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A numerical study of transient natural convection in a square cavity with partly ther-

mally active side walls is introduced. The thermally active regions of the side walls are

periodic in time. Top and bottom of the cavity are adiabatic. Nine different positions of

the thermally active zones are considered. The governing equations are solved using con-

trol volume method with power-law scheme. The results are obtained for various values

of amplitude, period, and Grashof numbers ranging from 104–106 and different ther-

mally active situations. It is found that the average heat transfer increases by increasing

amplitude for P = 1,5, and decreasing for P = 3. The average Nusselt number behaves

nonlinearly as a function of period.

Copyright © 2006 N. Nithyadevi et al. This is an open access article distributed under the

Creative Commons Attribution License, which permits unrestricted use, distribution,

and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Natural convection in fluid-filled rectangular enclosures has received considerable atten-

tion over the past several years due to the wide variety of applications that involve natural

convection processes. These applications span such diverse fields as solar energy collec-

tion, nuclear reactor operation and safety, the energy efficient design of building, room,

and machinery, waste disposal, and fire prevention and safety. The oscillation-induced

heat transport has been studied by a number of researchers due to its many industrial

applications, such as bioengineering, chemical engineering, and so forth.

Antohe and Lage [1] studied the amplitude effect on convection induced by time-

periodic heating. It is shown that the convection intensity within the enclosure increases

linearly with heating amplitude. Crunkleton et al. [2] studied the numerical simulation

of periodic flow oscillation for low Prandtl number fluids in rectangular enclosure. They

observed nonperiodic flows for rectangular cavity with aspect ratio 2.0. Kim et al. [3]

studied the buoyant convection with internal heat generation under oscillating sidewall

temperature of a cavity. It is found that the secondary peak resonance is detected for

higher internal Rayleigh number.
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Kuhn and Oosthuizen [4] numerically studied unsteady natural convection in a par-

tially heated rectangular cavity. They concluded that as the heated location moves from

the top to the bottom, the Nusselt number increases upto a maximum and then decreases.

Lakhal et al. [5] studied the transient natural convection in a square cavity partially heated

from side. In the first, the temperature is varied sinusoidally with time while in the sec-

ond, it varies with a pulsating manner. The results showed that the mean values of heat

transfer and flow intensity are considerably different with those obtained in stationary

regime.

Pantokratoras [6] studied natural convection of water near the density extremum

along a vertical plate with sinusoidal surface temperature variation. It is found that there

is an inner boundary layer near the plate with periodic characteristics. Saeid and Mo-

hamad [8] studied a nonequilibrium model of periodic free convection and discussion.

Their results show that increasing the amplitude and frequency of the oscillating surface

temperature decreases the heat transfer rate.

Most of the above-cited works are concerned with natural convection in rectangular

geometries due to either a vertically or horizontally imposed heat flux or temperature

difference. In fields like solar energy collection and cooling of electronic components,

the active walls may be subject to abrupt temperature nonuniformities due to shading or

other effects. The relative position of the hot and cold wall regions has significant effects

on the flow pattern and heat transfer. This paper describes the natural convection in a

square cavity with periodically oscillating partly thermally active vertical walls for nine

different locations.

2. Mathematical formulation

Consider a two-dimensional square cavity of length L filled with a fluid as shown in

Figure 2.1. A portion of the right side wall is kept at a temperature θc and a portion

of the left side wall temperature is periodic in time. The remaining parts of the cavity

are insulated. For nine different combination of thermally active wall locations, the heat

transfer will be investigated.

Under these assumptions the equations governing the motion of a two-dimensional

viscous incompressible fluid may be written as
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Figure 2.1. Physical configuration.

The appropriate initial and boundary conditions are

t = 0; u= v = 0, θ = θc,

t > 0; u= v = 0 on all walls,

θ = θh
(

1− asin(2π f t)
)

hot part, θ = θc cold part,

∂θ

∂n
= 0 elsewhere.

(2.3)

Introducing the following nondimensional variables: τ = t/(L2/ν), (X ,Y) = (x, y)/L,

f = 1/p, P = pν/L2, A = (a/θh)θc, (U ,V) = (u,v)/(ν/L), Ψ = ψ/ν, ζ = ω/(ν/L2), T =
(θ− θc)/(θh− θc), with θh > θc, we get the vorticity-stream function formulation of the

above problem (2.1) as
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where

U =−
∂Ψ

∂Y
, V =

∂Ψ

∂X
, ζ =

∂U

∂Y
−
∂V

∂X
. (2.7)

The initial and boundary conditions in the dimensionless form are

τ = 0; Ψ= 0, T = 0,

τ > 0; Ψ=
∂Ψ

∂Y
= 0,

∂T

∂X
= 0, at X = 0 & 1,

T = 1−Asin
πτ

P
hot part, T = 0 cold part at Y = 0 & 1,

∂T

∂n
= 0 elsewhere at Y = 0 & 1.

