
J .  Fluid Me&. (1974), vol. 66, part 2 ,  pp.  209-229 

Printed in Cheat Britain 

209 

Natural convection in a shallow 
cavity with differentially heated end walls. 

Part 1. Asymptotic theory 

By D. E. CORMACK, L. G. LEAL 

Chemical Engineering, California Institute of Technology, Pasadena 

AND J. IMBERGER 

Department of Mathematics and Mechanical Engineering, University of 

Western Australia, Nedlands 

(Received 23 March 1973 and in revised form 15 February 1974) 

The problem of natural convection in a cavity of small aspect ratio with dif- 

ferentially heated end walls is considered. It is shown by use of matched asymp- 

totic expansions that the flow consists of two distinct regimes : a parallel flow in 

the core region and a second, non-parallel flow near the ends of the cavity. A 
solution valid at all orders in the aspect ratio A is found for the core region, while 

the first several terms of the appropriate asymptotic expansion are obtained 

for the end regions. Parametric limits of validity for the parallel flow structure 

are discussed. Asymptotic expressions for the Nusselt number and the single 

free parameter of the parallel flow solution, valid in the limit as A -+ 0, are 

derived. 

1. Introduction 

Convection due to buoyancy forces is an important and often dominant 

mode of heat and mass transport. Of particular significance to the dispersion of 

pollutants and heat waste in estuaries are the buoyancy-driven convective 

motions induced by gradients in salt concentration or temperature. 

Unfortunately the direct modelling of these natural systems is very complex, 

mainly because the flow is turbulent. However, the idealized problem of laminar 

flow in an enclosed rectangular cavity with differentially heated ends does 

provide some insight into these more difficult problems, and has been studied 

extensively in other contexts by prior investigators. The majority of these studies 
have used finite-difference numerical solutions of the full equations of motion, 

subject to the Boussinesq approximation, to consider cavities which were either 

square or had height hlarger than their length I (cf. Quon 1972; Wilkes & Churchill 

1966; Newel1 & Schmidt 1970; Szekely & Todd (1971); De Vahl Davis 1968). 

However, Batchelor (1954), EIder (1965) and Gill (1966) have shown that ana- 

lytical progress is possible when the cavity aspect ratio h/l is large. 

Batchelor (1954) considered both large and small Grashof numbers Gr. In  

the latter case, he obtained an asymptotic solution about the pure conduction 
I4 F L h f  65 
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FIGURE 1. Schematic diagram of system. 

mode of heat transfer. For large Gr, Batchelor envisaged a flow with thin boun- 

dary layers on all solid surfaces and a closed-streamline isothermal core of con- 

stant vorticity. Motivated by the experimental measurements of Elder (1965), 

Gill (1966) proposed an alternative structure for the case h/l $ 1 and Gr 9 1. 

I n  Gill's model the flow is decomposed into boundary layers adjacent to the end 

walls in which the horizontal temperature gradients are large, and a core region 

in which the temperature is assumed to be a function only of the vertical CO- 

ordinate. I n  spite of the approximations necessary to solve the resulting equations 

Gill reported moderate agreement with the experimental measurements of 

Elder (1965). A key feature of the case h/Z $ 1, which is implicit in Gill's model, 

is that the core dynamics play only a secondary role in establishing the overall 

flow structure, which is dominated by the buoyancy-driven boundary layers. A 
natural question is whether this qualitative feature persists as the aspect ratio 

h/Z is varied. I n  particular, in the limit as h/l -+ 0, which is most relevant for the 

naturally occurring flows of interest in the present investigation, one might 

anticipate that viscous effects in the core would play an increasingly important 

role in establishing the flow structure for all fixed (though large) values of Gr. 

I n  the present paper, we use the standard methods of matched asymptotic 

expansions to consider the cavity flow problem in this limiting case h/l < 1, 

Gr fixed. We shall show that the flow structure consists of two parts: a parallel- 

flow core region in which essentially all of the horizontal temperature drop occurs 

and which is dominated by viscous effects; and end regions which serve primarily 

to  turn the core flow through 180" as required by the solid end walls. The numeri- 

cal and experimental results reported in parts 2 and 3 of the present study show 

excellent agreement with this asymptotic theory for large, though finite values of 

of (h/l)-l. 

2. Mathematical formulation of the problem 

We consider a closed rectangular two-dimensional cavity of length 1 and height 

h which contains a Newtonian fluid, and is shown schematically in figure 1. The 

end walls are held a t  different but uniform temperatures and qb, with T,  < Th. 



Convection in a shallow cavity with heated walls. Part 1 21 1 

The top and bottom are insulated, and all surfaces are rigid no-slip boundaries. 

