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Natural convection in a horizontal cylinder with axial rotation
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We study the problem of thermal convection in a laterally heated horizontal cylinder rotating about its axis.

A cylinder of aspect ratio Ŵ = H/2R = 2 containing a small Prandtl number fluid (σ = 0.01) representative

of molten metals and molten semiconductors at high temperature is considered. We focus on a slow rotation

regime (� < 8), where the effects of rotation and buoyancy forces are comparable. The Navier-Stokes and

energy equations with the Boussinesq approximation are solved numerically to calculate the basic states, analyze

their linear stability, and compute several secondary flows originated from the instabilities. Due to the confined

cylindrical geometry—the presence of lateral walls and lids—all the flows are completely three dimensional,

even the basic steady states. Results characterizing the basic states as the rotation rate increases are presented.

As it occurred in the nonrotating case for higher values of the Prandtl number, two curves of steady states with

the same symmetric character coexist for moderate values of the Rayleigh number. In the range of � considered,

rotation has a stabilizing effect only for very small values. As the value of the rotation rate approaches � = 3.5

and � = 4.5, the scenario of bifurcations becomes more complex due to the existence in both cases of very close

bifurcations of codimension 2, which in the latter case involve both curves of symmetric solutions.
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I. INTRODUCTION

The problem of convection induced by a lateral temperature

gradient has been extensively studied during the past few

decades. The main interest in studying this system comes

from heat transfer problems of industrial interest and from

the study of the melt zone in crystal growth processes, like the

horizontal Bridgman method. In this latter problem, crystals

grown from the melt can present inhomogeneities in the

form of striations, caused by oscillatory variations of the

concentration in the solidification front [1]. For this reason,

many studies have focused on the study of the oscillatory

threshold in low-Prandtl-number fluids in different geomet-

rical configurations [2–7]. The system is also interesting

from a fundamental fluid dynamics point of view, since it

exhibits a rich nonlinear behavior that leads to complex

spatiotemporal dynamics [8–11]. A bounded cylinder can be

used to represent realistically the melt zone in the horizontal

Bridgman crystal growth process. Such a system was studied

by Vaux et al. [3] for a fixed value of the Prandtl number,

σ = 0.026, and different cell sizes, and was recently analyzed

in the work of Mercader et al. [12] for a cylinder of aspect ratio

Ŵ = H/2R = 2 and Prandtl numbers in the range σ < 0.026.

However, the superposition of rotation along the cylinder

axis has received less attention, despite providing a possible

mechanism for the stabilization and homogenization of the

flow, which could be relevant in different crystal growth

techniques involving horizontal cylindrical geometries. In

addition, including rotation increases the interest of the

configuration, due to the two competing mechanisms at stake

that may result in a richer dynamical phenomenology.

The numerical works addressing the study of convection in

a rotating horizontal cylinder are scarce. The pioneering work

*odalys.sanchez@upc.edu
†maria.isabel.mercader@upc.edu
‡oriol@fa.upc.edu
§arantxa@fa.upc.edu

of Yang et al. [13], aimed at studying crystal growth processes

using chemical vapour deposition, establishes clearly the effect

of rotation on the basic flow for a horizontal cylinder of aspect

ratio 2, with air as working fluid. At low rotational speeds,

they observe that rotation tilts the temperature field in the

lateral planes as a result of the Coriolis force. With increasing

rotation, temperature becomes more uniform in space and the

strength of the flow due to buoyancy in the vertical plane

reduces. At sufficiently high rotation rates, the fluid acts as a

solid body. Fujiwara et al. [14] consider the same system for

two-component fluids of Prandtl numbers 0.73 and 0. They

identify a transition from a boundary layer driven flow to a

core driven flow as the rotation rate increases and the fluid

tends to behave as a solid body. Lang and Tu [15] control

the radial and axial dopant segregation by slow rotation in

microgravity Bridgman growth of gallium-doped germanium

at two different gravity orientations. They investigate the

feasibility of using slow rotation to suppress the g-jitter effect.

They found an optimum rotation speed that gives rise to a

uniform dopant distribution.

Other works devoted to this problem are motivated by the

thermal processing of canned liquids in the food industry.

Foluso and Torrance [16] present a detailed study of a cylinder

subjected to radial and normal gravity fields with uniform

volumetric heating and an isothermal outer boundary. When

the effects of rotation and buoyancy are comparable, they

observe complex time-dependent flows, but when rotation

dominates, the flow assumes a solid body rotation and the

temperature field approaches that of pure conduction. Bearing

the same motivation of food industry in mind, the work of

Zhao et al. [17] uses a simpler approach, since the flow in

the horizontal cylinder is assumed to be two-dimensional

in vertical planes. Results of the numerical computations

are compared with a perturbative analysis and confirm the

existence of the shear regime, with a Nusselt number much

larger than unity, and the solid body rotation regime, with

a convective heat transfer considerably reduced to almost its

value in the pure conduction regime.
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Our present work incorporates rotation to the system ana-

lyzed in Ref. [12] and focuses on a range of rotation rates where

natural convection is not yet dominated by rotational effects.

Our aim is to check to what extent rotation can be used as a

new method in crystal growth processes. On one hand, rotation

is expected to delay the onset of oscillatory instabilities,

and this might be useful to minimize the inhomogeneities

in the solidification front associated to them. On the other,

it might reduce the longitudinal convective transport, which

would result in an homogenization of the heat transfer rate

over the solidification front (end wall surface). Specifically,

we will consider a differentially heated horizontal cylinder

of aspect ratio 2, rotating along its axis and containing a

low-Prandtl-number fluid (σ = 0.01), which is representative

of molten metals at high temperature.

The system is described by the Navier-Stokes and energy

equations in the laboratory frame under the Boussinesq

approximation. Unlike in the nonrotating case, the system

only possesses one reflection symmetry, a point symmetry

with respect to the center of the cylinder. We will use different

numerical tools based on the use of pseudospectral methods

to analyze the problem: direct numerical simulation, linear

stability analysis, and continuation of steady solution branches

with respect to either the Rayleigh number or the rotation

rate. We will calculate the basic steady flow patterns, which

are invariant with respect to the reflection symmetry of the

system, for different rotation rates, and analyze the stability

of such flows as the driving thermal gradient is increased.

The secondary flows originating from these instabilities can

be either stationary or oscillatory and will also be charac-

terized. We will focus on slow rotation regimes, where the

kinetic energy of the imposed rotation is comparable to the

kinetic energy produced by the buoyancy-induced convection.

Detailed bifurcation diagrams will be constructed in a region

where different steady states coexist for the same parameter

values.

The paper is organized as follows. In Sec. II the problem

is stated; we present the model equations in Sec. II A and

the numerical methods used in Sec. II B. In Sec. III the main

results of the work are presented and discussed; in Sec. III A

we describe the symmetries of the equations and analyze the

main characteristics of the basic state when the rotation rate

increases. In Sec. III B we analyze the stability of the basic flow

for rotation rates � ∈ (0,4.6) and present the corresponding

bifurcation diagrams, in Sec. III C we present results of an

energy analysis at some critical points, and Sec. III D is

devoted to the computation and description of several saturated

secondary flows representative of some of the instabilities

found in Sec. III B. Finally, we summarize and outline the

relevance of our results in Sec. IV.

II. THE PHYSICAL PROBLEM

A. Equations and boundary conditions

We consider the flow in a laterally heated, finite, horizontal

cylinder rotating around the axis. The cylinder of length H

and radius R is in the presence of a vertical gravitational force.

