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Abstract 

In this paper we use the 1995 Kobe earthquake as a natural experiment to examine the impact of 

a large exogenous physical shock on local economic activity.  For the first time we are able to 

control for local spatial heterogeneity in the damage caused by a natural disaster using geo-coded 

plant location and unique building-level surveys.  In a survival analysis of manufacturing plants 

our results show that building-level damage significantly affects a plant’s likelihood of failure and 

this effect persists for up to seven years.  Further analysis demonstrates that the plants most 

likely to exit as a result of earthquake damage are the least productive which is suggestive of a 

cleansing effect as the average productivity rate of the remaining plants increases.  We also find 

that continuing plants experience a temporary increase in productivity following the earthquake 

consistent with a “build back better” effect.  In terms of local regeneration our results indicate 

that plant births increase in areas with more severe damage consistent with redevelopment plans 

for Kobe. 
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1. Introduction 

Earthquakes, like all natural disasters, can have a devastating impact on infrastructure, 

households, and firms in the affected areas.  While humanitarian support is the immediate 

priority, in the medium to long term it is important for policymakers to understand how natural 

disasters impact local economic activity so they can provide the most effective support to 

affected communities. 

The purpose of this paper is to examine the impact of the 1995 Kobe earthquake on local 

economic activity.  The 1995 Kobe earthquake was one of the most severe in modern history, 

with a magnitude of 7.2 on the Richter scale and estimated to have caused $100 billion in damage 

(approximately 2.5% of Japan’s GDP at the time).1  The first contribution of this paper is to 

demonstrate the importance of capturing the spatial heterogeneity in damage that can result from 

a natural disaster.  More specifically, we use building level surveys from the Japanese and Kobe 

City governments to measure the damage caused by the earthquake to individual buildings.  The 

creation of this unique dataset enables us to capture the degree of heterogeneity in damage levels 

which can leave a building undamaged while totally destroying neighboring buildings.  Our 

second contribution is to combine our unique building-level damage variable with a 16 year 

exhaustive panel of plants both before and after the earthquake to examine the impact of the 

earthquake on the birth, life and death of plants with an emphasis on plant-level productivity.  

Specifically, we answer four related questions.  First, do building level damages have a prolonged 

effect on the probability of plant survival and, second, is there evidence of a cleansing effect 

associated with natural disasters whereby the least productive firms are most likely to exit?  

Third, do surviving firms increase their productivity consistent with a “build back better” effect? 

Finally, is the location of plant births affected by the extent of the damage to a local area? 

The premise that natural disasters may have a cleansing effect has its origin in a number of 

theoretical studies, such as Caballero and Hammour (1994) and Ouyang (2009) who have 

suggested that it is the least productive and the youngest firms which fail as a result of a 

recession.  To date the empirical evidence on how cost shocks induced by recessions may hasten 

the demise of unproductive firms has been rather mixed (see, for example, Barlevy 2002).  In this 

regard, our study can be viewed as a natural experiment where a large number of firms are 

subject to a substantial exogenous shock (with both supply side and demand side implications) 

1 Although officially known as the Hanshin-Awaji Great Earthquake it is also known as the Hanshin or Kobe 
earthquake.  In this paper we follow Horwich (2000) and refer to it as the Kobe earthquake.   
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that was unrelated to their productivity prior to the event.2  The Kobe event therefore provides 

an ideal setting to examine the short and medium term effects of a negative shock at the local 

level.  Importantly for our study, Kobe is an area of Japan which was believed to be relatively 

safe from earthquakes and hence little preparation and anticipatory behaviour took place prior to 

the earthquake.  From an empirical perspective it can therefore be considered a truly exogenous 

shock.3 

A brief review of the existing literature shows that a common trait in many studies is the use of 

aggregated data whether it is across sectors, space or disaster-type.  The majority of studies tend 

to take a cross-country macroeconomic approach to determine the impact of a disaster on 

country level growth (e.g. Loayza et al. 2012, Noy 2009, Strobl 2012 and Ahlerup 2013).  The 

results from these studies have been rather mixed.  On the one hand, because natural disasters 

are often associated with significant physical damage and human suffering the impact should be 

“naturally negative” (Felbermayr and Gröschl, 2014).  On the other hand, fiscal expenditure and 

foreign aid can stimulate locally affected areas and result in an overall positive effect driven by a 

disaster response that may result in more effective infrastructure or an increased productive 

effort in unaffected areas (Albala-Bertrand 1993).  Likewise, when more capital is destroyed than 

labor, the return to capital can increase which can also result in short-term growth.  Local 

workers may also be incentivised to work harder to compensate for inter-temporal losses 

(Melecky and Raddatz 2011).4 

Other research has raised concerns about the aggregation effect.  Loayza et al. (2012) for 

example, show that the type and magnitude of a natural disaster can determine the sign and size 

of the estimated effect.  Using satellite derived nightlight data, Bertinelli and Strobl (2013), Strobl 

(2011) and Elliott et al. (2015) show that for hurricanes and typhoons, national level regressions 

can mask much of the impact at the local regional level.  Similarly, Fisker (2012) using an 

2 The earthquake can be thought of as a traditional cost shock (the cost of rebuilding the plant and/or replacing 
workers who may have been killed or migrated from Kobe) or a demand and supply shock.  On the demand side, 
disruption to customers as a result of the earthquake may mean delays to the purchase of intermediates.  On the 
supply side, plant production may be delayed whilst repairs are undertaken which, for a given plant, may lead to a 
loss of market share to undamaged competitors elsewhere in Kobe or further afield both within Japan and 
internationally. 
3 The unanticipated nature of the shock is emphasised by Kaji Hideki (UNRCD Director) who stated that “During 
the 1,500 years that earthquake occurrence has been recorded in Japan, not once has Kobe been directly hit by an earthquake and it has 
always had the image of being a city safe from earthquakes”.  The unexpected nature of the earthquake is emphasised by 
Ederington (2011) who, when discussing the lack of insurance states that “Few businesses or private households held 
earthquake insurance.  Indeed, most losses were uninsured: only 3% of property in the Kobe area was covered by earthquake indemnity”. 
4 The absence of a consensus on the average effects of natural disasters is illustrated by Cuaresma et al. (2008) and 
Cavallo and Noy (2011) who argue that on average natural disasters have a positive and negative impact, 
respectively.  In a related literature, Davis and Weinstein (2002) and Brakman et al. (2004) examine the effect of 
allied bombing during the second world-war on city size in Japan and Germany, respectively.  They find the effects 
of such bombing to be short term with long run city size unaffected. 
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earthquake intensity measure finds that although there were no observable country-level effects, 

an earthquake does have a significant negative impact at the local level.  This may be particularly 

important for earthquakes as their local impacts tend to differ even within relatively small 

geographical areas in that the extent of damage to a location depends on the magnitude, depth, 

and distance to the epicentre but also on local geological conditions, that can differ across just 

meters, and the architecture of buildings.5  Finally, and perhaps most importantly for our paper, 

one of the main impediments to accurately measuring the impact of a natural disaster has been 

the lack of a precise proxy for damage.  That is, studies have almost exclusively resorted to using 

(possibly systematic) measurement error prone post-disaster cost estimates (most of the macro-

economic studies have relied on the EMDAT database which collects information on losses due 

to natural disasters at the country level from publicly available sources) or, more recently, 

potential destruction proxies derived from physical characteristics of the event.6 

A handful of other papers use firm or plant-level data to examine the impact of natural disasters.  

For example, Craioveanu and Terrell (2016) consider the impact of storms on firm survival using 

elevation above sea level as a measure of flood damage during Hurricane Katrina and find that 

large firms and those with less damage are more likely to survive.  Other studies of Hurricane 

Katrina use geo-coded categorization of wind and flood damage information to capture 

heterogeneity in the damage (see e.g. Jarmin and Miranda 2009 and Groen et al. 2016).  Paxson 

and Rouse (2008) for example use the variation in standing water in residences to predict return 

migration of refugees to New Orleans after Hurricane Katrina.  De Mel et al. (2012) conduct a 

post-disaster field study of surviving enterprises and workers following the Sri Lanka tsunami 

and find that aid helps retailers, but not manufacturing firms, to recover.  Hosono et al. (2012) 

investigate the effect of banks’ lending capacity on firms’ capital investment using the Kobe 

earthquake as an exogenous shock but measure damage only broadly in terms of affected areas.  

Finally, Tanaka (2015) examines the short-term economic impact of the Kobe earthquake but 

does so by assuming that all plants within Kobe suffered the same damage.  He finds that the 

earthquake had a significant short term impact on employment and value added. 

Other studies of the Kobe event include duPont et al. (2015) and duPont and Noy (2015).  The 

first paper estimates the long term socio-economic impact of the earthquake using city and town 

5  The heterogeneous nature of earthquake damage relates to the presence of possible landslides, fires, soil 
liquefaction, floods and tsunamis.  Two important geological factors are the softness of the ground and the total 
thickness of the sediment which can vary widely even within several meters of an area. 
6 Other studies that attempt to capture the impact of a natural disaster include Okazaki et al. (2011) who use broad 
geographical damage indicators to examine the 1923 Great Kanto earthquake and Felbermayr and Gröschl (2014) 
who build a database of disaster events and intensities from primary geophysical and meteorological information. 
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data using a synthetic control method to create a counter-factual.  The results suggest a 

permanent negative average income effect for areas close to the epicentre but also some 

evidence of a positive impact in the surrounding areas.  The second paper also uses synthetic 

control methods (following Abadie et al. 2010) to measure the long term impact of the Kobe 

earthquake and suggests that the true cost of the earthquake was twice as high as previous 

estimates.7  

Our contribution to the literature is to capture the degree of damage to the buildings of 

individual plants and then to assess how damage levels affect the birth, life and death of plants.  

Our methodological approach is to begin with a simple productivity decomposition approach 

(Foster et al. 2006) to help understand how the Kobe earthquake may have acted as a driver of 

productivity change.  Next we employ a proportional hazards modelling approach (Cox 1972) to 

estimate the impact of building-level damage on plant survival.8  For the surviving firms we then 

estimate a simple panel fixed effects model of the determinants of productivity.  Finally, we 

estimate a negative binomial model to investigate the determinants of plant birth location taking 

into account measures of damage to local georgraphical areas. 

