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We study natural convection from a downward pointing cone in a viscoelastic �uid embedded in a porous medium. 
e �uid
properties are numerically computed for di�erent viscoelastic, porosity, Prandtl and Eckert numbers. 
e governing partial di�er-
ential equations are converted to a system of fourth order ordinary di�erential equations using the similarity transformations and
then solved together by using the successive linearizationmethod (SLM).Many studies have been carried out on natural convection
from a cone but they did not consider a cone embedded in a porous medium with linear surface temperature. 
e results in this
work are validated by the comparison with other authors.

1. Introduction

Natural convection of viscoelastic �uid in a porous medium
with viscous dissipation is the transfer of heat due to density
di�erences caused by temperature gradients through a per-
meable medium and heat generated due to the interaction
of �uid molecules is considered. 
ere are examples in
practical application such as thermal insulation, extraction of
petroleum resources and the so-called fracking, metal pro-
cessing, performance of lubricants, application of paints, and
extrusion of plastic sheets. 
e study of second grade �uids
has been studied but there is no single constitutive equation
that can fully describe non-Newtonian �uids [1]; due to this
fact many authors did not consider the appropriate constitu-
tive energy equation for second grade �uids.

Natural convection on a cone geometry has been studied
by among others Alim et al. [2], Awad et al. [3], Cheng
[4, 5], and Kairi and Murthy [6]. Studies have been done
on other geometries such as �ow over a �at plate, cylinders,
vertical surfaces, stretching sheets, and inclined surfaces by,
among others, Abbas et al. [7] who considered unsteady
second grade �uid �ow on an unsteady stretching sheet; they
did not consider the energy equation mainly due to dif-
�culties in its characterization. Anwar et al. [8] studied

mixed convection boundary layer �ow of a viscoelastic
�uid over a horizontal circular cylinder; they solved the
fourth order ordinary di�erential equations by consider-
ing the insu�ciency of the boundary conditions by tak-
ing the zeroth, �rst, and second order of the viscoelastic
parameter and coming up with three systems of ordinary
di�erential equations. Cortell [9] investigated �ow and heat
transfer of a viscoelastic �uid over a stretching sheet. Damseh
et al. [10] studied the transientmixed convection �owof a sec-
ond grade viscoelastic �uid over a vertical surface. 
ey used
McCormack’s method to solve their di�erential equations.
Hayat et al. [11] studied mixed convection in a stagnation
point �ow adjacent to a vertical surface in a viscoelastic �uid.


e model in this work has been originally developed
from the work of Ece [5] who studied heat and mass transfer
from a downward pointing cone in a Newtonian �uid. In this
paper the work of Ece [5] is extended to take into account the
�owof a second grade �uid in a porousmedium and the e�ect
of viscous dissipation is considered. Several other studies
have been done in natural convection in a viscoelastic �uid by
among others Hsiao [12] who studied mixed convection for
viscoelastic �uid past a porous wedge. Kasim et al. [13] inves-
tigated free convection boundary layer �ow of a viscoelastic
�uid in the presence of heat generation. Massoudi et al. [14]
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studied natural convection �ow of generalized second grade
�uid between two vertical walls. Olajuwon [15] studied the
convection heat andmass transfer in a hydromagnetic �ow of
a second grade �uid in the presence of thermal radiation and
thermal di�usion; it was shown that increasing the second
grade parameter causes reduction in the rate of the �uid �ow
and mass transfer, but heat transfer increases. Sajid et al.
investigated fully developed mixed convection �ow of a
viscoelastic �uid between permeable parallel vertical plates
[16].