Actually, the upper boundary of the environmental systems mentioned in the 

introduction is more closely approximated as a zero-shear surface. However, it 
was found that the experimental measurements, to be presented in part 3, could 

be obtained only in a cavity with a no-slip lid. Hence, the present analysis was 

undertaken to provide a solution that could be compared directly with the ex- 

perimental results. A systematic investigation of the influence of the upper 

surface conditions on flow structure may be found in Cormack, Stone & Leal 

(1974). 

The appropriate governing equations, subject to the usual Boussinesq ap- 

proximations, are 

with corresponding boundary conditions 

u’ = v’ = 0 on all solid boundaries, 

aT/ay‘ = 0 on y’ = o,h, 

T = T,,T, on 2‘ = 0 , l .  (5) 

Here, u’ and v f  are the horizontal and vertical velocity components; v, po, Cp, E 
and p are the kinematic viscosity, density, heat capacity, thermal conductivity 

and coefficient of thermal expansion, all referred to some mean temperature of 

the fluid. 

Non-dimensionalizing, using the definitions 

0 = (T-c) / (Th-q) ,  t = t‘g/3h2(T,-(P,)/d, 

and introducing a stream function $ such that 

one can reduce (1)-(4) to 
u = a$/ay, v = -a$/ax, 

0 2 $  = --w. 

with boundary conditions 

9 = a $ / a ~  = 0, e = A X  at x = 0, A-I 

and $ = a$/ay = ae/ay = o at y = 0, 1. 
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Although the characteristic velocity scaling may a t  first appear an arbitrary 

choice, it is consistent with the physical picture of a buoyancy-driven parallel 

flow which is moderated by viscous effects over a length I ,  and may in fact be 

justified a posteriori by the theory which is presented in this paper. The dimen- 

sionless parameters are 

Gr = gp(Th - T,) h3/v2 

Pr EE C,,uu/k (Prandtl number) 

(Grashof number), 

and A = h/b (aspect ratio). 

I n  what follows, we consider the asymptotic problem in which A -+ 0 with 

Pr and Gr held fixed. 

3. The core flow 

The key to a proper asymptotic solution, in the present case, is a proper 

resolution of the central or core region of the cavity. Fortunately, the flow struc- 

ture in this region is surprisingly simple and amenable to direct analytical solu- 

tion of the governing equations. Both the numerical and experimental evidence 

which we shall present in parts 2 and 3 in fact indicate that the streamlines in the 

core region become more nearly parallel as the aspect ratio is decreased, with 

substantial deviations from this structure only occurring in the immediate 

vicinity of the end walls. Acceptance of a parallel flow structure as a first ap- 

proximation in the core would imply that the appropriate characteristic scale 

length in the x direction must be O(A-l). 
With introduction of the characteristic horizontal scale x = O(A-l), equa- 

tions (6)-( 8) become 

where B = Ax. 

Using (lo)-( 12), one may now obtain the full asymptotic solution for the core 

temperature and velocity fields, as a regular expansion in the small parameter A .  
Although the precise forms of the gauge functions in this expansion are strictly 

obtainable only from the requirements for a proper asymptotic match with the 

corresponding solutions in the end regions, we anticipate the simple form (which 

will be verified a posteriori) 

e =  o , + A o , + A ~ ~ , +  ..., 

$ = $0+A$1+A2$2+. . .  , 
w = w 0 + A ~ , + A % , +  .... 

The systematic solution, valid for A < 1, which results on substituting these 
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expansions into (lo)-( 12) and equating terms of like order in A has the same form 

at all orders in A,  i.e. 

+ = K1(&Y"i%Y3+AY2), (14) 

O = K12 + K2,Gr Pr A2(&y5 - &y4 + &y3) + K,, (15) 

where K, = c1+c2A+c3A2+ ..., 
K,  = cT+cZA+C:A~... 

and cl, c,, ..., c:, ct ,  . .., c,* are constants which depend on Gr and Pr. 
The velocity field corresponding to (14) is strictly parallel to the top and 

bottom walls of the cavity, and cannot, therefore, satisfy the boundary con- 

ditions (9a )  at the end walls. These conditions must be satisfied by solutions valid 

in the end regions, and in general, the two parameters Kl and K ,  are evaluated 

by matching the core solution with these two end-region solutions. In  the present 

case, however, the problem simplifies somewhat owing to the centro-symmetry 

property of the equations and boundary conditions (discussed by Gill 1966). 

This property imposes the requirement on the solutions that 

W A Y )  = $ ( 1 - ~ , 1 - Y ) ,  @ , Y )  = 4 1 - 2 , 1 - Y )  

and B(2,y) = 1-O(1-2 , l -y) .  

Hence, one half of the cavity is an inverted mirror image of the other. Moreover, 

it is apparent that 

so that, according to (15), 
O(jT,*) = 4, 

&Kl+&K2,GrPrA2+K2 = 4. 

This relationship allows the constants c: (and hence K,)  to be entirely eliminated 

in favour of the single set (ci>, i = 1,2,  . . ., 00, e.g. 