To briefly highlight our results, our decomposition analysis shows that improvements in 

productivity over our sample period are driven predominantly by the entry of new plants after 

the earthquake.  In terms of plants that existed prior to the earthquake we find that, as we might 

expect, plants that experienced building damage were less likely to survive than those residing in 

less damaged buildings but, more surprisingly, we find that the reduced probability of survival 

lasts for up to seven years after the earthquake.  This suggests that plants can continue to suffer 

from the negative effects of a natural disaster for much longer than the conventional 

macroeconomic evidence suggests.  We also find that the risk of exit as a result of earthquake 

damage is highest for those plants that are the least productive which is supportive of a cleansing 

effect from large cost shocks.  In terms of plant performance, our panel fixed-effects results 

show a positive effect of building-damage on post-quake labor productivity albeit with a fairly 

rapid decline over time which is indicative of a narrative where surviving plants “build back 

better”.  Finally, for plant births, our results suggest that low to moderate levels of earthquake 

7
 Other studies that examine different aspects of the Kobe earthquake include Sawada and Shimizutani (2008) and 

Fujiki and Hsiao (2013).  There have also been a small number of case studies examining US disasters such as 
Dorfman et al. (2007) who look at the employment and wage effects of Hurricane Katrina.   A second strand of the 
literature examines the impact of earthquakes on the housing market following an earthquake (Beron et al. 1997 
looking at the 1989 Loma Prieta earthquake and Deng et al. 2013 looking at the 2008 Wenchuan earthquake). 
8 There is a large literature examining different aspects of firm survival.  For example, Agarwal and Gort (2002) 
study firm survival in the context of a product life cycle framework while Audretsch and Mahmood (1995) use a 
hazard function to examine new firm survival rates. 
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damage, in relatively small geographical areas, generally deter such births, while more severe 

damage appears to have acted as a positive stimulus for new plant creation.  Reconstruction and 

government support is the most likely explanation for these results. 

The reminder of this paper is organised as follows.  Section 2 presents the background to the 

Kobe earthquake.  Section 3 describes our data.  Section 4 presents our decomposition 

methodology and results.  Sections 5, 6 and 7 we present our analysis of plant exit, plants that 

continue and plants that enter Kobe after the earthquake.  Section 8 concludes. 

2. The Kobe Earthquake 

The 1995 Kobe earthquake occurred at a time when the Japanese economy was in a period of 

stagnation following the economic boom of the 1980s.  During the 1990s and 2000s the 

Japanese economy grew very little and due to a historic reliance on traditional industries such as 

steel and shipbuilding the city of Kobe faced considerable challenges.  This also meant that the 

local Kobe government had to incur considerable debt to pay for the city’s reconstruction.  

Johnston (2005) points out that by the end of 2005 the City of Kobe had more than 3 trillion 

Yen in municipal bonds outstanding and was effectively bankrupt.  Since firms also took on 

considerable borrowings following the earthquake they too came under financial pressure due to 

the relative slow growth of the Japanese economy.  Hence, the effects of natural disasters can be 

prolonged and affect the chances of plant survival long after the event itself as the accumulated 

debt incurred to help the rebuilding process means that plants become less competitive relative 

to their undamaged and non-indebted competitors.9 

The earthquake that shook the Hanshin region of Western Japan that includes the city of Kobe 

struck on the 17th January 1995 at 5.46am and lasted for a little under one minute with a 

strength of 7.2 on the Richter scale.  Kobe is located 430 km southwest of Tokyo and at the time 

was an important port city with a population of close to 1.5 million contributing around 10% of 

Japan’s total GDP (Orr 2007).  The epicentre of the earthquake was 25km from central Kobe 

and was the first major earthquake to strike a Japanese urban area since the end of World War II.  

As a port city Kobe was home to a large number of working class and immigrant communities as 

well as a middle class involved in the shipping and industrial sectors.  As an older city Kobe also 

9 This section draws in part on Edgington (2011), who examines the reconstruction of Kobe and the geography of 
the crisis, and a report from UNRCD (1995) entitled the “Comprehensive Study of the Great Hanshin Earthquake”. 
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had a very high population density with between 6,000 and 12,000 people per square kilometre 

(Orr 2007).10 

The massive scale of the destruction was caused by two key factors in addition to the magnitude, 

depth and timing of the earthquake.  First, the soil in many areas of the city was soft and water 

saturated which led to landslides and structural damage as a result of liquefaction.  This meant 

that damage was concentrated in a narrow area of soft soil 30km long and just 2km wide (Orr 

2007).  Second, Kobe itself is located on a narrow strip of land between the Rokko mountains 

and Osaka Bay which meant that city lifelines were easily cut not least because they were almost 

all installed prior to more recent building codes.  Hence, immense damage was caused to 

infrastructure including the expressway and numerous high-rise buildings.  In addition, tunnels 

and bridges were destroyed and train tracks buckled. 

One consequence of the earthquake was the wholesale destruction of houses and commercial 

premises with large parts of the city affected by fires.  Firestorms were a particular problem in 

the narrow streets of the older districts where the traditional wooden houses were still prevalent 

and tended to be populated by Kobe’s older residents and students.  The middle classes tended 

to live outside of the centre in higher quality and newer homes (Shaw and Goda 2004). 

According to the City of Kobe (2012), 4,571 people lost their lives in Kobe city with a further 

14,687 injured.  A notable 59% of those who died were over the age of 60, the majority of whom 

died due to crushing related injuries.  The damage to buildings was considerable.  The number of 

fully collapsed buildings was 67,421 and partially collapsed 55,145.  Fire damage caused the 

complete destruction of 6,965 structures with many others being partially burned (covering a 

total area of 819,108 m2).  Utilities were also severely impacted.  In addition to city-wide power 

and industrial water failure, 25% of phone lines were down and 80% of gas supplies no longer 

operated.  The total value of the damage was estimated to be around 6.9 trillion Yen (0.0681 

trillion dollars in 2016 prices). 

In terms of industry, according to the City of Kobe (2012) report, many large manufacturers 

suffered damage to their main factories and had production lines interrupted.  For small and 

medium sized enterprises the damage was extensive.  Approximately 80% of factories in the 

non-leather shoe industry were damaged and 50% of the Sake breweries were severely impacted.  

The tourism, agriculture and fishing sectors were also badly affected.  The manufacturing 

production indices in September 2007 for non-leather shoes and Sake Breweries were only 

10 The housing in the older areas of Kobe tended to be constructed using heavy roof tiles and light frames and were 
designed to withstand storms but were not well suited for earthquakes (Orr, 2007). 
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78.8% and 40.4% of the September 1994 figures respectively suggesting a significant de-

agglomeration effect (see e.g. Maejima 1995).  Further difficulties were caused by the collapse of 

the Hyogo Bank in Kobe following bankruptcies from the bank’s borrowers (individual and 

corporate) which in turn lead to a fall in local land prices which exacerbated problems of bad 

loans from other borrowers (Edgington 2011). 

The one mitigating factor that helped the larger companies was their membership of wider 

conglomerates (Keiretsu) which had access to funds to enable rapid recovery.  Examples include 

Kobe Steel, Kawasaki Steel and Mitsubishi Heavy Industries.  However, small and medium sized 

enterprises were less fortunate.  Edgington (2010) cites a Kobe Chamber of Commerce survey 

that found that for the first one or two years following the earthquake, large numbers of 

businesses and retailers were operating out of tents and prefabricated buildings with many others 

suffering continued financial problems that often resulted in the closure of the business (HERO 

1998).  Moreover, small and medium sized firms found it difficult to benefit directly from the 

large construction projects that were often lead by Tokyo headquartered corporate companies.  

According to Saito (2005) the most affected firms were those that were reliant on local demand 

and those that faced low cost competition from China. 

Finally, in terms of reconstruction efforts, given the heterogeneous nature of the reconstruction 

expenditure both politically and geographically it is important to have an understanding of the 

decision making process.  Although considerable effort was targeted at house building, 

neighborhood community reconstruction projects and health care, in this paper we are primarily 

concerned with economic revitalization.  The main objectives according to the City of Kobe 

(2012) were to secure job opportunities through early recovery, to promote local industries that 

were perceived to be central to urban restoration, to create new businesses and to encourage 

growth industries to move to Kobe which would result in a more sophisticated industrial 

structure (build back better).  Much of this work came under the Hansin-Awaji Economic 

Revitalization Organization which operated between December 1995 and March 2005.  One 

specific policy that we are able to capture is where Kobe city nominated a number of areas (for 

three years) that were severely damaged in the quake but were perceived as being in strategically 

important areas of the city (Kobe City Office report “The emergency development regulation for 

earthquake disaster reconstruction”). 

Emergency measures provided by the government to firms included an emergency loan system 

(ended 31st July 1995) which provided 94.9 billion Yen in loans in 5,979 cases and a further 23.2 

billion Yen in 4,129 cases for unsecured loans.  Between 1998 and 2005 it was also possible to 
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receive targeted loans and business guidance on how to re-open a business in Kobe.  Other 

initiatives included a rental assistance scheme to operate in private factories and interest subsidies 

for small and medium sized businesses that wanted to invest in new equipment.  Finally, to help 

attract new industries and international trade, the Kobe Enterprise Zone was approved in 

January 1997 which had attracted 374 firms by 2006.11 

However, as Horwich (2000) points out, whilst the non-interest loans and subsidies for factory 

construction certainly helped, not all firms could get access to these funds leading to further 

bankruptcies.  Whilst these loans were welcomed by business, and in many cases enabled the 

business to continue trading, the resultant increased debt burden was said to lead to many 

bankruptcies over the following 10 years (Edgington 2011).  

To put the local economic impact of the earthquake in context we now turn briefly to the 

economy of Japan.  During the 1990s Japan was in a period of stagnation following the boom of 

the late 1980s.  The country experienced relatively low growth up until 2004/2005 when the 

recovery picked up.  In Kobe the damage from the earthquake coupled with an industrial 

structure that relied on the traditional heavy industries of shipbuilding and steel, meant that 

recovery in certain sectors was challenging.  This also meant that the City of Kobe had to incur 

considerable debt to continue to pay for the city’s reconstruction.  Johnston (2005) points out 

that by the end of 2005 the City of Kobe had more than 3 trillion Yen in municipal bonds 

outstanding and was effectively bankrupt.  Since firms also took on considerable borrowings 

following the earthquake they too came under financial pressure due to the relative slow growth 

of the Japanese economy.   

Overall, it can be argued that the Kobe earthquake had a substantial long-term impact on Kobe.  

Figure 1 provides manufacturing output in Kobe and for the rest of Japan, each expressed 

relative to 1993 pre-earthquake output. As can be seen, manufacturing output in Kobe remains 

below pre-earthquake levels throughout our sample period, with 2007 output being only 89.2% 

of pre-earthquake levels. Similarly, the Nikkei Weekly (2005) reported in 2005 that 69% of small 

firms claimed that their profits had not returned to pre-quake levels. However, these trends are 

not seen at the national level.  As Figure 1 illustrates, national manufacturing output in the rest of 

Japan exceeded pre-quake levels as early as 1996. Throughout our sample period the rest of 

Japan fared better, relative to the immediate pre-quake period, than Kobe. 

