.9, which
is the prescribed constant value for oy in the k—e model. In the rest of the outer
layer, where the turbulent viscosity has its largest influence, the value of 0.9 is a
reasonably accurate choice.

Figure 6.16 shows the production terms P, and G, in the equation for the tur-
bulent kinetic energy. The result that G, becomes nonzero in the Reynolds-stress
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FIGURE 6.16. Balance for the turbulent kinetic energy (air, Ra,= 10'3).

model illustrates that this model does not necessarily predict that turbulent heat
fluxes have the same direction as the mean temperature gradient. Actually G,
forms about 30% of the total production for k in the Reynolds-stress model. On
the contrary, the k—e model gives a zero G, term. Furthermore, the position of
P, in the Reynolds-stress model considerably differs from its position in the k—e
model.

6.12. Conclusion

Accurate solutions of the turbulent boundary-layer equations along the hot vertical
plate in an isothermal environment were obtaincd for air and water up to
Ra,=10%. The solution for the low-Reynolds-number k—e models is nonunique
for increasing Rayleigh number: both a laminar and a turbulent solution exist.
The solution in the laminar-turbulent transition regime strongly depends on the
energy introduced to trigger the transition.

Low-Reynolds-number modifications of the standard k—e model are needed
to predict quantities in the inner layer (like the wall-heat transfer) reasonably close
to the experiments. The standard k —e model (with k=0, e=o at the wall) largely
overpredicts the wall-heat transfer by 52% for air at Ra,=10'! and by 220% for
water at Ra,=10". The low-Reynolds-number models of Lam & Bremhorst,
Chien and Jones & Launder perform best: the wall-heat transfer is accurate within
about 15% for air at Ra,=10"" and within about 25% for water at Ra,=10'%. All
k—e models tested (except the Hoffman model) accurately predict the measured
velocity maximum. Differences between the models for the outer-layer quantities
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(like the maximum turbulent viscosity) are small and only due to differences in the
high-Reynolds-number constants. The k£ —e models strongly overpredict the max-
imum of the turbulent viscosity by about 100%. The algebraic model of Cebeci &
Smith performs worse than the k—e models: it gives a laminar-like velocity profile
(low turbulence, too high velocity maximum, too thin boundary-layer thickness).

The proper scalings and wall functions can be derived from the k —e€ solutions
by examining the Ra, dependence of quantities ¢ in d=aRa?. Model differences
mainly influence the a values in the inner layer, whereas vy is almost independent
of the model used.

The value of vy for quantities in the inner layer does not become fully
independent of the Rayleigh number up to at least Ray=1025. For example vy for
the wall-heat transfer (Nu,) for air increases from 3/8 at Ray=1012 to 0.435 at
Ra,=10%, showing that the difference with y=1/3, as measured up to about
Ra,=5X% 10'1, becomes larger for increasing Rayleigh number. Because vy remains
dependent on Ra,, wall functions in the inner layer do not seem to exist. A best
fit for the results up to about Ray=1015 is given by the velocity profile v/vp,,, vs
(x/Vpax)(9V/9x),, and the temperature profile (T—T,)/AT vs { (= xNuy/y). This
velocity profile does not agree with George & Capp’s wall function for the velocity
in the buoyant sublayer in the inner layer, giving v/(gBATv)"3 vs {. The tempera-
ture profile agrees with the wall functions as proposed by George & Capp and
Cheesewright.

The vy values in the outer layer become independent of Ra, for Ray ~ =,
implying that wall functions in the outer layer exist. The proper length scale is y
and the proper velocity scale is v,,. The proper temperature scale is v J(gBYy).
George & Capp propose different scalings; our calculations, however, show that
their scalings are proportional to v, ,, and y. This implies that the our wall func-
tions are consistent with George & Capp’s proposal. On the contrary, they do not
agree with Cheesewright’s proposal. vy, itself approximately scales with the lam-
inar velocity scale (g BATy)2.

The differential Reynolds-stress model corrects the shortcomings of the eddy-
viscosity concept in the k—e model. The Reynolds-stress model reasonably
predicts the measured anisotropy in the turbulence. The turbulent Prandtl number
is only constant in the part of the outer layer not to close to the velocity max-
imum. Further, the turbulent heat flux does not have the direction of the mean
temperature gradient, causing that the buoyant production (G;) does not vanish, as
is found for the k—e model. The better treatment of the turbulence in the
Reynolds-stress model fully corrects the 100%-overprediction for the maximum of
the turbulent viscosity in the k —e model.
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7. TURBULENT FLOW IN THE CAVITY

7.1. Introduction

In the previous chapter we have compared a number of turbulence models for the
boundary layer along the hot vertical plate in an isothermal environment. In this
chapter the standard k—e model and two of the best performing low-Reynolds-
number k —e models for the plate (the models of Chicn and Jones & Launder) are
uscd to calculate the turbulent flow in the square cavity. The turbulent flow of air
and water is calculated up to Ra=10'3. The calculations for air with the Chien
model are even extended up to Ra=10'7,

A difficulty is that accurate experiments for the turbulent flow in the square
cavity do not exist. We have used the experimental wall-heat transfer for tall cavi-
ties and for the hot vertical plate in an isothermal environment to make a guess of
the experimental averaged wall-heat transfer through the vertical wall of the
square cavity. The prediction of the different models is compared with this experi-
mental value. The calculated maximum of the vertical velocity in the vertical
boundary layer along the wall of the square cavity is compared with the experi-
ments of Cheesewright et al. (1986) as obtained in a cavity with a height-width
ratio of 5.

As for the laminar case, also for the turbulent case the core of the cavity
becomes stratified. Therefore the boundary layer along the hot vertical wall of the
cavity is expected to show a close resemblance with the boundary layer along the
hot vertical plate in a stratified environment. Here we will only compare the cav-
ity boundary layer with the boundary layer along the plate in an isothermal
environment. In particular we compare the scalings for the cavity with the scalings
for the plate. The cavity boundary layer for a given fluid is more complicated
than the boundary layer along the plate, because characteristic quantities in the
cavity, like the wall-heat transfer and the velocity maximum, depend on two vari-
ables (Ra and y/H) instead of one (Ra,). We detcrmine the scalings for the cavity
by both examining the quantities at a fixed hcight for increasing Rayleigh number
and by examining the quantities at a fixed Rayleigh number for increasing height.
This can answer whether the wall functions as derived for the plate in the previous
chapter also apply with a reasonable accuracy to the cavity.

7.2. Reynolds equations

We consider the two-dimensional square cavity that is differentially heated over
the vertical walls (figure 1.1a). The left hot wall has a temperature T, and thc
right cold wall has a temperature 7. The height of the cavity is H. The horizontal
floor and ceiling are both adiabatic.

The turbulent flow in the cavity is described by the Reynolds equations
(2.11), using the eddy-viscosity model (2.13) for the Reynolds stresses and the tur-
bulent heat fluxes. The gradient —a(2k/3)/dx; (also refcrred to as the gradient of
the turbulent pressure), which appears in the momentum equations, is neglected.
Under the Boussinesq approximation the Reynolds equations read
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Despite the time-averaging, the unsteady terms are kept in the formulation. In fact
the time-averaging is restricted to the broad-band spectrum of turbulence, whereas
the remaining unsteady terms account for all weak unsteadiness that does not
belong to the turbulence. We can also define that the unsteady terms represent all
unsteadiness that is not modelled by the turbulence model. In this study we are
interested in the large-time behaviour of the Reynolds-averaged flow; we check
whether all unsteadiness dies out and a steady final solution is reached.

with

The Reynolds stresses and the turbulent heat fluxes in the Reynolds equations
are modelled with the k—e model. Three versions of the k—e model are com-
pared:

(i) standard k —e model
c,=0.09, ¢ =1.44, c,=1.92, 0;=0.9, o,=1.0, o.=13,
fu=f1=f,=10, D=E=0,
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and k=0, e= at the wall.

(ii) low-Reynolds-number k—e model of Chien (1980)
¢,=0.09, ¢ =135, c,,=1.8, 07=0.9, 0,=1.0, o.=1.3,

fu=1—exp(=0.0115x*), f,=1.0, f,=1-— lexp(—(Re,/s)z),

9
D=—2v—ki-, E=-— 2V;exp(—O.Sx*'),
xn 'xn

and k=€=0 at the wall.

(iii) low-Reynolds-number k —e€ model of Jones & Launder (1972)
c,=0.09, c,=1.44, ¢c,=1.92, 07=09, 0,=1.0, o,=1.3,

_ -2.5
fu=exp [ 1+Re,/50

2 2
D=—2v[[a\/;] . [a\/l?]
ax ady

and k=€=0 at the wall.

], f1=1.0, f,=1-0.3 exp(—Re}?),
2. )2 2. )?
, E=2vv, [a—ﬂ-] + i—l] ,
ay2 ox?

In these relations the following dimensionless variables appear: x*=x,v. /v,
v,=(¥(dv,/0x,),,) "> and Re,=k%(ve) (x, is the distance to the closest fixed wall
and v, is the velocity component tangential to that wall).