2 3 1440c2,GrPr. (16a,b,c) c, * = -gc2, c; = --lc -1 c; = Q-'c 

With the constant K ,  thus eliminated, it is possible to evaluate K,  completely 

(and hence the ci, i = 1 , 2 ,  ..., co, which depend on Gr and Pr) by matching 

the core solution with a proper solution that is valid in either of the two end 

regions. This matching process is, of course, considerably simplified by the fact 

that the basic form of the core solution is preserved at  all orders in the small 

parameter A .  

Before proceeding to a resolution of the flow in the end regions, it is useful 

to note the key structural features of the basic core solution for Gr fixed, A .+ 0 

[equations (14) and (15)] and to contrast these with the structure in the pre- 
viously noted conduction and boundary-layer limits A fixed, Gr -+ 0 and A 

fixed, Gr -+ co of Batchelor and Gill. The solution (14) and (15) exhibits two key 

features. First, the velocity field in the core is parallel to all orders in the small 

parameter A .  Second, to a first approximation, B is independent of vertical 

position, and varies linearly between the end walls. The primary driving force for 

motion is the horizontal temperature gradient in the core. In  fact, we shall show 

in the next section that c, = 1, so that effectively all of the temperature drop 
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occurs across the core. The end regions are thus dynamically passive, in the sense 

that they serve simply to turn the flow through lS0" as required by the condition 

of zero volume flux through the end walls. I n  contrast, for the boundary-layer 

limit A fixed, Gr -+ co considered by Gill, nearly all of the temperature drop occurs 

in thin layers a t  the two ends, and these provide the driving force for flow. 

In  this case, it is the core region which is passive. Plow exists there only as a result 

of entrainment-detrainment from the end-wall boundary layers. Clearly, the 

flow structure for A fixed (perhaps small), Gr -+ co is fundamentally different 

from that for Gr fixed (perhaps large), A --f 0. 

It is obvious from the first-order temperature distribution that the heat 

transfer process is dominated by conduction. Thus, it is important to note that 

the present theory is definitely distinct from the pure conduction limit A fixed, 

Gr --f 0 considered by Batchelor. Physically, the dominance of conduct'ion for 

asymptotically small values of A (with Gr large) is a result of the cumulative 

effect of locally small viscous effects acting over a sufficiently long distance. This 

reasoning is also consistent with the velocity scaling, which indicates that the 

length of the cavity plays a role that is identical with that played by viscosity. 

That is, by either doubling the length or doubling the viscosity, while keeping 

all other variables constant, one achieves the same effect, to cut the core velocity 

in half. Hence, when A is small enough, the core velocity is actually 'throttled ' 
to small magnitude by viscosity for any arbitrarily large value of Gr. 

4. The flow in the end regions 

We turn now to a consideration of the end regions of the cavity where the 

core flow described in the previous section is not valid. Although we are primarily 

interested in determining the coefficients ci of the parameter K,, and hence the 

quantitative details of the core region, it is nevertheless of some interest to de- 

velop the full asymptotic solution in this region of the flow. I n  view of the centro- 

symmetry of the problem, we explicitly consider only the end x = 0. As we shall 

see, it is necessary to  proceed to third order in the end flow solution in order to 

obtain the first non-trivial correction for the core region. 

I n  the end regions, the characteristic length scales in each of the co-ordinate 

directions are O(h).  I n  this sense, the structure for A -+ 0, Gr fixed (and large) 

is fundamentally different from the expected structure for Gr -+ KI, with A fixed 

(and small), since there exist no boundary-layer-like regions in the present case, 

Furthermore, since the parallel structure of the core requires that all streamlines 

eveiitually enter the end region, i t  is clear that the scaling used for the horizontal 

velocity in the core must be maintained in the analysis of the end regions. Hence, 

( G ) - (  8) must be solved subject to the boundary conditions 

$ = a@/ay = aO/ay = 0 on y = 0,1, (17a)  

$ = a$/& = H = 0 on x = 0 ( 1 7 b )  

lim   end(^, y) o l i m  $core(&, y) as A -+ 0. (18) 

and the matching condition 

2 - W  Z+O 
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As in the core region, the solution can be obtained as a regular perturbation 

expansion in the small parameter A of the form 

e = 6,+A81+A28,+ ..., 
$ = $,+A$’1+.42$,+..., 

0 = o,+Ao1+A2w2+... . 
Substituting these expansions into (6)-(8) and equating terms of like order in A,  
we obtain an infinite sequence of coupled linear differential equations for the 

unknown functions di, qki and wi. In  order to  clarify the discussion to follow, we 

list these together with the explicit matching conditions which must be satisfied 

for large x,  up to  O(A3).  

(i) At O(1) aeo/ax = 0,  

vv, = 0, lirn 8, = cf . 
x-m 

(ii) At O(A) V~O, = - ael/ax, v2$, = - w,, 

V201 = P r  Gr a@,, $,)/a(x, Y ) ,  

0 - AzeY 12Y +AY2)t lim$ - c  2- 4 - 1  3 

x+ w 

lirn a&,/ax = 0, lirn O1 - clx + cz. 

