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1. INTRODUCTION 

Natural disturbances in forests are driven by physical and biological processes. 
Large, landscape scale disturbances derive primarily from weather (droughts, 
winds, ice storms, and floods), geophysical activities (earthquakes, volcanic erup­
tions, even asteroid strikes), fires, insects, and diseases. Humans have always been 
affected by these processes and have invented ways to harness such processes or 
manipulate vegetation to enhance the values obtained from nature or reduce their 
negative impacts on human societies. For example, humans have cleared brush 
using fire to reduce pest! populations and encourage forage for animals (Pyne 
1995). Historically, humans have relied on traditions, rules of thumb, and trial 
and error to predict how their actions may affect disturbance probabilities and 
characteristics. More recently, economic assessment tools have helped gauge the 
consequences of natural disturbances on forests . 

As the availability of science, technology, and environmental data have 
improved, scientists and economists have been able to quantify disturbances as 
production processes that emanate from a combination of biological, physical, 
and (or) human-initiated inputs. Ecologists have long recognized that distur­
bances lead to changes in ecological corrmlUnities, which subsequently affect 
human societies. Economists, on the other hand, have been focused on under­
standing how humans can intervene to alter both the frequency and severity of 
natural disturbances. Improving scientific and economic assessment tools, and 
experience using them, have in turn helped us to appreciate the many conse­
quences of natural disturbances. The objectives of this chapter are to (1) define 
disturbances and their stages, (2) discuss how mathematical expressions of 
disturbance processes, disturbance production functions, may differ from the 
production functions defined in neoclassical economics, (3) identify the stages 
of disturbances, (4) provide a typology of production functions relevant to forest 

I We define a "pest" in this chapter as a plant, animal (especially an insect), or disease 
that potentially causes damages to, or reduces output of, a valued good or service. 
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disturbances, and (5) conclude with a discussion of management and science 
implications of recent research. Our focus is to understand how disturbances 
are produced and how they may be affected by intentional managerial actions. 
We show that quantitative characterization of disturbance processes is required 
to understand how management interventions into disturbances can lead to net 
societal gains. Throughout the chapter, we provide examples of how information 
about disturbances can be used to better achieve management and policy goals. 

2. DEFINITIONS OF DISTURBANCES 

2.1 Natural Disturbances as Production Processes 

A natural disturbance is a process that results in significant changes in ecosystem 
structure, leading to alterations in function and the goods and services that 
humans derive from nature. Disturbances, or their outcomes, may be affected by 
human-mediated inputs. Forest disturbances can be small or large-e.g., affecting 
a few plants in the forest or areas the size of a continent. Disturbances often 
have multidimensional implications for ecosystems and society. For example, 
fires can be described by the area that they burn, the quantity or value of the 
timber that is damaged, or the heat that they release. The disturbance process is 
also multi-staged. It proceeds from introduction to establishment, spread, and an 
endpoint. Although disturbances require non-human mediated natural inputs at 
every stage, human-mediated inputs can affect any or all stages. For example, a 
pest can be spread by people but requires suitable weather and hosts to survive 
and reproduce. As well, fire can be started by a match but driven by wind and 
fueled by native vegetation. 

Human and natural inputs into disturbance processes may also be temporally 
defined . and sequence-dependent. For example, above normal rain last year 
followed by a drought this year would produce a different wildfire output this 
year than if the sequence of rain and drought were reversed. Disturbances are 
stochastic-their outputs are in part randomly determined, even given the same 
level and temporal sequence of all inputs. In mathematical notation, h = H(Y,Z)+£, 
whereh is a disturbance output such as acres burned, H is a function describing 
how the variables Y and Z affect the disturbance output, and £ is a random shock 
added to H(-). Finally, disturbances may have short- and long-run consequences 
for ecosystems and the societies that depend on them. For example, a large wild­
fire in one location consumes fuels and vegetation today, altering how future fires 
in the same and neighboring locations may develop. 

