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Abstract Natural convection in a two-dimensional, square porous cavity filled with a

nanofluid and with sinusoidal temperature distributions on both side walls and adiabatic

conditions on the upper and lower walls is numerically investigated. The flow is assumed

to be slow so that advective and Forchheimer quadratic terms are ignored in the momentum

equation. The applied sinusoidal temperature is symmetric with respect to the midplane of

the enclosure. Numerical calculations are produced for Rayleigh numbers in the range of

10–104 in comparison with other authors. The present models, in the form of an in-house

computational fluid dynamics code, have been validated successfully against the reported

results from the open literature. It is found that the results are in very good agreement.

Results are presented in the form of streamlines, isotherm contours, and distributions of the

average Nusselt number.

Keywords Free convection · Square cavity · Sinusoidal temperature · Porous media ·

Nanofluids · Numerical method

1 Introduction

The phenomenon of convective flow is prevalent in fields of physics and engineering, such

as geothermal reservoirs (Jue 2002), float glass production (Prieto et al. 2002), flow and heat

transfer in solar ponds (Mansour et al. 2004), air conditioning in rooms (Al-Sanea et al. 2012),
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cooling of electronic devices (Alves and Altemani 2012; Kuznetsov and Sheremet 2008),

etc. Natural convection in a porous cavity has received considerable attention in recent years

because of its relation to the thermal performance of many engineering installations (Nield

and Bejan 2013). Natural convection heat transfer in domains containing superposed fluid

and porous medium is a fundamental transport mechanism encountered in a wide range of

engineering, geophysics, and scientific applications, such as packed bed solar energy storage,

fibrous and granular insulation systems, water reservoirs, post-accident cooling of nuclear

reactors, etc. (Bagchi and Kulacki 2014). Although buoyant convection in this system was

first studied about 40 years ago, there has lately been renewed interest in convective flow in

porous cavities owing to its importance in environmental and energy management problems in

current scientific and geo-political context (Bagchi and Kulacki 2014). Application of systems

and control concept of flow through porous media to oil and gas reservoir simulation and

other application areas of subsurface flow simulation such as CO2 storage, geothermal energy,

or groundwater remediation are also important research topics in porous media nowadays

(Jansen 2013).

It seems that there are only several studies in the literature on natural convection in cavities

filled with viscous fluid with periodic temperature conditions imposed upon the bottom

or sidewalls. For example, Poulikakos (1985) studied an enclosure with its left sidewall

differentially heated, one half of the wall is heated and the other half is cooled, and the

remaining walls are insulated. He showed that a penetrating thermal layer is formed, the

size of which is a function of Rayleigh number and aspect ratio of the enclosure. Lage and

Bejan (1993) studied enclosures with one sidewall heated using a pulsating heat flux and the

other sidewall cooled at constant temperature. They showed that at high Rayleigh numbers,

the buoyancy-driven flow has the tendency to resonate to the periodic heating that has been

supplied from the side. Bilgen et al. (1995) used a system of discrete temperature sources

placed periodically on the bottom wall of a shallow channel. Sarris et al. (2002) studied natural

convection in a two-dimensional enclosure with sinusoidal upper wall temperature. The work

by these authors was motivated by the need to understand the heat transfer characteristics in

glass melting tanks, where a number of burners placed above the glass tank create periodic

temperature profiles on the surface of the glass melt (Sarris et al. 1999).

A major area of recent investigation has been the reconciliation of the several mathemat-

ical nanofluid models currently in use. Of particular interest are the boundary conditions at

the walls of the porous cavity and the prediction of the heat transfer coefficients when the

convective currents are driven by sinusoidal temperature distributions. The main objective

of the present study is, therefore, to analyze the natural convection in a square porous cavity

with sinusoidal temperature distributions on both sidewalls filled with a nanofluid using the

nanofluid mathematical model proposed by Buongiorno (2006). To the best of our knowl-

edge, this problem has not been considered before, so that the reported results are new and

original.

2 Basic Equations

Consider the free convection in a square porous cavity filled with a nanofluid based on water

and nanoparticles. It is assumed that nanoparticles are suspended in the nanofluid using either

surfactant or surface charge technology. This prevents nanoparticles from agglomeration and

deposition on the porous matrix (Kuznetsov and Nield 2013; Nield and Kuznetsov 2014).