V2wl + a@,/alt: = Gr a(@,, $,)/a(x, y ) ,  

x+ w x-+m 

(iii) At O(A2) 

V2$, = -w1, 

lim$, = c2(&y4-&y3+&y2), 
x-+ w 

lim a$,/ax = 0, lim O2 = c2 x + c2,Gr Pr (&y5 - &y4 + A y 3 )  + c:. 
x+m X+OD 

lim$2 = c3(&y4-&y3+Ay2), 
x-m 

lim a@2/ax = 0 ,  lim 8, = c3 x + 2c1 c2 Gr Pr  (&y5 - &y4 + &y3) + c;, 
X+ m x+ m 

The boundary conditions (17a, b)  at each order become simply 

$i = a$i/ay = aoi/ay = o on y = 0,  1, (26a)  

$i = qhi/ax = Oi = 0 on x = 0. (26b 

The temperature and velocity fields O,, 8,, $, and w, 

We begin by considering the O( 1) and O(A ) fields using (19)-(21). The solution 

a t  O(1) for 0, is trivial, since the only solution of aOo/ax = 0 which satisfies the 

boundary conditions (26) is 0, = 0. It follows from the matching condition 
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and (16a) that cf = 0 and c1 = 1. Moreover, substitution of this solution into (21) 

gives V201 = 0. With the appropriate boundary and matching conditions, this 

leads to the solution O1 = x, from which it follows that c: = c2 = 0. Hence to 

first order, the temperature distribution everywhere in the cavity is strictly 

linear in x and the dominant mode of heat transfer is pure conduction. In  this 

limited sense the present. solution resembles the earlier work of Batchelor for 

Gr < 1 and A fixed, though it should be re-emphasized that the present analysis 

is valid for any Gr provided only that A is sufficiently small.? 

In  the light of the above results, (20) may be rewritten as 

v2wo = - I, V2$, = - wo. (27) 

In  view of the previously stated matching conditions for @o, it is convenient to 

introduce the transformation 

$$ -Q)+(" 4-2-  3f-L 2 
0 -  24Y 12Y 24Y) 

into (27), which may then be combined to give 

v44 = 0, 
with the boundary conditions 

4 = a$/ay = o on y = O , l ,  

4 = -(L z4Y 4 - 1  Iz!/ 3 + L  24y 2 ) 7  '$lax= On x = o *  

The required matching with the core solution yields the final boundary condition 

on 54 l im4 = lima$/ax = 0. 
2400 x+m 

The distribution of 4 is identical with the displacenient of an elastic semi- 

infinite strip clamped a t  the edges and subjected to a small displacement a t  x = 0. 

The difficulties inherent in obtaining an analytic solution to problems of this 

general nature are well known. On the other hand, numerical solution can be 

rather straightforward and would be sufficient in the present case for generating 

an accurate approximation to the stream-function field in the end region. 

Nevertheless, we feel that it is worthwhile to pursue the analytical representation 

since the method of solution is interesting in its own right. Purthermore, it 

provides a useful check on the numerical solution for @o that is t o  be used in sub- 

sequent stages of the asymptotic theory. 

To obtain an analytical expression for 4, we extend a method developed by 

Benthem (1963) that largely follows the well-known lines of Laplace transform 

theory. If new independent variables are defined as 

y' = 2y- 1, x' = 2x, 

so that 9 is even in y', then the boundary function $ ( O ,  y') may be expanded as a 

with 

t A more explicit condition for validity of the present theory will appear in $5.  
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k 29k 

1 4.2124+i  2.2507 
2 10.7125+i 3.1032 
3 17.0734+i 3.5511 

4 23.3984+i 3.8588 

TABLE 1. First four roots of sin 29, + 2si = 0 in first quadrant 

The key to obtaining an analytical solution is the assumption that the second- 

and third-order derivatives of $ on the boundary may also be expressed as cosine 

series of the similar form 

and 

where a, and b, are unknown coefficients to be determined. Following the familiar 

procedures of Laplace transform theory and after considerable manipulation, the 

solution may ultimately be expressed as an expansion in Papkowich-Fadle 

eigenfunctions (cf. Fadle 1941) 

x (sins,coss,y‘- yf cossksinskyf)e-3kx’, (33) 

where sk, k: = 1,2,  ..., 00, are the complex roots (with positive real part) of the 

transcendental equation 

sin 2s, + 2.3, = 0 (34) 

and a, and b, satisfy the set of algebraic equations 

In theory, the determination of a, and b, requires the inversion of a matrix of 

infinite dimension. Hence, in practice one must truncate the series after a finite 

number of terms (assume that the rest are zero) and obtain an approximate solu- 

tion. 