Rodi (1980) has suggested that the coefficient ¢4 is close to 1 in vertical
boundary layers and close to O in horizontal boundary layers. An approximation
that satisfies both limits is used in the present study

Ce3 = tanh|v/u|. (7.2)

In the literature there is still no consensus on the right formulation of ¢3 and G,.
For example Fraikin et al. (1982) took c.3 = 0.7/c,; in their turbulent cavity calcu-
lations, whereas Ince & Launder (1988) took c.3=1. The turbulent solution in the
cavity consists of natural-convection boundary layers along the vertical walls and
an almost stagnant, stably stratified core region. The turbulent solution for air at
Ra=10%, as calculated with the Chien model, is shown in figure 7.1. The stream-
lines in the core are practically horizontal. Turbulence is concentrated in the verti-
cal boundary layers and is almost absent in the core. In order to understand the
meaning of the G, term, we remind the stability analyses that were mentioned in
section 5.5. The stability analysis for the laminar natural-convection boundary
layer along the hot vertical plate in an isothermal environment (see e.g.
Nachtsheim, 1963) shows that the critical gradients in both the velocity profile and
the temperature profile can give an instability (a hydrodynamic and thermal insta-
bility respectively), which initiates the transition to turbulence. The hydrodynamic
instability mechanism is represented by the P, term in the k-equation, whereas the
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FIGURE 7.1. Turbulent flow of air at Ra=10'? (Chien model);
(a) streamlines, (b) isotherms.

thermal instability mechanism is represented by the G, term. The stability analysis
for the core (approximated as an inviscid, stagnant, thermally stratified environ-
ment; see e.g. Drazin & Reid, 1981) shows that the thermal instability is only
damped if the stratification is stable, i.e. if the density decreases with the height,
or (provided B>0) if the temperature increases with the height. The present for-
mulation for the thermal source G in the k-equation does not seem to be in line
with these stability analyses. The source ¢ c 3G, has the right sign in the stably
stratified core, namely = 0, but its value is everywhere close to zero. This is a
consequence of the almost horizontal streamlines in the core, giving ¢ 3~0 accord-
ing to equation (7.2). Therefore it might be better to use ¢ 3=1 in the core.
Because the y-derivatives in the vertical boundary layers are small compared to the
x-derivatives, the present formulation gives |G| << |P;|. This implies that the
thermal instability mechanism is not accounted for very realistically in the vertical
boundary layer. Ince & Launder (1988) have proposed the inclusion of a 9T/dx
contribution in the G, term. Actually the use of the Reynolds-stress model,
instead of the k—e model, automatically leads to such a contribution. In the previ-
ous chapter we have used the Reynolds-stress model for the turbulent natural-
convection boundary layer along the hot vertical plate in an isothermal environ-
ment. In the inner layer (i.e. from the wall up to the velocity maximum) Gy is
small compared to P, but in the outer layer (i.e. beyond the velocity maximum)
G, forms about 30% of the total production of turbulent kinetic energy. Although
the Reynolds-stress model predicts that G; cannot be neglected in the turbulent
kinetic energy production, in the present cavity calculations we still use the old for-
mulation for G, giving a negligible small contribution to the production of k. In
analogy with the comparison between the Reynolds-stress model and the k—e
model for the plate (section 6.11), we expect that the negligence of the G;
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production mainly influences the turbulence characteristics, but that it has only a
small effect on the mean field quantities.

After nondimensionalization of the dependent and independent variables (with
the help of H, AT=T,~T,., gB and v), the solution in the square cavity depends
on only two characteristic numbers: the Prandtl number (Pr) and the Rayleigh
number (Ra=gBATH3Pr/v?). For the given boundary conditions the solution is
centro-symmetric with respect to the center of the cavity.

7.3. Numerical method

The spatial derivatives in the equations are discretized with the finite-volume
method on a staggered grid as described in section 2.6. The convection terms are
discretized with the hybrid scheme. This means that the second-order accurate
central scheme for the convection is locally replaced by the first-order accurate
upwind scheme as soon as the grid size exceeds a critical value. To be more pre-
cisely, the central scheme is replaced by the upwind scheme for the x-convection if
lu |Ax/(v+v,)>2 and for the y-convection if |v|Ay/(v+v,)>2. In the calculations
as presented here, for the x-convection the hybrid scheme typically turns out to use
the central scheme in the vertical boundary layers and the upwind scheme in the
core, whereas for the y-convection it uses the upwind scheme in the vertical boun-
dary layers and the central scheme in the core. In the corners and in the horizon-
tal layers the central scheme is used. In comparison with the use of the central
scheme for all grid points, the hybrid scheme is more stable (admitting much
larger time steps) during the iteration process to solve the discretized system. The
appearance of boundary layers requires a nonequidistant grid that gives a strong

grid refinement along the walls. The sides of the finite volumes are positioned
according to

X; 1 tanh[a(i/imax—1/2)]

— == |1 i = 0,1,...,imax (7.3a)
H 2 tanh(oa,/2)

£/ R R T P — j =0,1,.. jmax. (7.3b)
H jmax 21 jmax

a, is given by a,=a /sinh(a;). In most calculations we took a,=1.5%1073, but
the results for the highest Rayleigh numbers (Ra>10'%) were obtained with
a,==1.5x107%. The time dependence is treated implicitly; the spatial derivatives
are evaluated at the new time level n, and the time derivatives are approximated
with two time levels using the B2 scheme (2.21a). The line Gauss-Seidel method
is used to iteratively solve the variables u, v, T, k and €. After each sweep the
pressure is updated according to equation (5.3), using the direct solver as
described in section 5.3.

The calculation is started with a certain initial field at t=0 and we integrate
in time until a steady final solution is reached. As already remarked in chapter 5,
the time evolution in the cavity is dominated by two time scales: t;=(H*v)Ra~"*
and t2=(H2!v)Ra'”2. The time scale r; determines the time to reach the steady
state and 1, determines the required time step. A good initial field for the time
evolution can be obtained with the help of the steady formulation: the unsteady
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FIGURE 7.2. Typical time evolution to the steady state
(Chien model, air at Ra=1011).

terms are omitted from the unsteady equations (7.1) and both the transport vari-
ables and the pressure correction are iteratively solved with the line Gauss-Seidel
method. Some relaxation is required to prevent divergence of the iteration pro-
cess. After approximately 3000 Gauss-Seidel sweeps the speed of convergence has
slowed down, and we switch over to the unsteady, more physical, formulation. At
the moment of switching most of the flow details are already solved. The order of
t)/t,=Ra' time steps are still required to reach the fully converged steady state.
For example, we find that for Ra =10 about 4000 time steps are sufficient,

As also found by Jones (1985) and Thompson er al. (1987), in the present cal-
culations we revealed that the time scale #,+~H/(gBATH)Y? (Brunt-Viisild time
scale) determines the maximum time step that still gives a stable numerical time
integration. In all cases we used Ar(gBATH)Y2H=1/4. A typical time evolution
is shown in figure 7.2. The damped oscillations are related to internal gravity
waves in the core. The time evolution in figure 7.2 for the turbulent solution of air
at Ra=10'! as calculated with the Chien model gives a damped oscillation with the
frequency fH/(gBATH)Y>=0.0877 (this frequency is almost independent of the
Prandtl number and it only slightly decreases with increasing Rayleigh number).
Ozoe et al. (1985) have also calculated the turbulent flow in the same square cav-
ity with the unsteady approach, using the standard k —e model with wall functions.
From one of their figures we derive that the unsteady evolution shows an oscilla-
tion with the frequency fH/(gBATH)Y2=0.083 (Ra=6.3X10'", Pr=6.7; 24x60
grid, Ar(gBATH)Y%H~1/12). This frequency is close to our result, But in
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contrast with our calculations, the oscillation of Ozoe et al. does not die out in the
core for increasing time. We refined our time step up to Ar(gRBATH)YYH =1/24,
and we switched over to the central scheme, but we still do not find their periodic
behaviour for ¢ - . In all our calculations the unsteadiness dies out and the tur-
bulent solution reaches a steady final state. Both the use of a slightly different
turbulence model or an insufficient numerical accuracy of the results of Ozoe et al.
may account for the difference.

7.4. Transition regime

For the low-Reynolds-number models of Chien and Jones & Launder, the solution
in which k, € and v, vanish everywhere satisfies equations (7.1) with its boundary
conditions. This solution defines the laminar velocity and temperature field.
Hence, all the solutions of the unsteady Navier-Stokes equations (2.9) also satisfy
the Reynolds equations (7.1) if a low-Reynolds-number model is applied. This
implies that the Reynolds equations with a low-Reynolds-number k—e model
admit at least three types of solutions at large time:

(i) steady laminar solution (zero v,)

(ii) unsteady laminar solution (zero v,)

(iii) steady turbulent solution (nonzero v,).

Solution (i) was studied in chapter 4, and the bifurcation from solution (i) to solu-
tion (ii) was studied in chapter 5. In chapter 5 we calculated that the steady lam-
inar solution becomes unstable in time at Ra, =1.7x10® for air and at about
Ra, =100 for water. We also found in chapter 5 that it was necessary to discre-
tize the convection with the central scheme in order to find the bifurcation; the
hybrid scheme does not calculate the stability of the steady laminar solution
correctly, and often a steady final state was calculated in cases where the central
scheme predicted an oscillating state. Because the hybrid scheme was used to
solve the Reynolds equations in the present chapter, turbulence died out (i.e. v,
became zero) and a steady laminar solution was found up to Rayleigh numbers
considerably above the real stability limit of the steady laminar solution at Ra,,.
Of course in principle even for Ra>Ra,, the steady laminar solution is still a good
(but unstable) solution of the Navier-Stokes equations and of the Reynolds-
equations with a low-Reynolds-number model. The stability of this steady laminar
solution is not calculated well by the hybrid scheme, but the accuracy of the calcu-
lated steady laminar solution itself seems to be good, because it closely follows the
asymptotic branch for the steady laminar solution as derived in chapter 4. The
transition to the steady turbulent solution (iii) is studied in this section.
Mathematically the transition to solution (iii) can also be interpreted as a bifurca-
tion from solution (i) or from solution (ii). In the present study we only calculate
the bifurcation from solution (i) to (iii), because the hybrid scheme fails to repro-
duce solution (ii). The bifurcation from solution (i) to (iii) is here further referred
to as the laminar-turbulent transition of the solution (at the Rayleigh number
Ra,..., and at the height y,,.J.