Studies for viscous dissipation in a second grade �uid
have been done by many authors but some assumed that
�uids are more viscous than elastic resulting in the energy
equation without the elastic term. Viscous dissipation has
been studied by among others Subhas Abel et al. [17] who
studied viscoelastic MHD �ow and heat transfer over a
stretching sheet with viscous and ohmic dissipations and
[18] in which a Newtonian �uid was considered. 
e viscous
dissipation term which they used in [17] assumes that the
�uid is more viscous in nature than elastic. Jha [19] investi-
gated the e�ects of viscous dissipation on natural convection
�ow between parallel plates with time periodic boundary
conditions. Chen [20] studied the analytic solution of MHD
�ow and heat transfer for two types of viscoelastic �uids
over a stretching sheet with energy dissipation, internal heat
source, and thermal radiation. Cortell [21] worked on vis-
cous dissipation and thermal radiation e�ects on the �ow
and heat transfer of a power law �uid past an in�nite
porous plate. Hsiao [22] investigated multimedia physical
feature for unsteady MHD mixed convection viscoelastic
�uid over a vertical stretching sheet with viscous dissipation.
Kameswaran et al. [23] studied hydromagnetic nano�uid �ow
due to a stretching sheet or shrinking sheet with viscous
dissipation and chemical reaction e�ects.

Studies have been done in porous media by among
others Awad et al. [3, 4, 6, 24] and Singh and Agarwal [25]
who studied heat transfer in a second grade �uid over an
exponentially stretching sheet through porous medium with
thermal radiation and elastic deformation under the e�ect of
magnetic �eld.

An investigation of available literature shows that, to the
best of our knowledge, no analysis has been done on natural
convection of a viscoelastic �uid embedded in a porous
medium with viscous dissipation under the given boundary
conditions. 
e study takes into consideration a temperature
that changes linearly along the surface of the cone (see Ece
[5]).

2. Mathematical Formulation

A cone in a viscoelastic �uid embedded in a porous medium
is heated andmaintained at a linearly changing temperature�
(> �∞), and the ambient conditions aremaintained at�∞; the
�uid has a constant viscosity ]. 
e vertex angle of the cone
is 2�. 
e velocity components � and V are in the directions
of � and �, respectively, with the �-axis being inclined at an
angle � to the vertical. A sketch of the system and coordinate
axis is illustrated in Figure 1.
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Figure 1: Physical model and coordinate system.


e governing equations in this buoyant-driven �ow are
given by

��� (��) + ��� (�V) = 0,
����� + V

���� = ]

�2���2 − ]	� − 
� {� �3�����2 + V

�3���3
+���� �

2���2 − �2����� ����}
+ � (� − �∞) cos�,

����� + V

���� = ��2���2 + ]��(
����)
2

+ 
0��� (�
�2����� ���� + V

�2���2 ����) ,
(1)

where � = � sin�,  is the acceleration due to gravity, ] is
the kinematic viscosity for the �uid, 
� is the non-Newtonian
parameter of the viscoelastic �uid, � is the coe�cient of
thermal expansion, � is the thermal di�usivity, �� is the
speci�c heat capacity for the �uid, � is the density of the �uid,
and 	 is the permeability coe�cient of the porous medium.

e boundary conditions are given as

� = V = 0, � = �� (�) = �∞ + �(��) at � = 0,
���� , � �→ 0, � �→ �∞, as � �→ ∞, (2)

where � > 0 is a constant, � > 0 is the characteristic length,
and the subscript∞ refers to the ambient condition.



Mathematical Problems in Engineering 3

We introduce the nondimensional variables:

� = �� ,  = Gr1/4�� , ! = �� ,
" = �"0 , # = Gr1/4V"0 ,

� = � − �∞�� − �∞ , Gr = ("0�
]

)2,
(3)

where "0 = [� cos��(�� − �∞)]1/2. Using (3) in (1) gives
the following equations:

��� (!") + �� (!#) = 0,
"�"�� + #�"� 

= �2"� 2 − ]"	 − Λ{" �3"��� 2 + #�
3"� 3 + �"�� �2"� 2

− �2"��� �"� } + �,

" ���� + #��� = 1
Pr

�2�� 2 + Ec(�"� )
2

+ ΛEc(" �2"��� �"� + #�2"� 2 �"� ) ,
(4)

where ! = � sin�,Λ = (
0"0/]�) is the viscoelastic parame-
ter known as the Deborah number, Gr is the Grashof number,
Pr = ]/� is the Prandtl number, and Ec = ("20/���) is the
Eckert number. 
e corresponding boundary conditions are
given as

" = # = 0, � = � at  = 0,
�"� , " �→ 0, � �→ 0 as  �→ ∞. (5)

We now introduce the stream functions % = �!&( ) and� = �'( ) de�ned by

" = 1! �%� , # = − 1! �%��. (6)

Substituting (6) and the similarity variables in (4) gives the
following ordinary di�erential equations:

&��� + 2&&�� − (&�)2 + ' − 3&�
− Λ(2&�&��� − 2&&�V − (&��)2) = 0, (7)

'�� + Pr (2&'� − &�') + Pr Ec&��2
+ ΛPr Ec (&�&��2 − &&��&���) = 0. (8)

With boundary conditions,

& (0) = &� (0) = 0, ' (0) = 1, (9)

&� (∞) �→ 0, &�� (∞) �→ 0, ' (∞) �→ 0. (10)

It is of interest to discuss the skin friction and the heat transfer
coe�cient in this context.
e shear stress at the surface of the
cone is de�ned as (see Olajuwon [15])

6� = 7[����]�=0 + 
0[�
�2����� − 2���� ����]�=0, (11)

where 7 is the coe�cient of viscosity. 
e skin friction is
de�ned as

<	 = 6�(1/2) �"2∞ ,

<	 = 2�
Gr1/4

&�� (0) (1 + 3Λ&� (0)) .
(12)


e skin friction coe�cient can be expressed as

�	Gr1/42� = &�� (0) . (13)


e heat transfer rate at the surface of the cone is given by

@� = − 
�[���� ]�=0. (14)


e Nusselt number can be expressed as

Nu = �@�
 (�� − �∞) . (15)

Using the nondimensional variables (9)-(10), the dimension-
less wall heat rate is given by

NuGr−1/4 = −'� (0) . (16)
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3. Method of Solution

In this study, (7)–(10) were solved using the successive lin-
earizationmethod.
e inclusion of the non-Newtonian term
brings about the fourth order ordinary di�erential equation
for the momentum equation.
e given boundary conditions
are insu�cient to obtain a unique solution. To overcome this
problem the system is decomposed into the zeroth, �rst, and
second order systems of the viscoelastic parameter. Subhas
Abel et al. [17] showed that if this method is applied small
values of the viscoelastic parameter can be used without
di�culty in convergence. It is also noticed in this study
that the direct application of the successive linearization
method has di�culties in convergence for small values of the
viscoelastic parameter. Anwar et al. [8] also con�rmed the
same observation and solved a system of di�erential equa-
tions simultaneously and obtained better convergence for
small values of the viscoelastic parameter. In this work we
solve the system using the successive linearization method.
To solve the equations we seek the series solution of the form

& (�) = &0 (�) + Λ&1 (�) + Λ2&2 (�) + ⋅ ⋅ ⋅ ,
' (�) = '0 (�) + Λ'1 (�) + Λ2'2 (�) + ⋅ ⋅ ⋅ . (17)


e skin friction can be computed using

&�� (0) = &��0 (0) + Λ&��1 (0) + Λ2&��2 (0) + ⋅ ⋅ ⋅ . (18)


en substituting (17) into the system (7)–(10). We then
take the zeroth, �rst, and second order of the viscoelastic
parameter Λ. We obtain the following system.