Further, it is very important to explain how nanofluid flow is possible in a porous medium.

It has been shown by Wu et al. (2010, 2011) that the porous matrix works as a filter for
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Natural Convection in a Square Porous Cavity 413

Fig. 1 Physical model and coordinate system

nanoparticles. This demonstrates that we are simulating here a real physics problem of natural

convection in a square porous cavity filled with a nanofluid using the mathematical nanofluid

model proposed by Buongiorno (2006) as in many papers pioneered by Nield and Kuznetsov

(2009a, b, 2010, 2011, 2014) and Kuznetsov and Nield (2010a, b, c, d, 2011a, b, c, 2013).

A schematic geometry of the problem under investigation is shown in Fig. 1, where x and

y are the Cartesian coordinates and L is the size of the walls. The cavity is assumed to be

impermeable, and the horizontal walls are assumed to be thermally insulated. At the same

time, the vertical walls have imposed two sinusoidally varying temperature distributions

according to the space coordinate as follows (Sarris et al. 2002; Deng and Chang 2008):

T (y) = Tc + Al sin

(
2 π y

L

)
at x = 0, (1)

T (y) = Tc + Ar sin

(
2 π y

L
+ ϕ

)
at x = L , (2)

where the reference temperatures of the sinusoidal temperature profiles on the left and right

sidewalls are the same Tc, but the amplitude and phase of the sinusoidal profiles are, respec-

tively, Al and 0, and Ar and ϕ.

The Darcy–Boussinesq approximation is employed. Homogeneity and local thermal equi-

librium in the porous medium is assumed. We consider a medium whose porosity is denoted

by ε and permeability by K. The following are the four field equations for embody the

conservation of total mass, momentum, thermal energy, and nanoparticles, respectively (see

Buongiorno 2006; Kuznetsov and Nield 2013; Nield and Kuznetsov 2014):

∇ · V = 0, (3)

0 = −∇ p −
µ

K
V +

[
Cρp + (1 − C)ρf0 (1 − β (T − Tc))

]
g, (4)

σ
∂T

∂t
+ (V · ∇)T = αm∇2T + δ [DB∇C · ∇T + (DT/Tc)∇T · ∇T ] , (5)

ρp

(
∂C

∂t
+

1

ε
(V · ∇)C

)
= −∇ · jp, (6)
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where V is the Darcy velocity vector; T is the fluid temperature; C is the nanoparti-

cle volume fraction; t is the time; p is the fluid pressure; g is the gravity vector; DB is

the Brownian diffusion coefficient; DT is the thermophoretic diffusion coefficient; jp =

−ρp[DB∇C + (DT/Tc)∇T ] is the nanoparticles mass flux; ρf0 is the reference density of

the fluid; αm, µ, and ρp denote the effective thermal diffusivity of the porous medium,

the dynamic viscosity, and nanoparticle mass density, respectively; δ and σ are quantities

defined by δ = ε(ρCp)p/(ρCp)f and σ = (ρCp)m/(ρCp)f ; Cp is the heat capacity at con-

stant pressure; (ρCp)f is heat capacity of the base fluid; (ρCp)p is effective heat capacity of

the nanoparticle material; (ρCp)m is effective heat capacity of the porous medium; and β is

the coefficient of thermal expansion.

The flow is assumed to be slow so that an advective term and a Forchheimer quadratic term

do not appear in the momentum equation. In keeping with the Boussinesq approximation and

an assumption that the nanoparticle concentration is dilute, and with a suitable choice for the

reference pressure, we can linearize the momentum equation and write Eq. (4) as

0 = −∇ p −
µ

K
V +

[
C

(
ρp − ρf0

)
+ ρf0 (1 − β (T − Tc) (1 − C0))

]
g. (7)

Equations (3), (5)–(7) for the problem under consideration can be written, after the pressure

p is eliminated by cross-differentiation, in Cartesian coordinates x and y as

∂u

∂x
+

∂v

∂ y
= 0, (8)