The averaged wall-heat transfer in figure 7.3 shows that Ra,,,, depends on
the turbulence model used. The figure also gives the asymptotic branches as calcu-
lated for the steady laminar solution in chapter 4 (using no turbulence model):
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FIGURE 7.3. Averaged wall-heat transfer; (a) air, (b) water,
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FIGURE 7.4. Wall-heat transfer for air; (a) with increasing Rayleigh number
(Chien model), (b) nonuniqueness of the turbulent solution (Ra=10'3, Jones &
Launder model).
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Nu=0.30 Ra'* for air or Nu=0.32 Ra'* for water (see table 4.4). For air, the
Chien model goes to turbulence at Ra,,,,~10'® and the Jones & Launder model at
Ra,,,,~10". Increasing the Prandtl number delays the transition: for water, the
Chien model leaves the laminar branch at Ra,.,,,~10'2 and the Jones & Launder
model at Ra,,,~10'3, The standard k—e model shows the earliest transition to
turbulence, namely at Ra,,,~10% for air and at Ra,,,,~10'0 for water. It is
remarkable that the values for Ra,,, in the standard k—e model are close to the
stability limits of the steady laminar solution as calculated with the unsteady
Navier-Stokes equations in chapter 5, whereas the low-Reynolds-number models
give considerably larger values.

In contrast to the low-Reynolds-number models, if the standard k—e model is
used the laminar solution (having zero turbulent viscosity) is not a solution of the
Reynolds equations (7.1), because it does not satisfy the boundary condition e=
at the wall. We calculate that below a certain Rayleigh number the standard k—e¢
model gives a turbulent viscosity which is close to zero everywhere. This solution
can be interpreted as an approximation of the steady laminar flow. Above a cer-
tain Rayleigh number (which we will also indicate as Ra,,,,) the turbulent viscos-
ity suddenly increases until a fully turbulent solution is found. This sudden

increase is also visible in the wall-heat transfer for the standard k —e model in fig-
ure 7.3a.

Examining the development of the wall-heat transfer along the hot vertical
wall of the cavity in figure 7.4 shows a sudden increase beyond a certain height
(Y¢rans)- This increase represents the laminar-turbulent transition within the boun-
dary layer itself. If the Rayleigh number is increased (as illustrated for the Chien
model up to Ra=10"" in figure 7.4a) y,,,, moves to y=0. Some of the calcula-
tions show that the position of the transition (y.,,/H) in the steady solution at
t - o is not uniquely given as a function of Pr and Ra. The position depends on
the initial solution at =0 with which the evolution to the steady state is started.
For example, at the same 80X 80 grid we calculate two different steady solutions
for air at Ra=10'3 with the Jones & Launder model (see figure 7.4b): one with an
early and the other with a late transition. We have carefully checked the conver-
gence to the steady state for both solutions. The difference between the laminar
part of both solutions is related to a difference in the core stratification. The
nonuniqueness of the transition region is also found in the experiments of Jaluria
& Gebhart (1974) (and private communication with Gebhart) for the heated verti-
cal plate in an isothermal environment. We expect that for a fixed Rayleigh
number even more than the two partly turbulent solutions we found can exist:
probably y..ns can be anywhere between a minimum distance (below which the
solution is always laminar) and a maximum distance (beyond which the solution is
always turbulent). There is no minimum distance if the Rayleigh number is below
Ra,.,,, and the maximum distance decreases to zero if the Rayleigh number is suf-
ficiently far beyond Ra,,,,. Hence, for very large Rayleigh numbers the boundary
layer is fully turbulent and is expected to be unique. A late transition decreases
the averaged wall-heat transfer; for each Rayleigh number in figure 7.3 we have
selected the averaged wall-heat transfer of the solution with the lowest transition
position, in cases where multiple solutions were calculated. Also for the standard
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k—e model nonuniqueness was found; for example two solutions were calculated
for air at Ra=10%"3 using the 60X 60 grid.

The calculated nonuniqueness of the transition of the cavity boundary layer
shows a large analogy with the nonuniqueness of the transition in the boundary
layer along the plate as calculated in the previous chapter. Mathematically the
Reynolds equations (7.1) are parabolic in time whereas the boundary-layer equa-
tions (6.1) are parabolic in Ra,. The solution in time of the Reynolds equations at
a fixed Rayleigh number (and in particular the solution at ¢t -~ ®) depends on the
amount of turbulent kinetic energy introduced at ¢=0. The solution of the
boundary-layer equations for increasing Ra, depends on the amount of turbulent
kinetic energy introduced at the transition station (y,,,,). The fully turbulent state
seems to be independent of the amount of introduced energy in the limit Ra -«
for the Reynolds equations and in the limit Ra, - « for the boundary-layer equa-
tions.

In this section we have analyzed the transition behaviour within the Reynolds
equations that use a k—e model with the help of some calculated solutions. A
more refined mathematical analysis of the nonuniqueness in the transition regime
can be obtained by examining the eigenvalues of the Jacobian matrix of the discre-
tized steady part of the Reynolds equations (see also section 5.4). Such an
analysis, however, was not performed in the present study.

7.5. Existing experimental and numerical data

Accurate measurements for the turbulent natural-convection flow in the cavity are
difficult to obtain. For the comparison of the present numerical results with exper-
iments, we have to rely on experiments performed in cavities with an aspect ratio
(A=height/width) larger than 1. Cheesewright et al. (1986) and Cheesewright &
Ziai (1986) have obtained experimental data for air in the A =35 cavity, MacGregor
& Emery (1969) have measured a large range of Prandtl numbers in large-aspect-
ratio cavities (up to A =40), Cowan et al. (1982) have measured the flow of water
in large-aspect-ratio cavities (up to A=60) and Betts & Dafa’Alla (1986) have
measured air in the A =30 cavity.

At large Rayleigh numbers boundary layers develop along the vertical walls.
If for a certain large, but fixed, Rayleigh number the aspect ratio is increased, the
rising boundary layer along the hot wall and the falling boundary layer along the
cold wall will touch each other and the core region disappears. In the limit of
A - the flow becomes parallel (i.e. one-dimensional). Two-dimensional effects
are restricted to a thin region close to the horizontal walls. The turbulence in that
case reaches its maximum at the vertical centerline of the cavity. The flow in the
large cavities as measured by MacGregor & Emery, Cowan et al. and Betts &
Dafa’Alla are nearly parallel, giving an averaged wall-heat transfer

Nu=C Ra'? (7.4)

with the constant C is 0.046, 0.043 and 0.053 respectively. The Nusselt number
(Nu) is the dimensionless heat transfer through the hot wall
Nu=—(H/AT)(8T/ox),,. The averaged Nusselt number according to equation
(7.4) is independent of the aspect ratio. The boundary layers in the square cavity,
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however, are not mixed up; the turbulence is concentrated in the boundary layers
and is almost absent at the vertical centerline of the core. Therefore, the averaged
wall-heat transfer in the square cavity might differ from equation (7.4). Cheese-
wright et al. (1986) have measured velocity profiles for air as a function of height
along both the hot and cold wall in an A=5 cavity. In contrast with what follows
under the Boussinesq assumption, the deviation from the centro-symmetric state in
the experiments is relatively large. Cheesewright e al. contribute this deviation to
heat losses through the horizontal walls, which were not perfectly adiabatic. Also
three-dimensional effects might have influenced the experiment. The heat losses
cause the horizontal boundary layer along the ceiling to become turbulent. The
boundary layer along the floor is relaminarized, as in our calculations. The aspect
ratio 5 is still small enough to give separated vertical boundary layers.

Comparison of different existing wall-heat transfer experiments for the verti-
cal hot plate in an isothermal environment up to about Ra=10'? in the previous
chapter led to Nu,=0.119 Ra}”® (equation (6.33); Nu and Ra are based on the
coordinate y along the plate and on the temperature difference between the wall
and the isothermal environment). Under the approximation that the core in the

square cavity is also isothermal, this result can be rewritten as an averaged wall-
heat transfer for the cavity:

Nu=0.047 Ra'3, (1.5)

We have rescaled Nu, and Ra, from equation (6.33) such that Nu and Ra in equa-
tion (7.5) are based on the cavity height H and twice the temperature difference
between the hot wall and the isothermal core. Actually, however, the core of the
square cavity is stratified, which might give an averaged wall-heat transfer that
differs from equation (7.5). For example, laminar calculations show that the stra-
tification in the core of the square cavity leads to an about 35% higher averaged
wall-heat transfer for the cavity compared to the hot plate in an isothermal
environment (table 4.3: Nu=0.30 Ra'* and 0.22 Ra!’* respectively for air). For
the turbulent case, however, we will show in the next section that the stratification
in the core of the square cavity is much smaller than for the laminar case. It is
remarkable that the averaged wall-heat transfer (7.5), as measured for the plate, is
close to relation (7.4), as measured for large-aspect-ratio cavities; equation (7.5)
will be used to compare our numerical results in the square cavity with.

Betts & Dafa’Alla have calculated the turbulent flow in the cavity with an
infinite aspect ratio, comparing different low-Reynolds-number k —e models. They
find that all these models predict a too high wall-heat transfer and a too low velo-
city maximum. In order to improve the performance of the Jones & Launder
model, Ince & Launder (1988) have modified the E term in the e-equation with
the Yap-correction. This correction accounts for the large turbulent diffusion from
the centerline of the tall cavity towards the wall. With the Yap-correction, Ince &
Launder calculate that Nu=0.051 Ra'”® for A=, Further they used this modified
model to calculate the cases with A=10, 5 and 1. The Yap-correction does not
influence the results in the cases with A=5 or 1, where the vertical boundary
layers are not mixed up at the centerline. They have fitted their numerical results
for these finite aspect ratios to Nu=0.047 Ra'®. As shown in figure 7.3a, their



- 156 -

Rayleigh number in the case of the square cavity turns out to be too small to get a
turbulent solution: their wall-heat transfer is practically equal to the laminar result.

Markatos & Pericleous (1984) and Ozoe et al. (1985) have calculated the tur-
bulent flow in the square cavity, using the standard k —e model with wall functions
like (6.8) or (6.9). Ozoe et al. calculated the flow of water on a 24X 60 grid. The
distribution of grid points is such that only one grid point falls between the wall
and the velocity maximum in the vertical boundary layer. Therefore they do not
claim that their results are grid independent. Their averaged wall-heat transfer at
Ra=6.3x10!0 (Pr=6.7) is indicated in figure 7.3b. Markatos & Pericleous calcu-
lated the flow of air on a 60X 120 grid. The distribution of grid points is such that
10 to 15 points fall in the vertical boundary layer, and care was taken that several
of these points fall between the wall and the velocity maximum. They checked
that grid refinement up to 100X 160 points leads to small changes. Comparison of
their wall-heat transfer results with the present results for the standard k—e model
in figure 7.3a shows that our results up to Ra=10'2 are about 11% lower. For
Ra>10'3 the solution of Markatos & Pericleous is below our solution. The devia-
tions might be due to differences in the boundary conditions for k and e.