Zeroth order:

&���0 + 2&0&��0 − &�20 + '0 − 3&�0 = 0, (19)

'�� + 2Pr&0'�0 − Pr&�0'0 + Pr Ec&��20 = 0, (20)

&0 (0) = 0, &�0 (0) = 0, '0 (0) = 1, (21)

&�0 (∞) = 0, '0 (∞) = 0. (22)

First order:

&���1 + 2&0&��1 + 2&1&��0 − 2&�0&�1 + '1
− 3&�1 − 2&�0&���0 + 2&0&�V0 + &��20 = 0, (23)

'��1 + 2Pr&0'1 + 2Pr&1'�0 − Pr&�0'1 − Pr&�1'0
+ 2Pr Ec&��0 &��1 + Pr Ec&�0&��20 − Pr Ec&0&��0 &���0 = 0, (24)

&1 (0) = 0, &�1 (0) = 0, &�1 (∞) = 0, (25)

'1 (0) = 0, '1 (∞) = 0. (26)

Second order:

&���2 + 2&0&��2 + 2&1&��1 + 2&�2&��0 − 2&�0&�2 − &�21 + '2 − 3&�2
− 2&�0&���1 − 2&�1&���0 + 2&0&�V1 + 2&1&�V0 + 2&��0 &��1 = 0,

(27)

'��2 + 2Pr&0'�2 + 2Pr&1'�1 + 2Pr&2'�0 − Pr&�0'2 − Pr&�1'1
+ Pr Ec (2&��0 &��2 + &��21 + 2&�0&��0 &��1 + &�1&��20 + &�2&��20

+&0&��0 &���1 + &0&��1 &���0 + &1&��0 &���0 ) = 0,
(28)

&2 (0) = 0, &�2 (0) = 0, &�2 (∞) = 0, (29)

'2 (0) = 0, '2 (∞) = 0. (30)


e functions in the system (19)–(30) may be expanded in
series form as

&0 (�) = &0� (�) + �−1∑

=0

&0
 (�) ,
'0 (�) = '0� (�) + �−1∑


=0
'0
 (�) ,

&1 (�) = &1� (�) + �−1∑

=0

&1
 (�) ,

'1 (�) = '1� (�) + �−1∑

=0

'1
 (�) ,

&2 (�) = &2� (�) + �−1∑

=0

&2
 (�) ,

'2 (�) = '2� (�) + �−1∑

=0

'2
 (�) ,
(31)

where &0�, &1�, and &2� and '0�, '1�, and '2� (C = 1, 2, 3, . . .) are
unknown functions and &0
, &1
, and &2
 and '0
, '1
, and'2
 are approximations that are found by successively solving
the linear part of equations that are obtained a�er substituting
(31) into system (19)–(30). 
ese linear equations have the
form

&���0� + D01,�−1&��0� + D02,�−1&�0� + D03,�−1&0� + D04,�−1'0� = �01,�−1,
(32)

'��0� + E01,�−1'�0� + E02,�−1'0� + E03,�−1&��0�
+ E04,�−1&�0� + E05,�−1&0� = �02,�−1, (33)

&0� (0) = 0, &�0� (0) = 0, '0� (0) = 0, (34)

&�0� (∞) = 0, '0� (∞) = 0, &��0� (∞) = 0, (35)
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&���1� + D11,�−1&��1� + D12,�−1&�1� + D13,�−1&1� + D14,�−1'1� = �11,�−1,
(36)

'��1� + E11,�−1'�1� + E12,�−1'1� + E13,�−1&��1�
+ E14,�−1&�1� + E15,�−1&1� = �12,�−1, (37)

&1� (0) = 0, &�1� (0) = 0, '1� (0) = 0, (38)

&�1� (∞) = 0, '1� (∞) = 0, &��1� (∞) = 0, (39)

&���2� + D21,�−1&��2� + D22,�−1&�2� + D23,�−1&2� + D24,�−1'2� = �21,�−1,
(40)

'��2� + E21,�−1'�2� + E22,�−1'2� + E23,�−1&��2�
+ E24,�−1&�2� + E25,�−1&2� = �22,�−1, (41)