The z axis is taken along the axis of the cylinder, the origin of

coordinates is located on the left lid, and the x axis is parallel

x
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H0

R

Th Tc
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FIG. 1. Configuration of the laterally heated horizontal cylinder

and reference frame. Notice that the gravity field is parallel to the x

axis.

to the gravitational force, g = gx̂ (see Fig. 1). The cylinder

is heated from the left, being �T the temperature difference

between the lids of the cylinder, and rotates around its axis (z

axis) at angular velocity −�∗ẑ. We split the temperature field

into two parts, a linear profile and a fluctuation, �∗,

T = Tc + �T (1 − z/H ) + �∗,

where Tc is temperature at the cold lid (z = H ). We consider

that the density varies linearly with temperature,

ρ = ρ0[1 − α(T − T0)],

where α is the thermal expansion coefficient, T0 is the

mean temperature, and ρ0 is the density at temperature

T0.

Scaling lengths with a reference length l, time with the

thermal diffusion time l2/κ , κ being the thermal diffusivity,

and temperature with �T , the nondimensional Navier-Stokes

equations with the Boussinesq approximation written in the

laboratory frame that describe the evolution of the velocity

field u and the deviation of the temperature � = �∗/�T from

the linear profile are as follows:

∇ · u = 0, (1a)

∂tu + (u · ∇)u = −∇p + σ∇2u + Raσ

(

l

H
z − �

)

x̂, (1b)

∂t� + (u · ∇)� = w
l

H
+ ∇2�. (1c)

Here w is the z component of the velocity field and p is the

nondimensional kinematic pressure including the terms of the

gravitational force that can be written as a gradient. The two

dimensionless numbers that describe thermal convection are

the Rayleigh number Ra and the Prandtl number σ , defined

as

Ra =
α�Tgl3

κν
, σ =

ν

κ
, (2)

where ν is the kinematic viscosity. The Rayleigh number

is one of the control parameters of the system and mea-

sures the strength of the imposed temperature gradient, and

the Prandtl number relates momentum diffusion to thermal

diffusion.
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The previous nondimensional equations for the velocity

field u = (u,v,w) in cylindrical coordinates (r,θ,z) are written

as follows:

∇ · u = 0, (3a)

∂tu+[(u · ∇)u]r= − ∂rp+σ [∇2u]r+Raσ (z/Ŵ − �) cos θ,

(3b)

∂tv + [(u · ∇)u]θ=−
1

r
∂θp + σ [∇2u]θ−Raσ (z/Ŵ−�) sin θ,

(3c)

∂tw + [(u · ∇)u]z = −∂zp + σ [∇2u]z, (3d)

∂t� + (u · ∇)� = w/Ŵ + ∇2�, (3e)

where Ŵ = H/(2R) is the aspect ratio of the rotating cylinder.

We consider no-slip and fixed temperature boundary condi-

tions at the left and right lids of the horizontal cylinder and

no-slip and insulating boundary conditions on the lateral wall.

The boundary conditions for the nondimensional fields are

written as

u = w = � = 0,v = �r on z = 0,H/l,

(4a)

u = w = ∂r� = 0,v = �R/l on r = R/l,

(4b)

with � being the nondimensional rotation rate, � = �∗ l2/κ .

As a measure of the relative heat transported by convection, we

will use the Nusselt number Nu evaluated at the cooler wall of

the cavity. This corresponds to computing the ratio of the total

heat flux through the right lid to the flux that would correspond

to a linear temperature profile. Thus, the Nusselt number has

the following expression in nondimensional variables:

Nu = 1 −
H/l

∫ 2π

0

∫ R/l

0
∂z�|z=H/l r dr dθ

π (R/l)2
. (5)

As a measure of the strength of convection we will use the

dimensionless mean kinetic energy defined as

Ek =

∫ 2π

0

∫ R/l

0

∫ H/l

0
u · u r dr dθ dz

2 π (R/l)2(H/l)
. (6)

We choose as reference length the diameter of the cylinder

l = 2R. In this paper we consider a moderate aspect ratio,

Ŵ = 2, a small Prandtl number fluid, σ = 0.01, and small

rotation rates, � < 8.

B. Numerical methods

The system of equations (3) and boundary conditions (4)

has been solved numerically using the algorithm described in

Ref. [18], which can be summarized as follows. To integrate

the equations in time, we use the second-order time-splitting

method proposed in Ref. [19] combined with a pseudospectral

method for the spatial discretization, Galerkin-Fourier in the

azimuthal coordinate θ , and Chebyshev collocation in r and

z. The radial dependence of the functions is approximated by

a Chebyshev expansion between −R and R but forcing the

proper azimuthal parity of the variables at the origin [20,21].

For instance, the scalar field � and the axial velocity w have

an even parity, �(−r,θ ) = �(r,θ + π ), whereas u and v are

odd functions. To avoid including the origin in the mesh grid,

we use an odd number of Gauss-Lobatto points in r , and we

enforce the equations only in the interval (0,R]. We use the

standard combination u+ = u + iv and u− = u − iv in order

to obtain, as a result of the splitting, Helmholtz equations for all

the variables �, w, u+, and u−. For each Fourier mode, these

equations are solved using a diagonalization technique in the

two coordinates r and z. The imposed parity of the functions

guarantees the regularity conditions at the origin needed to

solve the Helmholtz equations [22]. The same numerical code

has been used by the authors and collaborators to study other

problems in convection in vertical cylinders, such as binary

fluid convection [23,24] and rotating convection [25,26].

Steady solutions have been computed with a Newton’s

method. We have used a first-order version of the time-

stepping code described above for the calculation of a Stokes

preconditioner that allows a matrix-free inversion of the

preconditioned Jacobian needed in each Newton iteration [27].

The corresponding linear system is solved by an iterative

technique using a GMRES package [28]. The left-hand side

of the preconditioned linear system (Jacobian acting on the

correction) corresponds to one time step of the linearized

equations, and the right-hand side corresponds to performing

one time step of the full nonlinear equations. In this way, the

Jacobian matrix is never constructed nor stored [27].

As far as the linear stability analysis of the steady states

is concerned, once they have been calculated by the method

described before, estimations of eigenvalues and eigenvec-

tors of the linearized problem have been obtained with an

Arnoldi’s method. The method is applied to calculate the

dominant eigenvalues of the exponential of the Jacobian,

which can be trivially related to the leading eigenvalues of

the Jacobian, i.e., those with the largest real part. To this

end, the algorithm for the time stepping of the linearized

equations has been used, since, in fact, it approximates the

action of the exponential transformation of the Jacobian on the

solution at the previous time step. The eigensolving itself has

been implemented using the ARPACK package. To determine

eigenvalues and eigenvectors accurately, we use the estimated

eigenvalues and eigenvectors as the initial guess to solve, via

a Newton’s method, the nonlinear system (eigenvalues are

also unknowns) derived from the eigenvalue problem [29,30].

Once the dominant eigenvalue is identified, a secant method is

used to obtain the critical Rayleigh numbers (real part of the

eigenvalue equal to zero) and frequencies at the bifurcation

points.

In the results reported in the present paper we have used

a resolution that ensures variations of the values of Rayleigh

number and frequency at the bifurcation points smaller than

0.5%. We have used grids of nr = 32, nz = 52, nθ = 52 points

in the radial, axial, and azimuthal directions, respectively,

for rotation rates � � 1 and nr = 32, nz = 64, nθ = 64 for

higher values. The variations of 0.5% have been obtained

in comparison with results obtained with a grid of nr = 64,

nz = 72, nθ = 72. In the time integration we have used a time

step �t = 5 × 10−4.
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FIG. 2. (a) Transverse flow (top) and contour plots of the axial velocity w (bottom) in the vertical cross sections z = 0.025Ŵ, z = 0.5Ŵ,

and z = 0.975Ŵ. The positive z axis, perpendicular to the paper, points inwards. (b) Longitudinal flow and contour plots of temperature in the

plane in which the axial velocity is maximum (σ = 0.01,Ra = 4500,� = 1.1,Ŵ = 2).