11 In a related development the Port of Kobe had largely been redeveloped by the end of March 1997.  However, 
the number of containers handled by the Port of Kobe in 2007 was still only 84.8% of the 1994 figure, although the 
total value of imports in 2007 was 106.4% of the 1994 value and exports were 95.3% of the 1994 value. 
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[Figure 1 about here] 

3. Data 

3.1 Panel Data of Manufacturing Plants 

We utilise the Japanese Manufacturing Census (Japanese Ministry of Economy, Trade and 

Industry) and the Establishment and Enterprise Census (Japanese Ministry of Internal Affairs 

and Communications) to create a database of manufacturing plants in Kobe city from 1992.  Our 

sample contains 4349 plants in 1992, falling to 2134 in 2007. Note that data for 1994 are missing 

from our dataset as the earthquake prevented data collection. This year is therefore omitted, 

through necessity, from our analysis. Importantly, the Manufacturing Census and the 

Establishment and Enterprise Census are exhaustive and do not have a minimum size 

requirement for inclusion.  As such, we do not have the problem of plants leaving the sample 

simply because their size has dropped below a minimum threshold.  We are therefore able to 

identify precisely when a plant closed down in Kobe.  One caveat is that although we know 

when a plant closes and reopens elsewhere in Kobe, we cannot distinguish between those plants 

that closed permanently and those that moved elsewhere within Japan.  However, since the focus 

of this paper is on the local impact of the Kobe earthquake, this distinction is not crucial.  

Whether a plant exits or relocates, its activities within Kobe have ceased.  In terms of 

characteristics of the plants, the census provides, amongst other things, information on the exact 

address, sector of activity, age, average wages, employment, and value added.12 

3.2 Earthquake Damage Data 

3.2.1 Plant-Level Damage 

To accurately identify the level of damage suffered by each plant we utilise the ‘Shinsai Hukkou 

Akaibu’ (archive on the damage of the 1995 Hyogo-Awaji earthquake) by Kobe City Office and 

Toru Fukushima (University of Hyogo), together with ‘Zenrin’s Residential Map, Hyogo-ken 

Kobe city 1995’ from Toru Fukushima (University of Hyogo).  These sources provide a highly 

detailed map of Kobe and assign one of five colors to each building to categorise damage.  

Shortly after the earthquake each registered building (registered prior to the earthquake) was 

12 In Japan an address usually consists of seven elements starting with a prefecture (ken) which is the largest division 
of the country.  Next comes the municipality or city (shi).  Each city consists of a number of wards (ku) which may 
be further divided into machi or cho.  Below this are the detailed address information which is the city district (chome) 
followed by the city block (banchi) and finally the building number (go). 
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surveyed to measure the damage incurred and then used to classify the building into one of five 

categories: 

1. Green: No damage (damage was not more than 3 per cent of the building’s total value). 

2. Yellow: Partially collapsed (damage between 3-20% of the building’s value). 

3. Orange: Half collapsed (damage between 20-50% of the building’s total value; typically 

partial damage to the principal structures such as walls, pillars, beams, roof and stairs). 

4. Red: Fully collapsed (damage between 50-100% of the building’s total value; typically 

damage to the principal structures such as walls, pillars, beams, roof and stairs). 

5. Pink: Fire damage (damage between 50-100% of the building’s total value). 

The original maps consist of 111 individual tiles in jpeg format covering the Kobe area.  These 

were then geo-referenced and the buildings and their corresponding colors extracted and cleaned 

to generate a set of building polygons with their damage colors.  Figure A in the online appendix 

presents an example of part of the original tiles.  Using the address of each plant we are able to 

identify the plant’s location by its latitude and longitude which enables us to assign each plant to 

an exact building which is then classified in to one of the five categories listed above. 

As a starting point we create a single variable damage index, PlantDAM, which is a proxy for the 

percentage of loss in value of the building in which a plant was residing.  More specifically, we 

assign a numerical scale to each building color type by using the median between the category 

thresholds (i.e. 11.5% loss of value for yellow, 35% for orange, and 75% for red), except for 

green buildings which we assigned a loss of value of 0%.  As part of our robustness checks we 

experiment with other values for each category.13 

 

3.2.2 Chome-Level Damage 

From the original map the local authorities also created summary measures of damages at the 

local chome-level, where a chome is a small administrative unit (city district) of which there are 

3,179 in the Kobe-Hanshin area.14  Since we have a proxy for building-level damage it means that 

13 One could also use the individual categories on their own and create a set of corresponding dummy variables.  We 
opt for the ratio variable as our benchmark proxy for a number of reasons.  First, as will be seen, we include time 
interactions in our analysis, making the interpretation of a single index more amenable to both presentation and 
interpretation.  Second, this allows us to have an index that is more easily compared to our geographical damage 
index which is derived from a different data source (described below).  Nevertheless, in our sensitivity analysis we 
replace the single damage index with individual dummies for each damage level. 
14 Chomes vary greatly in size, ranging from a few hundred squared meters to several square kilometers.  However, 
the majority of the manufacturing plants within Kobe are located in chomes that tend to be just a few hundred 
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we know the number of buildings for each chome categorized by damage color.  This enables us 

to create a chome-level building damage indicator based on the percentage of damage to each 

building given by: 

( ) ( ) ( ) ( ) ( )
j

jgreenjyellowjorangejredjpink

j
total

greenwyellowworangewredwpinkw
DAMChome

×+×+×+×+×
=  

            [1] 

where the denominator, totalj, is the total number of buildings and red, pink, orange, yellow, and green 

are the number of buildings within chome j that are classified in each of these categories.  The 

weights w are the loss in value associated with each color assuming that losses are the midway 

points between the thresholds (except for the green category where we assume no loss).  We 

performed similar sensitivity checks to those employed for our building damage variables. 

Figure 2 presents the distribution of our ChomeDAM index.  One can immediately observe a 

wide variation in damages across individual chomes linked to geographical and building 

differences discussed in Section 2, as well as the unique ability of earthquakes to have very 

different impacts within narrowly defined areas.  One implication is that the assumption of 

spatial homogeneity in earthquake damage even at relatively small geographical areas such as 

chome level, let alone the city level, as previous studies have used, may induce a considerable 

degree of measurement error and hence attenuation bias. 

[Figure 2 about here] 

Note that PlantDAM and ChomeDAM are zero prior to the earthquake and, for unaffected plants, 

after the earthquake. For affected plants they both take on positive value, depending on the 

extent of damages, for each year following the earthquake.  

 

3.2.3 Other Damage Indicators 

Previous studies in an attempt to identify spatial differences in earthquake damage have often 

used certain physical characteristics of the event such as distance to the epicentre or peak ground 

acceleration (Garmaise and Moskowitz 2009). We create similar proxies.  More specifically, the 

meters squared.  In order to confirm the accuracy of our geo-referencing of buildings and their damage type we 
overlaid our building shape-file with a shape-file of the chomes, calculated the number of buildings per se and per 
damage category per chome and compared this to the official aggregated data available, we found these to match 
almost perfectly. 
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distance to the epicentre (DISTEPI) is calculated as the straight-line distance from the epicentre 

to the latitude and longitude of a plant’s location.  In our sample the average plant is 18.6 km 

from the epicentre with a standard deviation of 13.5 kilometres.  To obtain a measure of peak 

ground acceleration we used the gridded shake map generated by Fujimoto and Midorikawa 

(2002) to allocate peak ground acceleration values to each plant’s building which we call 

SHAKE.15  Figure 3 shows the overall shake map for Kobe.  Because the grids of the shake-map 

are fairly large we overlay this with the building damage map data shown in Figure 4.  Figure 4 

shows the high degree of heterogeneity of damages even within shake-map cells. 

[Figures 3 and 4 about here] 

3.3 Other Data 

Although we know the level of damage of the building in which the plant is located, our dataset 

does not include building specific information on the type of construction.  However, the local 

authorities did collect information on building characteristics at the chome-level.  These include 

the number of buildings by year of construction and building construction types (brick, cement, 

wood and iron).  We use these to calculate the average age of buildings in a chome and shares of 

different building types within a given chome.  Other variables included in our analysis include 

dummy variables to capture whether a plant belongs to a multi-plant firm (MULTI), and whether 

or not the plant is in a designated reconstruction priority zone (RECON) where urban 

reconstruction costs were heavily subsidized and planning schemes were implemented to 

improve urban living (new roads, parks etc.).  Other standard controls that we include are the age 

of the plant (AGE) and the average wage within a plant (WAGE) as a proxy for the average skill 

level of the workforce.  Finally, we include a measure of total factor productivity (TFP) based on 

the approach outlined in Cui et al. (2012 and 2015) who construct a measure of TFP that does 

not require a direct measure of capital.  The online appendix outlines how we estimate TFP. We 

also capture productivity using the more traditional value added per worker (labprod). 

Finally, we also control for the effect of possible agglomeration forces (ClusterPlants) that will 

capture whether plants choose to geographically cluster in order to benefit from positive 

externalities of being near firms in the same industry (e.g. supply of workers with similar skills or 

15 We assumed that the age of building was the medium value between categorical thresholds.  For example, 
buildings constructed between 1955 and 1965 were assumed to be 44 years old in 1994. 
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established markets selling certain goods).  Hence, we include the variable ClusterPlants, which 

measures the number of plants within the same two-digit industry and same chome.16 

3.4 Data descriptives 

We now provide a brief description of our data.  In Table 1 we provide a summary of the 

industrial structure in Kobe as well as estimates of the average plant-level damage for each 

industry using the previously defined colors Pink (fire), Red (severe) and Orange (moderate), 

Yellow (low).  Table 1 shows that the rubber industry had the largest number of plants in Kobe, 

reflecting the fact that this industry includes the non-leather shoe firms.  The rubber industry 

also experienced a high level of moderate to severe damage (46.1%) with only the non-ferrous 

metals industry experiencing greater damage.  We are reassured that these summary statistics 

match the anecdotal evidence and Kobe City statistics.  

[Table 1 about here] 

In figures 5, 6, 7 and 8 we present descriptive evidence of changes in the number of plants, total 

employment, the exit rate of plants and the number of new plant births over our time period.17  

The immediate observation from figure 5 is that the number of plants in Kobe fell from over 

4300 to around 2100 by 2007, coupled with a steadily declining workforce which fell from over 

100,000 to a little over 70,000 by 2007 (figure 6).  In figure 7 we can observe the large increase in 

the exit rate in the year after the earthquake in 1995 where it reached close to 14% in 1995 

before remaining relatively stable at below 10% for the rest of the sample period. Note that the 

1995 exit rate in figure 7 is actually the average exit rate for 1994 and 1995 since missing data for 

1994 means we cannot accurately identify whether a firm that was present in our dataset in 1993 

but not in 1995 actually died in 1994 or 1995. Taking the average is likely to provide a 

conservative estimate of the real 1995 exit rate as we are giving equal weight to exit rates in 1994 

and 1995 when, in reality, the latter was likely to have been larger. Finally, Figure 8 provides the 

number of new plant births in Kobe between 1993 and 2007. As can be seen, relative to 1993 

plant births fell following the earthquake but rose steadily until 1998 only to fall again. The same 

pattern then appears to be repeated for the remaining years of the sample.  