Economists have developed models that account for disturbances when 
making production and investment decisions. The models incorporate natural 
disturbances in two ways: (1) in a commodity production objective function and 
(2) in a management objective function. In the commodity production approach, 
disturbances have been viewed as either an exogenous (nuisance) or an endog­
enous process. 
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When viewing disturbances as nuisances, management decisions do not affect 
the probability that a disturbance will occur. Disturbances such as ice storms and 
hurricanes are suited to the nuisance approach in forestry, for example, because 
their occurrence is not affected by how land is managed. The nuisance approach 
in forestry was first described by Martell (1980) and Routledge (1980) and then 
by Reed (1984) and extended by several others (Yin and Newman 1996). In 
this approach, the likelihood of a nuisance disturbance leads to lower optimal 
stand densities and shorter optimal rotation lengths. In agricultural and resource 
economics, economists have long recognized that exposure to a production 
hazard of any sort lowers optimal investment levels (Just 1975, Pope and Kramer 
1979), especially when decision makers are risk averse (Friedman and Savage 
1948, Babcock and Shogren 1995). 

More recent research has recognized that human actions can affect the prob­
ability, extent, duration, or severity of many disturbance events. For example, 
Shogren (1991) described an economic model that included disturbances as 
"endogenous risks" in the production process. Here, actions that individuals 
take can affect the probability of the disturbance and therefore individual utility. 
Shogren and Crocker (1991), recognizing work by Erlich and Becker (1972), 
describe the problem as a joint decision on how much effort to expend in self 
protection and reducing the probability of loss. In general, then, an aggregate 
objective function could be described that maximizes welfare by allocating 
spending across efforts that reduce the value lost if a disturbance occurs and the 
probability that a disturbance related loss occurs. 

At its simplest, disturbance enters an endogenous risk objective function as 
a probability of occurrence, expressed as a function of a single action taken by 
a manager. An example is construction of a firebreak to reduce wildfire arrival 
rates. More complex are actions that can affect multiple features of the distur­
bance. In this case, human interventions affect not only the probability of occur­
rence but also qualitative features (e.g., severity) of the disturbance affecting the 
commodity in question. 

When the time and space dimensions of disturbances are important consider­
ations in production of desired goods and services from nature, then decisions 
on how to intervene in the disturbance process may increase in complexity. For 
example, actions taken today to reduce damages from a pest invasion in one 
forest may affect the future risks faced by other forests (Gumpertz et al. 2000). In 
wildfire management, reducing fuels levels in one location can affect fire arrival 
rates in other locations and may have effects that last several years. These spatio­
temporal effects of management can sometimes limit the scope of action for 
managers: management decisions in location A are subject to the conditions in 
locations B, C, and D and to the decisions made in the past in location A. 

Additionally, human attempts to reduce the probability of occurrence or 
damages resulting from a disturbance may affect the probabilities of other forest 
disturbances occurring in the same location (Meyers and van Lear 1998). For 
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example, forest thinning to reduce fuels for wildfires might increase the prob­
ability of insect or disease infestation; and salvaging burned timber to reduce net 
economic damages can raise the probability of other disturbances such as exotic 
species invasions (McIver and Starr 2000, 2001). 

Because disturbances themselves can affect many economic sectors (Butry et 
al. 2001, Kent et al. 2003), it is possible that actions in one sector have spillover 
consequences for other sectors. For example, forest thinning to reduce damages 
to timber from a potential forest fire may affect features important to recreators 
in that same forest. Somewhat more complicated still is when an intervention 
helps improve one value obtained from a forest but worsens other values. For 
example, prescribed burning can reduce wildfire severity and extent but can also 
worsen air quality. 

In contrast to the endogenous risk approach, some economists have placed 
the disturbance production process at the center of economic decision making, 
especially when values produced are dispersed, public, or multi-sectoral, and one 
example is the "cost plus loss model" (Headly 1916, Sparhawk 1925). This model 
describes the wildfire suppression resource allocation decision as choosing the 
quantities of wildfire intervention inputs that minimize the sum of expected net 
damages from wildfire (the losses) and expenditures on the intervention inputs 
(the costs). Davis (1965) outlines a method of minimizing the sum of costs and 
expected losses from wildfires occurring over a wildfire season by manipu­
lating the amounts of fuels and other inputs into wildfire management in the 
management unit. The cost plus loss framework is not the only one available for 
managing disturbances directly. For example, the optimal set of inputs to wildfire 
management can be chosen so as to maximize averted damages minus input costs 
(see chapter 18). Sharov and Liebhold (1998) describe how to optimally slow 
the spread of an exotic forest insect by identifying the best width and location 
of buffer zones. The disturbance-centered approach requires understanding not 
only of the disturbance production process but also how the disturbance creates 
losses. In other words, the nature of the loss function must be known. In the case 
of wildfire, the loss function's value must be identified for every possible or 
feasible combination of disturbance management inputs. 