0 = −
µ

K

(
∂u

∂ y
−

∂v

∂x

)
+ g

(
ρp − ρf0

) ∂C

∂x
− (1 − C0) ρf0βg

∂T

∂x
, (9)

σ
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂ y
= αm

(
∂2T

∂x2
+

∂2T

∂ y2

)
+ δ

{
DB

(
∂C

∂x

∂T

∂x
+

∂C

∂ y

∂T

∂ y

)

+

(
DT

Tc

) [(
∂T

∂x

)2

+

(
∂T

∂ y

)2
]}

, (10)

∂C

∂t
+

1

ε

(
u

∂C

∂x
+ v

∂C

∂ y

)
= DB

(
∂2C

∂x2
+

∂2C

∂ y2

)
+

(
DT

Tc

)(
∂2T

∂x2
+

∂2T

∂ y2

)
, (11)

where u and v are the velocity components along x and y directions, respectively.

One can introduce a stream function ψ defined by

u =
∂ψ

∂ y
, v = −

∂ψ

∂x
, (12)

so that Eq. (8) is satisfied identically. We are then left with the following equations taking

into account steady-state regime:

∂2ψ

∂x2
+

∂2ψ

∂ y2
= −

(1 − C0)ρf0gKβ

µ

∂T

∂x
+

ρp − ρf0

µ
gK

∂C

∂x
, (13)

∂ψ

∂ y

∂T

∂x
−

∂ψ

∂x

∂T

∂ y
= αm

(
∂2T

∂x2
+

∂2T

∂ y2

)
+ δ

{
DB

(
∂C

∂x

∂T

∂x
+

∂C

∂ y

∂T

∂ y

)

+
DT

Tc

[(
∂T

∂x

)2

+

(
∂T

∂ y

)2
]}

, (14)

1

ε

(
∂ψ

∂ y

∂C

∂x
−

∂ψ

∂x

∂C

∂ y

)
= DB

(
∂2C

∂x2
+

∂2C

∂ y2

)
+

DT

Tc

[
∂2T

∂x2
+

∂2T

∂ y2

]
. (15)
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Introducing the following dimensionless variables

x = x/L , y = y/L , ψ = ψ/αm, θ = (T − Tc)/�T , φ = C/C0, (16)

where �T = Al (amplitude of the sinusoidal profile), and substituting (16) into Eqs. (13)–

(15), we obtain

∂2ψ

∂x2
+

∂2ψ

∂y2
= −Ra

∂θ

∂x
+ Ra · Nr

∂φ

∂x
, (17)

∂ψ

∂y

∂θ

∂x
−

∂ψ

∂x

∂θ

∂y
=

∂2θ

∂x2
+

∂2θ

∂y2
+ Nb

(
∂φ

∂x

∂θ

∂x
+

∂φ

∂y

∂θ

∂y

)
+ Nt

[(
∂θ

∂x

)2

+

(
∂θ

∂y

)2
]

,

(18)

∂ψ

∂y

∂φ

∂x
−

∂ψ

∂x

∂φ

∂y
=

1

Le

[
∂2φ

∂x2
+

∂2φ

∂y2

]
+

1

Le

Nt

Nb

[
∂2θ

∂x2
+

∂2θ

∂y2

]
, (19)

where Ra = (1 − C0)gKρf0β�T L/(αmµ) is the Rayleigh number. The corresponding

boundary conditions of these equations are given by

ψ = 0, θ = sin(2 π y), j̃p = 0

(
or Nb

∂φ

∂x
+ Nt

∂θ

∂x
= 0

)
on x = 0,

ψ = 0, θ = γ sin(2 π y + ϕ), j̃p = 0

(
or Nb

∂φ

∂x
+ Nt

∂θ

∂x
= 0

)
on x = 1,

ψ = 0,
∂θ

∂y
= 0,

∂φ

∂y
= 0 on y = 0 and y = 1, (20)

where j̃p is the dimensionless nanoparticle flux. Here, the five parameters Nr, Nb, Nt, Le,

and γ denote a buoyancy-ratio parameter, a Brownian motion parameter, a thermophoresis

parameter, a Lewis number, and an amplitude ratio of the sinusoidal temperature on the right

side wall to that on the left side wall, respectively, which are defined as

Nr =
(ρp − ρf0)C0

ρf0β�T (1 − C0)
, Nb =

δDBC0

αm
, Nt =

δDT�T

αmTc
, Le =

αm

εDB
, γ =

Ar

Al
.