16
 We also define clusters by (1) the number of other plants within the same industry as plant i within the same or 

neighboring chomes (ClusterPlantsNb), (2) the level of employment within the same industry as plant i within the 
same or neighboring chomes (ClusterEmp), and (3) the level of employment within the same industry and same 
chome (ClusterEmpNb). See Collins (2008) for a discussion of the post-earthquake biomedical cluster in Kobe. 
17 Since births are defined as a the new appearance of a plant in our sample it is not possible to identify a new plant 
in the first year of our sample. Similarly, deaths are identified by a firm disappearing from the sample. Figures 7 and 
8 therefore provide deaths and births, respectively, for 1993-2007. 
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[Figures 5, 6, 7 and 8 about here] 

Table 2 provides the change in labor productivity over the sample period for new entrants, 

plants that died during the sample period and for continuing plants. 18  As can be seen, 

productivity growth of new entrants is higher than for dying or continuing plants. It is notable 

that plants that subsequently died during the sample period and continuing plants all, on average, 

experienced a reduction in productivity over our sample period. 

[Table 2 about here] 

Appendix Tables A1 and A2 provide a description of our variables and summary statistics.  

Table A2 shows for example that the average age of a plant is just over 18 years old, and 14% of 

plants are part of a multi-plant firm.  Note that 40% of plants were designated as being located in 

one of the special reconstruction zones defined earlier.  Finally, most firms were built between 

1966 and 1975 and are fairly equally distributed between brick, wood, steel and reinforced 

concrete. 

4. Decomposition Analysis 

Given our interest in the impact of the Kobe earthquake on productivity, our first empirical 

exercise decomposes aggregate changes in average sectoral labor productivity (valued added per 

worker) for 26 sectors in Kobe into changes in productivity due to plants exiting, plants entering 

and plants that survive the earthquake and continue to operate. Following Baily et al. (1992) we 

use sectoral weights to obtain the overall average for sales for the start and end year of each data 

point.  Although there is inter-annual variability, there is a clear rising trend in labor productivity 

in the first seven years following the earthquake.  The rise in productivity between the first year 

of our sample and the end year (1992-2007) is 14.8 per cent. 

In order to gauge what role earthquake damage might have played in the observed rise in labor 

productivity in Kobe over our sample period we employ a simple accounting exercise developed 

by Foster et al. (2006).  More specifically, Foster et al. (2006) decompose the change in sectoral 

productivity into the component due to the performance of continuing plants (C), that due to 

entering plants (N), and the component resulting from the exit of plants (X).  We expand this 

decomposition to further disentangle the separate roles of plants affected (d=1) and those little 

affected or not affected by earthquake damage: 

18 For plants that died during our sample period the productivity change is calculated between 1993 and the final 
year of the plant’s existence. 
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            [2] 

where LP denotes labor productivity, s is the employment share of the plant group in question, 

and i, e, and t subscripts refer to industry, establishment and time, respectively.  The second, 

third and fourth terms (CONTINUING) are a combination of three different effects.  First, a 

“within” effect that captures the changes in productivity within continuing establishments’, i.e., 

those that were present in both 1992 and 2007, weighted by their initial share of sectoral 

employment.  Second, a “between” effect that represents the component due to changing shares 

of continuing establishments, weighted by deviations from the initial industry level average 

productivity and finally a third “cross” term.  The “cross” term is positive if on average 

continuing establishments that have had a positive productivity change, increased employment 

and/or that those with negative productive changes are likely to have decreased their 

employment levels.  In contrast, if the “cross” term is negative then on average those firms that 

increased their employment share experienced a fall in productivity and those that saw a 

reduction in employment experienced an increase in productivity.  In our analysis we sum the 

within, between and cross effects together to get an overall picture for continuing firms. 

The first and final terms in equation (2) represent the role played by exits (EXITS) and entrants 

(ENTRANTS) in sectoral labor productivity changes, respectively.  In terms of implementing 

equation (2) in our context there are a number of points to note.  First, we look at changes 

between the first year of our sample, 1992, and 2007 at the end of our sample period.  We are 

therefore implicitly missing any plants that enter after the earthquake but exit before the end 

point.  Second, the definition of damaged (where d=1), differs between plants that continue or 
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exit and plant births.  In the former we simply use building damage.  In the latter, those plants 

that enter are classified according to the average level of building damage within the chome in 

which they choose to locate. 

As a starting point, to classify plants into a damage category we use a building damage level of 

20% (i.e. color code yellow) and an equivalent chome damage level cut-off.  In Table 3, column 

(1) presents the results for each decomposition term, as a percentage of average sectoral labor 

productivity growth.  The largest contributors to the overall growth in labor productivity are the 

entrants (ENTRANTS), both those that locate in damaged chomes and those that locate in 

undamaged chomes.  This is consistent with the strong positive change in labor productivity for 

new entrants reported in Table 2. In contrast, for continuing plants, we find that while both 

damaged and undamaged surviving plants have tended to reduce sectoral productivity, the 

overall negative effect is substantially larger for undamaged plants (-0.49) than for their damaged 

counterparts (-0.23).  In other words, if damaged plants survive they tend to be relatively more 

productive than those that are not directly damaged.  This result is an indication that there may 

have been an element of a “build back better” effect which raises future productivity. 

[Table 3 about here] 

When we compare the relative contribution to sectoral productivity we find that there is a 

noticeably larger contribution from the exit of damaged rather than undamaged plants (0.13 

versus 0.09).  In contrast, for new entrants, although both positive, those plants that choose to 

locate in damaged chomes contribute substantially less to the overall rise in sectoral labor 

productivity than those that choose to locate in undamaged areas.  One possible explanation is 

that subsidies encourage plants to start up in damaged areas and in new sectors.  In contrast, the 

productivity contribution of plant closures, as can be seen from the shares of the EXITS 

component, was somewhat larger for damaged plants.  This is again suggestive of a cleansing 

effect where earthquake damage results in the closure of the most inefficient plants thereby 

increasing the average productivity of survivors. 19 

19 Fukao and Kwon (2006) undertake a decomposition of total factor productivity growth in manufacturing for 
Japan as a whole over the period 1994-2001. They find that the very slow (0.31%) TFP growth over this period 
decomposes into a large entrant effect (0.16), consistent with our analysis for 1992-2007. However, in contrast to 
our analysis they find that continuing plants made a positive 0.22 contribution to TFP growth while exiters made a 
negative 0.07 contribution. We are very reluctant to infer that these differences may be due to the effect of the 
earthquake and instead believe that they are likely to be driven by the idiosyncratic nature of the Kobe economy and 
its reliance on traditional, declining industry together with the differences in our study and that of Fukao and Kwon 
(2006) referred to above. 
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In columns (2) and (3) of Table 3 we use different cut-off damage levels to classify plants.  First, 

we increase the minimum damage both at the plant level for continuing and exiting plants and at 

the chome level for entrants from 20% to 50%. We also reclassify plants as damaged only if their 

building was completely destroyed, but since there were very few chomes completely destroyed 

we used the corresponding minimum damage level of 75%.  The components that determine the 

trend in labor productivity are similar.  Comparing damaged to undamaged plants shows that the 

within components remain relatively unchanged both qualitatively and quantitatively.  The main 

exception, however, is in terms of the within productivity component of continuing plants.  In 

particular, as one increases the threshold damage level the negative contribution of surviving 

damaged plants falls considerably, while that of undamaged plants rises.  This suggests that 

plants in less damaged buildings suffered greater productivity losses, perhaps because they did 

not have to do as much capital and infrastructure updating as those that were located in 

buildings that were severely damaged.  Likewise, damaged plants were able to access funds for 

investment at a low cost which put undamaged plants at a potential competitive disadvantage. 

5. Plant Exits 

In the previous section the suggestion is that the least productive plants exit through a cleansing 

effect that increased the average productivity of survivors.  To investigate further we use a Cox 

proportional hazard modelling approach (Cox, 1972) to quantify the effect of earthquake damage 

on plant survival in the short term but also over subsequent years.  Of course some, or even 

possibly all, of any difference in survival rates between damaged and non-damaged plants could 

feasibly be due to differences in other characteristics.  To disentangle the quantitative effect of 

earthquake damage more precisely we thus estimate a Cox proportional hazards model.  We 

denote the hazard rate of plant i by λit which represents the probability that the plant exits in 

interval t to t+1, conditional upon having survived until period t given by: 𝜆𝜆𝑖𝑖𝑖𝑖 = 𝜆𝜆0(𝑡𝑡)𝑒𝑒𝑒𝑒𝑒𝑒(𝒁𝒁β)      [3] 

where λ0(t) is the baseline hazard, t is the analysis time, Z is a vector of explanatory variables, and 

β are our parameters to be estimated.  A key feature of the Cox model is that the baseline hazard 

is given no particular parameterization and can be left un-estimated.  However, the proportional 

hazards assumption requires that each plant’s hazard is a constant multiplicative replica of 

another plant’s hazard. 20  The effect of the function exp (Zβ) in equation (3) is to scale the 

20 Equation (3) can be modified to incorporate unobservable heterogeneity across plants or ‘frailty’ as it is often 
known.  If not controlled for, frailty can reduce the magnitude of estimated coefficients (or hazard ratios) and can 
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baseline hazard function that is common to all units up or down.  The implication is that the 

effect of covariates in proportional hazards models is assumed to be fixed over time.  We test 

this assumption by analysing the residuals following Grambsch and Therneau (1994).21 

Apart from our damage proxies, vector Z contains other variables likely to influence plant 

survival described in the previous section.  In addition, the previous literature has established 

that a number of factors influence the survival of plants.  For example, Dunne et al. (1988, 1989) 

establish the important role played by plant age and size and most subsequent papers confirm 

these findings (for example Bernard et al. 2006, Haltiwanger et al. 2013 and Fort et al. 2013).  

Bernard and Jensen (2007) find that multi-plant and multinational firms in the US have lower 

survival rates, while Gorg Görg and Strobl (2003) find that Irish plants that are majority foreign 

owned also have lower survival rates.  Disney et al. (2003) in a study of UK manufacturing plants 

find that those that belong to a larger group are less likely to fail.  Bernard et al. (2006), along 

with several others (e.g. Bernard and Jensen 2007), also emphasises the positive role played by 

productivity which is shown to increase survival rates.  Neffke et al. (2012) examine the effect of 

agglomeration economies on plant survival and find that results differ depending on the type and 

age of the plant.  Finally, in a related study, Falck (2007) finds that a new establishment has a 

greater survival probability the greater the number of new businesses in the same region and 

same industry. 

Given the literature discussed above we include the following control variables.  To capture firm 

size we include dummy variables for three of the four quartiles of total employment (the first 

quartile dummy is omitted).  Including a continuous measure of size does not change the results 

qualitatively or quantitatively.  We also include a measure of the average wage within a plant 

(WAGE) as a proxy for the skill level of the workforce.  Finally, we include a measure of TFP on 

the basis that productive plants are more likely to survive than less productive plants.  We also 

examine whether being part of a multi-plant firm helps survival (MULTI) and whether a plant 

being originally located in a reconstruction zone (RECON) influences the probability of survival.  