2.2 Disturbances as Damage Processes 

Research has shown that managerial actions can influence the scale of losses 
from disturbances (Holmes 1991, Butry et al., Kent et al. 2003, Prestemon and 
Holmes 2004). One way to capture how a disturbance causes economic losses is 
to define a damage function, a mathematical expression that quantifies how vari­
ables influencing a disturbance result in damages to valued goods and services. 

In agricultural economics, much research has focused on understanding how 
to optimally use pesticides to reduce the damages to agricultural commodities 
(Lichtenberg and Zilberman 1986, Carpentier and Weaver 1997, Kuosmanen et 
al. 2006). Mathematically, a damage function may be described as G(X,Y,Z), 
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where X are inputs intended to increase the output of the desired good (i.e., the 
purchased inputs into good production), Y are inputs intended to decrease the 
damages caused by the disturbance process (i.e., the purchased inputs into the 
damage process), and Z are the natural inputs into the damage and good produc­
tion processes (i.e., the free inputs). In terms of forests or landscapes, the desired 
good Q could be the flow of goods and services provided by an "undamaged" 
forest or landscape in a given time period. In terms of a country, the desired good 
Q could be total economic welfare produced by the economy of the country in 
a given time period. Q is directly affected by X and Z but potentially also by Y, 
and it is reduced by the damage process, G: Q=j[X,Y,Z,G(X,Y,Z)]. For example, 
inputs applied to change the amount of fine fuels on a landscape (part of Y) can 
also lead to changes in the growing conditions faced by trees whose timber may 
be the desired output, Q. Free inputs, such as rain, contained in Z, can affect the 
productivity of fuels management efforts and the growth rate of trees. 

If we define a disturbance process as the more general description of a phenom­
enon that can damage a commodity or reduce the quality or quantity of a value 
produced by, say, a forest, then the damage function is a transformation of the 
disturbance process: G(X, Y,Z) = g[H(X, Y,Z)]. The function g is a transformation 
of a disturbance function, H(e). In the case of wildfire, this transformation could 
be a summation of the amount of area burned by multiple wildfires in a specific 
region in a given fire season, divided by the total area of the region (Davis and 
Cooper 1963, Prestemon et al. 2002). H could also combine two kinds of distur­
bance functions, one describing the aggregate area affected by a pest in a given 
year in a specific landscape, and another defining the degree (severity) of damage 
by that pest within the area affected. 

2.3 Disturbances as Probability Distributions 

Disturbances can be defined in various forms, and each form has its own uses in 
for addressing questions in science and strategies for management. Disturbances 
can be discrete events or collections of events; they can be qualitative measures; 
or they can be ordered aggregations, or size-frequency distributions, of events 
produced in a landscape during a specified period of time. In other words, distur­
bance processes operate at multiple spatial and temporal scales, and recognition 
of such scaling issues can inform how to intervene in the process to achieve a 
desired outcome. For example, wildfires ignite at specific points in a landscape, 
and their timing and locations in that landscape can be measured as counts of 
events and related statistically to hypothesized driving factors. 

Disturbances also often produce multiple outputs, creating scientific and 
statistical challenges for capturing the effects of inputs on each of their outputs. 
For example, wildfire output can be measured as area burned, the number of 
structures lost or threatened, or the average intensity of fire over time. Inputs 
such as suppression resources and fuels management can simultaneously affect 
many outputs-in this case, all of the three listed measures. 
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The stochastic nature of disturbance processes has implications for predicting 
and managing disturbances across landscapes and over time. Davis (1965) recog­
nized that disturbance management meant managing the landscape to shift the 
probability distribution of future disturbance outcomes. For example, constructing 
firebreaks across a large management unit may reduce the expected total area 
of fire observed during the fire season in the management unit by altering fire 
spread and affecting suppression input productivities. Although other factors 
besides firebreaks would also affect the expected total area of wildfire, building 
more firebreaks in the landscape could shift the probability distribution of the 
total area of wildfire observed in a fire season. Figure 3.1 illustrates how alter­
native probability distributions (disturbance probability density functions) may 
be affected by a change in an input. Part A of figure 3.1 shows how a Normally 
distributed measure could exhibit a reduction in variance without a change in the 
mean, or a reduction in the mean without a change in variance, in response to a 
change in an input to the disturbance process. Of course, probability distributions 
do not have to be statistically Normal. Parts B, C, and D of figure 3.1 show the 
effects of input changes on the positions and shapes of Poisson- Exponential- and 
Gamma-distributed measures. 