III. RESULTS

A. Symmetries and basic state

Equations (3), together with boundary conditions (4), are

invariant under the transformation operator

R : (r,θ,z) → (r,θ + π,Ŵ − z),

(u,v,w,�) → (u,v, − w, − �),

i.e., a point symmetry with respect to the center of the cylinder.

Since R2 = I , the transformation R is a generalized reflection,

and the resulting symmetry group is Z2 = {I,R}.

When expressed in rectangular coordinates, the transfor-

mation R acts as follows:

R : (x,y,z) → (−x, − y,Ŵ − z),

(vx,vy,vz,�) → (−vx, − vy, − vz, − �).

Equivariance of equations and boundary conditions under

R means that if � = (u(r,θ,z), v(r,θ,z), w(r,θ,z),�(r,θ,z))

(u
,v

)
w

Ω=0 Ω=1.1 Ω=5.1

FIG. 3. Transverse flow (top) and contour plots of the axial

velocity w (bottom) in the central cross section z = 0.5Ŵ for rotation

rates � = 0,1.1,5.1 and Rayleigh number Ra = 3400. The positive

z axis, perpendicular to the paper, points inwards (σ = 0.01,Ŵ = 2).

is a solution, then the field R� = (u(r,θ + π,Ŵ − z),v(r,θ +

π,Ŵ − z), − w(r,θ + π,Ŵ − z), − �(r,θ + π,Ŵ − z)) is also

a solution of the problem. These two solutions are not required

to be the same. If so, then we say that the solution possesses the

R symmetry, because it is invariant under the transformation

R. The basic state of this problem, obtained for small values of

the Rayleigh number, is a steady three-dimensional solution,

invariant with respect to this symmetry.

In Fig. 2 we show the basic state obtained for Ŵ = 2, Prandtl

number σ = 0.01, Rayleigh number Ra = 4500, and rotation

rate � = 1.1. In order to make the symmetry R of this solution

explicit, we represent in Fig. 2(a) the transverse flow (top)

and the contour plots of the axial velocity (bottom) in three

cross sections, the central one at z = 0.5Ŵ and the other two

equidistant from it, at z = 0.025Ŵ, 0.975Ŵ. For the sake of

clarity, we have not used the same scale for the length of

the arrows in each figure. For this solution, the maximum

transverse velocity in the cross sections at z = 0.025Ŵ and

z = 0.975Ŵ is 3.54, approximately 4.5 times larger than in

the z = 0.5Ŵ plane (0.80). Notice that in these cross sections,

the maximum transverse velocity is bigger than the azimuthal

velocity at the walls, v = �R/l = 0.65. Due to the rotation

of the wall, the reflection invariance with respect to the vertical

plane y = 0 that the basic flow manifested in the case of

� = 0 [12] is now broken, and we observe a tilt in the

longitudinal circulation with respect to this plane, as can be

appreciated in the contour plots of the axial velocity field.

In Fig. 2(b) we plot, on top, the longitudinal circulation flow

in the tilted rectangular plane in which the axial velocity is

maximum (w = 5.13) and, on bottom, the contour plots of the

temperature field T in the same plane. We can observe how

this field T is modulated by the advection of the convection

currents. Here and hereafter, in all the contour-plot figures,

dark areas (blue, when printed in color) represent low intensity

and light areas (yellow, in color) correspond to high intensity.

Also, hereafter, in the cross-section figures, the x axis points

downwards, parallel to gravity, and the y axis points to the left.

The main characteristics of this solution vary when the

rotation rate is increased. In Fig. 3 we plot the transverse

flow (top) and the contour plot of the axial velocity (bottom)

in the cross section z = 0.5Ŵ for different rotation rates,
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z= 0.03 Γ z= 0.15 Γ z= 0.30 Γ z= 0.50 Γ

(b)

z= 0.03 Γ z= 0.15 Γ z= 0.30 Γ z= 0.50 Γ

(a)

FIG. 4. Transverse flow (top) and contour plots of the axial velocity w (bottom) in different cross-section vertical planes for rotation rates

(a) � = 1.1 and (b) � = 5.1 and Rayleigh number Ra = 3400. The positive z axis, perpendicular to the paper, points inwards (σ = 0.01,Ŵ = 2).

� = 0,1.1,5.1, and the same value of the Rayleigh number,

Ra = 3400. To better visualize the flow, again we have not

used the same scale for the length of the arrows in each figure.

Important changes are observed in the transverse flow in the

mid cross section; the flow is partially carried by the movement

of the wall for � = 1.1, while it is strongly dominated by the

rotation for � = 5.1. The tilt of the longitudinal flow can be

clearly appreciated in the contour plots of the axial velocity;

its value for � = 1.1 is approximately 6◦ with respect to

the vertical (negative y axis), whereas for � = 5.1 it is 62◦.

This tilt has been evaluated from the value of the azimuthal

coordinate of the point with maximum axial velocity.

Additional information about the flows for these solutions

can be obtained from Fig. 4, which shows the transverse flow

(top) and axial velocity (bottom) in different cross sections

for the same value of the Rayleigh number, Ra = 3400. In

Fig. 4(a) the value of the rotation rate is � = 1.1, while in

Fig. 4(b) it is � = 5.1. Only cross sections corresponding to

the left part of the cylinder are shown; on the right part, the

flow is related with that on the left by the transformation R.

Notice that we have not used the same scale for the length

of the arrows in both solutions, but we have maintained the

same scale for the different plots of the same rotation rate.

For � = 1.1, the maximum transverse velocity is 3.01 near

the lids of the cylinder and for � = 5.1 it is 2.55, i.e., the

value corresponding to the azimuthal velocity at the wall. For

� = 1.1, the maximum transverse velocity in the mid cross

section is 0.65. The maximum axial velocity values decrease

with �, e.g., w = 4.32 for � = 1.1 and w = 2.8 for � = 5.1,

whereas for � = 0 the maximum axial velocity was 4.39.

The difference between these flows is attributed to the

competition between thermal effects (natural convection) and

rotation, which is significant for low rotation rates. This fact

can be clearly inferred from Fig. 5(a), which shows the total

kinetic energy as a function of the rotation rate. In the region of

parameters where these two effects are comparable, the total

kinetic energy decreases, despite the increase in the azimuthal

flow [see Fig. 5(b)]. This is possible due to the substantial

reduction of the longitudinal flow. However, at a certain value

of the rotation rate, which becomes larger as the Rayleigh
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FIG. 5. (a) Mean kinetic energy Ek as a function of the rotation rate � for different values of the Rayleigh number Ra = 3400,4500,5500.

(b) Mean kinetic energy associated to each component of the velocity Ek(u),Ek(v),Ek(w) as a function of the rotation rate � for Ra = 4400.

The total mean kinetic energy Ek is also plotted (σ = 0.01,Ŵ = 2).
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FIG. 6. (a) Nusselt number as a function of the rotation rate � for different values of the Rayleigh number, Ra = 3400,4500,5500.

(b) Difference between the maximum and minimum temperature at every cross section for different values of the rotation rate, � = 1.1,5.1,8.1,

for Ra = 4400 (σ = 0.01,Ŵ = 2).

number increases, the azimuthal rotation dominates the flow

and the kinetic energy begins to grow. The solution shown in

Fig. 4(b) for � = 5.1 and Ra = 3400 is located in the zone of

increasing energy and is therefore dominated by the rotation,

whereas if we analyze for the same rotation rate the solution

for Ra = 4500, located in the zone of decreasing energy, we

obtain a flow in which the main characteristics of the flow

depicted in Fig. 2 can still be identified. In Fig. 6(a), which

shows the Nusselt number as a function of the rotation rate, the

two zones in each curve are separated by an inflection point

where the sign of the curvature changes. Rotation slows down

the heat transport in both zones, regardless of whether rotation

dominates or not.