&2� (0) = 0, &�2� (0) = 0, '2� (0) = 0, (42)

&�2� (∞) = 0, '2� (∞) = 0, &��2� (∞) = 0. (43)


e coe�cients D��,�−1, E��,�−1 (F = 0, 1, 2, 
 = 1, . . . , 5), ��1,�−1,
and ��2,�−1 are de�ned as

D01,�−1 = D11,�−1 = D21,�−1 = 2 �−1∑

=0

&0
,

D02,�−1 = D12,�−1 = D22,�−1 = −(2 �−1∑

=0

&�0
 + 3) ,

D03,�−1 = D13,�−1 = D23,�−1 = 2 �−1∑

=0

&��0
,
D04,�−1 = D14,�−1 = D24,�−1 = I,
E01,�−1 = E11,�−1 = E21,�−1 = 2Pr �−1∑


=0
&0
,

E02,�−1 = E12,�−1 = E22,�−1 = −Pr �−1∑

=0

&�0
,

E03,�−1 = E13,�−1 = E23,�−1 = Pr Ec
�−1∑

=0

&��0
,

E04,�−1 = E14,�−1 = E24,�−1 = −Pr �−1∑

=0

'0
,

E05,�−1 = E15,�−1 = E25,�−1 = 2Pr �−1∑

=0

'�0
,

�01,�−1 = −[[
�−1∑

=0

&���0
 + 2 �−1∑

=0

&0
 �−1∑

=0

&��0
 − ( �−1∑

=0

&�0
)
2

− �−1∑

=0

'0
 − 3 �−1∑

=0

&�0
]]
,

�02,�−1 = −[[
�−1∑

=0

'��0
 + 2Pr �−1∑

=0

&0
 �−1∑

=0

'�0


−Pr �−1∑

=0

&�0
 �−1∑

=0

'0
 + Pr Ec( �−1∑

=0

&��0
)
2]
]
,

�11,�−1 = −[ �−1∑

=0

&���1
 + 4 �−1∑

=0

&0
 �−1∑

=0

&�1
 + 4 �−1∑

=0

&1
 �−1∑

=0

&��0


− 6 �−1∑

=0

&��0
 �−1∑

=0

− 3 �−1∑

=0

&�0
 + 3( �−1∑

=0

&��0
)
2

+6 �−1∑

=0

&0
 �−1∑

=0

&�V0
 − 6 �−1∑

=0

&�0
 �−1∑

=0

&���0
 + �−1∑

=0

] ,

�12,�−1 = −[ �−1∑

=0

'��1
 + 4Pr �−1∑

=0

&0
 �−1∑

=0

'�1

− 2Pr �−1∑

=0

&�0
 �−1∑

=0

'1
 − 2Pr �−1∑

=0

&�1
 �−1∑

=0

'0

+ 4Pr �−1∑

=0

&1
 �−1∑

=0

'�0
 + 4Pr Ec �−1∑

=0

&��0
 �−1∑

=0

&��1


+ 4Pr Ec �−1∑

=0

&�0
( �−1∑

=0

&0
)
2

−4Pr Ec �−1∑

=0

&0
 �−1∑

=0

&��0
 �−1∑

=0

&���0
] ,

�21,�−1 = −[ �−1∑

=0

&���2 + 4 �−1∑

=0

&0
 �−1∑

=0

&��2
 + 6 �−1∑

=0

&1
 �−1∑

=0

&��1

− 4 �−1∑

=0

&2
 �−1∑

=0

&��0
 − 4 �−1∑

=0

&�2
 �−1∑

=0

&�0


− 3( �−1∑

=0

&�1
)
2

− 3 �−1∑

=0

&�2
 + �−1∑

=0

'2


− 6 �−1∑

=0

&���1
 �−1∑

=0

&�0
 − 6 �−1∑

=0

&���0
 �−1∑

=0

&�1

+ 6 �−1∑

=0

&�V1
 �−1∑

=0

&0
 + 6 �−1∑

=0

&�V0
 �−1∑

=0

&1

+6 �−1∑

=0

&��1
 �−1∑

=0

&��0
] ,

�22,�−1 = −[ �−1∑

=0

'��2
 + 4Pr �−1∑

=0

&0
 �−1∑

=0

'�2
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− 6Pr �−1∑

=0

&�1
 �−1∑

=0

'�1
 − 6Pr �−1∑

=0

&1
 �−1∑

=0

'�1

+ 4Pr �−1∑

=0

&2
 �−1∑

=0

&�0
 − 2Pr �−1∑

=0

'2
 �−1∑

=0

&�0

− 3Pr �−1∑

=0

'1
 �−1∑

=0

&�1

+ 10Pr Ec �−1∑


=0
&�0
 �−1∑

=0

&��0
 �−1∑

=0

&�1


+ 2( �−1∑

=0

&��0
)
2 �−1∑

=0

&�1
 + 4( �−1∑

=0

&��0
)
2 �−1∑

=0

&�2

+4�−1∑

=0

&0
 �−1∑

=0

&��0
 �−1∑

=0

&���1
+4�−1∑

=0

&0
 �−1∑

=0

&��1
 �−1∑

=0

&���0

+4 �−1∑

=0

&��0
 �−1∑

=0

&���0
 �−1∑

=0

&1
] .
(44)