Given that the close proximity to other plants in the same industry may also impact on survival 

either positively or negatively, we also include our agglomeration measure (CLUSTER).  While 

change the interpretation of hazard ratios which, in the presence of frailty, would decline over time.  We therefore 
test a specification in which plant-specific frailty is included and which provides an estimate of θ, the frailty variance 
component.  In all estimations θ was not statistically significant and was very close to zero.  These results suggest 
that frailty is neither economically nor statistically significant in our models.  As a result, the estimated hazard ratios 
with and without frailty are identical (to at least 4 decimal places).  Hence, we exclude frailty from our main results 
although our sensitivity analysis does include a parametric model which incorporates plant-specific frailty. 
21 More specifically we undertake a test of nonzero slope in a generalized linear regression of the scaled Schoenfeld 
(1982) residuals on functions of time.  
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older plants are more likely to survive than younger plants we cannot include a direct measure of 

plant age in a Cox proportional hazards model as it would be collinear with the baseline hazard 

function.  Therefore, we include plant age in 1995 (AGE) as a time invariant measure of plant 

age. 

We also include 162 industry dummies, year dummies, and dummies to capture the possible 

influence of being located in different wards within Kobe city.  Finally, we include five different 

dummies for the average age of the buildings within each plant’s chome and the share of 

building construction types within each chome (wooden, reinforced concrete, steel or brick).  

These additional controls also demonstrate the richness of the data and how the inclusion of 

these dummies helps to mitigate a number of the endogeneity concerns present when more 

aggregate damage proxies are used. 

In our dataset we identify plant death if a plant was present in one or more years and then 

disappears from the dataset.22 Since we are missing data for 1994, this means that plants present 

in our data in 1993 that were not present in 1995 could have died in either 1994 (i.e. pre-quake) 

or in 1995 (post-quake). In our survival analysis we therefore omit the pre-quake period and 

hence the earliest plant deaths that we can capture are plants that were present in our data in 

1995 but not in 1996. We are therefore trying to ascertain how those plants that survived the 

immediate effects of the earthquake were subsequently affected by any earthquake damage 

incurred. 

Before proceeding to our analysis it is important to state the identifying assumption behind our 

econometric specifications.  Essentially, an unbiased estimate of the impact of our damage 

variables hinges on the assumption that after controlling for plant-level characteristics prior to 

the earthquake and the building types within chomes, any differences in damages experienced are 

not correlated with other unobservable determinants of plant performance.  A concern might be 

that some plants chose their location so as to reduce their exposure to seismic risk and that these 

plants are also characterized by other factors that would influence their survival regardless of 

whether an earthquake had occurred or not.  As noted earlier, we are confident that the 

earthquake was unexpected, so that such anticipatory behaviour would have been unlikely.  

Nevertheless, even if this was not the case it could be by pure chance that those plants that were 

anyway more likely to survive happened to be located in buildings that were more or less 

earthquake proof or in areas with overall less or more damage.  However, we believe that the 

number of plant-level explanatory variables that the census provides us with makes such a 

22 This is appropriate since our dataset is comprehensive and includes all manufacturing plants in Kobe. 
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violation of the assumption unlikely.  One aspect that we do not capture are the characteristics of 

the actual plant’s building.  Instead, as described above, we have chome level measures of 

building types, namely the age and construction material type.  Reassuringly though, chomes tend 

to be fairly homogenous in their building type.  For example, in 50% of all chomes the dominant 

building type constituted over 75% of all buildings with a standard deviation of 0.15%.  Similarly, 

while the average age of buildings for those built after 1945 was approximately 33 years, the 

standard deviation within chomes was only eight years.  In contrast, there is clearly more within-

chome heterogeneity in terms of damage type of buildings.  For example, the most dominant 

building type constituted less (69%) than the distribution of building types and almost double the 

standard deviation (0.28%). 

Nevertheless, to ensure that plant characteristics are not influencing the earthquake damage 

incurred by plants we estimate a cross-sectional regression expressing plant-level earthquake 

damage as a function of pre-earthquake plant-level characteristics age, size, wage, TFP and our 

cluster variable (the model also contains controls for industry, age of buildings in chome and 

type of buildings in chome.)  None of these plant-level characteristics are statistically significant 

determinants of plant-level earthquake damage (even at 10% significance levels).23   

We now turn to our results.  Our main survival analysis results are presented in Table 4.  To help 

with the interpretation of the coefficients recall that a hazard ratio on a continuous variable (e.g. 

WAGE) of, for example, 1.1, is interpreted as saying that a 1 unit change in that variable 

increases the hazard of plant exit by 10%.  Similarly, if the hazard ratio is 0.9 then a 1 unit 

increase in the variable reduces the hazard by 10%.24 

[Table 4 about here] 

We begin in Columns (1) and (2) with measures of earthquake damage that have previously been 

used as proxies for damage but do not take into account the possibility of heterogeneity in 

damage to plants within relatively small geographical areas.  The variables are the distance to the 

epicentre and local peak ground acceleration.  In terms of distance to the epicentre we find, 

surprisingly, a hazard ratio that is significantly greater than one, suggesting that within the City of 

Kobe the further away from the epicentre the greater the chance of plant closure.  Although 

seemingly counter-intuitive, the result is explained by the actual pattern of the earthquake 

23 Results are provided in Table A of the online appendix. 
24 As previously discussed, for each model we test whether the effect of covariates is constant over time.  For the 
models in Table 4 we find that this assumption is inappropriate for the variables WAGE and RECON.  We 
therefore interact these variables with a linear time trend, thereby allowing the hazard ratio to vary over time.  The 
inclusion of these interactions does not affect the sign and significance of these or any other variables. 
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damage which was concentrated in a narrow strip of land stretching away from the epicentre 

which we previously discusssed in Section 2.  Our result highlights the potential problems with 

using simple distance to the epicentre as a proxy for plant damage.  Model (2) includes our 

measure of local peak ground acceleration, SHAKE (illustrated in figures 3 and 4).  Our results 

show that SHAKE is not statistically significant.  One explanation for this insignificance is again 

the level of heterogeneity shown in figure 4 and discussed in Section 3.2. 

A third measure of damage that has been previously used in the literature is a regional or local 

spatial measure of damage.  Hence, in model (3) we include the average building damage at the 

chome-level (ChomeDAM).  The estimated coefficient is also statistically insignificant.  Figure 4 

shows that giving each building within a chome a damage index based on our color classification 

will induce considerable measurement error.  This again shows the importance of local damage 

heterogeneity. 

We now turn to our plant specific damage variables.  Our building-level damage variable 

(PlantDAM) is included in model (4).  This variable is statistically significant with a hazard ratio 

of 1.61 suggesting that a one unit increase in damage (representing a 100% damaged building) 

leads to a 61% increase in the probability of permanent plant closure.  In column (5) we include 

a smoothed plant damage variable (SMOOTH) that takes into account damage to plants nearby 

as a robustness check.  Reassuringly, the results are quantitatively similar to our PlantDam 

variable.25  In model (6) in addition to our plant damage variable we also control for the average 

level of ChomeDAM but this has little effect on the PlantDAM variable and is, in itself 

insignificant.  Note, however, that including these damage variables in this manner allows only 

for a permanent impact of earthquake damage on plant survival. 

More realistically, one might expect the impact of earthquake damage on the chance of survival 

to decline over time.  In model (7) we interact the chome-level damage and plant-level damage 

variables with Time, a variable capturing the number of years that have passed since the 

earthquake. We now find that ChomeDAM is statistically significant, with a hazard ratio indicating 

that greater chome level damage increases the probability of plant exit.  The magnitude of the 

hazard ratio on ChomeDAM is now greater than that on PlantDAM although the Time interaction 

terms reveal that the negative effect of these factors on survival diminishes over time and 

declines more rapidly for ChomeDAM. 

25
 We would like to thank an anonymous referee for the suggestion.  The SMOOTH variable is calculated as the 

average damage for all buildings within 100m of the plant (excluding own plant damage).  The results give us 
confidence that our plant damage variable does not suffer from the endogeneity concerns discussed in Section 3.4. 
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Turning to our other control variables the coefficients are remarkably stable across all 

specifications.  More specifically, we find that older plants and higher wage paying plants are less 

likely to exit but the effect is small.  Our size variables all have hazard ratios below one indicating 

that larger plants are less likely to exit relative to the smallest plants which form the omitted 

category.  Plants that are part of a multi-plant firm appear to be more likely to close, a finding 

consistent with Bernard and Jensen’s (2007) and Craioveanu and Terrell (2016)’s finding for US 

plants and explained by firms moving production to other plants within the firm instead of 

repairing the damaged plant and resuming production.  Our TFP variable has a hazard ratio of 

less than 1 suggesting that more productive firms are more likely to survive (in unreported 

results our simple labor productivity variable gives a similar result).  Finally, our measure of the 

degree of plant agglomeration (ClusterPlants) which measures the number of plants from the same 

2-digit industry in a given chome has a hazard ratio greater than 1.  This suggests that plants that 

belong to a cluster are more likely to exit and may reflect the increased competition associated 

with a heavy spatial concentration of plants from the same industry and more importantly a 

breakdown of agglomeration economies that had previously allowed the cluster to thrive despite, 

for example, increased competition from China.26  Our variable to capture whether a plant was 

located in one of the eight special reconstruction zones is not significant. 

In Table 5 we further investigate our primary finding that plant damage significantly impacts the 

probability of plant survival.  For reasons of space, we report only results for our damage 

variables, although each model includes all of the plant characteristics reported in Table 4 

together with our industry, year, and ward dummies, and the age and type of buildings in each 

chome.  In model (1) we replace our Cox proportional hazard model with a Probit model to 

estimate the probability of plant exit.  PlantDAM is again shown to be a positive and statistically 

significant determinant of plant exit although its interaction term with years since the earthquake 

is not significant while ChomeDAM and its interaction term with Time both remain significant.  

Model (2) is a parametric survival model provided for comparison and incorporates plant-

specific frailty, as previously discussed.27  PlantDAM and its interaction with time are statistically 

significant, as are ChomeDAM and its interaction with time. We also report θ, the frailty variance 

component which is insignificant and close to zero indicating that frailty has almost no effect 

within this model. 

26 We also alternatively used our other clustering proxies described in the data section.  These results are reported in 
the online Appendix (Table B) and are very similar in terms of sign and significance.  
27 The parametric model was estimating using the exponential distribution.  Of all the available distributions, the 
exponential distribution provided the lowest Akaike Information Criterion.  Frailty itself is modelled using a gamma 
distribution. 
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Model 3 replaces our PlantDAM variable in the Cox proportional hazard model with individual 

dummy variables for pink, red, orange, and yellow levels of damage, where green (no damage) is 

the omitted category.  We also include the ChomeDAM variable but exclude time interactions so 

that we are able to see how the hazard shifts across categories.  The results suggest that it is pink 

and red damage that is driving our results.  However, when we include chome damage and time 

interactions in model (4) we find that all four dummy variables, together with their time 

interactions, are statistically significant.  As one might have expected, the hazard ratios for pink 

and red plant damage are larger than those for orange and yellow damage.  Model 5 includes 

individual variables capturing the chome-level share of each building damage type together with 

their interactions with time.  The proportion of red, orange and yellow damaged buildings in a 

chome is found to significantly influence plant exit.  The magnitude of the hazard ratios on the 

chome damage variables are broadly similar to those on the plant damage variables and, again, 

the hazard ratios decline over time. 

