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Natural cutaneous anthrax infection, but
not vaccination, induces a CD4+ T cell response
involving diverse cytokines
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Diane E Williamson6, John H Robinson7, Bernard Maillere8, Rosemary J Boyton3 and Daniel M Altmann3*

Abstract

Background: Whilst there have been a number of insights into the subsets of CD4+ T cells induced by pathogenic

Bacillus anthracis infections in animal models, how these findings relate to responses generated in naturally infected

and vaccinated humans has yet to be fully established. We describe the cytokine profile produced in response to

T cell stimulation with a previously defined immunodominant antigen of anthrax, lethal factor (LF), domain IV, in

cohorts of individuals with a history of cutaneous anthrax, compared with vaccinees receiving the U.K. licenced

Anthrax Vaccine Precipitated (AVP) vaccine.

Findings: We found that immunity following natural cutaneous infection was significantly different from that

seen after vaccination. AVP vaccination was found to result in a polarized IFNγ CD4+ T cell response, while the

individuals exposed to B. anthracis by natural infection mounted a broader cytokine response encompassing

IFNγ, IL-5, −9, −10, −13, −17, and −22.

Conclusions: Vaccines seeking to incorporate the robust, long-lasting, CD4 T cell immune responses observed in

naturally acquired cutaneous anthrax cases may need to elicit a similarly broad spectrum cellular immune response.
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Findings

Protective immunity against anthrax

Much research into protective, adaptive immunity against

bacterial pathogens has focused largely on the role of

neutralising antibodies. There is, however, growing inter-

est in the protective T cell immunity to bacterial infection

and the implications of this for rational vaccine design.

IL-17A, the hallmark cytokine of the Th17 subset, has

been demonstrated to be essential for protection in a

number of murine infection models [1]. Recently, it was

suggested that although both Th1 and Th17 responses

are generated by bacterial infection, the memory Th17

response is short-lived compared to the Th1 response [2].

In the case of Bacillus anthracis infection, murine models

suggest that protection against anthrax generated by an

inactivated spore vaccine is dependent on IFNγ release by

Th1 cells [3]. However, the extent to which these effector

phenotypes can be extrapolated to natural human infec-

tion remains poorly understood.

B. anthracis secretes three toxins, Protective Antigen

(PA) and two enzymatically active toxin subunits, Lethal

Factor (LF) and Edema Factor (EF), which together form

tripartite exotoxins, Lethal Toxin (LT) and Edema Toxin

(ET) [4]. The two vaccines currently licensed for use in

humans, the U.K.-licensed anthrax vaccine precipitated

(AVP) and the U.S.-licensed anthrax vaccine adsorbed

(AVA or Biothrax), are both derived from a filtered cul-

ture supernatant of B. anthracis strains [5-7], containing

variable amounts of these toxins. Whilst the presence of

PA specific toxin neutralizing antibodies is the primary

correlate of protection in current human vaccines, reli-

ance upon this antigen alone may limit the promotion of
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We previously demonstrated long-lived Th1 responses

in a cohort of individuals who had either recovered from

cutaneous anthrax or were exposed to anthrax toxin com-

ponents by vaccination [8,9]. Analysis of the cohort of

agricultural workers, previously infected with cutaneous

anthrax, showed robust CD4+ T cell memory to anthrax

antigens, in line with the observation that, though occupa-

tional exposure is ongoing, reinfection is rarely seen. Des-

pite the fact that the few studies which concern cellular

immunity to anthrax have concentrated primarily upon

analysing the T cell response to PA [10,11], it is known

that both PA and LF are capable of conferring protective

immunity in human and animal vaccination studies [4,12].

Protective immunity has been defined by the operational

criterion of neutralizing antibody titre, whereas the aim of

our work has been to clarify the adaptive immunity corre-

lates of long-term protection at the level of CD4 T cells in

survivors of natural exposure.

Our previous work showed that the T cell response to

Lethal Factor (LF) was focused upon domain IV [8], this is

the catalytic region of the protein and responsible for rapid

Mitogen-Activated Protein Kinase (MAPK) cleavage within

the host cell. The MAPK pathways are critical in control-

ling T cell activation and differentiation [13], and through

blocking the activation cascade, LT is capable of inhibiting

JNK, ERK and p38 mediated T cell proliferation [14,15].