(21)

It should be noticed that for Nr = Nb = Nt = 0 (regular fluid), Eqs. (17) and (18) reduce to

those of Walker and Homsy (1978), Bejan (1979), Beckermann et al. (1986), Gross et al.

(1986), Moya et al. (1987), Manole and Lage (1992), and Baytas and Pop (1999).

The physical quantities of interest are the local Nusselt number Nu, the local Sherwood

number Sh, and the average Nusselt Nu and Sherwood Sh numbers.

The local Nusselt and Sherwood numbers are defined as

Nul =−

(
∂θ

∂x

)

x=0

, Shl =−

(
∂φ

∂x

)

x=0

, Nur =−

(
∂θ

∂x

)

x=1

, Shr =−

(
∂φ

∂x

)

x=1

.

(22)

The average Nusselt and Sherwood numbers are defined as

Nul =

1∫

0

Nuldy, Shl =

1∫

0

Shldy, Nur =

1∫

0

Nurdy, Shr =

1∫

0

Shrdy. (23)
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Table 1 Comparison of the

average Nusselt number of the

hot wall

Authors Ra

10 100 1,000 10,000

Walker and Homsy (1978) – 3.097 12.96 51.0

Bejan (1979) – 4.2 15.8 50.8

Beckermann et al. (1986) – 3.113 – 48.9

Gross et al. (1986) – 3.141 13.448 42.583

Moya et al. (1987) 1.065 2.801 – –

Manole and Lage (1992) – 3.118 13.637 48.117

Baytas and Pop (1999) 1.079 3.16 14.06 48.33

Present results 1.071 3.104 13.839 49.253

It should be noted here that for an analysis of Sherwood numbers it is possible to study

only Nusselt numbers because at the left and right vertical walls we have
∂φ
∂x

= − Nt
Nb

∂θ
∂x

taking

into account boundary conditions for φ (Eqs. 20). Therefore, the further analysis concerning

integral parameters will be about only average Nusselt number because Sh = − Nt
Nb

Nu and

Sh = − Nt
Nb

Nu.

3 Numerical Method

The partial differential equations (17)–(19) with corresponding boundary conditions (20)

were solved using the finite-difference method (see Aleshkova and Sheremet 2010; Sheremet

and Trifonova 2013; Sheremet et al. 2014). The steady-state solution was obtained like the

time limit for solution of the transient problem, where the approximation of the convec-

tive terms was conducted by the difference scheme of second order, allowing to consider a

sign of velocity, and the approximation of the diffusion terms was conducted by the cen-

tral differences. The transient equations were solved on the basis of Samarskii locally one-

dimensional scheme. The linear discretized equations were solved by Thomas algorithm.

The Poisson equation for the stream function was discretized by means of the five-point

difference scheme on the basis of central differences for the second derivatives. The obtained

linear discretized equation was solved by the successive over-relaxation method. Optimum

value of the relaxation parameter was chosen on the basis of computing experiments. The

computation is terminated when the residuals for the stream function get below 10−7.

The present models, in the form of an in-house computational fluid dynamics code, have

been validated successfully against the works of Walker and Homsy (1978), Bejan (1979),

Beckermann et al. (1986), Gross et al. (1986), Moya et al. (1987), Manole and Lage (1992),

and Baytas and Pop (1999) for the steady-state natural convection in a square porous cavity

with isothermal vertical and adiabatic horizontal walls. Table 1 shows the values of the average

Nusselt number computed for various Rayleigh numbers in the range of 10–104 in comparison

with other authors.