(2.8)

Nondimensional parameters that appear in the equations are Gr = gβ(θh− θc)L3/ν2

Grashof number, Pr = ν/α Prandtl number, g acceleration due to gravity, ν kinematic

viscosity, α thermal diffusivity, β coefficient of thermal expansion, T dimensionless tem-

perature, t time, θ temperature, A amplitude, 2P period. The local Nusselt number is

defined by Nu = ∂T/∂Y |y=0 resulting in the average Nusselt number as Nu=
∫

h NudX ,

where h= L/2 is length of thermally active part.

3. Method of solution

The governing (2.4)–(2.7) were discretized using the finite volume formulation, with

power-law scheme (Patankar [7]). The region of interest was covered with m vertical

and n horizontal uniformly spaced grid lines. The numerical solution was true-transient

and fully implicit. At each time step the temperature and vorticity distributions were ob-

tained from (2.4) and (2.5), respectively. The resulting set of discretized equations for

each variable is solved by a line-by-line procedure, combining the tridiagonal matrix al-

gorithm (TDMA), and the stream function distribution was obtained from (2.6) by using

successive over relaxation (SOR) and a known vorticity distribution. The dimensionless

time step which yielded convergence for the majority of cases was τ = 10−4. An iterative

process was employed to find the streamfunction, vorticity, and temperature fields. The

process was repeated until the following convergence criterion was satisfied:

∣

∣

∣

∣

φn+1(i, j)−φn(i, j)

φn+1(i, j)

∣

∣

∣

∣

≤ 10−5. (3.1)
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Figure 3.1. Average Nusselt number for different grid sizes.

The overall Nusselt number was also used to develop an understanding of that grid

fineness is necessary for accurate numerical simulations. The numerical solutions were

done for different grid system from 21× 21 to 101× 101. After 41× 41 grids, there is no

considerable change in average Nusselt number, see Figure 3.1. So 41× 41 grid is used to

find solutions for different parameters because a grid containing 41× 41 meshes yields

satisfactory results.

4. Result and discussion

The investigations are carried out for different thermally active locations, Grashof num-

bers, amplitudes, and periods of time-periodic hot wall temperature. Even though there

are nine different thermally active locations considered, the time history of temperature

and flow fields is given for the cases, middle part of both thermally active walls, and bot-

tom of the hot wall and top of the cold wall. In Figures 4.1–4.6, the darkened area of side

walls indicates the thermally active position. Figures 4.1–4.3 show the isotherms, stream-

lines, and velocity vectors for Gr = 106, A = 0.4, P = 1, and middle-middle thermally

active location. In the beginning conduction dominates. For τ = 0.005, the isotherms are

attracted towards the top corner of the hot wall. It is clearly seen from streamlines and

velocity vectors that there exists a small counter acting vertex near the top corner of the

hot wall. Further increasing in τ = 0.01 the convection mode starts and the clockwise

rotating cell occupies the left side half of the cavity. When τ = 0.05 the counterclock-

wise vertex grows and strengthens on the top left corner and the clockwise rotating eddy

occupies the remaining part of the cavity. After τ = 0.1 there is no change in flow and

temperature fields.
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(a) τ = 0.0025 (b) τ = 0.0075 (c) τ = 0.01

(d) τ = 0.025 (e) τ = 0.05 (f) τ = 0.1

Figure 4.1. Unsteady-state isotherms, streamlines, and velocity vectors for Gr= 106.

(a) τ = 0.0025 (b) τ = 0.0075 (c) τ = 0.01

(d) τ = 0.025 (e) τ = 0.05 (f) τ = 0.1

Figure 4.2. Unsteady-state isotherms, streamlines, and velocity vectors for Gr= 106.
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(a) τ = 0.0025 (b) τ = 0.0075 (c) τ = 0.01

(d) τ = 0.025 (e) τ = 0.05 (f) τ = 0.1

Figure 4.3. Unsteady-state isotherms, streamlines, and velocity vectors for Gr= 106.

(a) τ = 0.0025 (b) τ = 0.0075 (c) τ = 0.01

(d) τ = 0.025 (e) τ = 0.05 (f) τ = 0.1

Figure 4.4. Unsteady-state isotherms, streamlines, and velocity vectors for Gr= 106.
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(a) τ = 0.0025 (b) τ = 0.0075 (c) τ = 0.01

(d) τ = 0.025 (e) τ = 0.05 (f) τ = 0.1

Figure 4.5. Unsteady-state isotherms, streamlines, and velocity vectors for Gr= 106.

(a) τ = 0.0025 (b) τ = 0.0075 (c) τ = 0.01

(d) τ = 0.025 (e) τ = 0.05 (f) τ = 0.1

Figure 4.6. Unsteady-state isotherms, streamlines, and velocity vectors for Gr= 106.
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Figure 4.7. Variation of temperature gradient along the hot wall for different amplitude A, P = 1, and

Gr= 106.