Such inhibition is associated with the reduced production

of Th1 cytokines, IFNγ and TNFα, as well as the downreg-

ulation of the activation markers, CD69 and CD25 [15,16].

ET is capable of acting in a synergistic manner with LT

upon the MAPK pathways to suppress T cell chemotaxis in

response to CXCL12 [17], blocking the trafficking of both

naïve and effector memory T cells to infected tissues. In

combination with the elevation of intracellular cAMP by

ET, this has been reported to skew the differentiation of

naïve CD4+ T cells towards a Th2 subset, inhibiting activa-

tion of Akt1, a protein essential for the development of a

Th1 subset, whilst enhancing the activation of the guanine

nucleotide exchanger Vav1 and the stress kinase p38 which

are involved in Th2 differentiation [18]. Inhibition also im-

pacts on antigen presenting cells (APCs), reducing produc-

tion of both IFNγ by macrophages, and IL-12 by dendritic

cells (DCs) [19,20].

Conversely, recent work has suggested that exposure of

human ex vivo cells to ET at low concentrations is capable

of promoting a Th17 response [21], and studies in mice

have further indicated a key role for IL-17A in protective

immunity against inhalational anthrax [22,23]. Human

DCs have been found to respond to B. anthracis infection

by inducing a Th17 response characterised by IL-17 and

IFNγ production [24], thus suggesting the involvement of

these CD4+ T cells in a protective response. To evaluate

the nature of the immune response to B. anthracis anti-

gens, and specifically to investigate the possibility of

skewing towards certain Th subsets, we assessed cytokine

responses of CD4+ T cells against LF domain IV in natur-

ally infected and AVP vaccinated individuals.

Materials and methods

Study subjects

Human peripheral blood mononuclear cells (PBMC) were

collected from 9 individuals living in an endemic area of

Turkey who had a history of cutaneous anthrax within the

last 8 years, 10 volunteers from the UK routinely vaccinated

every 12 months for a minimum of 4.5 years with the U.K.

Anthrax Vaccine Precipitated (AVP) vaccine (U.K. Depart-

ment of Health) and 10 healthy controls from the UK with

no known exposure to anthrax antigens. Previous work has

shown that there is no demonstrable difference in healthy

controls from the UK and Turkey in terms of HLA or im-

mune cell population responses to anthrax antigens [25,8].

The study was approved by the appropriate ethics commit-

tees, (Ericyes University Ethical Committee, UK Depart-

ment of Health under approval by the Convention on

Biological Diversity Independent Ethics Committee for the

UK Ministry of Defence, and Ethics REC reference number

08/H0707/173), and was performed in accordance with the

1964 Declaration of Helsinki and its later amendments. All

participants gave their informed consent prior to inclusion

in the study.

Antigen stimulation

PBMCs were prepared from the sodium heparinised blood

using Accuspin tubes (Sigma-Aldrich) with Histopaque-

1077 and centrifuged at 800 g for 30 minutes, after which

cells were removed from the interface and washed twice

in AIM-V serum free media. Cells were counted for viabil-

ity and resuspended at 2x106 cells/ml, then stimulated for

72 h with 25 μg/ml of LF domain IV (which represented

the lowest concentration at which CD4+ responses could

be reproducibly obtained) or media only as a negative

control, in 96-well ELISpot plates, and the levels of IFNγ

produced by CD4+ T cells were determined in an ELISpot

assay as previously described [8]. Cell culture supernatants

were removed from the ELIspot assay at 72 h. All super-

natants were frozen at −80°C. Levels of IL-5, IL-9, IL-10,

IL-13, IL-17, and tumor necrosis factor alpha (TNFα)

were quantified following dilution 1:1 with AIM-V media.