7.6. Comparison of the models

Turbulent calculations in the square cavity have been performed for air and water
up to Ra=10', For air calculations are also performed at Ra=10!% and 107 with
the Chien model. For larger Rayleigh numbers the iteration process at a new time
step in our implicit numerical time integration could no longer reach a converged
solution.

The use of low-Reynolds-number k—e models requires a sufficient number of
grid points in the inner part of the boundary layer. Differences between the
models can easily be lost if the number of grid points is too small or if the grid
points are not properly distributed. Table 7.1 illustrates the accuracy of the results
for air at Ra=10'3 on different grids (with a,=1.5x1073), using 40x40, 60X 60
and 80X80 grid points respectively. Here § is the stratification gradient
(H/AT)(8T/9y) at the cavity center, v.., is the maximum of the vertical velocity at
half the cavity height, and u,,, is the maximum of the horizontal velocity at half
the cavity width. In the horizontal direction at half the cavity height, the 80X 80
grid gives about 30 grid points in each vertical boundary layer and about 20 grid
points in the core. Within the vertical boundary layer 11 grid points are between
the wall and the velocity maximum. The table shows that even the results on the
coarsest grid are reasonably accurate. The differences between the grids are smal-
lest for the standard k—e model. The reason for the high numerical accuracy of
the standard k—e model is that this model sharply fixes the position of the
laminar-turbulent transition in the vertical boundary layer. The transition in the
other models shows a larger grid dependence, which is related to the nonunique-
ness of the steady solution for the low-Reynolds-number models. Table 7.2 illus-
trates the importance of the proper distribution of grid points. For the 40X 40 grid
the number of grid points in the inner layer is increased by refining a, from
1.5x107! up to 1.5x 1073 (for air at Ra=10'> with the Chien model). The solu-
tion at the 80x80 grid for the Chien model in table 7.1 is used as an accurate
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TABLE 7.1. Numerical accuracy for air at Ra=1013.

m . NT.. —-1/3 Vmax U max
odel grid S Nu Ra e BATH \/g SATH

40x 40 0.3507 0.07845 0.1307 0.007200
standard k—e¢ 60X 60 0.3517 0.07971 0.1279 0.006959
80x 80 0.3515 0.08031 0.1268 0.006953
40% 40 0.3395 0.06648 0.1093 0.006264
Chien 60x 60 0.3362 0.06443 0.1052 0.006109
80x80 0.3408 0.06310 0.1035 0.006001
40x 40 0.3064 0.05574 0.1152 0.005977
Jones & Launder 60X 60 0.2923 0.05319 0.1117 0.006242
8080 0.3030 0.05150 0.1100 0.006062

TABLE 7.2. Influence of the grid distribution on the numerical accuracy (Chien
model, air, Ra=10!3, 40x40 grid); i;, is the number of grid points in the inner
layer.

N — -1/3 vma.x umax

ay iin S Nu Ra \/gBATH Vg{?,ATH
1.5x107! 0 0.0811 0.01089 0.0664 0.005547
1.5x1072 2 0.2897 0.05388 0.1172 0.006037
1.5x1073 5 0.3395 0.06648 0.1093 0.006264
1.5x1074 3 0.3513 0.06550 0.1104 0.006249
1.5x1073 11 0.3714 0.06599 0.1141 0.006120
reference solution 0.3408 0.06310 0.1035 0.006001

reference solution. Table 7.2 shows that the solution is inaccurate if the number
of grid points in the inner layer is too small (a;=1.5X 107! or 1.5xX107%). On the
other hand, if a too large ?ercentage of the total number of grid points falls in the
inner layer (a,=1.5X107°), the accuracy of § and v,,,, decreases as well. The
distributions giving the best accuracy use a,=1.5%107 or 1.5X107*. The results
to be presented in the sequel of this chapter (for air and water, at different Ray-
leigh numbers, for different models) were obtained on either the 60X 60 or the
80% 80 grid, applying @,=1.5X% 1073 or 1.5% 1074, Many of these calculations were
repeated on coarser grids, as just illustrated for one case in table 7.1, to check that
the numerical accuracy is sufficient.

Table 7.1 and figure 7.3 show that the differences between the models for the
averaged wall-heat transfer are large. Comparison of the calculated averaged
wall-heat transfer at Ra=10!3 for air with the experimental relation (7.5) shows
that the Jones & Launder model is best (10% too high), followed by the Chien
model (34% too high) and the standard k—e model (71% too high). For water at
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Ra =10 the Chien model is closest to the experiment (5% too high), whereas the
Jones & Launder model is 36% too low. The standard k—e model is much too
high (128%). Indeed, the agreement for none of the models is very good over a
larger Rayleigh number range. We realize that the sense of this comparison is lim-
ited, because the experimental relation (7.5) is based on experiments for the plate
(at Rayleigh numbers Ra,=10''—10'%) and not on experiments for the square cav-
ity (at Rayleigh numbers Ra=103—10'%) itself. It is clear that there is a strong
need for accurate measurements for the large-Rayleigh-number fully turbulent
regime in the square cavity.

In figure 7.5 we have compared several quantities, as calculated with the dif-
ferent turbulence models, as a function of height for air at Ra=10'% the wall-heat
transfer, the wall-shear stress (c,= 2v(dv/dx),,/(§BATH) ), the maximum of the
vertical velocity, the maximum of the turbulent viscosity, the horizontal velocity at
half the cavity width and the thermal stratification at half the cavity width.
Differences between the turbulence models are largest for quantities in the inner
layer, like the wall-heat transfer (figure 7.5a) and the wall-shear stress (figure
7.5b). Differences for the vertical velocity maximum (figure 7.5¢) are smaller.
The calculated velocity maximum is reasonably close to the experiment of Cheese-
wright et al. (1986) for air at Ra=5%10!0 in the A=5 cavity (the velocities are
nondimensionalized with the velocity scale (gBATH)Y? Ra~1/%4, see section 7.8).
Differences between the models for quantities in the outer layer of the vertical
boundary layer are small. For example the small difference in the maximum of
the turbulent viscosity (figure 7.5d) as calculated by the Jones & Launder model is
due to the slightly later transition of this model. The later transition of the Jones
& Launder model is also recognizable in the horizontal velocity at half the cavity
width (figure 7.5¢). For increasing height figure 7.5¢ shows that (the modulus
value of the horizontal velocity is considered here in the text): (i) a thin high-speed
horizontal boundary layer is found close to the floor, (ii) the velocity falls back to
an almost zero value directly outside the horizontal boundary layer, and (iii) at the
height of the transition the horizontal velocity suddenly increases, it reaches a
maximum and falls back to zero at the center. The sudden increase of the hor-
izontal velocity is related to the sudden thickening of the boundary layer at the
laminar-turbulent transition position y ..., demanding a larger inflow of fluid from
the environment. The thermal stratification in the core (figure 7.5f) is nearly
linear, except close to the horizontal walls. Not only for the averaged wall-heat
transfer in figure 7.3, but also for all the quantities shown in figure 7.5 the model
differences for water were found to be larger than for air.

7.7. Comparison of the cavity with the plate

The vertical gradient of the temperature stratification in the cavity center (S) for
air at increasing Rayleigh number is shown in figure 7.6a. S follows the laminar
asymptote S=0.99 up t0 Ra,,, (see table 4.4), it increases and reaches a max-
imum in the first part of the transition regime, and it strongly decreases in the
second part of the transition regime until the fully turbulent asymptote is reached.
The values of S on the turbulent asymptote are considerably lower than the values
on the laminar asymptote. Figure 7.6b gives the stratification at half the cavity
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width up to Ra=10'7 as obtained for air with the Chien model. This figure shows
that the sudden increase of the stratification in the beginning of the transition
regime (Ra=10'02%) is only a local behaviour at heights around y=H/2. As we
have shown for the laminar regime in the chapters 3 and 4, also for the transition
regime and for the turbulent regime the stratification in the core leads to regions
with flow reversal and temperature deficit in the vertical cavity boundary layers
(details are not given here). Beyond about Ra=10'3 all the models in figure 7.6a
give values for § in the fully turbulent regime. It is not clear whether the tur-
bulent asymptote reaches a nonzero constant in the limit Ra - ¢ or whether it
totally vanishes. The calculations at the highest Rayleigh numbers (Ra=10'% for
the standard k—e model and the Jones & Launder model, Ra=10'7 for the Chien
model) suggest that S vanishes according to S+Ra~'6, Calculations at even
higher Rayleigh numbers are required to draw a definite conclusion about the
asymptotic behaviour of §. Figure 7.6a also gives an experimental value for § as
measured by Cheesewright et al. (1986) for air at Ra=5X 100 in the A=5 cavity.
This value is close to the prediction of the k—e model; both the experiment and
the k—e€ model have already reached the turbulent regime at Ra=5x10'°, whereas
the low-Reynolds-number models predict a later transition.

Figure 7.6b shows that the core of the cavity becomes nearly isothermal for
large Rayleigh numbers, with exception of the parts of the core close to the hor-
izontal walls. In the case of a rotal isothermal core the remaining difference
between the cavity boundary layer and the boundary layer along the plate in a
isothermal environment would be solely due to the presence of the horizontal
boundary layers in the cavity. If we assume that Gill’s asymptotic theory for the
laminar cavity flow (which was verified to be correct in chapter 4) can also be
applied to the turbulent cavity flow, the influence of these horizontal boundary
layers on the development of the vertical cavity boundary layers vanishes in the
limit Ra - . Gill’s theory also says, however, that the core stratification is such
that the normal velocity at the edge of the vertical cavity boundary layer is sym-
metric with respect to half the cavity height. Therefore the core can never become
isothermal over the whole height, because this would give an inflow of mass at the
boundary-layer edge for all heights. This inflow was calculated for the plate in the
previous chapter (see table 6.6). The horizontal flow gives an essential difference
between the plate in the isothermal environment and the cavity.