Equations (32)–(43) must be solved simultaneously subject
to certain initial approximations &0 and '0. We choose these
initial approximations so that they satisfy the given boundary
conditions. In this case suitable initial approximations are

&0 ( ) = 1 − R− −  R−, '0 ( ) = R−. (45)

We note that when &� and '� (C > 1) have been found, the
approximate solutions &( ) and '( ) are obtained as

& ( ) ≈ �∑
�=0
&� ( ) , ' ( ) ≈ �∑

�=0
'� ( ) , (46)

whereT is the order of the SLM approximation. Equations
(32) and (43) can be solved by any numerical method. In
this work the equations have been solved by the Chebyshev
spectral collocation method. 
e method of solution is fully
described in Awad et al. [3]. 
e system of di�erential
equations is solved simultaneously using the MATLAB SLM
code.

3.1. Results and Discussion. 
e problem that is investigated
in this study is the steady laminar �ow and natural convection
from a cone in a viscoelastic �uid in the presence of viscous
dissipation in a porous medium. 
e coupled nonlinear
di�erential equations (7)–(10) were solved numerically using
the successive linearisationmethod (SLM). In this section we
discuss the e�ects of the viscoelastic parameter (Λ), porosity
parameter (3), Prandtl number (Pr), andEckert numbers (Ec)
on both the velocity and temperature pro�les.

In Table 1 the comparison between our results for the
local skin friction and Nusselt numbers and those of Ece
[5] who used the 
omas algorithm shows that our method
gives satisfactory results, thus con�rming that the method is
accurate.

Table 1: Comparison of the values of&��(0) obtained by SLMagainst
the 
omas algorithm of Ece [5] when Λ = 0.
Pr

Ece [5] Present&��(0) −'�(0) &��(0) −'�(0)
1 0.681483 0.638855 0.68148334 0.63885473

10 0.433268 1.275499 0.43327820 1.27552877
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0

0.05
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0.25

�
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f
|
(�
)

Figure 2: Velocity pro�les for di�erent values of the viscoelastic
parameter Λ at Pr = 1, Ec = 0.1, and 3 = 1.

To get a clear understanding of natural convection e�ects
on the physics of the problem of a �ow from a cone in a vis-
coelastic �uid with viscous dissipation, the investigation has
been carried out for di�erent viscoelastic numbers Λ, poros-
ity parameter 3, the Eckert number Ec, and the Prandtl
number Pr. 
e results for the skin friction and heat transfer
coe�cients are depicted in Tables 1 and 2.