The first four roots of the transcendental equation (34) that occur in the first 

quadrant of the imaginary plane have been tabulated by Mittleman & Hillman 
(1946) and are listed in table 1.  Furthermore, if q + ir is an eigenvalue, then so is 

q - i r  since the roots of (34) are symmetrically placed about both the real and 

imaginary axes. This symmetry ensures that the imaginary part of (33) is 

identically zero. 
We were unable to prove analytically that the truncated approximation of 

(33) converges to the correct solution of (28). However, a qualitative indication 

of such convergence is provided by a comparison of truncated versions of (33) 

with a full numerical solution of the governing equations plus associated 
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FIGTJRE 3. Comparison of numerical and analytical solutions for @,,. 

boundary conditions. A numerical solution of ( 2 7 )  was therefore obtained for 

$ro and oo by means of an explicit Gauss-Seidel iteration scheme. The equations 

were approximated by a central difference representation on a geometrically 

expanding grid of 21 points in the x direction and a sine-transformed grid of 21 

points in the y direction (a similar sine-transformed grid will be described in 
part 2 ) .  The boundary conditions at x = 00 were applied at the finite distance 

x = 3. All of these numerical parameters were systematically varied to demon- 

strate ' their adequacy for the present purposes. The numerically determined 

streamlines and equi-vorticity lines are plotted in figures 2 (a )  and ( b ) .  Although 

we shall subsequently discuss some qualitative features of these plots, we first 

return to the comparison of the numerical and analytical solutions. 
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n 

1 

3 

5 

7 

9 
11 

13 

15 

d, 

- 2.307 x 
- 3.440 x 

8.173 x lo3 

1.451 x 

4.852 x 

- 3.053 x lo-' 

- 7.986 x 

- 3.164 x 

4 roots 8 roots 
A 

r h \ r  > 

an 

5.267 x lov2 

9.866 x 10-1 
5,258 - 

- 5.295 x lo-' 

b,  a ,  b,  

4.482 x 10-1 5.620 x lo-' 1.039 x lo-' 
1.934 x 10-l 5.842 x - 1.886 x lo-' 
3.642 - 7.322 x lo-' 2.565 x 10-1 

- 3.309 x lo1 3.017 x 10-1 - 2.451 
- - 1.279 x 10-1 - 2.254 

- - 1.671 x 10-l - 6.813 

- 2.429 7.409 

- 7.152 1.581 x lo1 

TABLE 2. Values of d,, a, and b,  

The required comparison is provided by figure 3, where we have plotted the 

centre-line values of $o as a function of x ,  from the numerical solution and from 

(33), using both the first four and the first eight available eigenvalues. The solu- 

tion obtained by using only the first two eigenvalues from each of the first and 

fourth: quadrants represents a rather poor approximation to the 'exact' 

(numerical) solution. On the other hand, when all eight of the available eigen- 

values are used (i.e. eight terms of the infinite series are retained), the correspon- 

dence between the numerical and analytical solutions is greatly improved. I n  

fact, appreciable deviations from the numerical solution persist only for x < 0.3. 

The coefficients d,, a, and b, corresponding to the four- and eight-term approxi- 

mations to (33) are listed in table 2. Presumably, inclusion of more terms in the 

series would improve the comparison of the analytical and numerical solutions. 

We shall not, however, carry the analysis further in this paper. 

The chief feature of interest in the flow field, evident from figure 2, is that 

both the streamlines and equi-vorticity lines are nearly parallel for x 2 1. This 

observation is consistent with the initial assumption that the horizontal length 

scale characterizing the end regions is O(h). I n  addition, it is of some interest 

to note that the linear gradient of 8, acts as a source of positive vorticity in the 

region away from the walls (figure 2 b ) ,  while the motion of the fluid past the 

walls produces vorticity of opposite (negative) sign. 

The temperature and velocity fields at higher orders of approximation 

To obtain the coefficients c3, c,, etc. corresponding to higher-order approxima- 

tions in the core flow, it is necessary to continue to higher orders in the end regions 

as well. The remainder of this section is concerned with the solution of (22)-(25) 

for the functions w1 and 8, and $,, o, and O,, which, when combined with the 

results of the previous section, yield the coefficients c3 and cp, respectively. 

Although, in theory, it is relatively straightforward to  obtain an analytical 

solution for O,, it is impractical in view of the complexity of the solution for $o 

to use this or higher-order solutions to evaluate the stream function, vorticity 
or temperature a t  any given point. Hence, t o  determine Be, $, and w,, we pro- 

ceed numerically, using the numerical solutions for $o and w,, in conjunction with 
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(22) and (23). The explicit dependence on Pr and Gr is eliminated by applying 

the transformations 

O2 = GrPrO;, = PrGr$l+GrYi ,  w1 = PrGrwl+,Grw); 

to  (22) and (23)) which become 

These equations are to be solved together with the homogeneous boundary con- 

ditions (26) and the matching conditions 

and 

lim $; = lim a$l/ax = 0, 

lim qi = lim afi/ax = 0 

lime; = f(y) - ic;, 

x-+m x+m 

x-+m x+m 

x-+m 

where c j  = c31PrGr and f(y) = & ~ ~ - & y ~ + & y ~ - ~ & .  