[Table 5 about here] 

In almost all cases we find that not only are our plant and chome level damages variables 

significant but so are their time interaction terms, where the hazard ratios suggest a negative 

impact that declines over time.  In Figure 9 we plot the implied plant specific damage hazard 

ratios over time for the final model in our main results table (model 7 in Table 4), and, 

separately, for the individual levels of damage (model 5 in Table 5).  Observe that the hazard 

ratio remains above one until at least 2002 for all but the most minor level of damage (yellow).  

This suggests that plants that were damaged by the earthquake were more likely to exit than 

undamaged plants for up to seven years after the earthquake.  For plants that experienced fire 

(pink) damage, the effect lasted for up to nine years.  Plants that experienced the least severe 

yellow level of damage were more likely to exit than undamaged plants for up to five years after 

the earthquake.28  However, figure 9 also shows that the greatest exit rate was immeditately 

following the earthquake (consistent with figure 7). 

[Figure 9 about here] 

For reasons of space we do not plot the hazard ratios associated with chome level damages over 

time.  However, the results from model 7 in Table 4 and models 2 and 5 in Table 5 indicate that 

the effects of ChomeDAM are of a similar, or even greater, magnitude than the effects of 

PlantDAM but are shorter lasting.  More specifically, within four years plants that were located in 

28 Hazard ratios from models 2 and 4 in Table 5 are plotted in Figure C in the online Appendix. In each case the 
duration of the earthquake impact from these models is very similar to those presented in Figure 9. 
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a chome that suffered complete building damage were no more likely to exit than plants that did 

not experience any damage. 

To assess the sensitivity of our results to the construction of our single index PlantDAM variable, 

which uses the median value of damage within each damage category, we randomised this factor 

for each damage category.  Firstly, we assigned the same randomly chosen damage value to all 

plants within a damage category.  Secondly, we randomly assigned a different value of damage to 

each plant within a category.  For both procedures the randomly chosen value was bounded by 

the upper and lower damage values within each category.29  This exercise was conducted 500 

times for each case and then our specification of model (7) in Table 4 re-estimated.  Figures D 

and E in the online appendix depict the distribution of the estimated hazard ratio derived from 

the coefficients on the plant specific damage variable and its interaction with time.  More 

specifically, Figure D provides the mean, 5% level and 95% level of implied hazard ratios over 

time from the 500 different estimations in which the same randomly chosen damage value is 

assigned to each plant within a damage category, whereas Figure E provides the counterpart for 

when a different randomly chosen damage value is assigned to each plant within a damage 

category.  In both exercises, the PlantDAM and PlantDAM*Time variables were significant in all 

500 estimations.  The two figures show that the mean hazard ratio is similar in magnitude to 

those from the ‘main Cox’ model in Figure 9, although there is more confidence in the estimated 

effect from the sample where plants’ damage values can differ from those of other plants in the 

same damage category.  These results provide some confidence that the results are not sensitive 

to the manner in which the PlantDAM index was constructed. 

Finally, we try to throw some light on the nature of the plants most likely to fail as a result of 

earthquake damage. We do this using the model (7) specification in Table 4 applied to various 

sub-samples of our data. Specifically, we estimate the model, separately, for the lowest quartile of 

plants in terms of TFP, labor productivity, size, age and skill-level (measured using average 

wage). Having estimated hazard ratios for each of these sub-samples we can then compare them 

with the hazard ratio for the full-sample to see if, for instance, plants in the lowest quartile in 

terms of TFP have higher hazard ratios than the average plant in the full sample. Table 6 

provides the estimated hazard ratios for each sub-sample which, for convenience, can be 

compared to the hazard ratio for the full sample in column (1). Table 6 also indicates if the 

hazard ratios for each sub-sample are statistically different to those from the full sample using 

Likelihood Ratio tests. Compared to the full sample the hazard ratio on PlantDAM is greater in 

29 For the chome level damage variable we similarly randomly assigned a value within each category’s upper and 
lower threshold. 
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magnitude, and statistically different to the hazard ratio for the full sample, for plants that are in 

the lowest quartile in terms of TFP, labor productivity, size and skill-level.  This indicates that 

unproductive, small,  low-skill plants were more likely to immediately fail as a result of 

earthquake damage than the average plant in the sample. The hazard ratio for the youngest 

quartile of plants is not statistically different to that from the full sample. The interaction of 

PlantDAM with time suggests that the effect of earthquake damage on unproductive, small, low-

skill plants lasts for a similar length of time to the plants in the full sample. 

[Table 6 about here] 

6. Continuing Plants 

Having examined the effect of earthquake damage on plant survival more generally, we now 

investigate how such damage may have affected the performance of surviving plants.  Note that 

we limit our sample to those plants that are still operating at the end of our sample period (the 

results do not change substantially when we include those plants that exited during the period).  

Our final sample consists of a balanced panel of 835 surviving plants for the period 1992-2007.  

Starting in 1992 means we have plant data before and after the earthquake.  We estimate a fixed 

effects panel model of the following form: 

 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝛾𝛾𝑖𝑖 + 𝑋𝑋𝑋𝑋 + 𝜀𝜀𝑖𝑖𝑖𝑖     [4] 

where Yit denotes the log of labor productivity or TFP, in plant i, year t, X is a vector of 

explanatory variables, including our earthquake damage proxies, and α and γ are plant and year 

fixed effects, respectively.  As previously pointed out, our measures of damage PlantDAM and 

ChomeDAM, take on a value of zero prior to the earthquake and then, for affected plants, take on 

a positive value, depending on the damage incurred, from then onwards.  For undamaged plants 

they are consistently zero throughout the period.  This sort of modelling is equivalent to a 

difference-in-difference analysis where the treatment is of a continuous (rather than binary) 

nature once treatment occurs. 30  Equation (4) is estimated using Driscoll and Kraay (1998) 

standard errors which are robust to very general forms of cross-sectional and temporal 

dependence. 

Table 7 presents the results for equation (4) where each of our left hand side variables is 

estimated with and without time interaction terms.  The results in columns (2) and (4) show that 

our plant-damage variable is positive and significant when we include time interaction terms, 

30 This is a standard tool in the econometric assessment of shocks; see for instance Angrist and Pischke (2008). 
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with the interaction terms being negative.  This suggests that the earthquake had a positive effect 

on plant productivity although this effect falls over time.  Hence, model (2) shows that a one unit 

increase in PlantDAM initially increases labor productivity of surviving plants by 1.10%, with this 

effect falling to zero after eight years.  The effect for labor productivity is similar.  One 

explanation is that this is capturing a build-back-better effect if surviving plants replaced 

earthquake damaged physical capital with newer, more efficient capital. In terms of labor 

productivity it may be that the least skilled workers left Kobe post-earthquake as they may have 

had less incentive to see if their jobs at damaged plants would resume following reconstruction.  

Alternatively, they may simply have been laid off by the plant as a short term cost saving exercise 

until the plant was repaired at which time new workers were hired.  An alternative explanation of 

why damage increases the productivity of surviving plants is simply that plants that are on an 

increasing productivity trajectory rebuild and those with declining productivity do not rebuild. 

For labor productivity ChomeDAM has a negative effect with the effect getting smaller over time 

as expected.  Both of our productivity variables were positively influenced by the level of wages 

and whether or not the plant was within a reconstruction zone and negatively affected by being 

part of a multi-plant firm. 

[Table 7 about here] 

7. Plant Entrants 

Until now we have concentrated on how the Kobe earthquake affected plants that existed at the 

time of the earthquake.  In our final analysis we consider the effect of earthquake damage on 

plant births.  We undertake this analysis at the chome level and estimate the following regression: 𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡ℎ𝑠𝑠𝑗𝑗𝑖𝑖 = 𝑍𝑍𝑍𝑍 + 𝛼𝛼𝑗𝑗 + 𝛾𝛾𝑖𝑖 + 𝜖𝜖𝑗𝑗𝑖𝑖   [5] 

where α and γ are chome and year fixed effects, respectively, and vector Z contains chome-level 

earthquake damage as well as road damage, whether or not the chome was part of a 

reconstruction zone, and the number of plants within the chome in the previous year. Subscripts 

j and t denote chomes and years, respectively.  Equation (5) is estimated using a fixed effects 

negative binomial approach in order to account for both the count data nature of the dependent 

variable and for the over-dispersion of the data.31 Note that our sample period for this analysis 

begins in 1993 rather than 1992 as 1993 is the first year in which births can be identified. This 

31 We also estimate the probability of plant birth using a fixed effects logit model with the results reported in the 
online appendix (Table C).  In each case the results were similar to those estimated using the fixed effects negative 
binomial regression. 
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reflects the fact that births are identified by the presence of a new firm in the sample which was 

not present in previous years. Note also that this method of identifying new births means births 

identified in 1995 could actually have occurred in our missing year, 1994. For this reason we omit 

1995 from the analysis although the inclusion of this year has no impact on the sign and 

significance of our results. 

Table 8 presents the results of our chome-level estimates of the determinants of plant births.  In 

models (1) and (2) we use the ChomeDAM variable with and without time interactions, 

respectively, while models (3) and (4) separate damages into the different damage categories, 

again with and without time interactions.  We find that ChomeDAM deters plant births and that 

this effect does not statistically change over time as shown in model (2).  In model (1), for 

example, ChomeDAM has a coefficient of -0.96 which corresponds to an incidence rate ratio of 

0.38, implying that a 100% damaged chome would have only 38% of the births of an undamaged 

chome.  Interestingly, the reconstruction dummy, RECON, is negative and significant indicating 

that being classified as a reconstruction zone reduces plant births.  From model (1), 

reconstruction zones only experienced 26% of the births in non-reconstruction zones.  This may 

relate to the nature of the reconstruction which was often residential and retail.  Kobe planners 

were also keen to ensure that the city did not make the mistakes of the past, for example relying 

too heavily on wooden buildings.  For that reason, reconstruction zones may have been subject 

to more, rather than less, stringent planning regulations. 

The results of models (3) and (4) show that the number of buildings that were fire damaged in a 

chome (pink) did not influence plant births in a statistically significant manner, but the level of 

severely damaged buildings (red) increased plant births.  The incidence rate ratio for 

ChomeDAMRed in model (3) tells us that a chome in which all buildings experienced ‘red’ damage 

would experience 84% more plant births than an undamaged chome.  This suggests that the fact 

that buildings were razed to the ground in the most severely damaged chomes meant new 

investment and plant births were more likely.  In contrast, being moderately damaged reduces 

plant births, with ‘orange’ and ‘yellow’ chomes experiencing only 25% and 47%, respectively, of 

the births of an undamaged chome.  The results help explain the strong effect on productivity of 

plants entering into undamaged areas from Table 2 as there are many more of them. 