The performance of sinusoidal heating part of the model was tested against the results of

Deng and Chang (2008) and Sivasankaran and Bhuvaneswari (2013) for steady-state natural

convection in a square cavity with sinusoidal heating at vertical walls filled with the regular

fluid [see Eqs. (17)–(20) where Nr = Nb = Nt = 0] for Rayleigh numbers 103, 104, and 105,

for Prandtl number 0.7 and for the amplitude ratio of the sinusoidal temperature on the right

side wall to that on the left side wall 1.0. Figures 2, 3 and 4 show a good agreement between

the obtained streamlines and isotherms for different Rayleigh numbers and the numerical

results of Deng and Chang (2008), and Sivasankaran and Bhuvaneswari (2013).
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Natural Convection in a Square Porous Cavity 417

Fig. 2 Comparison of streamlines Ψ and isotherms Θ at Ra = 103, ϕ = 0 : numerical data of Deng and

Chang (2008) (a), numerical data of Sivasankaran and Bhuvaneswari (2013) (b), and present results (c)

Fig. 3 Comparison of

streamlines Ψ and isotherms Θ at

Ra = 104, ϕ = 0 : numerical

data of Deng and Chang (2008)

(a), and present results (b)

For the purpose of obtaining grid-independent solution, a grid sensitivity analysis is per-

formed. The grid-independent solution was performed by preparing the solution for steady-

state natural convection in a square porous cavity with sinusoidal temperature distributions

on vertical walls filled with a nanofluid at Ra = 100, Nr = Nb = Nt = 0.1, Le = 10, γ =

1, ϕ = 0. Six cases of a uniform grid are tested: 100 × 100, 200 × 200, 300 × 300, 400 ×

400, 500 × 500, and 600 × 600. Table 2 shows an effect of the mesh on the average Nusselt

number of the left vertical wall.

On the basis of the conducted verifications, the uniform grid of 500×500 points has been

selected for the following analysis.
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Fig. 4 Comparison of streamlines Ψ and isotherms Θ at Ra = 105, ϕ = π /2 : numerical data of Deng and

Chang (2008) (a), numerical data of Sivasankaran and Bhuvaneswari (2013) (b), and present results (c)

Table 2 Variations of the

average Nusselt numbers of the

left vertical wall with the uniform

grid

Uniform grids Nu

100 × 100 4.411

200 × 200 4.436

300 × 300 4.443

400 × 400 4.448

500 × 500 4.452

600 × 600 4.453

4 Results and Discussion

Numerical investigations of the boundary value problem (17)–(20) have been carried out

at the following values of key parameters: Rayleigh number (Ra = 100), Lewis number

(Le = 10–1,000), the buoyancy-ratio parameter (Nr = 0.1–0.4), the Brownian motion para-

meter (Nb = 0.1–0.4), the thermophoresis parameter (Nt = 0.1–0.4), the amplitude ratio of the

sinusoidal temperature on the right side wall to that on the left side wall (γ = 0–1), and

the phase deviation (ϕ = 0–π). Particular efforts have been focused on the effects of these

parameters on the fluid flow, heat and mass transfer characteristics.

Figure 5 illustrates streamlines, isotherms, and isoconcentrations at different values of the

Lewis number at Nr = Nb = Nt = 0.1, γ = 1, and ϕ = 0.

Regardless of the Lewis number value, four convective cells are formed inside the cavity.

Two convective cells are clockwise vortices that are located in the left bottom part and right

top part of the cavity, and two convective cells are counter clockwise vortices that are located

in the right bottom part and left top part of the cavity. The main reason for an appearance

of these circulations is an effect of vertical walls with sinusoidally varying temperature

distributions. It should be noted that an intensity of two convective cells in the top part of

the cavity is greater than an intensity of two convective cells in the bottom part of the cavity
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Natural Convection in a Square Porous Cavity 419

Fig. 5 Streamlines ψ, isotherms θ , and isoconcentrations φ for Nr = Nb = Nt = 0.1, γ = 1, ϕ = 0 : Le = 10

(a), Le = 100 (b), and Le = 1, 000 (c)

that can be explained by an effect of the buoyancy force. These four vortices are separated

by virtual vertical and horizontal walls which are both impervious and adiabatic.

Convective cells cores are close to the vertical walls due to large temperature differences in

these zones. An increase in the Lewis number does not change the intensity and configuration

of the convective cells and isotherms. Temperature and stream function distributions are

symmetrical with respect to vertical line x = 0.5. Regardless of the Lewis number value, the

heat conduction is a dominated heat transfer in the domain of interest.