Despite the difference in the horizontal velocity, the smallness of the stratifi-
cation in the core of the cavity encourages to compare the averaged wall-heat
transfer in the cavity with the averaged wall-heat transfer for the plate in the isoth-
ermal environment. In figure 7.7a and 7.7b we have compared the averaged wall-
heat transfer for air and water respectively. The averaged wall-heat transfer for
the plate is obtained by integration of the local wall-heat transfer as given in figure
6.7a. The characteristic temperature for the plate in figure 7.7 is taken as
2(Ty~T.), in which T, is the isothermal environment temperature. The unbroken
lines in figure 7.7 for the lower Rayleigh numbers represent the laminar solutions
for the plate and the cavity respectively (see the tables 4.4 and 6.5). The com-
parison for air shows that up to Ra=10" the averaged wall-heat transfer for the
cavity is above the averaged wall-heat transfer for the plate; as for the laminar
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case, the presence of some stratification increases the averaged wall-heat transfer
in the turbulent case as well. With exception of the Jones & Launder model at
Ra=10", the difference in the averaged wall-heat transfer for air decreases with
increasing Rayleigh number, as a consequence of the decreasing core stratification.
With exception of the standard k—e model, the averaged-wall transfer in the cav-
ity for water almost coincides with the plate result. The close agreement is due to
the small core stratification for water, which is even smaller than for air (for
example, the Chien model at Ra=10'3 gives §=0.249 for air and 0.199 for water).
The relatively large difference in the averaged wall-heat transfer with the standard
k—e model for water suggests that the inner-layer quantities in this model are
more sensitive to small changes in the core stratification than the inner-layer quan-
tities in the low-Reynolds-number models. On the grounds of the calculations,
which practically all show that the presence of a stratification increases the aver-
aged wall-heat transfer, we expect that the experimental relation (7.5), as based on
measurements for the plate in an isothermal environment, slightly underpredicts
the averaged wall-heat transfer for the cavity up to about 10%.

7.8. Scalings for the turbulent flow in the cavity

In chapter 4 we showed that the proper scalings for the laminar Navier-Stokes flow
in the cavity follow from the boundary-layer equations under a fixed stratification
(T—T,)/AT; the laminar boundary-layer equations with a fixed stratification have
well-defined scalings. In the previous chapter we could derive the proper scalings
in the outer layer of the turbulent boundary layer along the plate in an isothermal
environment, due to the existence of a similarity solution (wall-function) in the
turbulent boundary-layer equations. To derive the scalings for the turbulent flow
in the cavity, the Rayleigh-number dependence of different quantities in the calcu-
lated solutions of the Reynolds equations (7.1) are examined. These quantities are
examined at a fixed position (half the cavity height, half the cavity width et cetera)
for increasing Rayleigh number. The Ra dependence of a quantity ¢ is written as
aRa?, with y=(Ra/d)[dd/dRa]. If y becomes a constant in the limit Ra ~ « the
proper scaling is found. Because the stratification in the core of the cavity is
small, we expect that the scalings for the turbulent flow in the cavity will show a
close analogy with the scalings for the turbulent boundary layer along the plate in
the isothermal environment. Such an analogy would imply that the Ra scalings for
the cavity approximately follow from the Ra, scalings for the plate (as summarized
in the tables 6.5 and 6.6) by simply replacing y by H in Ra,.

The Rayleigh-number dependence of the averaged wall-heat transfer has been
given in figure 7.3, whereas some other characteristic quantities are followed in
figure 7.8. Figure 7.8 shows the Rayleigh-number dependence for some quantities
at y=H/2, but the resulting vy values in the turbulent regime (as summarized in
table 7.3) turn out to hold irrespective of the height y/H. The table also summar-
izes the scalings for the laminar flow in the cavity. The vy values for the turbulent
flow in table 7.3 only approximately give the proper scalings, as they were only
checked for Rayleigh numbers up to 105 (and up to 10'7 for air with the Chien
model). The values may still show some Rayleigh-number dependence when the
Rayleigh number is further increased. In particular the vy values as given for the
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(the unbroken lines are the laminar branches).

inner-layer quantities are not expected to be the right limits, because in section 6.9
we showed that the inner-layer quantities for the plate even had not reached limit-
ing values at Ray—1025 The averaged wall-heat transfer (Nu) in figure 7.3
approximately gives y=3/8, which is above the experimental value of 1/3. Again,
we have to realize that this experimental value was obtained for the plate (at rela-
tively low Rayleigh numbers), and might be insufficiently representative for the
cavity. For the plate as well, however, we calculated (figure 6.7a) that vy for Nu,

is about 3/8 at Ra,=10'2 (increasing to y=0.435 at Ra,=10%). In analogy with
the Ra,” 4 scaling for the wall-shear stress along the plate in part of the turbulent
reglme (figure 6.7b), the wall-shear stress for the cavity (=
2v(dv/éx),,/(gBATH)) in figure 7.8a approximately scales with Ra~"* in part of
the turbulent regime. Also in analogy with the plate (figure 6.7c), the vertical
velocity maximum at half the cavity height in figure 7.8b approximately scales with
(gBATH)Y2 Ra~12*, which is close to the buoyant velocity scale (g BATH)Y2. As
for the plate, also for the turbulent cavity v,,,, turns out to be the proper velocity
scale in the outer layer of the boundary layer. This is checked for (2kp,y/3)? at
half the cavity height in figure 7.8c (compare figure 6.7d for the plate). The
proper length scale in the outer layer becomes clear from the figures 7.8d and
7.8¢. Figure 7.8d shows the Ra dependence of 8/H. The boundary-layer thickness



- 169 -

TABLE 7.3, Rayleigh-number dependence for the flow in the cavity.

region quantity laminar turbulent
Nu Ra 1/4 ~Ra 3/8
¢ Ra~V4 ~Ra~ V4
inner layer Vmax Ra® ~Ra-124
gBATH
Xymax'H Ra~14 ~Ra~ 18
V 2k pax/3 B RO
V$ax
B _ Vx=Hp2 -1/4 -1/36
outer layer H Voadd Ra Ra
kaax/S -- Rao
V¢ max _ Ra®
Vinaxd
S Ra® ~Rq 116
core Y max -6 -572
tVarve:Ti Ra ~Ra
gBATH

3 is defined by equation (6.37), replacing x=«w by x=H/2: B(y)=
Y(HI2,)V5(y). The Ra dependence for 8/H in the cavity closely resembles the
Ra, dependence for 8/y along the plate, namely &/H +Ra~136 for the cavity and
dly —:-Ray0 for the plate. Figure 7.8¢ checks for x;,, (the position of k,,) at half
the cavity height that 3 is the proper length scale in the outer layer. For the plate
we found that model differences in the outer-layer quantities, scaled with v, and
3, are small at sufficiently large Rayleigh numbers and only due to differences in
the high-Reynolds-number constants. Moreover the scaled outer-layer quantities
for the plate are independent of the Prandtl number. The same behaviour as for
the plate is found for the outer-layer quantities in the turbulent cavity flow, as
shown in the figures 7.8c and 7.8e. Differences between the models for the scaled
outer-layer quantities in the cavity almost disappear for increasing Rayleigh
number, because the differences in the high-Reynolds-number constants are small.
Finally, table 7.3 also gives the Rayleigh-number dependence of the horizontal
velocity maximum at half the cavity width. In contrast to the laminar flow, for
the turbulent flow in the cavity this maximum does not fall in the horizontal boun-
dary layer, but in the core. The Rayleigh-number dependence of the horizontal
core velocity is such that the mass transported through the upper half of the core
(+H(gBATH)Y2Ra =52 ) balances the mass transported through the vertical boun-
dary layer at half the cavity height (+v,,,8).
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From the comparison between table 7.3 for the cavity and the tables 6.5 and
6.6 for the plate, we conclude that the turbulent scalings with respect to Ra in the
cavity indeed closely resemble the turbulent scalings with respect to Ra, for the
plate, if y in Ra, is replaced by H: differences are restricted to Ra~ !¢ contribu-
tions. On the contrary, for the scalings with respect to y/H this resemblance is
restricted to about y/H=0.3 at the beginning of the turbulent boundary layer along
the hot cavity wall; for larger y/H values the y/H-scalings for the cavity are not
simply found from the Ra, scalings for the plate by splitting Ray into Rax(y/H )3
and fixing Ra. For example, the vertical velocity maximum along the plate in an
isothermal environment monotonously increases with the height, as shown in fig-
ure 7.5c for the experimental relation (6.34) (based on the cavity Rayleigh
number, Ra=10'%), whereas the calculated vertical velocity maximum for the cav-
ity in the same figure reaches a maximum at a certain height and decreases until
zero at y=H. Because this maximum is already reached at a height below y=H/2,
the difference between the cavity and the plate is not just a local effect close to
y=H caused by the cavity corner: the difference must be caused by the small stra-
tification in the core of the cavity. In the previous section we already mentioned
that this small stratification is related to a horizontal velocity in the core which is
centro-symmetric with respect to half the cavity height. The mass leaving the
boundary layer at y>H/2 corresponds to the decrease of the vertical velocity max-
imum. The same kind of difference between the cavity and the plate, as just
shown for the vertical velocity maximum, also occurs for most of the other charac-
teristic quantities (¢f, kmaxs Vi,max)- Only the y/H dependence for the wall-heat
transfer of the cavity gives a closer resemblance with the plate over almost the
whole cavity height: figure 7.5 shows that Nu/Ra'’® only slightly depends on y/H,
in analogy with the experiments for the plate (equation (6.33)), which even give a
totally height independent wall-heat transfer. Only in the upper corner the wall-
heat transfer for the cavity shows a larger y/H dependence.