The coefficient ci is easily evaluated by noting that (37), integrated over the 

depth of the cavity, may be combined with the boundary conditions at y = 0, 

I to yield 

The only solution of (40) satisfying the relevant boundary condition 

f l  

J-e;ay=o a t  X = O  
0 

and the matching condition lim JO1& dy = - 
X+aD 

is the trivial solution 

with the important implication that 

c; = 0. 141) 

A numerical solution for 0; was obtained using the same grid and iterative pro- 

cedure that were previously used for the determination of $o. The result is 

shown in figure 4, where lines of constant 8; are plotted. The main feature is the 

strong y dependence of @;, which clearly represents a sharp departure from the 

pure conduction temperature profile obtained for O1. While %';/ax is negative for 

y < 0.5, it  is positive for y > 0.5. In addition, this solution is consistent with the 

asymptotic boundary condition since a8;/ax -+ 0 as x -+ 00. 

Using the numerical solutions for 0; and $o, we proceed to the solution for 

and wl. Since @l is subject only to homogeneous boundary conditions, it 
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follows that the associated flow is confined to the end region and hence interacts 

only indirectly with the core flow. Equations (36a, b) were again solved numeric- 

ally using the previously described numerical solutions to generate the in- 

homogeneous terms. The resultant solutions for @; and 1c.; are presented in figures 

5 (a) and (b) ,  respectively. As expected, both corrections are characterized by 

closed streamlines. In  the upper half of the end region the contours of positive 

$;indicate that the positivegradient of 0; induces a counterclockwise flow, where- 

as in the lower half the converse is true, The streamlines of are similar to 

those of $:, but are of opposite sign, and smaller magnitude. The vorticity func- 

tions w; and w l  which we have not plotted are similar, with closed contours of 

positive (negative) vorticity in the upper half and of negative (positive) vorticity 

in the lower half. 
We shall return, after first describing the solution for the velocity and tempera- 

ture fields $2, o2 and 0,, to consider the qualitative influence of $l on the flow 

characteristics in the end region. 
The O(A3) probIem for $2, w2 and 8 3  is simplified considerably by the previous 

results. Turning first to the temperature equation ( 2 5 ) ,  we note that a(B,, $2)/ 

a(x, y) is identically zero, while a(& @l)/a(x, y) reduces to a$-,/ay. Moreover, one 

can eliminate the Pr, Cr dependence of the equation by introducing the change of 

0, = Pr2 CrW; + Pr Grzt?,” 
variables 
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FIGURE 5. (a) O(Gr Pr A )  stream function @; and ( b )  O(Gr A )  strea.m function 

$: : streamlines. 

to yield the independent equations 

and 

which must be solved subject to  the boundary conditions 

8' 3 -  - ,g" 3 - 0  - on x = O ,  

a8;lay = aO,"/ay = 0 on y = 0 , i  

and the matching conditions 

where 

The integral of (42b) over the depth of the cavityindicates that, like c;, ci 
is identically zero. However, the same is not true for c;. Hence, this constant must 

be determined during the course of the numerical solution for 8;. This is accom- 

plished by noting that (43 a) also implies 

lim aO;/ax = 0. 
x+m 

(44) 

Since the solution of (42a) subject to either of the conditions (43a) or (44) 

is unique, the numerical solution of the latter problem not only yields 04, but 

also ci. A surprising feature of this solution is that 0; appears t o  depend only on 

x to within the available numerical accuracy. Hence, in figure 6 we have plotted 

only the centre-line value for 6; as a function of x. It is evident that  0; does asymp- 

totically approach a constant value of approximately 1-74 x l O W ,  so that 

C; = - 3.48 x 
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FIGURE 6. O(PP Ch2 As) temperature correction 0; ws. 2. 

1.0 

-4.38 x 10-9 

-208  x 10-9 

X 

FIGURE 7. O(Pr Gra As) temperature correction 6;: isotherms. 
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I n  contrast to S;, the numerical solution for 6, as shown by the contours in-figure 

7, is a strong function of y. However, since is approximately two orders of 

magnitude smaller than S;, the O(A3) correction to the temperature field will 

always be dominated by 6; unless Pr < 1. The fact that ci is non-zero is significant 

because it provides the first correction to K,  and hence, to the temperature and 

velocity profiles in the core due to the interaction with the end region. Correct 

to O(Gr2 Pr2A3),  the constant K ,  is 

K, = 1 - 3.48 x 10-6Gr2 Pr2 A3. (45) 

Although this correction for K ,  is largely sufficient for providing a comparison 

between the asymptotic theory presented here and the numerical and experi- 

mental results of parts 2 and 3, it is beneficial to  obtain one more term of the end- 

region stream-function expansion, since it provides a detailed flow correction 

which is very evident in the numerical solutions to be presented in part 2. 