(A) Normal Distribution Shifts (8) Gamma Distribution Shifts 

Measure of Disturbance O,utput Measure of Disturbance Output 

(C) Exponentional Distribution Shifts (D) Poisson Distribution Shifts 

Measure of Disturbance Output Measure of Disturbance Output 

Figure 3.1. Hypothetical probability distribution shifts under alternative distributional 
assumptions for a measure of a disturbance process, as affected by an input that is 
intended to affect the disturbance process. 
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2.4 Disturbances as Production Processes in Economics 

Disturbances are far more complicated than those implied by the classical produc­
tion function (Chambers 1991). Below, we describe how disturbance production 
functions may differ from classical production functions , as defined in economics. 
Appendix table 4.1 provides a concise listing of these differences. 

Although a principal characteristic of a classical production function is that 
output increases with increased amounts of a purchased input (monotonicity), this 
may not apply to disturbances. Inputs to disturbance functions may be intended 
to decrease some negative aspect of the disturbance. Free inputs, such as those 
associated with rain or human activities not intended to affect the disturbance, 
may have any direction of effect. Lastly, the effect of additional inputs may not 
be describable as an "increase," such as when an ecosystem changes from state 
A to state B. 

A second characteristic of classical production functions is that each additional 
unit of purchased input should produce no more than the previous unit of addi­
tional input (quasi-concavity). In disturbances, concavity may not be relevant, as 
in the case of discrete or qualitative output measures. Alternatively, it may be true 
only in the negative sense, such as where each additional unit of input yields an 
equal amount or smaller reduction in output than the previous input; in essence, 
disturbance production functions may be quasi-convex. 

A third characteristic of classical production is that if any or all purchased 
input quantities are zero, then output is zero (essentiality or weak essentiality). 
Many disturbance outputs occur without active intervention by humans. That is, 
they can operate with free inputs provided by nature or society. Thus withholding 
purchased inputs does not set outputs to zero. 

A fourth characteristic of classical production is that the set of possible outputs 
is closed for all levels of output. In other words, it is feasible to produce any 
desired level of output. In the case of disturbances, if the process is defined as a 
collection of discrete events, then production is discontinuous and therefore not a 
closed set. This is especially true when disturbance production can be measured 
qualitatively. 

A fifth characteristic of classical production is its nonstochasticity-a specific 
quantity of input always yields the same quantity of output. With natural distur­
bances, randomness can yield a different quantity of output for the same quantity 
of input. 

Lastly, classical production functions are continuous and twice-differentiable 
(Chambers 1991, p. 9). In other words, to identify optimal input amounts, it 
is necessary for production functions to be increasing at a decreasing rate 
across some region of economical output. Because disturbance production can 
be discrete, qualitative, or discontinuous, it is clear that disturbance functions 
can sometimes not be continuous or twice-differentiable. As we shall see later, 
however, there are ways to identify optimal inputs into disturbance production 
functions that yield desired outputs, even while the disturbance process itself 
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may not conform to all the classical assumptions of production. Nonetheless, 
a primary implication of the discontinuities, discreteness, and other features of 
disturbances is that it may not be economically optimal to intervene. In other 
words, the best choice may be to set purchased input levels to zero. 