The main variations with the Lewis number are related to the isoconcentrations. These

fields characterize the distributions of the nanoparticles volume fraction inside the square

cavity. Regardless of the Lewis number value, the considered regime is defined by an increase

in φ in the top part of the cavity and a decrease in φ in the bottom part of the cavity.

At small values of Le ≤ 10, the distribution of nanoparticles is non-homogeneous taking

into account Fig. 5. Such description of this regime is due to an essential deviation of the

nanoparticles volume fraction from the average value φ = 1. Moreover, the heat conduction
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Fig. 6 Variation of the average

Nusselt number at left vertical

wall with the Lewis number and

dimensionless time for

Nr = Nb = Nt = 0.1, γ = 1, ϕ = 0

regime enhances the effect of the thermophoresis phenomenon, and therefore nanoparticles

distribution is non-homogeneous with decrease in Le ≤ 10. At Le = 1,000 (Fig. 5c) when the

concentration boundary layer is very thin, the distribution of nanoparticles is homogeneous.

An increase in Le leads to homogeneity of distribution of the nanoparticles volume fraction

inside the considered cavity. It physically means that flow with large Lewis number (e.g., the

nanofluid with nanoparticles of 1–100 nm diameter) prevents spreading nanoparticles in the

nanofluid. Therefore, we have large homogeneous areas in the domains of convective cells

where the non-homogeneous areas become more confined close to the boundaries, vertical

and horizontal middle sections.

An effect of the dimensionless time and Lewis number on the average Nusselt number

at left vertical wall is presented in Fig. 6. An increase in Le from 10 to 1,000 leads to an

insignificant decrease in Nul. Taking into account boundary conditions for the nanoparticles

volume fraction (20), distributions of Shl are similar to distributions of Nul.

Figures 5b and 7 illustrate streamlines, isotherms, and isoconcentrations at different values

of the buoyancy-ratio parameter (Nr = 0.1 and 0.4). An increase in Nr does not lead to changes

in all local fields of stream function, temperature, and nanoparticles volume fraction inside

the cavity for considered values of key parameters. It is worth noting, here, that an increase

in the buoyancy-ratio parameter leads to insignificant increase in Nul and Shl (Fig. 8).

Figures 5b and 9 illustrate streamlines, isotherms, and isoconcentrations at different values

of the Brownian motion parameter (Nb = 0.1 and 0.4). It can be seen from these figures

that an increase in the Brownian motion parameter Nb leads to both significant changes in

isoconcentrations (reduction of the concentration boundary layer thickness) and conservation

of streamlines and isotherms. Changes in isoconcentrations are related to very small increase

in φ in the upper part of the cavity and very small decrease in φ in the bottom part of the

cavity. Taking into account such variations of φ, it is possible to conclude that an increment

in Nb leads to homogeneity of distribution of the nanoparticles volume fraction inside the

considered cavity, because Fig. 9 displays a deviation less than 1 % from the average value

φ = 1 relative to the case of Nb = 0.1 shown in Fig. 5b. Modification of isoconcentrations

due to an increase in the Brownian motion parameter leads to an unessential decrease in the

average Nusselt number (Fig. 10).
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Fig. 7 Streamlines ψ, isotherms θ , and isoconcentrations φ for Le = 100, Nr = 0.4, Nb = Nt = 0.1, γ =

1, ϕ = 0

Fig. 8 Variation of the average

Nusselt number at left vertical

wall with the buoyancy-ratio

parameter and dimensionless

time for Le = 100, Nb = Nt = 0.1,

γ = 1, ϕ = 0

Fig. 9 Streamlines ψ, isotherms θ , and isoconcentrations φ for Le = 100, Nb = 0.4, Nr = Nt = 0.1, γ =

1, ϕ = 0

Figures 5b and 11 illustrate streamlines, isotherms, and isoconcentrations at different val-

ues of the thermophoresis parameter. An increase in Nt leads to changes in all character-

istics (streamlines, isotherms, and isoconcentrations) that can be described in the follow-
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422 M. A. Sheremet, I. Pop