When the rotation rate increases, the difference between

the extreme values of temperature decreases, giving rise to a

5200 5300 5400 5500 5600 5700 5800 5900 6000
0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

Ra

E
0

FIG. 7. Main and disconnected curves of basic solutions showing

the kinetic energy associated to the zero azimuthal modes, E0, as a

function of the Rayleigh number for � = 4.4, and contour plots of

axial vorticity at z = 0.5Ŵ for the three different basic solutions that

exist at Ra = 5600 (σ = 0.01,Ŵ = 2).

homogenization of temperature related to the attenuation of

the longitudinal flow. This fact can be observed in Fig. 6(b),

where this difference in every cross section is plotted for three

values of the rotation rate, � = 1.1,5.1,8.1, and a Rayleigh

number of Ra = 4500. Only for the last value of � is the

solution dominated by rotation.

A careful inspection of Fig. 5(a) reveals a crucial detail:

for Ra = 5500 and � ≈ 4 there is a zone where three

solutions with the same value of the Rayleigh number and

the rotation rate have different total kinetic energies. This

situation corresponds to the existence of two different curves

of steady R-invariant solutions when rotation is fixed and

the Rayleigh number varies. These two different curves of

basic solutions can be visualized in Fig. 7, which shows a

global quantity (amplitude), representative of the solution, as

a function of the Rayleigh number for a rotation rate � = 4.4.

The amplitude chosen for representing the solutions is E0,

which is the contribution of the zero azimuthal modes to the

kinetic energy, defined as

E0 =

∫ H/l

0

∫ R/l

0
(|û0|

2 + |v̂0|
2 + |ŵ0|

2) r dr dz

(R/l)2(H/l)
.

Hereafter, to identify these two curves of basic solutions,

we will name the curve of solutions that extends towards small

values of the Rayleigh number for a fixed rotation rate main

and the curve with two branches originating from a saddle

node disconnected.

In the same figure, we include three insets showing the

contour plots of the axial vorticity in the central cross section

of the three solutions for Ra = 5600. The use of vorticity

in the representation enhances the differences between the

different flows. Positive values of vorticity [light (yellow)

parts] correspond to a clockwise rotating vortex, while negative

values [dark (blue) parts] are associated to an counterclockwise

rotating vortex. As can be appreciated, two of these three

insets look very similar, their inner part consists of two

elongated clockwise vortices, whereas four vortices can be
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FIG. 8. (a) Critical Rayleigh number and (b) the corresponding angular frequency of the primary instability of the basic flow (Hopf

bifurcation) as a function of the rotation rate. The line with solid diamonds (red) corresponds to Hopf bifurcations that break the R symmetry,

the line with solid squares (black) corresponds to Hopf bifurcations that preserve the R symmetry, and the line with open circles (blue) denotes

the position of the saddle-node bifurcations that limit the zone in which three branches of steady R-invariant solutions coexist (σ = 0.01,Ŵ = 2).

easily identified in the third inset. In fact, the two branches

to which the alike solutions belong will connect for a higher

value of the rotation rate �, as will be explained later.

The stability of the solutions in these three branches will

be analyzed in the next section as a function of the Rayleigh

number for a range of values of rotation rates from � = 0 to

� = 4.6, that is, the region in which the flow is not dominated

by rotation yet. The position of the saddle node points limits

the region in which the three branches of solutions exist.

3 3.5 4 4.5

5500

6000

6500

7000

7500

Ω

R
a

FIG. 9. Extended bifurcation diagram showing the critical

Rayleigh number as a function of the rotation rate. The basic flows

whose stability is analyzed are steady and R invariant. Circles denote

saddle-node points, squares Hopf bifurcations, and triangles pitchfork

bifurcations. Solid symbols are used for bifurcations of the solutions

in the main curve and open symbols for bifurcations of solutions

belonging to the disconnected curve. The two regions delimited

by dashed rectangles will be discussed in detail in next figures

(σ = 0.01,Ŵ = 2).

B. Linear stability analysis of the basic flow

In this section we present the results corresponding to the

linear stability analysis of the steady R-symmetric solutions

belonging to the two curves that we have identified for rotation

rates in the range � ∈ (0,4.6). As is well known in this

problem, the instabilities of the symmetric basic steady state

can be (i) steady or oscillatory, breaking the R symmetry

(with antisymmetric eigenvector with respect to the broken

symmetry), or (ii) oscillatory, maintaining the symmetry.

Obviously, a saddle-node bifurcation (a steady bifurcation

maintaining the R symmetry) is also possible.

For very small rotation rates, 0 < � < 3.5, the stability

analysis of the basic flow reveals that the primary instabilities

are Hopf bifurcations; the corresponding critical Rayleigh

numbers and angular frequencies are shown in Fig. 8 as

a function of �. Two different types of instabilities are

obtained. The line with solid diamonds (red) corresponds to

Hopf bifurcations that break the R symmetry and for which

rotation has an important stabilizing effect. The line with solid

squares (black) is also a Hopf bifurcation, but in this case

the R symmetry is preserved and, as can be seen in Fig. 8,

an increase of � hardly affects the stabilization of the flow.

The transition between these two Hopf bifurcations occurs

at � ≈ 1.35. The line with open circles (blue) indicates the

location of the saddle-node bifurcations that limit the zone in

which the three branches of steady R-invariant solutions exist.

As we will discuss later, above this line, for � � 3.4 the two

branches of the disconnected curve are unstable. The points

marked with an asterisk in this figure correspond to the values

of parameters in which secondary flows will be shown.

The extension of the bifurcation diagram to higher rotation

rates can be seen in Fig. 9, where the critical Rayleigh number

at which the steady R-invariant solutions involved become

unstable has been plotted as a function of the rotation rate.

Only the dominant instabilities have been included in this

figure. Circles denote saddle-node points, squares Hopf bifur-

cations that maintain the R symmetry, and triangles pitchfork
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bifurcations that break the R symmetry of the basic flow.

Solid symbols denote bifurcations of the basic flow belonging

to the main curve and open symbols denote bifurcations of

solutions belonging to the disconnected curve. The two regions

delimited by dashed rectangles will be discussed in detail

further below. The open-circled line (blue) limits the region

in which the three branches of steady R-invariant solutions

exist. The curve with open squares (blue) corresponds to Hopf

bifurcations of the solutions belonging to one of the branches

of the disconnected curve. These Hopf bifurcations maintain

the R symmetry and have a low value of frequency. The

discontinuity observed in the curve with open squares (blue)

near � ≈ 4.2 is caused by the cubic dependence with the

Rayleigh number of the real part of the eigenvalue responsible

for the instability. The maximum value of this cubic curve

is zero for the value of � where the discontinuity occurs.

Solutions in the other branch of the disconnected curve are

unstable. More details about the stability of the disconnected

curve will be given below, when we describe the zones limited

by the dashed rectangles near � = 3.45 and � = 4.5.

Still in Fig. 9, as far as the stability of the solutions in

the main curve is concerned, we plot the prolongation of

the solid-squared line (black) in Fig. 8, which corresponds

to the Hopf bifurcation that maintains the R symmetry. This

bifurcation is responsible for the instability in the range

1.33 � � � 4. For 4 < � < 4.3, the dominant instability is

a pitchfork bifurcation that breaks the R symmetry and is

depicted with a line of solid triangles (black). At a higher value

of the rotation rate, � ≈ 4.25, this instability is superseded

by a low-frequency Hopf bifurcation that maintains the R

symmetry of the basic flow and that shows a steep decrease

in the associated critical Rayleigh number when � increases.

This instability is denoted by a solid-squared line (black).

The region limited by the dashed rectangle near � = 4.5,

where solid and open circles (red) and solid and open squares

(blue) appear, deserves special focus and will be discussed

below.