3. STAGES OF DISTURBANCE PRODUCTION 
FUNCTIONS 

Accurately modeling disturbances and their damages requires understanding how 
physical, biological, and human mediated inputs affect key processes. Typical 
forest disturbances proceed in four stages (Williamson 1996): introduction, estab­
lishment, spread, and post-disturbance. Between spread and post-disturbance is a 
point called extinction or outbreak cessation. Humans can intervene productively 
in some or all stages. Figure 3.2 traces out these stages and indicates where inter­
ventions may be possible. In the case of insects, diseases, and wildfires, the first 
stage is the introduction or the ignition. The second stage, establishment, occurs 
when introduction is successful-that is, the disturbance takes hold or survives. 
In the case of pests, establishment means that the pest invader carries out a life 
cycle and reproduces. In the third stage, spread, the disturbance spreads spatially 

Prevention 

Monitoring (Detection) and 
Landscape Modification 

Suppression (Eradication) 

!4- Introduction 

Establishment 

SPT
ad 

H I 
.. . {:.- EXtinrtiOn (or Cessation of Spread) 

Salvage and RehabilItatIOn . 
Post-Disturbance 

Figure 3.2. Stages of disturbances and intervention points. 
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until extinction or, in the case of some pests, returns to innocuous or endemic 
population levels (i.e., outbreak cessation occurs). Finally, "post-disturbance" 
follows extinction or outbreak cessation, which lasts indefinitely and may be 
characterized by ecosystem changes from the disturbance. 

We define occurrence as the appearance of a new instance of a disturbance, 
possibly deriving from a distant or exogenous source but not as a result of a 
spatially connected spread process. Introduction and establishment can therefore 
be combined into one stage called "occurrence." The distinction between stages 
is often indefinite or fuzzy. For example, spreading to a neighboring point is the 
same as occurrence at that neighboring point. 

3.1 The Introduction Stage 

Introduction is the placement, through some process, of the disturbance into the 
landscape. An introduction could be an ignition of a wildfire by escape from a 
campfire ring or the appearance of an exotic pest in a new landscape by release 
from a shipping container. Introductions can be prevented by many kinds of 
actions. For wildfire, these can be banning of campfires or open debris fires, 
which are typical sources of accidental wildfire ignitions. In the case of pests, 
humans introduce exotic plants and animals intentionally and unintentionally 
through international trade or through (unintentional) long distance transport (di 
Castri 1989, Mack et al. 2000). Sometimes, these exotics become invasive pests. 
Prevention measures for exotic pest introductions, then, could include the banning 
of trade in certain, potentially infested commodities or shipping containers, or 
it could mean inspection of recreational boats for pests before they are moved 
between lakes. In wildfire, law enforcement efforts have been linked to reduced 
wildland arson ignitions (Prestemon and Butry 2005) (see chapter 7 for addi­
tional details and support). Prevention is not currently possible, of course, for 
many kinds of natural disturbances affecting forests-e.g., volcanic eruptions, 
hurricanes, and ice storms. 

3.2 The Establishment Stage 

Establishment of a natural disturbance means that the disturbance has moved 
past mere introduction. In terms of insects and diseases, establishment could be 
defined as the successful reproduction in situ. A wildfire is "established" when 
an ignition is sustained long enough so that further spread is possible. (This 
stage may only be brief and defined only ex post, if spread actually occurs.) For 
many disturbances, establishment depends on the collocation of sufficient quan­
tities and qualities of host materials (or fuel) and favorable weather or other site 
conditions. Because establishment requires favorable conditions for propaga­
tion or survival, managers can alter the probabilities of successful establishment 
by modifying the landscape. A pest whose potential host is not present cannot 
become established, even if introduced. Research shows that non-establishment 
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is the most frequent outcome following introduction. Pest managers have esti­
mated that introductions average five to twenty times the rate of establishment 
(Williamson 1996). Successful establishment may be defined as an "event" in 
empirical analyses and then related to measures designed to limit introductions 
or establishment. 

3.3 The Spread Stage 

Widespread ecologically and economically significant changes are produced 
during the spread stage. Some disturbances, such as ice storms and hurricanes, 
are exogenous and rapid, so that features of a forest, for example, may not signif­
icantly affect its overall extent. In these cases, actions taken to reduce losses of 
valued goods or services are applied either ex ante, by removing or reducing 
values at risk in anticipation of a potential disturbance, or ex post, in the post­
disturbance stage. Note that ex post interventions are possible for all disturbance 
processes, not just fast ones. For slower spread processes, such as those of insects, 
diseases, and fires, limiting spread is often possible. 