Fig. 10 Variation of the average

Nusselt number at left vertical

wall with the Brownian motion

parameter and dimensionless

time for Le = 100, Nr = Nt = 0.1,

γ = 1, ϕ = 0

Fig. 11 Streamlines ψ, isotherms θ , and isoconcentrations φ for Le = 100, Nt = 0.4, Nr = Nb = 0.1, γ =

1, ϕ = 0

ing way. One can find an intensification and increase in sizes of two convective cells in

the upper part of the cavity |ψ |Nt=0.1
max,upper part = 2.64 < |ψ |Nt=0.4

max,upper part = 2.94 and an

attenuation and decrease in sizes of two convective cells in the bottom part of the cavity

|ψ |Nt=0.1
max,bottom part = 2.43 > |ψ |Nt=0.4

max,bottom part = 2.11. Therefore, with Nt the difference

between the maximum and minimum value of the stream functions also increases indicating

higher values of local velocity. At the same time, an increase in the thermophoresis parameter

leads to more intensive heating of the bottom part and less intensive cooling of the upper

part of the enclosure in comparison with the case Nt = 0.1 shown in Fig. 5b. Such changes

characterize a decrease in the temperature differences in the bottom part and an increase in the

temperature differences in the upper part that leads to changes of convective cells intensity

as has been mentioned above.

It should be noted that the main variations with the thermophoresis parameter are related

to the isoconcentrations. An increase in Nt leads to essential changes of the nanoparticles

volume fraction both in the upper and bottom parts of the cavity. In general, these distributions

of φ can be considered as non-homogeneous.
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Fig. 12 Variation of the average

Nusselt number at left vertical

wall with the thermophoresis

parameter and dimensionless

time for Le = 100, Nr = Nb = 0.1,

γ = 1, ϕ = 0

An effect of the dimensionless time and thermophoresis parameter on the average Nusselt

number at left vertical wall is depicted in Fig. 12. It is necessary to note that an increase in Nt

leads to an increase in the average Nusselt number and, accordingly, in the average Sherwood

number taking into account boundary conditions (20).

Figures 5b and 13 illustrate streamlines, isotherms, and isoconcentrations at different val-

ues of the amplitude ratio of the sinusoidal temperature on the right side wall to that on the

left side wall. At γ = 0 (Fig. 13a) when the temperature at the right vertical wall equals

zero, two horizontal convective cells are formed inside the square cavity. An appearance of

these vortices can be explained by an effect of periodic temperature conditions imposed upon

the left vertical wall. At this regime, one can find an influence of convective heat transfer

mechanism on velocity and temperature fields that lead to small distortion of isotherm θ = 0

close to the right wall. It should be noted that an intensity of the top convective cell is greater

than an intensity of the bottom one |ψ |
top cell
max = 2.8 > |ψ |bottom cell

max = 2.64 that can be

explained by more intensive heating of the bottom part of the cavity.

Isoconcentrations reflect an increase in the nanoparticles volume fraction up to 3 % from

the average valueφ = 1 in the upper part of the cavity and similar decrease in the nanoparticles

volume fraction in the bottom part of the cavity. Such field characterizes a less homogeneous

distribution of nanoparticles.

An increase in the amplitude ratio up to γ = 0.25 (Fig. 13b), which characterizes a

presence of small periodic temperature at the right vertical wall, leads to a formation of

extra weak convective cells close to this side wall. It should be noted here that the right

upper convective cell starts to join to the left bottom convective cell. Such behavior leads to

small deformation of the left upper convective cell. Isotherms reflect a formation of both a

heat source at the bottom part and a heat sink at the top part of the right vertical wall. An

appearance of such heat elements leads to a formation of additional less homogeneous areas

close to these elements. Further increase in γ leads to both an intensification of the right top

and bottom convective cells and an expansion of less homogeneous areas close to the heat

sink and heat source.