Like $,andw,, $2 and o2 are subject only to homogeneous boundary conditions. 

To eliminate the Pr, Gr dependence in (24), it is convenient to break this prob- 

lem into three parts by means of the transformations 

and 

with homogeneous boundary conditions for $;, & and $: . 
As in the previous cases, (46) were solved numerically and the streamlines 

$6, f; and $: so determined are plotted in figures 8(a ) ,  (b)  and (c), respectively. 

It is apparent that each mode has a dominant set of closed streamlines, $; and 

$; corresponding to counterclockwise flow and $: to clockwise circulation. I n  

addition fi exhibits a weak clockwise circulation for x > 1. It is significant that 

f; and $!! are two orders of magnitude smaller than $;, since, unless Pr < 1, $, 
(and therefore w 2 )  will always be dominated by $; (and w;) .  

I n  principle, it is possible to continue generating higher-order corrections to  

the stream-function and temperature profiles in the end region. However, with 

each higher-order term, the number of numerical solutions that must be calcu- 

lated increases substantially. In  fact, for the O(An)  problem, one must obtain 

2n - 1 numerical solutions. Because of the symmetry properties of the previously 

obtained numerical solutions, the O(A4) problem (which has not been specifically 

outlined) does not contribute to K ,  (i.e. c5 E 0). Hence, in order to obtain the 
next non-trivial correction to the temperature gradient in the core (O(Gr4 Pr4A5)), 

one must proceed to the O(A5) problem in the end region. Since 13 additional 

solutions would be required fully to determine c6, we have elected to terminate 

trhe asymptotic expansion a t  O(A3). The implications of the results t o  this order 
are discussed in the next section. 
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FIGURE 8. (a) O(Pr2 CTr2 A2) stream-function correction $;, ( b )  O(PrCr2 A2) stream-function 
correction @: and (c) O(Gr2 d2) stream-function correction f!. 

The composite expansion for the end region 

To obtain a qualitative appreciation of the influence of the higher-order cor- 

rections +l and 92 on the flow characteristics in the end region, we have plotted 

as we11 as the composite functions 

Yl = i- Pr Gr A$; i- Gr A$:, (47a) 

Y2 = YPl+Pr2Gr2A2$~+ PrGr2A3yii-Gr2,43+[ (47b) 

in figure 9 for the representative parameter values Gr = 8 x lo3, Pr = 6-983 

and A = 0.01. For these values, the correction terms in (47) are approximately 

one order of magnitude smaller than $o. Hence, a good qualitative idea of the 

influence of each correction can be deduced, although higher-order terms 

1 5  FLM 65 
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FIGURE 9. Comparison of streamlines of composite functions Yl and Y z  
with $o. -, @o; - - - -  Y .--- Y 

9 1 ,  , 2 ’  

may still have an appreciable influence on any quantitative comparison between 

the asymptotic and exact (numerical) solution for this parameter range. 

With the above limitation in mind, we note that the dominant qualitative 

effect of the first correction is to skew the streamlines in the coId end of the box 

upward relative to the symmetric function $,,. That is, the streamlines entering 

the cold end region advance further into the upper corner and are then deflected 

outwards to a more gently rounded corner a t  the bottom by the action of the end 

wall. 

This shift in the streamlines represents the first effects of the stable stratifica- 

tion on the flow in the end region. A possible physical explanation is that the 

stratification retards vertical motion so that the fluid starts its downward flow 

nearer the end wall where the stratification is weakest owing to  the end-wall 

cooling. 
For particular values of the parameters considered, the second correction $2 

has an even more pronounced influence on the contour lines than does the first 

correction. (In the asymptotic limit as A -+ 0, of course, the first corrections 

will be larger than the second corrections.) The influence of $2 on the flow is to 
increase the net local mass flux. Figure 9 indicates that this increased mass flux 

may result in closed streamlines in the end region. The parallel streamlines that 

leave the core are diverted towards the upper wall and away from the lower wall 
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as they traverse the end region. The characteristic ‘bump’ in the streamlines 

which results is a prominent feature of the numerical results of part 2. 

The value which we have used for Pr in the composite expansion of figure 9 

is approximately that for water. As we have noted previously, the corrections 

@;,@; and $[ become appreciable only as Pr becomes very small. Clearly, in 

view of the form of @; and $[, the detailed nature of the end-region flow will be 

considerably modified in the limit as Pr -+ 0. I n  particular, instead of the up- 

ward shift of the streamlines which we observed for Pr = O( 1) ,  the streamlines 

in the cold end of the cavity will be shifted downwards for Pr < I. I n  addition, 

the end-region flow will be characterized by the absence of any closed streamlines. 