Once we have identified the dominant instabilities in the

range of � we are considering, we are going to discuss

in more detail the stability properties of the basic solutions

around � = 3.45 and � = 4.5, that is, in the regions delimited

by dashed rectangles in Fig. 9. In both cases, to help the

understanding of these results, we use schematic pictures in

which the more representative bifurcation points and the sign

of the corresponding eigenvalues are shown. The schemes in

Fig. 10(a) show the disconnected curve for fixed values of the

rotation rates around � = 3.45 and those in Fig. 11(a) show

the main and the disconnected curves for rotation rates around

� = 4.5. In Fig. 10(a) we deal with bifurcations of solutions

in the disconnected curve, so the symbols used to denote the

bifurcation points are open symbols, while in Fig. 10(b) both

solid and open symbols are used to identify whether solutions

belong to the main curve or to the disconnected one. In these

schemes, squares denote a Hopf bifurcation that maintains

the R symmetry, circles denote a saddle-node bifurcation, and

diamonds denote a new Hopf bifurcation, which breaks the

R symmetry and was not included in Fig. 9. The sign of

the eigenvalues associated to the bifurcations in the different

regions of the schematic branches are plotted in two rows:

The top (red) row corresponds to the Hopf bifurcation that

breaks the R symmetry (diamond), and the bottom (black)

row corresponds to bifurcations that maintain the R symmetry

(square and circle). Two equal signs in brackets represent a

pair of complex conjugates. In all the schemes, the Rayleigh

number is in the horizontal axis, increasing towards the right.

Thick lines correspond to stable solutions.

The transitions identified in the first zone, around � =

3.45, when the rotation rate decreases are the following. At

� = 3.45 the Hopf bifurcation that breaks the R symmetry

(diamond) is located in one of the branches of the disconnected
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FIG. 10. (a) Schematic pictures showing the disconnected curve for fixed values of the rotation rates, � = 3.45,3.44,3.43,3.39. Squares

(blue) denote low-frequency Hopf bifurcations that maintain the R symmetry, diamonds (red) denote Hopf bifurcations that break the R

symmetry, and circles (blue) denote saddle-node bifurcations. The signs of the eigenvalues associated to the bifurcations in the different

regions of the schematic branches are plotted in two rows: The top (red) row corresponds to the Hopf bifurcation that breaks the R symmetry

(diamond) and the bottom (black) row corresponds to the Hopf bifurcation that maintains the R symmetry (square). Two equal signs in brackets

represent a pair of complex conjugates. Thick lines indicate that solutions on this part of the branches are stable. (b) Actual bifurcation diagram

showing the location of the Hopf bifurcation that preserves the R symmetry (line with blue squares), the Hopf bifurcation that breaks the R

symmetry (line with red diamonds), and the saddle-node points of the disconnected curve (line with blue circles) in the (�, Ra) parameter

space (σ = 0.01,Ŵ = 2).
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FIG. 11. (a) Schematic pictures showing the disconnected curves for fixed values of the rotation rates: � = 4.47, an unspecified value of �

between 4.47 and 4.48, � = 4.48, and � = 4.6. Squares (blue and black) denote Hopf bifurcations that maintain the R symmetry, diamonds

(red) denote Hopf bifurcations that break the R symmetry, and circles (red and blue) denote saddle-node points. The signs of the eigenvalues

associated to the bifurcations that maintain the R symmetry (squares and circles) and to the R-symmetry-breaking bifurcation (diamonds) in

the different regions of the schematic branches are plotted in two rows: (top) those corresponding to the Hopf bifurcation that breaks the R

symmetry (diamonds) and (bottom) those corresponding to the bifurcations that maintain the R symmetry (squares and circles). Two equal signs

in brackets represent a pair of complex conjugates. Thick lines correspond to stable solutions. Actual bifurcation diagrams for (b) � = 4.47 and

(c) � = 4.48, showing the zero azimuthal contribution to the kinetic energy E0 of the solutions versus the Rayleigh number. The position of

the three Hopf bifurcations and of the saddle-node points is denoted with the same symbols used in the schematic pictures (σ = 0.01,Ŵ = 2).

curve [the upper branch in the scheme in Fig. 10(a)], while

the Hopf bifurcation that breaks the R symmetry, which has

a low value of frequency (square), is in the other branch

(lower branch). Between the the saddle-node point and the

low-frequency Hopf bifurcation there is a region where the

basic solutions are stable. From � = 3.45 to � = 3.44 a fold

Hopf bifurcation involving the Hopf bifurcation that breaks the

R symmetry (diamond) takes place, resulting in a reduction

of the stable zone. At the same time, the low-frequency

Hopf bifurcation (square) approaches the saddle-node point

decreasing the frequency. When � decreases from � = 3.44 to

� = 3.43, the symmetry-breaking Hopf bifurcation (diamond)

shifts towards higher values of the Rayleigh number, and the

symmetry-preserving Hopf bifurcation (square) shifts towards

the saddle-node point, further decreasing its frequency. Since

the two Hopf bifurcations interchange positions, the stable

region disappears. When � is decreased from � = 3.43 to

� = 3.39, the low-frequency Hopf bifurcation that maintains

the R symmetry (square) disappears in a Takens-Bogdanov

bifurcation. Notice that in these four schemes several tran-

sitions from two reals to a pair of complex conjugates or the

other way around take place; although they have been depicted

in the schemes, they do not represent bifurcation points and

will not be commented on. The actual bifurcation diagram
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showing the stability in this region is plotted in Fig. 10(b).

The position of the two Hopf bifurcations and the saddle-node

points is indicated with the same symbols used in the schematic

pictures.

Finally, we are going to discuss the results corresponding to

the stability analysis of the basic solutions in the region near

� = 4.5, limited by the second dashed rectangle in Fig. 9

when the rotation rate increases. The two curves of basic

solutions (main and disconnected curves) change stability

in this zone, giving rise to a complex bifurcation diagram.

The schemes in Fig. 11(a) correspond to four fixed values of

rotation: � = 4.47, an unspecified value of � between 4.47

and 4.48, � = 4.48, and � = 4.6. At � = 4.47, there are

two Hopf bifurcations in the main curve of basic solutions.

The dominant bifurcation is a low-frequency Hopf bifurcation

that maintains the R symmetry (solid black square) and is

followed by a Hopf bifurcation that breaks the R symmetry

with critical frequency ωc ≈ 2.5 (solid diamond). One of the

branches of the disconnected curve (the lower branch in the

scheme in Fig. 11(a) is stable from the saddle node to the

Hopf bifurcation that maintains the R symmetry (open blue

square). If this bifurcation was continued by decreasing the

rotation rate, then we would obtain the Hopf bifurcation we

had identified in the zone � ≈ 3.4 and that was represented in

Fig. 10(a) (open blue square). Solutions in the other branch of

the disconnected curve (upper part), near the saddle node,

have a positive and a negative real eigenvalue associated

to eigenvectors that preserve the R symmetry. When the

Rayleigh number increases, a Hopf bifurcation that breaks the

R symmetry, with critical frequency ωc ≈ 2.5, occurs (open

diamond). Therefore, this branch is always unstable.

Between � = 4.47 and a value smaller than � = 4.48,

a codimension-2 bifurcation occurs. At some point (�, Ra)

between the two Hopf bifurcations, the main curve merges with

the unstable branch of the disconnected curve, and two saddle

nodes (solid and open red circles) appear. These are the saddle

nodes that were represented in Fig. 9. This codimension-2

bifurcation in the literature is called a transcritical or a

branching bifurcation. It is worth noticing that the eigenvalues

shown in the schematic figure for � = 4.47 are compatible

with the observed transition, provided that the pair of complex

conjugates eigenvalues arising after the low-frequency Hopf

bifurcation (solid black square) become two real numbers,

and one of them decreases enough to change sign in the new

saddle-node bifurcations.