[Table 8 about here] 
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8. Conclusions 

In this paper we investigate the impact of the Kobe 1995 earthquake on the birth, life and 

possibly death of manufacturing plants using a spatially heterogenous measure of plant damage.  

More specifically, we assemble an exhaustive panel of manufacturing plants spanning the period 

1992 to 2007 and construct building-specific and area-specific measures of damage.  We are also 

able to control for average building type and age at the local geographical level to help address 

various endogeneity concerns.  Our decomposition results show that the increase in productivity 

post-earthquake was driven by the exit of plants and the entry of new plants into undamaged 

areas.  Although continuing plants had an overall negative effect on overall productivity, 

damaged plants did relatively better over our time period.  Our survival analysis results show that 

plant survival is negatively impacted by plant-level damage and that this effect persists for a 

number of years.  More precisely, damaged plants are more likely to fail than undamaged plants 

up until 2002 which is seven years after the earthquake.  This result is in stark contrast to the 

more macroeconomic studies where the implied duration was much more short-term.  Our 

results also indicate that damage to local infrastructure affects plant failure, although such effects 

do not last as long as the effects of plant damage.  What is evident is that studies that employ far 

more aggregated measures of damage using shake maps or broad regional measures of damage 

are subject to considerable measurement error due to the heterogeneous nature of damage 

caused by natural disasters, especially earthquakes. 

In further analysis we show that compared to the average plants those most likely to cease 

trading were the relatively unproductive, small, young and low-skill plants.  In terms of 

productivity at least, this suggests that natural disasters may play a cleansing role similar to that 

performed by recessions (Caballero and Hammour 1994 and Ouyang 2009).  While an 

assessment of the overall impact on welfare of the Kobe earthquake is beyond the remit of this 

paper, such a cleansing role would partially mitigate some of the other economic losses generated 

by the earthquake.  Examining the productivity performance of plants that survived the 

earthquake we discover evidence consistent with a build back better behaviour among those 

plants that survived.  More precisely, we find that the productivity of damaged plants increased 

in the years following the earthquake although this disappeared 8 years after the earthquake. 

The policy implications are necessarily nuanced.  In one respect, policies that provided 

subsidised loans to damaged plants may well have helped plants survive in the short term and 

help maintain employment levels.  The downside is that this increased indebtedness and when 

combined with a sluggish Japanese economy meant that plants continued to exit in the years 
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following the earthquake.  Likewise, policies to encourage plants to locate in certain areas and in 

certain sectors may not have been a cost effective use of funds.  However, stronger policy 

perscriptions are not possible without a more indepth analysis of the financial and non-financial 

aid provided to plants in the aftermath of the earthquake. 

Finally, more generally, our paper provides a number of suggestions for the literature on the 

economic impact of natural disasters.  Natural disasters tend to be localised events and moving 

beyond the micro-level impact is likely to mask the size and duration of any local impacts.  

Related to this, it is important to be able to precisely capture the heterogeneous nature of these 

large negative shocks across space in order to have reasonable confidence in their estimated 

consequences. 
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Figure 1. Manufacturing Output in Kobe and the Rest of Japan Relative to Pre-Earthquake 
Levels (1993=100) 
 

 
 

 
Figure 2: Chome-Level Damages Based on the Average Percentage of Damage to Each Building 
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Figure 3: A Shake-Map of Kobe City Showing Variation in Peak-Velocity (cm/s). 
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Figure 4: A Shake-Map of a Small Area of Kobe City Showing Building Damage Heterogeneity. 
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Figure 5. The Number of Manufacturing Plants in Kobe Pre and Post Earthquake 

 

Figure 6. Total Employment in Manufacturing in Kobe Pre and Post Earthquake 

 

Figure 7. The Exit Rate of Manufacturing Plants in Kobe Pre and Post Earthquake* 

 

* Note that the 1995 exit rate is an average of the 1994 and 1995 exit rates 
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Figure 8. The Number of New Plant Births in Kobe Pre and Post Earthquake* 

 

* Note that the number of births in 1995 is an average of the births in 1994 and 1995  

 

Figure 9. Plant Damage Hazard Ratios Over Time (from Table 4 (model 7) and Table 5 (model 

5)) 
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Table 1. Damage by Industry (Ranked by All Damage).1 

Industry 
% of 

Sample 
All 

Damage 
PINK RED ORANGE YELLOW 

Non-Ferrous Metals 0.6 85.4 0 15.6 38.5 31.3 

Rubber 17 76.2 5.5 24.8 15.8 30.1 

Leather and Fur 6.8 74.8 7.5 19.8 16.8 30.7 

Information & Communication 
Machinery 

0.4 71.6 0 33.8 8.1 29.7 

Pulp, Paper 2.5 71.5 3.4 16.5 21.7 29.9 

Furniture 1.4 70.9 0 16.9 23.5 30.5 

Industrial Machinery 6 69.1 0.6 14.1 14.9 39.5 

Printing 10.5 68.1 0.9 16.5 19.1 31.6 

General Machinery 4.6 63.4 1.2 10.4 11.4 40.4 

Textiles 4.8 62.4 0 17.4 19.5 25.5 

Plastic Products 1.8 60 0 14.9 17.6 27.5 

Metal Products 8.6 59.3 1.9 11.2 18.5 27.7 

Wood Lumber 1.8 58.3 0 16 17.3 25 

Electronic Machinery 3 56.5 3.6 10.1 12.7 30.1 

Transport Machinery 5.1 56.2 1.8 8.1 20.7 25.6 

Chemicals 1.2 55.6 13.1 19.2 4.6 18.7 

Beverages and Tobacco 2.1 55.5 0 9.1 13 33.4 

Food 12.3 54.6 1.6 9.4 13.5 30.1 

Electronic Devices & Semi-Conductors 0.6 52.1 0 8.3 24 19.8 

Oil and Coal Products 0.5 49.4 16.1 0 1.2 32.1 

Other Manufacturing 4.6 47.8 0.7 4.9 9.8 32.4 

Porcelain and Pottery 1.3 42.9 6.1 18.1 6.1 12.6 

Household Machinery 0.8 39.7 0 8.4 6.1 25.2 

Iron and Steel 1.3 35.4 0 16.5 2.8 16.1 

Newspapers 0.6 23.5 0 7.8 2 13.7 
1
 Where ‘All Damage’ is the sum of pink, red, orange and yellow. 

 
 
Table 2. Average Change in Labor Productivity 1992-2007 for New, Dying and Continuing 
Plants. 
  

 Change 

New Plants  54.7% 

Dying Plants -39.5% 

Continuing Plants -13.7% 
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Table 3. Decomposition analysis (Labor Productivity 1992-2007) 

Component DAMAGE 
(d=1,0) 

(1) 
20% damage 

(2) 
50% damage 

(3) 
75% damage 

TOTAL EXITS  0.22 0.21 0.21 
EXITS 1 (Damaged) 0.13 0.14 0.11 
EXITS 0 (Undamaged) 0.09 0.07 0.10 
     
TOTAL CONTINUING  -0.72 -0.62 -0.68 
CONTINUING 1 (Damaged) -0.23 -0.07 0.01 
CONTINUING 0 (Undamaged) -0.49 -0.55 -0.69 
     
TOTAL ENTRANTS  1.5 1.42 1.47 
ENTRANTS 1 (Damaged) 0.58 0.58 0.60 
ENTRANTS 0 (Undamaged) 0.92 0.84 0.87 
     
 Number of observations = 19,221 
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Table 4. Main Results of Survival Analysis (Cox proportional hazard) 

VARIABLES (1) (2) (3) (4) (5) (6) (7) 

DISTEPI 1.01***       

 (0.0016)       

SHAKE  1.002      

  (0.0067)      

SMOOTH 
 

    1.62*** 
(0.28) 

  

PlantDAM    1.61***  1.61*** 3.83*** 

    (0.19)  (0.19) (0.72) 

ChomeDAM   1.08   1.01 7.88*** 

   (0.18)   (0.17) (2.30) 

PlantDAM*Time       0.83*** 

       (0.027) 

ChomeDAM*Time       0.66*** 

       (0.031) 

AGE 0.9997** 0.995** 0.995** 0.995** 0.997** 0.997** 0.997** 

 (0.0022) (0.0023) (0.0022) (0.0022) (0.0022) (0.0022) (0.0022) 

SIZE2 0.50*** 0.50*** 0.50*** 0.49*** 0.49*** 0.49*** 0.52*** 

 (0.038) (0.038) (0.038) (0.038) (0.038) (0.038) (0.040) 

SIZE3 0.39*** 0.39*** 0.39*** 0.40*** 0.40*** 0.40*** 0.41*** 

 (0.031) (0.031) (0.031) (0.032) (0.032) (0.032) (0.033) 

SIZE4 0.85*** 0.85*** 0.85*** 0.85*** 0.85*** 0.85*** 0.86*** 

 (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.017) 

WAGE 0.998*** 0.9997*** 0.9997*** 0.9997*** 0.9997*** 0.998*** 0.998*** 

 (0.000046) (0.000046) (0.000046) (0.000047) (0.000047) (0.000047) (0.000048) 

TFP 0.89** 0.89** 0.89** 0.90*** 0.90** 0.90** 0.91* 

 (0.045) (0.044) (0.045) (0.045) (0.045) (0.045) (0.047) 

MULTI 1.44*** 1.44*** 1.44*** 1.43*** 1.43*** 1.43*** 1.42*** 

 (0.15) (0.17) (0.15) (0.15) (0.15) (0.15) (0.15) 

RECON 0.9993 1.0025 0.9998 0.995 0.9997 0.996 0.99 

 (0.010) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) 

ClusterPlants 1.02** 1.03** 1.02** 1.03*** 1.03** 1.03** 1.03** 

 (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) 

Observations 16,658 16,658 16,658 16,658 16,658 16,658 16,658 

Wald 308594*** 318471*** 304152*** 338214*** 311356*** 323214*** 294578*** 

Each model contains controls for 3-digit industry, year, ward, age of buildings in a chome and type of buildings in a chome 
Standard errors are in parentheses and ***, **, * denote hazard ratios that are significantly different from 1 at 99%, 95% and 90% 
confidence levels, respectively  
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Table 5. Survival Analysis Sensitivity Results 

 

 

 1 2 3 4 5 
PlantDAM 0.19** 1.83***    
 (0.09) (0.32)    
PlantDAM*Time -0.019 

(0.016) 
0.93** 
(0.028) 

   