5. Further discussion of results 

tion or correlation of the Nusselt number, the dimensionless heat transfer rate 

One of the main goals of theory and experiment for cavity flows is the predic- 

as a function of Gr, Pr and A .  Such correlations have generally been deduced 

either from the results of many numerical solutions of the full Navier-Stokes 

equations (cf. Newel1 & Schmidt 1970) or from the results of numerous experi- 

ments. 

It is possible to obta,in an expression for the Nnsselt number from the present 

asymptotic approach for the limit A + 0 with Pr and Gr fixed. To obtain the 

relationship, we must evaluate (48) using the temperature profile in the cold end 

of the cavity, correct to O(Gr2 PrZAz), e.g. 

8 = AX + Gr Pr AWL -+ Gr2 Pr2 A30; + Gr2 Pr Awl. (49) 

Owing to the antisymmetry of 0; about y = 0.5 evident in figure 4, 0; does not 

contribute to the integral (48). Similarly, 0; does not contribute to the integral. 

The contribution of 0;, on the other hand, must be determined by numerical 

integration of the previously calculated distribution of 0;. Correct to O(Gr2 Pr2 A3) 
the result is 

Nu = A(l- tZ.86 x 10-6Gr2Pr2A2).t (50) 

The Nusselt number, as defined by (48), is equivalent to the longitudinal dis- 

persion rate which is frequently used to characterize real estuaries. It is, therefore, 

significant that the first convective contribution to Nu is precisely the Taylor 

dispersion coefficient, calculated using the first-order core velocity profile (cf. 

equation (12) of the recent review paper of Fischer (1973)). 

At the present time, there exist no experimentally or numerically deter- 

mined correlations for Nu, that are valid for A < 1, with which (50) may be 
compared. However, it will be shown in part 2 that values of Nu calculated from 

numerical solutions of the full Navier-Stokes equations for 0-1 < A < 0.05 

t The next correction t o  Nu arises from the O(A4) problem and can be shown to  be 
c;Gr2 Pr2 A4. 

15-2 
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agree with (50) provided only that Gr2 Pr2 A3 is suitably restricted in magni- 

tude. A point of some interest with regard to (50) is the graphic illustration it 

provides of the fundamental difference between the limiting processes A -+ 0, 

Gr 9 1 (fixed) and A < I (fixed), Gr -+ 00. In  the latter circumstance we have 

previously suggested (and our numerical and experimental results of parts 2 

and 3 provide further evidence in corroboration) that the flow structure will be 

dominated by natural-convection boundary layers a t  the side walls, with all of 

the horizontal temperature drop occurring in these regions and the interior core 

flow driven primarily by the entrainment-detrainment process associated with 

these layers. In  this case, the Nusselt number (48) must clearly be proportional to 

Grm, with m > 0. I n  contrast, however, the expression (50) shows that, if Gr is 

held fixed and A is decreased without limit, the Nusselt number must ultimately 

become independent of Gr to first order, no matter how large Gr may be! 

Finally, although the asymptotic analysis which we have considered is 

strictly valid only in the limit A -+ 0 with Gr and P r  fixed, it is useful to consider 

the range of values of these parameters where the results may be of practical use. 

Such an undertaking is, perhaps, particularly desirable in the present circum- 

stance since (14) and (15) indicate the existence of a parallel flow structure to all 

orders of magnitude in A. Certainly the asymptotic treatment does not explicitly 

indicate an upper limit of A. However, the numerical solution for w,,, figure 2 (b ) ,  

indicates that the equi-vorticity lines are graphically parallel only for x > 2 .  

Thus, before parallel flow can exist, the cavity must be a t  least four times as long 

as it is deep, or A 5 0.25. The form found for K,, e.g. 

K ,  = 1 +ciGr2 Pr2 A3+O(Gr4 Pr4A5) ,  

indicates that the actual value of A necessary for the core solution (14) and (15) 

to be valid must depend explicitly upon the fixed values of Gr and Pr. Although 

a rigorous convergence criterion is not possible with the limited results presented 

here, an approximate criterion can be obtained by requiring only that the second 

term in the expansion for li, be small relative to the first. If we take 0.1 to be 

small, then it is found that 

Gr2 Pr2 A3 5 lo5. 

Even if the ‘small’ correction were allowed to be O(l ) ,  the range of values of 

Gr, Pr and A encompassed by (51) would not be changed substantially. It is, of 

course, necessary to examine experimental results and/or numerical solutions of 

the full Navier-Stokes equations in order to substantiate the estimate embodied 

in (51).  This we do in parts 2 and 3 of the present work. 

(51) 

This work was done, in part, while J.Imberger was a visitor to the Keck 
Laboratory of Environmental Engineering at the California Institute of Tech- 

nology, with the support of a National Science Foundation Grant GK-35774X. 
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