In section 6.10 we expected the wall functions (6.41) to be applicable to gen-
eral natural-convection computations. These wall functions use the scalings vy,
and 3, and have the profiles as calculated for the hot plate in the isothermal
environment. To complete the wall-function concept, equation (6.42b) was pro-
posed as the additional equation for v_,, and 8. The boundary-layer flow in the
cavity is an example of a general natural-convection flow, in the sense that the
environment of the boundary layer is not isothermal but stratified. Checking
whether the wall functions as originally derived for the hot vertical plate in the
isothermal environment also apply to a hot vertical wall in a stratified environment
is the natural-convection counterpart of checking whether the forced-convection
wall functions as originally derived for a plate in an oncoming flow with zero pres-
sure gradient also apply to a plate in a flow with nonzero pressure gradient. To
verify whether the natural-convection wall functions apply with a reasonable accu-
racy to the cavity, first of all requires the finding of a velocity scale and a length
scale in the outer layer of the vertical boundary layers in the cavity that not only
give Ra independent but also give reasonably y/H independent profiles. The
numerical solutions show that these scalings (being functions of Ra and y/H)
indeed exist: v, =(2k.4/3)"? is a proper velocity scale and X, =X;may iS a proper
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length scale (x;,y is the position of the maximum of the turbulent kinetic energy).
Figure 7.9, for example, shows that the profiles for the turbulent viscosity almost
coincide if they are nondimensionalized with these scalings. Moreover the profiles
are close to the large-Rayleigh-number solution for the plate. We checked that
these also are proper outer-layer scalings for most of the other quantities:
(Vmax=V)/Vour» k/vZ, and exq,/v3,. As shown in figure 7.10 deviations for the
scaled velocity only occur at the outer edge. Part of these deviations are due to the
regions with flow reversal appearing at the outer edge of the boundary layer in the
cavity. Only the scaled temperature profiles, (T —T,_y,)8BXqu/Vs VS X/X oy, dO
not coincide for increasing height (figure 7.11b). The scaled temperature profiles
in the cavity almost coincide for increasing Rayleigh number (figure 7.11a), but
these profiles do show a difference with the profile for the plate. This difference
with the plate seems to be caused by the regions with temperature deficit which
occur at the outer edge of the boundary layer in the cavity. Hence, the cavity cal-
culations show that for all variables (except the temperature) the scalings
(2kmax/3)"* and x;p,,, are more general applicable than the scalings v,,, and & as
proposed in the wall functions (6.41). Replacing the scalings in the wall functions
by (2k.n./3)Y? and x,,,, causes a difficulty in the practical applicability of the wall
functions in computations, because we do not know how to formulate additional
equations for the modified scalings. For the scalings v,,,, and 8 we could derive
the additional equation (6.42b). The application of the wall functions (6.41) (with
Vmax 20d 8, and the profiles as calculated for the plate) to computations in the cav-
ity will introduce an inaccuracy. The inaccuracy only results with respect to y/H,
because with respect to Ra the velocity scale (2ky,,,/3)"? is similar to v,,,, and the
length scale x4 is similar to 8, as was verified in the figures 7.8c and 7.8¢. An
indication of the magnitude of the inaccuracy is given in figure 7.12: the figure
shows some quantities ¢ cayiey/dplates With b= (2ka0/3) 2V 0y and with &=xp .0/0.
The ¢ profiles are independent of the Rayleigh number for sufficiently large Ray-
leigh numbers. A perfect applicability of the wall functions (6.41) to the cavity
would give deayiry/dplae=1. A value close to 1 is found up to about y=H/2, but
the deviations become larger at y>H/2. The wall functions in section 6.10 also
couple vy, to the velocity scale of George & Capp Vguc=
(—gBdV(3T/dx),,/Pr)'3, as expressed by equation (6.39). We checked that VG&c
for the cavity indeed is similar to v, with respect to Ra in the limit Ra - . To
check their similarity with respect to y/H we have also plotted ¢caviry/@plae With
b=VgGec/Vimax in figure 7.12; the agreement between the cavity and the plate is not
perfect. Whether, despite the deviations in figure 7.12, the actual implementation
of the wall functions (6.41) in the computations for the cavity still gives a reason-
able prediction of the boundary-layer flow in the cavity has not been investigated
yet in the present study.

In the previous chapter we verified that the profiles (6.40) for the velocity and
temperature almost coincide in the inner layer along the plate in the isothermal
environment as long as the Rayleigh number is below about Ray=1015. These pro-
files practically coincide in the inner layer of the boundary layers for the cavity as
well. This is illustrated in figure 7.13 for the temperature profile, (T~T,_y/2)/
(Tp,—T,=y,3) vs L, as calculated with the Chien model for air. Figure 7.13a shows
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the temperature at half the cavity height for increasing Rayleigh number, whereas
figure 7.13b shows the temperature at Ra=10"3 for increasing height. These pro-
files for the cavity are also close to the results for the plate (as shown in the figure
at the local Ra, value at half the height of the cavity with Ra=10'%. In analogy
with the plate, the velocity profiles (6.40a) coincide as well (not shown here) and
they also have the laminar scalings in part of the turbulent regime, because ¢
turned out to scale with Ra~Y4 in part of the turbulent regime (figure 7.8a),
whereas the vertical velocity maximum closely scales with the laminar velocity
scale (gBATH)Y? (figure 7.8b).

7.9. Conclusion
It has been shown that steady turbulent solutions of the Reynolds equations with a
k—e model in the square cavity can be calculated up to large Rayleigh numbers,
when in the computational method an unsteady approach to the steady state is
used and when the pressure is calculated with a direct solver at each time level.
For Rayleigh numbers larger than 107 convergence problems occur. With a good
distribution of grid points, in which sufficient grid points fall within the vertical
boundary layers, even a coarse 40X 40 grid gives reasonably accurate results.
Below a certain Rayleigh number (Ra,,,,) the solution is laminar everywhere,
but beyond Ra,,, a transition to the turbulent solution is found. Increasing the
Prandtl number increases Ra,.,,: the standard k —e model finds Rayq~ 108 for air
and Ra,,,,~10'° for water. The Jones & Launder model remains laminar even to
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Ra,,,,~ 10! for air and to Ra,,~10' for water. Ray,,, in the standard k—e
model is close to the stability limit of the steady laminar solution in the Navier-
Stokes equations, as calculated in chapter 5.

For all turbulence models used (standard k—e model, Chien model and Jones
& Launder model) multiple (partly) turbulent solutions exist on the same grid and
at a fixed Rayleigh number above Ra,,,,. This refers to the nonuniqueness of the
position y,.../H of the laminar-turbulent transition in the vertical boundary layer.
All the models, however, seem to uniquely determine the fully turbulent solution
at the largest Rayleigh numbers we considered.

The initial phase of the transition is characterized by a sharp increase of the
vertical temperature gradient in the center of the cavity. If the flow becomes fully
turbulent this gradient decreases and reaches values considerably below the lam-
inar stratification. Due to the small stratification in the core at large Rayleigh
numbers, the calculated averaged wall-heat transfer for the turbulent flow in the
cavity is close to the calculated value for the plate in the isothermal environment.
Comparison of the averaged wall-heat transfer in the cavity with both the experi-
ments for the plate and the experiments for tall vertical cavities show that the
prediction by the standard k—e model is too high, whereas the low-Reynolds-
number models of Chien and Jones & Launder are closer to the experiment. A
more definite conclusion about the accuracy of the different turbulence models
requires the availability of accurate measurements in the square cavity in the fully
turbulent regime.

The scalings with respect to Ra for the turbulent flow in the cavity differ at
most with an 1/36 power in Ra from the scalings with respect to Ray for the plate
in the isothermal environment, when the coordinate y in Ra, is repaced by H. On
the contrary, the scalings in the cavity with respect to y/H follow from the scalings
with respect to Ra, for the plate only up to about y/H=0.3. In particular v, and
8, which appear in the wall functions as the proper velocity and length scale, are
only proper scalings in the outer layer of the vertical cavity boundary layers with
respect to Ra but not with respect to y/H. The proper scalings for the cavity (with
respect to both Ra and y/H) are (2kay/3) "2 for the velocity and the position of
kmax (Xxmay) for the length. As a consequence the application of wall functions
with v,,,, and & to computations in the cavity will introduce some inaccuracies.
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8. FINAL REMARKS AND CONCLUSIONS

A detailed study has been presented for the large-Rayleigh-number natural-
convection flow in the square cavity heated from the side (up to Ra=10'%) and for
the flow along the hot vertical plate (up to Ra,=10%). Different flow phenomena
related to the vertical natural-convection boundary-layer flow were studied: lam-
inar flow, stability and bifurcation of the laminar flow, laminar-turbulent transi-
tion, fully turbulent flow, wall functions, flow reversal in the boundary layer and
thermal stratification. An extensive use was made of numerical methods. Dif-
ferent aspects of the flow as presented here were not earlier described in the litera-
ture. Some of the results also verify and extend existing numerical results and
theories in the literature. Where possible the results were verified with existing
experimental data (e.g. for the turbulent flow along the plate). There is a strong
need, however, for more experimental natural-convection data in the transition
regime and for the fully turbulent flow in the cavity. Experimentalists may be
guided in setting up new natural-convection measurements by the results as
presented here. This fundamental study can also be a guideline to those engineers

who are going to calculate natural-convection heat processes in technical applica-
tions.