PlantDAMpink   1.50** 3.05*** 3.26*** 
   (0.26) (0.96) (1.13) 
PlantDAMred   1.36** 3.98*** 3.63*** 
   (0.13) (0.72) (0.73) 
PlantDAMorange   1.11 2.41*** 1.90*** 
   (0.10) (0.48) (0.38) 
PlantDAMyellow   0.94 2.33*** 2.09*** 
   (0.075) (0.42) (0.37) 
PlantDAMpink*Time    0.90** 0.88** 
    (0.048) (0.047) 
PlantDAMred*Time    0.84*** 0.85*** 
    (0.023) (0.024) 
PlantDAMorange*Time    0.89*** 0.92*** 
    (0.025) (0.025) 
PlantDAMyellow*Time    0.87*** 0.88*** 
    (0.021) (0.02) 
ChomeDAMPink     1.95 
     (0.78) 
ChomeDAMRed     2.36*** 
     (0.75) 
ChomeDAMOrange     3.56*** 
     (1.28) 
ChomeDAMYellow     2.83*** 
     (0.91) 
ChomeDAMPink*Time     0.86** 
     (0.047) 
ChomeDAMRed*Time     0.81*** 
     (0.037) 
ChomeDAMOrange*Time     0.83*** 
     (0.043) 
ChomeDAMYellow*Time     0.80*** 
     (0.036) 
ChomeDAM 0.27** 2.55*** 1.01 7.95***  
 (0.11) (0.56) (0.17) (2.51)  
ChomeDAM*Time -0.057*** 0.82***  0.66***  
 (0.015) (0.025)  (0.031)  
θ  1.01e-7    
(p value)  (0.47)    
Observations 16,658 16,658 16,658 16,658 16,658 
In addition to the firm control variables contained in Table 3, each model contains industry, year, ward dummies and the age 
of buildings in chome and type of buildings in chome. Standard errors are in parentheses and ***, **, * denote hazard ratios 
that are significantly different from 1 (or coefficients significantly different from 0 in he case of model1) at 99%, 95% and 
90% confidence levels, respectively. Model 1 uses a Probit estimation; model 2 uses a parametric (exponential distribution) 
shared frailty model; model 3 uses a Cox proportional hazards model and separates plant-level damages into 4 individual 
categories; model 4 does the same and includes time interactions; model 5 uses a Cox proportional hazards model and 
separates both plant-level damage and chome damage into 4 individual categories with time interactions. 
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Table 6. Plant Damage Hazard Ratios for Unproductive, Small, Young and Low-Skill Plants. 

 FULL 

SAMPLE 

Least 

Productive 

(TFP) 

Least 

Productive 

(Lab Prod) 

Smallest Youngest Low-Skill 

PlantDAM 3.83*** 

(0.72) 

5.68*** 

(2.16) 

5.01*** 

(2.01) 

8.02*** 

(2.97) 

3.41*** 

(2.14) 

8.29*** 

(1.98) 

PlantDAM*Time 0.83*** 

(0.027) 

0.74*** 

(0.057) 

0.80*** 

(0.05) 

0.77*** 

(0.055) 

0.83*** 

(0.054) 

0.71*** 

(0.055) 

LR Test 

(p value) 

 12.27 

(0.007) 

12.21 

(0.007) 

15.91 

(0.001) 

4.46 

(0.22) 

23.15 

(0.000) 

Observations 16,658 4164 4164 4164 4164 4164 

Each model contains controls for 3-digit industry, year, ward, age of buildings in a chome and type of buildings in a 
chome and all of the other control variables reported in Table 3, column 7. 
Standard errors are in parentheses and ***, **, * denote hazard ratios that are significantly different from 1 at 99%, 
95% and 90% confidence levels, respectively  
Where unproductive, small, young and low-skill plants refer to the lowest quartile of plants in terms of TFP, labor 
productivity, size, age and skill-level (wage) 

 

 

Table 7. Determinants of TFP and Labor Productivity 1992-2007 (fixed effects panel)  

 1 2 3 4 
 TFP TFP logLabProd logLabProd 

PlantDAM 0.022 
(0.025) 

0.10*** 
(0.027) 

0.017 
(0.023) 

0.093** 
(0.035) 

PlantDAM*Time  -0.0012*** 
(0.0024) 

 -0.011*** 
(0.0035) 

ChomeDAM 0.0042 
(0.022) 

-0.0090 
(0.023) 

0.039 
(0.030) 

-0.039** 
(0.020) 

ChomeDAM*Time  0.0018 
(0.0029) 

 0.011*** 
(0.0015) 

WAGE 0.0017*** 
(0.00011) 

0.0017*** 
(0.00011) 

0.0016*** 
(0.00013) 

0.0016*** 
(0.00013) 

MULTI -0.057*** 
(0.015) 

-0.058*** 
(0.015) 

-0.077*** 
(0.023) 

-0.077*** 
(0.022) 

RECON 0.074*** 
(0.010) 

0.074 
(0.010) 

0.045*** 
(0.012) 

0.044*** 
(0.012) 

ClusterPlants 0.00065* 
(0.00036) 

0.00064* 
(0.00036) 

0.00036 
(0.00029) 

0.00036 
(0.00028) 

observations 11,688 11,688 11,688 11,688 
R2 0.10 0.10 0.14 0.14 
Each model contains plant and year fixed effects. 
Standard errors are in parentheses and ***, **, * denote coefficients that are significantly 
different from 0 at 99%, 95% and 90% confidence levels, respectively 
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Table 8. The Determinants of Plant Births 1993-2007 (negative binomial estimation) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
  

 1 2 3 4 
ChomeDAM -0.96*** -0.93***   
 (0.20) (0.23)   
ChomeDAM*Time  -0.0052   
  (0.020)   
ChomeDAMPink   -0.37 0.50 
   (0.34) (0.41) 
ChomeDAMRed   0.61** 1.43*** 
   (0.32) (0.39) 
ChomeDAMOrange   -1.37*** -1.66*** 
   (0.46) (0.58) 
ChomeDAMYellow   -0.74** -0.31*** 
   (0.33) (0.41) 
ChomeDAMPink*Time    -0.14*** 
    (0.041) 
ChomeDAMRed*Time    -0.12*** 
    (0.032) 
ChomeDAMOrange*Time    0.045 
    (0.056) 
ChomeDAMYellow*Time    -0.062 
    (0.038) 
RECON -1.34*** 

(0.17) 
-1.34*** 

(0.17) 
-1.25*** 
(0.28) 

-1.38*** 
(0.19) 

PLANTS -0.0048 -0.0047 -0.0046 -0.0052 
 (0.0047) (0.0049) (0.0047) (0.0048) 
Time  -0.44*** 

(0.14) 
 -0.42*** 

(0.14) 
observations 10,440 10,440 10,440 10,440 
Wald 598.2*** 597.3*** 593.4*** 614.5*** 
Each model contains chome and year effects 
Standard errors are in parentheses and ***, **, * denote coefficients that are significantly different 
from 0 at 99%, 95% and 90% confidence levels, respectively 
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Appendix 

Table A1. Variable Definitions1 

Variable  
DISTEPI Distance of plant to earthquake epicenter in kilometres. 

SHAKE 
Estimated peak ground velocity in centimetres per second estimated at the 
250m grid cell level by Fujimoto and Midorikawa (2002). 

SMOOTH 
A spatially smoothed measure of plant damage (average damage of plants 
within 100m excluding own building damage). 

PlantDAM Building-level damage index. 
ChomeDAM Chome-level Building damage index. 
AGE The age of the plant in years in 1995. 
SIZE (EMP) The total level of employment at the plant. 
SIZE1to SIZE4 Dummy variables =1 if a plant is in the first, second, third or fourth quartiles 

of total employment, respectively. 
WAGE The average annual wage per worker at the plant 10,000 Yen.  
TFP Total factor productivity, as defined in the online appendix. 
MULTI A dummy variable =1 if a plant is from a multi-plant firm. 
RECON 

 

A dummy variable =1 if a plant is located within one of 523 priority 
reconstruction districts in which reconstruction costs were subsidised and 
regulations were reduced. 

Births The number of new plants born within a chome. 
ClusterPlants The number of plants belonging to the same 2 digit industry as the plant in 

question and within the same chome. 
ClusterPlantsNb The number of plants belonging to the same 2 digit industry as the plant in 

question and within the same chome or neighboring chomes. 
ClusterEmp The level of employment within the same 2 digit industry as the plant in 

question and within the same chome. 
ClusterEmpNb The level of employment within the same 2 digit industry as the plant in 

question and within the same chome or neighboring chomes. 
VA The level of value added in 10,000 Yen. 
LabProd The level of value added per worker in 10,000 Yen. 
BUILDpre45 Share of buildings built pre 1945 by chome. 
BUILD46-55 Share of buildings built 1946-55 by chome. 
BUILD56-65 Share of buildings built 1956-65 by chome. 
BUILD66-75 Share of buildings built 1966-75 by chome. 
BUILD76-85 Share of buildings built 1976-85 by chome. 
BUILDafter86 Share of buildings built after 1986 by chome. 
BUILDbrick Share of brick built buildings by chome. 
BUILDrconc Share of reinforced concrete buildings by chome. 
BUILDsteel Share of steel buildings by chome. 
BUILDwood Share of wooden buildings by chome. 

1 All monetary variables are expressed in year 2000 prices. 
 
Variables SIZE, WAGE, MULTI, MOVE, VA and LabProd come from the Manufacturing Census (Japanese 
Ministry of Economy, Trade and Industry).  Variable AGE is from the Establishment and Enterprise Census 
(Japanese Ministry of Internal Affairs and Communications).  Our damage, building age and building type variables 
are from ‘Shinsai Hukkou Akaibu’ (archive on the damage of the 1995 Hyogo-Awaji earthquake) by Kobe City 
Office and Toru Fukushima (University of Hyogo), together with ‘Zenrin’s Residential Map, Hyogo-ken Kobe city 
1995’ from Toru Fukushima (University of Hyogo). 
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Table A2. Summary Statistics 

Variable Mean Std. Dev. Min Max 
DISTEPI 18.6 13.5 5.7 435.3 
SHAKE 79.3 6.4 32.3 93.0 
SMOOTH 0.20 0.19 0 0.75 
PlantDAM 0.22 0.27 0 0.75 
ChomeDAM 0.59 0.25 0.12 1 
AGE 18.1 15.0 1 42 
SIZE (EMP) 33.2 206.0 3 5673 
WAGE 355.9 174.4 67.8 1762.2 
TFP 4.40e-12 0.68 -6.9 3.5 
MULTI 0.14 0.33 0 1 
RECON 0.40 0.49 0 1 
Births 0.13 0.67 0 35 
ClusterPlants 1.5 3.0 0 20 
ClusterPlantsNb 5.1 8.5 0 88 
ClusterEmp 53.8 276.3 0 5687 
ClusterEmpNb 127.0 410.4 0 5712 
VA 69164.6 787135.5 1151.7 3.24e+07 
LabProd 954.4 1270.6 3.56 19085.6 
BUILDpre45 0.13 0.18 0 0.89 
BUILD46-55 0.058 0.071 0 0.46 
BUILD56-65 0.17 0.15 0 1 
BUILD66-75 0.29 0.19 0 1 
BUILD76-85 0.16 0.15 0 1 
BUILDafter86 0.18 0.19 0 1 
BUILDbrick 0.25 0.16 0 0.65 
BUILDrconc 0.22 0.15 0 0.64 
BUILDsteel 0.28 0.27 0 1 
BUILDwood 0.23 0.20 0 0.99 

Number of observations = 16,658 
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