Variables affecting the rate and ultimate extent of spread of slower disturbance 
processes such as fire and pests also often affect establishment: the quantity of 
available host material in a landscape, weather, climate, geographical features, 
and the amounts and timing of efforts to suppress the disturbance. Manipulation 
of potential host material and placement of suppression inputs are ex ante actions 
that can be taken to reduce the spread of a disturbance. During active spread, 
suppression primarily involves manipulating (wetting, burning) or removing host 
material. 

Once a disturbance is established and detected, the final extent of disturbance 
spread may depend on the speed of application of suppression resources (Butry 
2006). For example, in wildland fire management in the United States, the 
so-called "10 a.m. policy" focuses on extinguishing fires as quickly as possible 
following detection of an ignition. This kind of suppression guideline is based 
on the notion that fire area can increase exponentially (Donovan and Rideout 
2003a), and this exponential rate of spread is often higher later in the day, after 
temperatures rise and humidity falls . Fire managers often credit the policy with 
the successful suppression within 24 hours of 98 percent of all wildfires on 
federal lands. For insects, efforts to control or slow the spread (Sharov et al. 
1998) involve taking quick action to suppress establishments occurring beyond 
the advancing front of a spreading pest. Managers therefore exploit the Allee 
effect (Leung et al. 2004), which involves keeping insect populations low on the 
spreading front, which reduces the reproduction rate of the invasive insect. 

The economics of spread management (or suppression in wildfire terminology) 
is the subject of extensive theoretical development and modeling. Elaborate strat­
egies and infrastructures have been developed to manage the spread of insects 
and diseases (Sharov and Liebhold 1998b, Mack et al. 2000) and wildfire (Spar­
hawk 1925, Donovan and Rideout 2003b). 
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3.4 The Post-Disturbance Stage 

The post-disturbance stage is defined spatially as the area of influence of the 
disturbance, which can extend beyond the boundaries of the actual area directly 
affected. Although the length of time of the post -disturbance stage is indefinite, the 
timing of human actions may be important in determining the short- and long-run 
implications of the disturbance. In post-disturbance, landowners and managers 
often quickly assess the effects of the disturbance, sometimes salvage part of the 
affected timber or other valued products, take actions that reduce long-run nega­
tive side effects of the disturbance, and often work to restore some of the features 
of the ecosystem present before the disturbance. Human actions taken following 
the disturbance are often termed "rehabilitation and recovery." Rapid assessment 
of the effects of a disturbance is important for planning further actions. One 
action, timber salvage, has been shown to yield significant economic returns and 
be time sensitive (Prestemon et al. 2006). Removal of some of the killed timber 
and erosion control following a disturbance may alter risks of additional damage 
(McIver and Starr 2000, 2001, Kent et al. 2003). Although the specification of 
a meta-model that describes these types of feedbacks is beyond the scope of 
this chapter, a disturbance production function for one type of disturbance might 
include a set of variables that derive from other disturbance types. This approach 
would allow for joint modeling of production functions for a variety of distur­
bances (Hyde et al. 2006). 

4. TYPES OF DISTURBANCE FUNCTIONS AND 
FUNCTIONAL FORMS 

Disturbance functions can be classified into at least the following five broad 
classes: (1) event, (2) individual extent, (3) aggregate extent, (4) effect, and (5) 
joint (combinations of the other classes). Each class describes the stages of the 
disturbance across varying spatial and temporal scales or aggregates, and each 
may be useful in economic analysis. The five classes of disturbance production 
functions are briefly discussed below.2 Also offered are examples or guidance 
on the statistical methods that could be used to identify the relative economic 
importance and direction of influence of free and purchased inputs to the distur­
bance processes defined in each class of model. We also suggest how simulation 
methods can be used to identify these influences, especially in cases where infor­
mation about disturbance inputs are not available or are available at a different 
spatial or temporal scale than the output variable of interest. 