Between this intermediate value of � and � = 4.48, several

codimension-2 bifurcations occur. The low-frequency Hopf

bifurcation that maintains the R symmetry (solid black square)

shifts towards the new saddle-node (solid red circle) decreasing

frequency, until disappearing in a Takens-Bogdanov bifur-

cation. In the new disconnected curve, a fold bifurcation

involving one of the Hopf bifurcations that break the R

symmetry (open red diamond) takes place, followed by the

merging and disappearance of these two bifurcations. At the

same time, this new disconnected curve towards higher values

of the Rayleigh number. Near � = 4.6, the two saddle nodes

(solid red and blue circles) of the new main curve merge and

disappear in a codimension-2 cusp bifurcation. Figures 11(b)

and 11(c) show the actual bifurcation diagrams for � = 4.47

and � = 4.48. The position of the three Hopf bifurcations and

of the saddle-node points is denoted with the same symbols as

those used in the schematic pictures in Fig. 11(a).

C. Energy analysis of the instability modes

In the previous section we have analyzed in detail the

stability of the steady R-invariant solutions (basic flow), both

in the case that, for a fixed �, they belong to the main curve,

which extends to small values of the Rayleigh number, and

when they belong to the disconnected curve of solutions.

Two different modes of instability can appear, depending on

whether the R symmetry of the basic flow is preserved. All the

bifurcations that have been identified are supercritical in all the

cases that have been considered. In this section, we perform

an energy analysis that allows us to characterize the physical

mechanisms of each instability, as we had done in a previous

work in a nonrotating cylinder [12].

To gain some insight in the physical mechanisms involved

in the instabilities we are analyzing, we undergo a kinetic

energy transfer analysis at some critical points [3,4,31]. We

use the Reynolds-Orr equation obtained by integrating over the

volume occupied by the fluid the inner product of the momen-

tum equation for the perturbation and the perturbation of the

velocity (critical eigenvector). If we denote by [U0,T ] the basic

state and by [u′,�′] the eigenvector, then the kinetic energy of

the perturbation, defined as K = 1/2
∫

�
u′ · u′∗ d�, satisfies

∂K

∂t
= −Re

[∫

�

u′∗ · (u′ · ∇U0) d�

]

−Re

[

σ

∫

�

(∇ × u′) · (∇ × u′∗) d�

]

−Re

(

Ra σ

∫

�

u′∗ · �′x̂ d�

)

.

The first term on the right-hand side represents the produc-

tion of energy by shear; the second one the viscous dissipation,

which is always negative; and the third one the production

of energy by buoyancy. The terms with positive (negative)

sign destabilize (stabilize) the basic flow. Since the term on

the left-hand side is zero at the critical point, the shear term

and the buoyancy term must balance the viscous dissipation.

If we normalize the right-hand side terms with the absolute

value of the viscous dissipation, then the sum of shear and

buoyancy terms must be 1 [4]. In Table I we show the critical

Rayleigh number, the critical frequency, and the rotation rate

at different critical points, together with the symmetric (S) or

nonsymmetric (NS) character of the instability, indicating also

if the basic flow corresponds to the main curve of solutions

(M) or if it belongs to the disconnected curve (D). The values

of the normalized shear term in these critical points are also

shown. The production of the kinetic energy of the perturbation

in all these bifurcations comes clearly from the shear term

(normalized shear larger than one). The buoyancy term, as

expected, decreases notably when the rotation rate increases

but is always negative (stabilizing effect). The contribution

of each term to the shear depends on the instability. We also

indicate in Table I the main destabilizing parts of the shear term

expansion in each case. In all cases, except for � = 2.3, the

main contribution is associated to the term w′∗ v′

r

∂W0

∂θ
, although

for � = 0.6,2.3,4.1 the mean value of the destabilizing terms
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TABLE I. Symmetry character of the instability (symmetric S and nonsymmetric NS) and curve (M for solutions belonging to the main

curve that extends to small values of the Rayleigh number and D for the disconnected curve), critical Rayleigh number Rac and frequency

ωc, rotation rate �, normalized production of kinetic energy by shear associated with the eigenvectors at some bifurcation points, and main

destabilizing term of the shear expansion in each case (σ = 0.01,Ŵ = 2).

Symmetry & branch Critical Rayleigh number Critical frequency Rotation rate Normalized shear Shear term

NS,M 4.43 × 103 5.19 0.6 1.036 w′∗ v′

r

∂W0

∂θ

S,M 6.99 × 103 7.11 2.3 1.013 w′∗u′ ∂W0

∂r

NS,M 6.29 × 103 0 4.1 1.0086 w′∗ v′

r

∂W0

∂θ

S,M 5.80 × 103 0.49 4.4 1.016 w′∗ v′

r

∂W0

∂θ

S,D 5.79 × 103 1.13 3.8 1.0085 w′∗ v′

r

∂W0

∂θ

S,M 6.12 × 103 1.64 4.5 1.0080 w′∗ v′

r

∂W0

∂θ

w′∗u′ ∂W0

∂r
and w′∗ v′

r

∂W0

∂θ
has the same order of magnitude. The

maximum value of these destabilizing terms is always located

near the center of the cylinder, away from the boundaries,

indicating that the instability is originated in the bulk of the

fluid and not in the boundary layers at the container walls. It

is also worth mentioning the strong stabilizing contribution of

the term w′∗w′ ∂W0

∂z
to the instability that takes place at � = 4.1.

D. Secondary flows

In the following, after having discussed the results corre-

sponding to the energy analysis of the instabilities, we describe

some of the saturated states of different nature that the system

selects once the threshold of the instability is crossed for a

choice of rotation rates in the range � ∈ (0,4.6). These states

are representative of the different dominant instabilities and

basic flows observed in the system; asterisks are used in

Fig. 8(a) and Fig. 9 to locate them in the (�, Ra) parameter

space. The procedure we follow to obtain the saturated

states consists of setting a slightly supercritical Rayleigh

number for which the time-dependent governing equations

are numerically integrated until a secondary flow is reached.

We take as initial condition the basic flow below onset. Even

though most of the secondary flows that we will present are

solutions arising from bifurcations that take place in the main

curve of primary solutions, we will also describe a saturated

solution originated from an instability in the disconnected

curve of primary solutions and a solution arising from an

instability in the main curve after the reconnection with the

disconnected curve has taken place, as described in Fig. 11.

We begin by presenting four secondary solutions obtained

for rotation rates � = 0.6,2.3,4.1,4.4, which arise from

instabilities that take place in the main curve of primary

solutions.

At a rotation rate of � = 0.6 the basic steady flow

undergoes a symmetry-breaking oscillatory bifurcation at

Steady State

(a)

T/4 T/2

(b)

3T/4 T

FIG. 12. Nonsymmetric oscillatory flow for � = 0.6 arising from an instability in the main curve. The cross sections at z = 0.5Ŵ correspond

to the transverse velocity field and the contour plots of axial velocity for (a) the basic state and (b) for the oscillatory secondary solution (T = 1.1)

in four time instants obtained at Ra = 5500.
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Steady State

(a)

T/4 T/2

(b)

3T/4 T

FIG. 13. Symmetric oscillatory flow for � = 2.3 arising from an instability in the main curve. The cross sections at z = 0.5Ŵ correspond

to the transverse velocity field and the contour plots of axial velocity for (a) the basic state, and (b) for the oscillatory secondary solution

(T = 0.89) in four time instants obtained at Ra = 7500.

Rac = 4.43 × 103, with the critical frequency ωc = 5.19. This

type of instability is dominant in the range of rotation rates � ∈

(0,1.35). The secondary flow, thus, is a periodic orbit that does

not preserve the R symmetry, as can be observed in Fig. 12.

This figure shows the velocity field at z = 0.5Ŵ associated

to the steady basic flow [Fig. 12(a)] and to the periodic flow

in four time instants during a period (T = 1.1 in this case)

for Ra = 5500 [Fig. 12(b)]. An inspection of the transverse

(a) (b)

(c) (d)

FIG. 14. Nonsymmetric steady flow for � = 4.1 arising from

an instability in the main curve. The cross sections at z = 0.5Ŵ

correspond to (a) the transverse velocity field and (b) the contour

plots of axial vorticity for the nonsymmetric steady solution obtained

at Ra = 6420. [(c) and (d)] Enlargements of the central zone of the

previous figures.

velocity field (upper part of Fig. 12) reveals the presence of a

vortex travelling along an elliptical trajectory inclined about

45◦ with respect to a vertical diameter of the cross section.