In Table 2 the e�ect of increasing the viscoelastic param-
eter increases the skin friction coe�cient and the opposite
e�ect is noted on the Nusselt number in the presence of the
porous medium and viscous dissipation. Cortell [9] noted
the same result. A faster increase is noted in the absence of
the porous medium and the Eckert number. Increasing the
porosity parameter reduces local skin friction and the same
trend is noted on the Nusselt number. Skin friction increases
with increasing Eckert number and the opposite trend is
noted on theNusselt number.
e skin friction decreases with
increasing Prandtl number, and the opposite trend is noted
on the Nusselt number.

Figures 2–9 show the e�ects of various �uid properties on
the velocity and temperature pro�les.

Figure 2 shows that increasing the viscoelastic parameter
increases the velocity across the boundary layer (see Butt et al.
[24]).

Increasing the Prandtl number decreases the velocity
pro�le in the boundary layer as shown in Figure 3; 
is is
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Table 2: E�ect of the viscoelastic and porosity parameters and Eckert number Λ, 3, and Ec on the local skin friction and heat transfer for Pr
= 1.

Λ 3 Ec Pr &��(0) −'�(0)−0.1 1 0.1 1 0.51437649 0.64214087−0.05 1 0.1 1 0.53489736 0.59964040−0.01 1 0.1 1 0.55491411 0.56204002

0 1 0.1 1 0.56041829 0.55213993

0.01 1 0.1 1 0.56612247 0.54203983

0.05 1 0.1 1 0.59093920 0.49963495

0.1 1 0.1 1 0.62646010 0.44213898

0.01 0 0.1 1 0.68990728 0.61800108

0.01 1 0.1 1 0.56612247 0.54203983

0.01 2 0.1 1 0.49213165 0.48868800

0.01 3 0.1 1 0.44155007 0.44852699

0.01 1 0.1 1 0.56612247 0.54203983

0.01 1 0.2 1 0.56678919 0.53544933

0.01 1 0.3 1 0.56745956 0.52882111

0.01 1 0.4 1 0.56813364 0.52215479

0.01 1 0.1 0.7 0.59466242 0.47714847

0.01 1 0.1 1 0.56612247 0.54203983

0.01 1 0.1 2 0.50981746 0.68640396

0.01 1 0.1 10 0.38403617 1.13367723
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Figure 3: Velocity pro�les for di�erent values of the Prandtl number
Pr at Ec = 0.1, 3 = 1, and Λ = 0.1.

because when the Prandtl number is increased the conduc-
tion process is more enhanced than convection suggesting
lower molecular motion causing �uid velocity to decrease.

Figure 4 shows the variation of the porosity parameter
with velocity pro�le for the linear surface temperature.
Increasing porosity parameter reduces the velocity pro�le
across the boundary layer. 
e �uid particles move slower
as the medium becomes less porous (see Singh and Agarwal
[25]).
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Figure 4: Velocity pro�les for di�erent values of the porosity
parameter 3 at Pr = 1, Ec = 0.1, and Λ = 0.1.

Figure 5 shows the variation of the Eckert number with
velocity pro�le across the boundary layer. Increasing the Eck-
ert number increases the velocity pro�le; this is caused by the
increase in the kinetic energy caused by viscous dissipation
in the boundary layer which leads to a small temperature
gradient.

Figure 6 shows the e�ect of increasing the viscoelastic
parameter on the temperature pro�les. Increasing the vis-
coelastic parameter increases the temperature pro�le.
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Figure 5: Velocity pro�les for di�erent values of the Eckert number
Ec at Pr = 1, 3 = 1, and Λ = 0.1.
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Figure 6: Temperature pro�les for di�erent values of the viscoelastic
parameter Λ at Pr = 1, 3 = 1, and Ec = 0.1.