Having arrived at the end of this thesis we can answer the questions as posed
in the introduction (section 1.3):

(i) It has been shown that the steady laminar flow in the cavity reveals four dif-
ferent topological states of its streamline pattern when the Rayleigh number is
increased. The streamline pattern for the largest Rayleigh numbers (beyond
Ra=5x10% shows boundary layers along the vertical walls and it has horizontal
streamlines, with low velocities, in the core. The core also becomes thermally stra-
tified. The steady laminar flow in the cavity with adiabatic horizontal walls
remains stable up to a critical Rayleigh number of 1.7x 10® for air and up to about
Ra, =10 for water. At Ra,, the steady laminar flow gives a bifurcation to an
unsteady oscillating flow. This unsteady flow shows two frequencies for air and
only one for water. One frequency seems to be related to the Tollmien-Schlichting
instability in the vertical boundary-layer. The second frequency for air seems to
be related to an instability after the hydraulic jump, which occurs in the upper
corner of the cavity where the hot vertical boundary layer bends to a horizontal
layer. Even on the 160x 160 spatial grid, the calculated stability for water still
shows some grid dependence and further grid refinement is required to improve
the accuracy. Also three-dimensional effects on the stability of air and water
remain to be studied. Compared to the adiabatic horizontal walls in the cavity,
conducting horizontal walls destabilize the flow and give a Hopf bifurcation at
Ra,=2.1x10% for air and at Ra, =5.1x10¢ for water. This instability seems to
be related to the Rayleigh/Bénard instability. For Rayleigh numbers beyond Ra,,
the laminar-turbulent transition and the fully turbulent flow in the cavity with adi-
abatic horizontal walls could be calculated by using k—e turbulence models.
Low-Reynolds-number k—e models not only damp the turbulence close to the wall
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(which decreases the wall-heat transfer) but they also delay the laminar-turbulent
transition to higher Rayleigh numbers. The standard k—e model (with k=0 and
€= at the wall and without low-Reynolds-number modifications) gives the fastest
transition and the low-Reynolds-number model of Jones & Launder model gives
the latest transition. The solution with a low-Reynolds-number model can be
nonunique: both a laminar and a turbulent solution exist. In particular also the
calculated height position of the transition within the boundary layer in the cavity
can be nonunique for Rayleigh numbers in the range 10'° up to about 10'5. The
transition regime requires more attention in future studies, because the low-
Reynolds-number calculations show that the transition to the full turbulent state
can cover a large part of the Rayleigh-number range that is relevant for many
technical applications with natural-convection flows. A definite conclusion about
the accuracy of the turbulence models cannot be drawn yet because more experi-
mental data are needed.

The turbulent flow along the plate in the isothermal environment could be cal-
culated with the standard k—e model, different low-Reynolds-number k—e models
and the fully differential Reynolds-stress model. The standard k—e€ model over-
predicts the experimental wall-heat transfer for the plate in the isothermal environ-
ment up to more than 200% at Ra,=10'3 for water. The low-Reynolds-number
models of Lam & Bremhorst, Chien and Jones & Launder considerably improve
the wall-heat transfer. Application of the differential Reynolds-stress model to the
plate does not further improve the mean field quantities, like the wall-heat
transfer. The Reynolds-stress model, however, does improve the turbulent quanti-
ties: the maximum of the turbulent viscosity is close to the experiment if the
Reynolds-stress model is applied, whereas it is overpredicted by about 100% in the
k—e models. The Reynolds-stress model also shows that the eddy-viscosity con-
cept in the k—e model is not fully justified to describe details of turbulent natural-
convection flows. In particular the zero buoyancy production of turbulent kinetic
energy in the k—e model is not correct. It is worthwhile to investigate the modifi-
cation of the buoyancy production in the k—e model and the application of the
Reynolds-stress model to the turbulent flow in the cavity in a in future study.

(ii) For large Rayleigh numbers different asymptotic structures appear. Some of
the similarity solutions of the laminar boundary-layer equations along a hot verti-
cal plate in a stratified environment (namely those belonging to the negative M
class with a stably stratified environment), as formulated in differential form by
Semenov, were shown to be unmatchable with the environment of the boundary
layer. Also the similarity solution with the linear stable stratification does not fit
with the nonsimilar boundary-layer solution for the plate with a sharp leading edge
in such a stratification. There is flow reversal in part of the outer layer of the
boundary layer if the environment has a stable thermal stratification, which
changes the parabolic character of the boundary-layer equations into an elliptic
character. Some of the similarity solutions can be used as boundary conditions for
nonsimilar boundary-layer calculations. For the laminar and turbulent flow in the
cavity at large Rayleigh numbers there are four asymptotic flow structures: vertical
boundary layers along the vertical walls, a thermally stratified core with horizontal



- 180 -

streamlines, corner regions and horizontal layers along the horizontal walls. The
proper scalings of the laminar Navier-Stokes flow in the cavity turn out to be
defined by the boundary-layer equations, confirming Gill’s asymptotic theory. In
particular, the wall-heat transfer —(37/dx),, scales with (AT/H)Ra 4 and the verti-
cal velocity in the boundary layer scales with (gBATH)Y2. From the numerical
results for the turbulent boundary layer along the hot vertical plate in the isother-
mal environment up to Ray=1025 wall functions can be derived in the outer layer
(i.e. between the vertical velocity maximum and the outer edge). The wall func-
tions in the outer layer, which scale with the velocity v, and the length y, are
independent of the Prandtl number and of the low-Reynolds-number terms. These
wall functions are consistent with the wall functions as theoretically proposed by
George & Capp. In the inner layer of the boundary layer (i.e. between the wall
and the vertical velocity maximum) the velocity profile v/vp,, vs (x/vp,){(dv/dx),,
and the temperature profile (T —T,)/AT vs —(x/AT)(3T/3x),, closely fit the tur-
bulent results with the k—e models up to about Ray=1015. For larger Rayleigh
numbers wall functions in the inner layer do not seem to exist. The calculations
suggest that the 13 power in the wall-heat transfer (Nu,+Ra;?, with

u,=—(y/AT)(3T/éx),,), as measured up to Ra,=5x 10", does not hold for larger
Ray values: in the numerical results the power increases from ¥8 at Ra,=10" 10
0.435 at Ra,=10%.

(iii) The laminar boundary-layer flow in the cavity for increasing Rayleigh number
was shown to become similar to the laminar boundary-layer flow along the hot
vertical plate in a stratified environment. The core of the cavity is similar to the
environment of the plate, in which the temperature and the velocity only depend
on the height (giving thermal stratification and horizontal streamlines). The use of
the boundary-layer equations to calculate the cavity flow, instead of the Navier-
Stokes equations, is not expected to reduce the computational effort. The reason is
that the stratification is not known beforehand (implying that an iteration process
is required to account for the interaction between the core and the boundary layer)
and because there is flow reversal in the boundary layer (implying that the boun-
dary layer is no longer parabolic and repeated numerical iterations in vertical
direction are required to solve the flow). For the turbulent flow the stratification
in the core of the cavity is much smaller than for the laminar flow. The core will
not become totally isothermal, because some stratification is required to achieve
that mass moves from the core into the hot boundary layer in the below half of the
cavity and that mass moves out of the boundary layer in the upper half of the cav-
ity. The centro-symmetry of the horizontal velocity in the core of the cavity is
essentially different from the horizontal velocity in the isothermal environment of
the plate, where mass always moves into the boundary layer. For the turbulent
case, the stratification in the core leads to only a small increase of the averaged
wall-heat transfer (up to 10%) as compared to the plate in the isothermal environ-
ment. Based on the wall functions as derived for the plate, wall functions with the
scalings v,,,, and 8 (boundary-layer thickness) were assumed to be applicable in
general natural-convection calculations. An additional equation was formulated
for v, and 8. These indeed are proper scalings in the turbulent boundary layers
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for the cavity with respect to Ra, but not with respect to y/H. For the cavity the
scalings (2kpax/3)"? (kmay is the maximum turbulent kinetic energy) and x;,, (the
position of k,,) are the proper scalings with respect to both Ra and y/H. The use
of (2kpay/3)? and xpnay in the wall functions requires additional equations for
these scalings, which could not be derived here. It remains to be investigated
whether the actual implementation of the wall functions (with v,, and 3) in tur-
bulent computations of the cavity gives a reasonable prediction of the flow. The
results as found here for the wall functions for the plate and the cavity are very
promising, and suggest that the practical application of wall functions in general
natural-convection computations is indeed realizable.
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APPENDIX

The terms in the Reynolds-stress equations (6.43) have the following form:
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Triple correlations are modeled with the generalized gradient-diffusion hypothesis,

which reads for a double correlation ¢
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n; (i=1,2,3) is the unit vector normal to the wall. x, is the distance to the wall.
For the hot vertical plate the wall is positioned at x=0, implying that x,=x. The
Rotta model is used for ® and the Shir model is used for ®,. @, accounts for
pressure refections at the wall. To account for low-Reynolds-number effects the
terms D;; and D;y, which are based on the Chien model, have been added to the
equations (6.43a) and (6.43b) respectively. e is described by the equation
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f2.and E are low-Reynolds-number terms from the Chien model (see table 6.1).
T'? is described by the equation
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TABLE A.l. Model constants in the Reynolds-stress equations.

¢y C, Cs Cie Ca C3g Ciw
2.2 0.55 0.55 3.75 0.5 0.5 0.6
Coy Ciow Cw Cs Co Ce Cog
0.3 0.75 2.53 0.20 0.20 0.15 0.22
Ceo Cel Ce2 Cp1 Cp2 Cp1 Cpa
0.22 1.44 1.92 0.9 0.72 1.1 0.8

dgy is modeled as
L[L oT "2 kK — ,aT'Z]

(A.22)

€, is described by an equation which is modeled by the Jones & Musonge model,
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SUMMARY

This thesis considers the natural-convection flow for two geometries positioned in
the gravitational field: a square cavity differentially heated over the vertical walls
and a semi-infinite hot vertical plate in an isothermal environment. The tempera-
ture difference results into the natural-convection flow of the fluid inside the cavity
and along the plate. When the temperature difference is large (or dimensionless:
when the Rayleigh number is large) the flow mainly occurs in a thin layer along
the vertical walls, which is the so-called natural-convection boundary layer. The
flow for both air and water is calculated by numerically solving the two-
dimensional, incompressible Navier-Stokes equations, including the energy equa-
tion. The Boussinesq approximation is applied. The spatial derivatives in the
equations are discretized with the finite-volume method, whereas the time deriva-
tives are discretized with an implicit scheme using three time levels. Besides the
Navier-Stokes equations also the boundary-layer equations are numerically solved.
The accuracy of the numerical results is checked by grid and time step refinement,
and the results are compared with existing experimental data. Different flow
phenomena, related to the natural-convection boundary-layer flow, are investigated,
giving a complete picture of the flow.