2 Mercer and Prestemon (2005) discuss a similar typology for wildfire production and 
provide empirical examples. 
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4.1 Event Models 

Disturbance events can be modeled in at least three ways: (a) discrete event 
models that explain whether the disturbance occurred or the number of occur­
rences of the disturbance; (b) point process models, which describe the spatial 
and temporal distribution of occurrences; and (c) continuous models, which 
describe the rate of arrival or elapsed time between occurrences. An example of 
a discrete event approach is a binary choice (logit, probit) model that predicts 
the occurrence of a disturbance with particular characteristics. For example, in 
a wildfire event model, each point on a landscape each day might have a certain 
ignition probability, hypothesized to be a function of weather variables, vegeta­
tion features, and terrain. A logit or probit model could be used to estimate the 
probability that a fire would occur, given the measured levels of these causal 
variables. Data required to estimate the model would include occurrence data in 
many locations across a landscape as the dependent variable, coded to indicate 
whether a fire occurs at a given location during a specified time period, along 
with measures of the hypothesized causal variables for each location. Scales of 
analysis should be fine grained enough that more than one event does not occur 
in the same time and place. An example of this kind of modeling is found in Pye 
et al. (2003). 

Count data models are extensions of the binary choice event models. In count 
models, the measure of observation is a count of the occurrences within a given 
time period and spatial unit. For example the unit of observation in a count model 
might be the number of fire starts in a county in a year, rather than the probability 
of a single ignition at a specific time and location. Poisson-type models are a 
common choice for relating the count to hypothesized causal variables (Martell 
et al. 1987, Gill et al. 1987, Vega Garcia et al. 1995, Prestemon and Butry 2005, 
Lee et al. 2006). 

Point process models (Ripley 1976) are used to describe the spatial or temporal 
dispersion of events observed across a landscape within a given time period-for 
example, whether or not the pattern is random or non-random. The degree of 
randomness could inform the analyst about the effectiveness of spatially targeted 
interventions. An example is an analysis by Genton et al. (2006), who evaluate 
the clustering of wildfire ignitions in Florida. 

Duration or survival and hazard type models relate hypothesized explanatory 
variables to the amount of time elapsed until an event occurs (Cox and Oakes 
1984, Collett 1994). Duration modeling could use time series data on individual 
fire starts to relate the amount of time between fire starts to a variety of weather, 
ecosystem, management, and socio-economic variables. Survival models are 
common in analyses of treatment efficacy to reduce mortality from pest attacks 
(Woodall et al. 2005) and could also be used to evaluate time to events or occur­
rence probabilities of disturbances. 
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4.2 Individual Extent and Spread Models 

Individual extent models relate explanatory variables to the amount of a resource 
or commodity affected by a single event. Many of the variables influencing 
establishment also help explain the extent of a particular disturbance, although 
an additional set of variables to include would be those associated with suppres­
sion or cessation of spread. Individual extent models that include suppression 
strategies can aid in tactical decision making aimed at slowing or stopping the 
spread of the disturbance. 

Spread models focus on the spatial and temporal dynamics of an individual 
disturbance process after establishment but before cessation. Spread models 
mayor may not include variables related to suppression efforts. Spread models 
may describe the arrival rate and direction of spread, and they are often used to 
compare the effects of alternative suppression tactics. Wildfire spread models 
have been embedded in fire simulation tools used by wildfire managers (Andrews 
and Bevins 1999). Tools such as FARSITE (Finney 1998, Finney and Andrews 
1999) allow simulation of the effects that simple suppression strategies have on 
fire spread. Repeated runs of wildfire spread simulation models can show how 
a particular strategy affects the probability distribution of burned areas under 
operational or experimental conditions. Pest management makes similar use of 
simulated spread processes to compare the effects of alternative control strate­
gies. Such experimentation can help managers and policy makers understand the 
trade-offs and economic returns of alternative suppression strategies (Sharov and 
Liebhold 1998a,b,c, Sharov et al. 1998). 

Sharov and Liebhold (1998a,b,c) illustrate how spread models can answer 
important economic and management questions about barrier zone suppression 
strategies. The European gypsy moth (and many other pests) spreads in a strati­
fied dispersal process (Liebhold 1998c), where spot outbreaks appear randomly 
or chaotically some distance beyond the zone of infestation. Spots continue to 
grow until they coalesce with other spots, merge with the infested zone, or are 
eradicated. Control actions consist of using aerial surveillance or pheromone 
traps to monitor the transition zone, an area of land surrounding the completely 
infested zone that encompasses the range of potential spread. Spot eradication 
measures are applied when a colony spreads into the transition zone. 