An effect of the dimensionless time and amplitude ratio on the average Nusselt number

at left vertical wall is depicted in Fig. 14. It is necessary to note that an increase in γ leads
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Fig. 13 Streamlines ψ, isotherms θ , and isoconcentrations φ for Le = 100, Nr = Nb = Nt = 0.1, ϕ = 0 : γ = 0

(a), γ = 0.25 (b), γ = 0.5 (c), and γ = 0.75 (d)
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Fig. 14 Variation of the average

Nusselt number at left vertical

wall with the amplitude ratio and

dimensionless time for

Le = 100, Nr = Nb = Nt = 0.1,

ϕ = 0

to a decrease in the average Nusselt number and, accordingly, in the average Sherwood

number taking into account boundary conditions (20). These changes can be explained by an

interaction between thermal boundary layers and concentration boundary layers formed close

to the vertical side walls having periodic temperature. Such interaction leads to a decrease

in the temperature and concentration differences close to these walls owing to a reduction of

convective cells and areas of temperature and concentration changes.

Figures 5b and 15 illustrate streamlines, isotherms, and isoconcentrations at different val-

ues of the phase deviation ϕ for Le = 100, Nr = Nb = Nt = 0.1, and γ = 1. An increase in the

phase deviation up to π /4 (Fig. 15a) leads to a combination of the left bottom convective

cell and the right upper one. Such changes are caused by a decrease in sizes of the right

bottom heat source. At the same time, isoconcentrations reflect convective cells where the

distribution of the nanoparticles in the global vortex area is highly homogeneous. Less homo-

geneous areas are confined close to the heat sources and sinks on the vertical side walls, and

also these zones propagate along borders between vortices in streamwise. An increase in ϕ up

to π /2 (Fig. 15b) leads to an intensification of both clockwise vortex and counter clockwise

vortex located in the upper part of the cavity. At the same time, one can find an attenuation

of convective cell in the right bottom corner due to a decrease in size of the right bottom heat

source.

Isoconcentrations characterize both a decrease in nanoparticles volume fraction in the

upper part and an increase in φ in the bottom part along the wall in comparison with the case

ϕ = π /4. Further increase in ϕ leads to an attenuation of the global bottom convective cell

and an intensification of the upper one, and at ϕ = π (Fig. 15d) one can find two horizontal

vortices of equal intensity. Distributions of nanoparticles reflect structures of convective cells

and characterize a formation of two large homogeneous areas.

An effect of the dimensionless time and phase deviation on the average Nusselt number at

left vertical wall is depicted in Fig. 16. It should be noted here that an increase in ϕ leads to an

increase in the average Nusselt number and, accordingly, in the average Sherwood number

with formation of non-monotonic regions. An appearance of these increasing and decreasing

zones characterizes a replacement of several velocity and temperature configurations before

steady-state regime. Such behavior can be considered as unsteady regime.
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Fig. 15 Streamlines ψ, isotherms θ , and isoconcentrations φ for Le = 100, Nr = Nb = Nt = 0.1, γ = 1 : ϕ =

π /4 (a), ϕ = π /2 (b), ϕ = 3 π /4 (c), and ϕ = π (d)
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Fig. 16 Variation of the average

Nusselt number at left vertical

wall with the phase deviation and

dimensionless time for

Le = 100, Nr = Nb = Nt = 0.1,

γ = 1

5 Conclusions

The laminar natural convective flow and heat transfer of a water-based nanofluid in a square

porous cavity having sinusoidal temperature distributions on both side walls have been numer-

ically investigated using the nanofluid model proposed by Buongiorno. Mathematical model

has been formulated in dimensionless stream function and temperature, and solved numeri-

cally on the basis of a second-order accurate finite-difference method.

The developed algorithm has been validated by direct comparisons with previously pub-

lished papers, and the results have been found to be in good agreement. Distributions of

streamlines, isotherms, and isoconcentrations at a wide range of key parameters have been

obtained. Based on the findings in this study, we conclude that the average Nusselt and Sher-

wood numbers are increasing functions of the buoyancy-ratio parameter, thermophoresis

parameter, and phase deviation, and decreasing functions of the Lewis number, Brownian

motion parameter, and amplitude ratio. Low Lewis number and high thermophoresis para-

meter reflect essential non-homogeneous distribution of the nanoparticles inside the cavity.

Therefore, for such range of Le and Nt, a non-homogeneous model is more appropriate for

the description of the system.
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