All possible laminar similarity solutions of the boundary-layer equations, with
a constant wall temperature and a variable thermal stratification of the environ-
ment, are numerically determined. A similarity solution depends on only one
transformed coordinate. Some of the similarity solutions have no practical mean-
ing because they cannot be matched with the rest of the flow. If the stratification
is stable (i.e. the temperature increases with the height) there is flow reversal in
part of the boundary layer.

The proper scalings of the steady laminar flow in the cavity are derived from
the steady Navier-Stokes solutions. Proper scalings give a scaled solution that is
independent of the Rayleigh number if the Rayleigh number is increased to infin-
ity. The Navier-Stokes equations for large Rayleigh numbers are shown to con-
verge to the boundary-layer equations. Therefore the boundary-layer equations
actually describe the scalings of the cavity flow.

When the Rayleigh number exceeds a critical value (Ra,,), the steady laminar
solution in the cavity becomes unstable and a bifurcation to an unsteady laminar
solution is found. The instability is determined by solving the unsteady Navier-
Stokes equations. In the case of adiabatic horizontal walls Ra,,=1.7x10° is found
for air and Ra,, ~10'° for water. The flow for conducting horizontal walls is less
stable. Directly beyond Ra_. the unsteady flow shows a single frequency; only air
in the case of adiabatic horizontal walls gives two frequencies. Arguments are
given that support that the instability for conducting horizontal walls is related to
the Rayleigh/Bénard instability, whereas the instability for adiabatic horizontal
walls is related to a Tollmien-Schlichting instability in the vertical boundary layer.
The second frequency for air in the case of adiabatic horizontal walls seems to be
related to an instability after the hydraulic jump, which occurs in the upper corner
of the cavity where the hot vertical boundary layer bends to a horizontal layer.



- 195 -

The instabilities initiate the laminar-turbulent transition.

When the Rayleigh number is further increased, the flow becomes fully fur-
bulent. The turbulent boundary-layer equations, with a k—e€ model for the tur-
bulence, are solved for the plate in an isothermal environment. A much better
prediction of the wall-heat transfer for the plate is found with the low-Reynolds-
number k —e models of Lam & Bremhorst, Chien and Jones & Launder than with
the standard k—e model. The low-Reynolds-number models delay the transition
and their solution can be nonunique. The differential Reynolds-stress model for
the turbulent flow along the plate shows that the use of the eddy-viscosity concept
in the k—e models is not fully justified for natural-convection flows. The proper
scalings and wall functions are derived from the numerical results for the turbulent
vertical natural-convection boundary layer along the plate. These wall functions
are shown to be consistent with the theoretical proposal of George & Capp for
wall functions in the outer part of the boundary layer.

The turbulent flow in the cavity is calculated with the Reynolds equations
(i.e. the time-averaged Navier-Stokes equations) using the standard k—e model
and the low-Reynolds-number models of Chien and Jones & Launder. A definite
conclusion about the accuracy of the turbulence models in the cavity requires the
availability of more experimental data. As was also found for the plate, the low-
Reynolds-number models delay the transition and their solution can be nonunique.
The stratification in the core of the cavity is much smaller for the turbulent flow
than for the laminar flow. Due to the small stratification the averaged wall-heat
transfer for the turbulent flow in the cavity is only slightly larger than the aver-
aged wall-heat transfer for the plate in the isothermal environment. The scalings
of the turbulent flow in the cavity are close to the scalings for the plate with

respect to the Rayleigh-number dependence, but not with respect to the height
dependence.



- 196 -

SAMENVATTING (summary in Dutch)

Dit proefschrift beschouwt de natuurlijke convectie stroming voor twee
geometrieén die zich in het zwaartekrachtsveld bevinden: een vierkante gesloten
ruimte met een temperatuurverschil over de vertikale wanden en een half onein-
dige hete vertikale plaat in een isotherme omgeving. Het temperatuurverschil leidt
tot de natuurlijke convectie stroming van het fluidum in de ruimte en langs de
plaat. Als het temperatuurverschil groot is (of dimensieloos: als het Rayleigh getal
groot is) vindt de stroming voornamelijk plaats in een dunne laag langs de verti-
kale wanden, hetgeen de zogenaamde natuurlijke convectie grenslaag vormt. De
stroming voor zowel lucht als water wordt uitgerekend door de tweedimensionale,
incompressibele Navier-Stokes vergelijkingen, inclusief de energie vergelijking,
numeriek op te lossen. De Boussinesq benadering wordt toegepast. De ruimtelijke
afgeleiden in de vergelijkingen worden gediscretiseerd met de eindige volume
methode, terwijl de tijdsafgeleiden worden gediscretiseerd met een impliciet
schema dat drie tijdsniveau’s gebruikt. Naast de Navier-Stokes vergelijkingen wor-
den ook de grenslaagvergelijkingen numeriek opgelost. De nauwkeurigheid van de
numerieke resultaten wordt nagegaan door verfijning van het rekenrooster en de
tijdstap, en de resultaten worden vergeleken met bestaande meetresultaten. Ver-
schillende stromingsverschijnselen, die verband houden met de natuurlijke convectie
grenslaag, worden onderzocht, hetgeen een compleet beeld van de stroming
oplevert.

Alle mogelijke laminaire gelijkvormige oplossingen van de grenslaagver-
gelijkingen, met een vaste wandtemperatuur en met een variabele thermische stra-
tificatie van de omgeving, worden numeriek bepaald. Een gelijkvormigheidsoplos-
sing hangt slechts van één getransformeerde codrdinaat af. FEen aantal van die
gelijkvormigheidsoplossingen hebben geen praktische betekenis, omdat ze niet bij
de rest van de stroming blijken aan te sluiten. Als de stratificatie stabiel is (d.w.z.
als de temperatuur toeneemt met de hoogte) treedt er terugstroming op in een
gedeelte van de grenslaag.

De juiste schalingen van de stationaire laminaire stroming in de ruimte wor-
den afgeleid uit de stationaire Navier-Stokes oplossingen. Juiste schalingen geven
een geschaalde oplossing die niet meer van het Rayleigh getal afhangt in de limiet
van oneindig grote Rayleigh getallen. Er wordt aangetoond dat de Navier-Stokes
vergelijkingen in de ruimte bij grote Rayleigh getallen convergeren naar de
grenslaagvergelijkingen. Zodoende beschrijven de grenslaagvergelijkingen feitelijk
de schalingen van de stroming in de ruimte.

Als het Rayleigh getal een critische waarde overschrijdt (Ra,,), wordt de sta-
tionaire laminaire oplossing voor de ruimte instabiel en treedt er een bifurcatie
naar een instationaire laminaire oplossing op. De instabiliteit wordt bepaald door
de instationaire Navier-Stokes vergelijkingen op te lossen. Bij adiabatische ho-
rizontale wanden wordt Ra,, =1.7x10% gevonden voor lucht, en Ra,~10 voor
water. De stroming bij geleidende horizontale wanden is minder stabiel. Direkt
boven Ra, vertoont de instationaire stroming één enkele frequentie; alleen lucht
bij adiabatische horizontale wanden vertoont twee frequenties. Er worden
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argumenten gegeven die er op wijzen dat de instabiliteit bij geleidende horizontale
wanden gerelateerd is aan de Rayleigh/Bénard instabiliteit, terwijl de instabiliteit
bij adiabatische horizontale wanden gerelateerd is aan de Tollmien-Schlichting
instabiliteit in de vertikale grenslaag. De tweede frequentie bij lucht voor adiaba-
tische horizontale wanden lijkt te maken te hebben met een instabiliteit na de
hydraulische sprong, die optreedt in de bovenhoek van de ruimte waar de vertikale
grenslaag zich ombuigt tot een horizontale laag. De instabiliteiten initiéren de
laminaire-turbulente omslag.

Als het Rayleigh getal verder stijgt, wordt de stroming volledig turbulent. De
turbulente grenslaagvergelijkingen, met een k—e model voor de turbulentie, wor-
den opgelost voor de plaat in een isotherme omgeving. Er wordt een veel betere
voorspelling van de warmteoverdracht langs de wand van de plaat gevonden met
de lage Reynolds k—e modellen van Lam & Bremhorst, Chien en Jones &
Launder dan met het standaard k—e model. De lage Reynolds modellen stellen de
omslag uit en hun oplossing kan niet-eenduidig zijn. Het differentiaal Reynolds-
stress model voor de turbulente stroming langs de plaat laat zien dat het gebruik
van het turbulente viscositeitsconcept in k—e modellen niet geheel gerechtvaardigd
is bij natuurlijke convectie stromingen. De juiste schalingen en wandfuncties wor-
den afgeleid uit de numerieke resultaten voor de turbulente natuurlijke convectie
grenslaag langs de plaat. Deze wandfuncties blijken consistent te zijn met het
theoretische voorstel van George & Capp omtrent wandfuncties in het buitenste
gedeelte van de grenslaag.

De turbulente stroming in de ruimte wordt vitgerekend met de Reynolds ver-
gelijkingen (dit zijn de tijdsgemiddelde Navier-Stokes vergelijkingen) waarbij het
standaard k—e model en de lage Reynolds modellen van Chien en Jones &
Launder worden gebruikt. Om een duidelijke conclusie omtrent de nauwkeu-
righeid van de turbulentie modellen voor de ruimte te kunnen trekken zijn meer
meetresultaten nodig. Zoals ook gevonden werd voor de plaat, vertragen de lage
Reynolds modellen de omslag en kan hun oplossing niet-eenduidig zijn. De strati-
ficatie in de kern van de ruimte is veel kleiner bij de turbulente stroming dan bij
de laminaire stroming. Door de geringe stratificatie is de gemiddelde warmteover-
dracht door de wand voor de turbulente stroming in de ruimte slechts weinig
groter dan de gemiddelde warmteoverdracht door de wand van de plaat in de
isotherme omgeving. De schalingen van de turbulente stroming in de ruimte
wijken maar weinig af van de schalingen voor de plaat, althans wat de Rayleigh
afhankelijkheid aangaat, maar niet wat de hoogte aangaat.
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