Figure 7 depicts the variation of the Prandtl number
with temperature pro�les. Increasing the Prandtl number
decreases the temperature pro�le; 
e thermal di�usivity
becomes smaller than the viscous di�usion rate causing
smaller temperature pro�les.

Figure 8 shows the variation of the porosity parameter
with the temperature pro�le. Increasing the porosity param-
eter increases the temperature pro�le; when the �uid moves
much slower due to the reduction in porosity heat transfer
becomes more rapid.

In Figure 9 increasing the Eckert number increases
the temperature pro�le; the heat produced due to viscous
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Figure 7: Temperature pro�les for di�erent values of the Prandtl
number Pr at Ec = 0.1, 3 = 0.1, and Λ = 0.1.
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Figure 8: Temperature pro�les for di�erent values of the porosity
parameter 3 at Pr = 1, Λ = 0.1, and Ec = 0.1.

dissipation increases the temperature across the boundary
layer.

Figure 10 shows the variation of the skin friction with
the viscoelastic parameter at di�erent values of the porosity
parameter. Skin friction increases with increasing viscoelastic
parameter and increasing the porosity parameter reduces
skin friction.

Figure 11 shows the variation of the Nusselt number with
the viscoelastic parameter; increasing the viscoelastic param-
eter reduces Nusselt number and increasing the porosity
parameter reduces the Nusselt number.
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Figure 9: Temperature pro�les for di�erent values of the Eckert
number Ec at Pr = 1, 3 = 1, and Λ = 0.1.
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Figure 10: Skin friction &��(0) versus viscoelastic parameter Λ for
di�erent values of porosity parameter.

Figure 12 shows the e�ect of increasing the Eckert number
on the skin friction and viscoelastic parameter. Increasing
viscoelastic parameter increases skin friction and increasing
the Eckert number increases the skin friction.

In Figure 13 the increase of viscoelastic parameter reduces
the Nusselt number and increasing the Eckert number
reduces the Nusselt number.

Figure 14 shows that generally increasing the viscoelastic
parameter increases the skin friction and increasing the
Prandtl number reduces skin friction.
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Figure 11: Nusselt number −'�(0) versus viscoelastic parameter Λ
for di�erent values of porosity parameter.
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Figure 12: Skin friction &��(0) versus viscoelastic parameter Λ for
di�erent values of Eckert numbers.

In Figure 15 increasing the viscoelastic parameter reduces
the Nusselt number and increasing the Prandtl number
increases the Nusselt number.

4. Conclusion


is study presented an analysis of �ow and heat transfer in
natural convection of viscoelastic �uid from a cone embed-
ded in a porous medium with viscous dissipation. 
e
nonlinear coupled governing equations were solved using
the successive linearization method (SLM). 
e equations
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Figure 13: Nusselt number −'�(0) versus viscoelastic parameter Λ
for di�erent values of Eckert numbers.
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Figure 14: Skin friction &��(0) versus viscoelastic parameter Λ for
di�erent values of the Prandtl numbers.

were �rst split into the zeroth, �rst, and second order of the
viscoelastic parameter and solved together under the linear
surface boundary conditions. 
e velocity and temperature
pro�les together with local skin friction and local Nusselt
numbers were presented and investigated. It was found that
increasing the viscoelastic parameter increased the skin fric-
tion, reduced the Nusselt number, and increased the velocity
and temperature pro�les. Increasing the porosity param-
eter decreased the skin friction and Nusselt number and
decreased the velocity pro�le and the opposite e�ect was
noted in the temperature pro�le. Increasing the Eckert
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Figure 15: Nusselt number −'�(0) versus viscoelastic parameter Λ
for di�erent values of Prandtl numbers.

number increased both velocity and temperature pro�les and
decreased the Nusselt number and the opposite was noted on
the skin friction.
e results compared well with those of Ece
[5] in case when 3 = Λ = Ec = 0.
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