Also, when observing the evolution of the contour plots for

the axial velocity (lower part of Fig. 12), we can appreciate

that the zones with a higher magnitude of the axial velocity

(light parts correspond to positive senses of axial velocity and

dark parts to negative values) oscillate horizontally during

the period; while at T/4 both the maximum and minimum

axial velocity zones are located at the left-hand side of the

cell, they slowly shift and are located at the right-hand side

at 3T/4. Finally, as must happen in any Hopf bifurcation that

breaks the reflection symmetry in a Z2-symmetric system, the

R symmetry about the center of the cylinder is recovered after

a time evolution of half a period.

In the range of rotation rates � ∈ (1.35,4.0), the character

of the dominant instability changes, and the basic flow

undergoes a symmetry-preserving oscillatory bifurcation. An

example of the oscillatory flow triggered by this instability

can be seen in Fig. 13(b), which shows, in a z = 0.5Ŵ

plane, the velocity field of a solution computed at Ra = 7500

when the rotation rate is � = 2.3. This Rayleigh number is

above the critical value of the oscillatory bifurcation, which

takes place at Rac = 6.99 × 103 and has a critical frequency

of ωc = 7.11. Therefore, unlike in the previous case, this

solution preserves the R symmetry with respect to the center

of the cell. Its appearance is similar to that of the basic flow

[Fig. 13(a)], the only difference being the shape of the central

vortex, which elongates and contracts periodically (T = 0.89),

changing between an ellipse and a circle.

When the rotation rate is increased further, in the range � ∈

(4.0,4.3), the dominant instability is a pitchfork bifurcation

that breaks the R symmetry. This critical curve of pitchfork

bifurcations is represented with solid triangles in Fig. 9.
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The secondary solution shown in Fig. 14 for � = 4.1 and

Ra = 6420 represents a stable steady solution obtained near

the pitchfork bifurcation that takes place at a critical Rayleigh

number Rac = 6.29 × 103. We are plotting, at z = 0.5Ŵ, the

transverse velocity field in Fig. 14(a) and to try to enhance the

fluctuations with respect to the basic state, the axial vorticity

rather than the axial velocity, in Fig. 14(b). The flow in the

central part of the cylinder is enlarged in Fig. 14(c) and

Fig. 14(d). A look at the figures reveals that the R symmetry is

broken. Axial vorticity in two symmetric points with respect to

the center of the cell should be the same if the symmetry was

kept, and this does not happen in Fig. 14(d). This difference

can also be appreciated in Fig. 14(c), when comparing in this

plane the length and orientation of the arrows crossing the

positive and negative horizontal axis.

For values of rotation slightly above � = 4.3, the dominant

instability is a low-frequency Hopf bifurcation that maintains

the R symmetry of the basic flow. This instability, represented

with solid squares in Fig. 9, exhibits a steep decrease of the

critical Rayleigh number with increasing rotation. Figure 15

shows the oscillatory flow obtained for � = 4.4 at Ra =

5810. This Rayleigh number is slightly above the critical

Rayleigh number, since Rac = 5.80 × 103 and ωc = 0.49. The

transverse velocity and the contour plots of axial vorticity at

midplane show the presence of two vortices. Positive values

of vorticity [light (yellow) parts], correspond to a clockwise

rotating vortex, while negative values [dark (blue) parts],

are associated to an counterclockwise rotating vortex. These

vortices oscillate and change shape slightly within a period.

To complete the analysis of the nature of secondary flows

that can arise in the region of the parameter space we are

considering in this work, we inspect the features of two more

stable oscillatory solutions obtained for � = 3.8 and � = 4.5.

The first one is triggered by an instability in the disconnected

curve of solutions, while the second one is obtained in the

vicinity of an instability in the main curve of solutions but

after its reconnection with the disconnected curve has taken

place.

As already mentioned, the curve with open circles (blue)

in Fig. 9 locates in the (�, Ra) diagram the position of

the saddle nodes above which the basic flow coexists with

the two additional steady R-invariant solutions (disconnected

curve). The oscillatory flow presented in Fig. 16, obtained

for � = 3.8 and Ra = 5915, is computed for a Rayleigh

number above the symmetry-preserving oscillatory bifurcation

indicated with open squares in Fig. 9, which takes place

in a branch of the disconnected curve (Rac = 5.79 × 103,

ωc = 1.13). The critical curve locating these Hopf bifurcations

of the stable branch of solutions extends from � = 3.44 to

� = 4.6 and exhibits a discontinuity in � ≈ 4.2, as explained

in the previous section. Again we are representing the axial

vorticity instead of the axial velocity. Figure 16 shows the

transverse velocity field and the contour plot of axial vorticity

for both (a) the steady basic solution and (b) the periodic

secondary solution (T = 8.8) in four time instants. Light

(yellow) and dark (blue) values of axial vorticity correspond

to a clockwise-counterclockwise rotating vortex. The contour

plots of the axial vorticity show that the solution oscillates

between the solutions of each one of the two branches of the

disconnected curve. Notice that the contour plots of vorticity

at T/4 and 3T/4 in Fig 16 look similar to those of solutions

belonging to the two branches of the disconnected curve

and shown in the insets in Fig. 7. A detailed inspection of

the dynamics of the bifurcated oscillatory solutions at this

rotation rate, � = 3.8, shows that as the Rayleigh number

slightly increases, the solution spends more and more time

near the unstable steady solution of the branch from which it

has not bifurcated, and that the period increases following a

Steady State

(a)

T/4 T/2

(b)

3T/4 T

FIG. 15. Symmetric oscillatory flow for � = 4.4 arising from an instability in the main curve. The cross sections at z = 0.5Ŵ correspond

to the transverse velocity field and the contour plots of axial vorticity for (a) the basic state and (b) for the oscillatory secondary solution

(T = 15.9) in four time instants obtained at Ra = 5810.
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Steady State

(a)

T/4 T/2

(b)

3T/4 T

FIG. 16. Symmetric oscillatory flow for � = 3.8 arising from an instability in the disconnected curve. The cross sections at z = 0.5Ŵ

correspond to the transverse velocity field and contour plot of axial vorticity for (a) the basic state and (b) for the oscillatory secondary solution

(T = 8.8) in four time instants obtained at Ra = 5915.

logarithmic divergence law. This behavior is consistent with an

homoclinic connection (saddle-loop global bifurcation) near

Ra ≈ 5917.

Finally, Fig. 17 shows the last secondary solution we have

computed, which has been obtained for � = 4.5 at Ra = 6250

(Rac = 6.12 × 103, ωc = 1.64). This state is triggered by the

same symmetry-preserving oscillatory bifurcation, as in the

case of the solution obtained for � = 3.8, but the location

of the instability is indicated with solid squares in Fig. 9

rather than with open squares because, for this value of the

rotation rate, the disconnected curve has already reconnected

with the main curve; the instability, thus, takes place in the

main curve. Whereas in the basic solution for � = 3.8 the

intensity of the clockwise-counterclockwise central vortices

was similar, we can appreciate in Fig. 17(a) that in this case the

central counterclockwise-rotating vortices (dark) have damped

and are less intense than the clockwise-rotating vortices

(light). For this value of the Rayleigh number, unlike the

behavior of the secondary solution that we have shown for

� = 3.8, for this value of the Rayleigh number the secondary

solution oscillates around the basic flow from which it has

bifurcated. The spatiotemporal behavior shows that when the

light areas shrink, the darker ones are reinforced and vice

versa.