The bead assay, based on a capture sandwich immuno-

assay method, was adapted from the manufacturer’s

protocol for a Bioplex assay (Bio-Rad). Briefly, a mixture

of antibodies to the cytokines, coupled to internally dyed

beads, were incubated with the samples and a standard

curve generated by serial dilution of reconstituted stand-

ard. The plates were washed twice with commercial Lumi-

nex wash buffer, and biotinylated detection antibodies

were added. Streptavidin-phycoerythrin was then added,

and the beads were read using the Luminex 200 system
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(Luminex Corporation). The individual dyed bead popu-

lations as well as the fluorescent signal on the bead sur-

face were detected. This allowed identification of each

cytokine and reported the level of target protein in the

well, extrapolated from the standard curve. IL-22 was

quantified by ELISA following manufacturer’s directions

(eBioscience), plates were read in a μQuant ELISA plate

reader (BIO-Tek Instruments Inc.) using KC Junior soft-

ware at a 450 nm wavelength with a reference wavelength

of 630 nm. The cytokine concentration in the samples

was extrapolated from the standard curve and expressed

for all cytokines as Δ pg/ml concentration (pg/ml cyto-

kine produced in response to LF domain IV - pg/ml cyto-

kine produced in response to negative control). Analyses

of the levels of each cytokine produced by the naturally

infected, AVP-vaccinated, and healthy control cohorts, in

response to the LF antigens, was compared using a two-

way ANOVA with Bonferroni post hoc testing. All statis-

tical analyses were determined by Kruskal Wallis with

Dunns multiple comparison test performed using Graph-

Pad Prism.

Results

Compared to non-infected, unvaccinated individuals, natur-

ally acquired cutaneous anthrax induced a diverse, CD4+ T

cell cytokine response, encompassing significant, antigen-

specific release of IFNγ (p < 0.001), TNFα (p < 0.001), IL-5

(p < 0.001), IL-9 (p < 0.001), IL-10 (p < 0.001), IL-13

(p = 0.045), IL-17 (p = 0.002) and IL-22 (p = 0.03) (Figure 1).

Thus, cutaneous anthrax induces a broad T cell memory

response characterized not only by the presence of Th1 cy-

tokines IFNγ and TNFα, but also Th2 (IL-5 and IL-13),

Th17 (IL-17/IL-22), Th22 (IL-22) and Th9 (IL-9) cytokines

and a potentially regulatory IL-10 response. In contrast to

the infection specific memory response to LF domain IV,

initial exposure to the same antigen in the context of the

AVP vaccine, led to a focused Th1 IFNγ response. Vacci-

nees show significantly more IFNγ (p = 0.002) than control

subjects (Figure 1), but no other cytokines were detected.