The transient results of the heat and flow fields for Gr = 106, A = 0.4, P = 1, and

bottom-top thermally active location are drawn on Figures 4.4–4.6. At the very beginning,

τ = 0.0025, the left bottom corner of the cavity is active and the remaining portion of

the fluid inside the cavity is stagnant. Hence conduction is dominante (Figure 4.4(a)).

As time increases a small counter rotating vortex appears on the top left corner and the

clockwise cell grows and occupies the majority of the cavity. Further, increasing time

(τ = 0.01,0.025), the clockwise vortex occupies the whole cavity except the top left cor-

ner. Still increasing time, the counter-rotating cell near the top left corner grows and

strengthen. After that the same behavior was found for all τ (τ →∞).

Figure 4.7 shows the variation of the hot wall temperature for different amplitudes

A = 0.2,0.4,0.6 and period P = 1. These curves clearly indicate the variation in temper-

ature of the hot wall. For A = 0.2, the maximum and minimum hot wall temperatures

are 1.2 and 0.8, respectively. Similarly for A= 0.4,0.6, the maximum and minimum hot

wall temperatures are 1.4,0.6 and 1.6,0.4, respectively. Variation of hot wall temperature

for different periods P = 1,3,5 and A = 0.4 is displayed in Figure 4.8. Figure 4.9 shows

the time history of the average Nusselt number for different Grashof numbers Gr= 104,

105,106 with period P = 1 and amplitude A= 0.4. Increase in Grashof number increases

the average Nusselt number.
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Figure 4.8. Variation of temperature gradient along the hot wall for different period P, A= 0.4, and

Gr= 106.
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Figure 4.9. Oscillation of average Nusselt number for different Grashof numbers, P = 1, and A= 0.4.
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Figure 4.10. Oscillation of average Nusselt number for different period P, A= 0.4, and Gr= 106.

Figure 4.10 shows the average Nusselt number variation for different periods P = 1,3,5

and A = 0.2. The variation of average Nusselt number lies between 6.8 and 4.2 for all

values of period after certain time. Figure 4.11 shows the variation of the average Nus-

selt number versus the amplitude for different periods. For a fixed period (i.e., P = 1)

the enhanced heat transfer rate is found for bottom-top thermally active location in

Figure 4.11(a). There is no considerable variation in the average Nusselt number for in-

creasing amplitude A and P = 1. When P = 3 the heat transfer rate is decreased for in-

creasing the amplitude. Further increasing period P = 5, the same behavior is observed

as in the case of Figure 4.11(a).

The effect of period for different amplitude and Grashof number Gr = 106 is drawn

on Figures 4.12(a)–4.12(c). It is clearly seen from these figures that the average Nusselt

number behaves nonlinearly as a function of period. The variation among the thermally

active location is very small for increasing amplitude. To evaluate how the thermally active

location effects the average Nusselt number along the hot wall, average Nusselt number

is plotted as a function of Grashof number for A = 0.4 and P = 1 in Figure 4.13. When

Gr < 4.0× 105, heat transfer is to be maximum for the thermally active location at the

middle part of the hot wall and the top part of the cold wall, but when Gr ≥ 4.0× 105,

the thermally active location is at the bottom of the hot wall and cool at the top of the

other wall giving better result. For low values of Grashof number (Gr = 104) there is
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Figure 4.11. Variation of average Nusselt number versus amplitude for different period and Gr= 106.

no variation for change in cold wall location. This is clearly seen from Figure 4.13 that

the curves are merged. Increasing Gr values, the difference increases slowly. There is no

considerable variation on changing the active parts of the cold wall when the hot wall is

fixed at one location.

Figure 4.14 shows the mid-height velocity profiles for Gr= 106 and different thermally

active locations. The particle near the vertical walls has higher velocity (curves II) for the

middle part thermally active of the left (hot) wall and for all cases of the right (cold)

wall than the other two locations of thermally active of left wall (curves I and III). The

variation of the transient local Nusselt number with time along the hot wall of the cavity
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Figure 4.12. Variation of average Nusselt number versus period for different amplitude and Gr= 106.

at different position is presented in Figure 4.15 for Gr= 104–106. It is seen that the local

Nusselt number decreases for a short time and then increase to reach the steady state

value.

5. Conclusion

It is observed that heat transfer is enhanced when thermally active location is at the mid-

dle of the hot wall for Gr < 4.0× 105 and at the bottom of the hot wall for Gr≥ 4.0× 105,

respectively. Increasing Grashof number, heat transfer rate increases. Circulation rate of
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Figure 4.13. Average Nusselt number for different Grashof numbers, P = 1, and A = 0.4. (I) Top

active hot wall, (II) middle active hot wall, (III) bottom active hot wall.
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Figure 4.15. Variation of the transient local Nusselt number for P = 1 and A= 0.4.

the eddy is increased when increasing Grashof number. There is no considerable varia-

tion due to changing the thermally active parts of the cold wall when the thermally active

location of the hot wall is fixed. The average Nusselt number behaves nonlinearly as a

function of period. The heat transfer increases for increasing amplitude, P = 1,5. When

P = 3, the average heat transfer rate is decreased.
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