IV. SUMMARY AND CONCLUDING REMARKS

In this paper, we have studied the flow in a horizontal

closed cylinder of aspect ratio Ŵ = 2 induced by both an axial

temperature gradient and by rotation, for a Prandtl number

σ = 0.01. The main interest in this problem arises from crystal

growth processes. The observation that oscillations in the

solidification front can cause that crystals grown from the melt

present inhomogeneities in the form of striations [1] motivated

several studies with different geometrical configurations,

which focused on the oscillatory threshold in low-Prandtl-

number fluids [2–4] characteristic of molten metals and semi-

conductors. In these works, the unique source of instability

was the temperature gradient. Our present study incorporates

rotation to the system analyzed in Ref. [12]. We have charac-

terized the symmetric basic states and analyzed their stability

when the temperature gradient increases for rotation rates in

the range � ∈ (0,8), in which the two driving effects, natural

convection and rotation, have been found to be comparable.

We have obtained numerically the fully three-dimensional

basic flow by using a special preconditioned Newton’s

method [27], and we have used a continuation algorithm in the

Rayleigh number and the rotation rate (parameter appearing

only in the boundary condition) to follow the branches of

solutions. The basic state, steady in the laboratory frame,

consists of a longitudinal flow, symmetric with respect the

center of the cylinder and tilted in the vertical direction. As

the rotation increases, temperature becomes more uniform and

the strength of the flow reduces due to buoyancy in the vertical

direction (Fig. 5 and Fig. 6). These results are in agreement

with those reported in previous works, where different values

of the Prandtl number were used [13–15]. The continuation

method used to follow steady solutions when rotation varies

has allowed us to identify a novel result: The existence, for

a fixed value of �, of two curves of steady primary states.

These two curves, a main and a disconnected one, have the

same symmetric character and coexist for moderate values

of the Rayleigh number, as occurrs in the nonrotating case

for values of the Prandtl number around σ ≈ 0.025 [12]. The

presence of these two curves could be responsible for the

anomalous variations of the dimensionless axial velocity with

the Strouhal number that was observed for high values of the

Grashof number in the work of Ref. [14].
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Steady State

(a)

T/4 T/2

(b)

3T/4 T

FIG. 17. Symmetric oscillatory flow for � = 4.5 arising from an instability in the main curve. The cross sections at z = 0.5Ŵ correspond

to the transverse velocity field and contour plot of axial vorticity for (a) the basic state and (b) for the oscillatory secondary solution (T = 4.30)

in four time instants obtained at Ra = 6250.

After the obtention of the basic states, we have analyzed

their stability by calculating the leading eigenvalues along

the branches of primary solutions to determine the instability

threshold. The main results are summarized in Fig. 8 and

Fig. 9. A first outstanding result concerns the role of rotation:

Contrary to what might be expected, only for very small

rotation rates, � ∈ (0,1.33), does rotation have a stabilizing

effect. In this range of �, the bifurcation responsible for

this instability is oscillatory and breaks the symmetry of the

basic state. For � ∈ (1.33,4), primary solutions in the main

curve lose stability in a Hopf bifurcation that maintains the

symmetry and whose value of the critical Rayleigh and Hopf

frequencies hardly vary with �. When the value of the rotation

rate approaches � = 3.5 and � = 4.5, the instabilities of

the basic flow take place for lower values of the Rayleigh

number, and complex scenarios of bifurcations related with

the presence of very close bifurcations of codimension 2

arise. For � = 3.5 (Fig. 10), the scenario of bifurcations

involves only the disconnected curve and sets the value of

� from which the solutions belonging to one of the branches

of the disconnected curve are stable, giving rise to a region

in the (�, Ra) parameter space where two different stable

steady symmetric solutions coexist. For � = 4.5 (Fig. 11), the

scenario of bifurcations involves both curves of symmetric

solutions and sets the point from which only one steady

symmetric solution is stable. This happens after the cusp

bifurcation near � ≈ 4.6.

Once the nature of the instabilities of the primary solutions

is identified and the bifurcations are located in the parameter

space, we have performed an energy analysis of the dominant

eigenfunctions for the leading instabilities. This analysis has

allowed us to elucidate whether the dominant instability

mechanism is buoyancy or shear driven. We conclude that the

instability is mainly dominated by shear forces, although the

significance of the leading effect decreases as the rotation rate

increases.

Finally, by using a time evolution code to integrate the gov-

erning equations, we have obtained the secondary flows arising

from the most representative instabilities in the region of the

parameter space we are considering. We have characterized

the structure of the flows to gain some insight in the physical

mechanisms leading to them. It is worth mentioning that in

one of the explorations we have identified time-dependent sec-

ondary solutions oscillating between two solutions belonging

to each one of the two branches of the disconnected curve.

The period of the solutions follows a logarithmic divergence

law consistent with an homoclinic connection to an unstable

steady solution (saddle-loop global bifurcation). Remarkably,

this homoclinic connection is apparently not related to any of

the unfoldings of the two Takens-Bogdanov bifurcations we

have identified.

We expect that the complex bifurcation scenarios we have

identified for moderate values of the Rayleigh number and

slow rotation rates lead to complex spatiotemporal dynamics,

as it occurred in other analogous two-dimensional laterally

heated systems, with similar aspect ratios and comparable

values of the Prandtl number, that we had analyzed in the

past [8–11]. However, a complete study of this emerging

nonlinear dynamics would merit further study and is beyond

the scope of this paper.

ACKNOWLEDGMENTS

The authors thank Dr. Esteban Meca for useful discussions

and comments. This work is funded by DGICYT under Grant

No. FIS2013-40880-P. O.S. was supported by FI-DGR2012

grant from the DGR of the Generalitat de Catalunya.

063113-15
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and J. Casademunt, Phys. Fluids 17, 104108 (2005).

[11] E. Meca, I. Mercader, and L. Ramı́rez de la Piscina, Physica D

303, 39 (2015).

[12] I. Mercader, O. Sánchez, and O. Batiste, Phys. Fluids 26, 014104

(2014).

[13] H. Q. Yang, K. T. Yang, and J. R. Lloyd, AIChE J. 34, 1627

(1988).

[14] S. Fujiwara, Y. Watanabe, Y. Namikawa, T. Keishi, K. Mat-

sumoto, and T. Kotani, J. Cryst. Growth 192, 328 (1998).

[15] C. W. Lan and C. Y. Tu, J. Cryst. Growth 237–239, 1881 (2002).

[16] F. Ladeinde and K. E. Torrance, J. Fluid. Mech. 228, 361

(1991).

[17] M. Zhao, L. Robillard, and P. Vasseur, Int. Comm. Heat Mass

Transfer 25, 1031 (1998).

[18] I. Mercader, O. Batiste, and A. Alonso, Comput. Fluids 39, 215

(2010).

[19] S. Hugues and A. Randriamampianina, Int. J. Numer. Meth.

Fluids 28, 501 (1998).

[20] B. Fornberg, A Practical Guide to Pseudospectral Methods

(Cambridge University Press, Cambridge, 1998).

[21] L. N. Trefethen, Spectral Methods in Matlab (SIAM, Philadel-

phia, 2000).

[22] I. Mercader, M. Net, and A. Falqués, Comp. Meth. Appl. Mech.

Eng. 91, 1245 (1991).

[23] I. Mercader, A. Alonso, and O. Batiste, Phys. Rev. E 77, 036313

(2008).

[24] A. Alonso, I. Mercader, and O. Batiste, Fluid Dyn. Res. 46,

041418 (2014).

[25] F. Marques, I. Mercader, O. Batiste, and J. Lopez, J. Fluid Mech.

580, 303 (2007).

[26] J. Lopez, F. Marques, I. Mercader, and O. Batiste, J. Fluid Mech.

590, 187 (2007).

[27] C. K. Mamun and L. S. Tuckerman, Phys. Fluids 7, 80 (1995).
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