Discussion

Evidence from in vivo models and studies with cell lines

has given a somewhat equivocal picture of the cytokine re-

sponse to anthrax antigens. The inhibitory effects of both

LF and EF upon expression of the activation markers CD25

and CD69 and the secretion of the pro-inflammatory cyto-

kines IL-2, IL-5, TNFα, and IFNγ by human T cells has

been described in vitro [16,15]. Elevated transcription of

TNF-α, IL-1α, IL-1β, IL-4, IL-6, CCL5, CXCL2 and KC

have been observed in both murine anthrax challenge

models and in vitro macrophages and monocytic cell lines

exposed to anthrax antigens [26-30]. Conversely, murine

lymphocytes have shown impaired TCR mediated cell acti-

vation and selective suppression of the cytokines IL-2, IL-3,

IL-4, IL-5, IL-6, IL-10, IL-17, TNFα, IFNγ and GM-CSF

from CD4+ T cells following exposure to LF [14]. However,

the cellular immunity we have identified within the natur-

ally infected humans indicates that, although in vitro expos-

ure to anthrax antigens has been implicated in immune

deviation towards both the Th2 and Th17 pathways [31,18],

the human immune response to pathological anthrax ex-

posure encompasses a cytokine profile associated with a

broad range of Th subsets with little or no evidence of

helper T cell polarization. Indeed, following anthrax infec-

tion, in vitro recall responses to the LF domain IV protein

were characterised by a more diverse cytokine profile than

immunization with the AVP vaccine was capable of pro-

voking. The response to this immunogenic domain of LF

was dominated by IFNγ release in the vaccinees, whilst

the individuals exposed to LF following cutaneous anthrax

infection showed significantly elevated levels of the pro-

inflammatory cytokines in their in vitro recall response as-

sociated with Th1, Th2, Th9 and Th17 subsets, compared

to vaccinees and naïve controls. Previous work has sug-

gested that AVP vaccination has the capacity to lead to a

suppressed Th1 and Th2 response to LF and PA, relative

to the response mounted by naturally infected individuals

[8]. This is the first work to examine in detail the effect of

either encountering the antigen in the context of natural

infection or vaccination upon the cytokine profile pro-

voked by re-exposure to LF domain IV. Although this is

the first study, to our knowledge, to implicate IL-22 in the

host immune response against anthrax, recent analysis of

the role of IL-22 in Th17 mediated host immunity to bac-

teria at barrier surfaces [32], demonstrates the importance

of this cytokine in facilitating antimicrobial gene expres-

sion. In addition to the Th17 response, the known role of

IL-22 and IL-17 in promoting Th1 immunity to bacterial

pathogens [33] may play a crucial role in preventing the

survival of B. anthracis within the host. Conversely, survival

(See figure on previous page.)

Figure 1 Differential cytokine responses to anthrax LF domain IV following cutaneous infection or AVP vaccination. Cells from individuals exposed to LF

as a result of (▼) natural cutaneous infection (n = 8–9), or (▲) AVP vaccination (n = 8–10) and (■) unexposed healthy controls (n = 5-10) were stimulated

with 25 μg/ml of LF domain IV in vitro, and the cytokine profile of the supernatants assessed by either ELIspot, Luminex or ELISA. ELIspot results (A) are

expressed as the mean ΔSpot Forming Cells (SFC)/106 PBMCs (stimulated – unstimulated background level), while the ELISA and Luminex values are

given as the mean Δpg/ml detected for (B) TNFα, (C) IL-5, (D) IL-13, (E) IL-9, (F) IL-17, (G) IL-22 and (H) IL-10. * denotes a significantly greater cytokine

production in comparison to the unexposed controls (p≤ 0.05), as determined by Kruskal Wallis with Dunns multiple comparison test performed using

GraphPad Prism version 5.01 for Windows, GraphPad Software, La Jolla California USA.
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of B. anthracis in an unprotected host is dependent upon a

rapid suppression of Th1 cytokines [3]. Whilst we previ-

ously reported that the patient who developed toxemic

shock during B. anthracis infection showed the highest level

of IFNγ responses to both PA and LF [8], examining the el-

evated cytokine profiles in these patients did not reveal a

discernable trend related to either the period of time post

infection, the duration of infection or the clinical severity.

The marked difference noted between the infected indi-

viduals and vaccinees echoes the divergence in the epitope

repertoire recognised by each cohort. Whilst it might be ex-

pected that some epitopes present in the context of vaccin-

ation would be lost upon infection [34], the immune

response detected after AVP immunization differed sub-

stantially from that following infection [9,8]. It is unclear

whether this represents the differential antigen processing

of pathogen associated proteins experienced in vaccination

in contrast to infection, or if it represents an artefact of the

repeated AVP vaccinations which may have served to skew

the cytokine environment present during the induction of

the immune response, impacting upon the T cell epitope

repertoire [35]. Conversely, the difference both in the epi-

topes recognised and the nature of cytokine responses be-

tween the vaccinated and infected groups may relate to the

route of antigen exposure, as natural infection was localised

to the skin, in contrast to intra-muscular vaccination. In

the skin, bacterial antigens are processed and presented by

different subsets of dendritic cells [36], increasing the po-

tential for induction of a variety of Th responses. Alterna-

tively, the diversity of this response may represent the

complex interaction of the immune system with anthrax

toxins and a live, dividing bacterium where exposure dur-

ation is perhaps more prolonged. The divergence we de-

scribe in the immune response post-infection, compared to

vaccination, is not unprecedented; Mycobacterium tubercu-

losis infection results in high levels of mycobacteria-specific

IL-17 [37] and IL-9 [38] produced by T cells, whereas in re-

cent clinical trials of the MVA85A vaccine, only extremely

high doses induced a significant increase in IL-17 produc-

tion, despite prior BCG vaccination [39].

The human immune response to natural bacterial infec-

tion is often more complex than has been shown in murine

infection models and the existing vaccines are less well-

defined than recombinant sub-unit vaccines now in clinical

trial. It will be interesting to examine the T-cell responses in-

duced in human vaccines by these defined recombinant an-

thrax vaccines to determine if a cytokine profile associated

with protection from lethal anthrax infection is induced.
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