The spread process described in these studies of the gypsy moth can be defined 
mathematically as a traveling wave equation for every cell (spatial unit) in the 
actual or potentially invaded range. Once a cell's population reaches a carrying 
capacity, the cell is considered a part of the colony in the infested zone. The 
population of any particular cell is determined by the probability of a new spot 
invading the cell and the population in the colony. Invasion probability for any 
cell is a negative function of distance from the infested zone. The colony's popu­
lation is a positive function of the colony's age. The spread rate slows as the 
number of spots in the transition zone is reduced. However, spread can continue 
in a wave even without any successful spotting. In this case, slowing the spread 
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rate requires the eradication of all individuals in the transition zone. Because 
spots spread at a rate that increases with spot age, more intense monitoring of 
transition zones and quicker response times once a spot is identified typically 
produce greater control benefits. As such, monitoring and eradication are produc­
tion substitutes under most conditions. 

Calibrating a model of pest spread as a function of monitoring effort and eradi­
cation efforts requires data on spread rates with and without eradication efforts 
and how time since initiation of eradication affects its success. In empirical anal­
ysis, the success of barrier zone management can be quantified and potentially 
compared to a "no-action" alternative by simulating how the average spot size 
changes in response to differing levels of pest monitoring or lags before initiation 
of eradication. 

4.3 Aggregate Extent Models 

Aggregate extent models relate the amount of a resource or commodity affected 
by disturbance events occurring over a defined area and time. Statistical models 
of aggregate extent often rely heavily on long run and spatially aggregated 
measures of weather, climate, host materials, and suppression. An example is a 
model of the likelihood of beetle outbreak in a county, as related to the amount 
of host forest in the county, seasonal average precipitation and temperature levels 
in the county, the amount of National Forest lands in the county, and measures of 
spatial autocorrelation (Gumpertz et al. 2000). 

The increased spatial and temporal aggregation of these models allows anal­
ysis of large and long scale disturbance patterns and dynamics. Because natural 
disturbances are stochastic in both location and timing, this broader scale anal­
ysis can help reveal the overall effects of management and suppression strategies 
across wider scales. Such broad analyses may also more effectively capture the 
underlying effects of free inputs to disturbance processes, especially when these 
other inputs may vary little within a small location or a short time period but 
more widely when viewed across broad landscapes and long time horizons. For 
example, the area burned in a county in a year could be expressed as a func­
tion of areas burned in that county in previous years, aggregate amounts of fuel 
treatments in the county in the current and previous years, county level annual 
measures of socioeconomic variables, and broad scale weather patterns such as a 
measure of ocean temperature oscillations. Barnett and Brenner (1992), Keeley et 
al. (1999), Prestemon et al. (2002), Westerling et al. (2002), Norman and Taylor 
(2003), and others have developed empirical aggregate extent models of wildfire 
in different parts of the United States. 

Statistical methods are not always available for quantifying the impacts of 
disturbances at broad s'patial and temporal scales. In these cases, it still may be 
possible to quantify their impacts by using simulation approaches. For example, 
the aggregate amount of wildfire in a landscape in a given fire season could be 
simulated using statistical models of individual fire occurrence (event models) 
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and spread, simulated weather, and imputation of known vegetation and land­
scape features. If the fire occurrence and spread models are specified as functions 
of fuels, weather, and suppression variables, then repeated simulations can reveal 
the effects of altering assumed levels of each of these, producing a picture of the 
broad spatial and temporal effectiveness of fuels management and fire suppres­
sion efforts. 

An example from wildfire illustrates how the wildfire disturbance process 
exhibited at broad spatial and temporal scales can be used to identify the effects 
of free and purchased inputs into wildfire management. Prestemon et al. (2002) 
develop a model relating wildfire probability in a county in a year as a func­
tion of both non-purchased inputs (climate measures and historical wildfire) and 
purchased inputs (prescribed fire and small diameter timber removals). Using a 
cross-sectional time series empirical model, the area of wildfire (Wit) relative to 
the area of county i's forest (J;t) in year t, (Wiht) = 1tj t> is specified as a function 
of prescribed fire area (x;) relative to forest area, (xlJ:)=Yjt, in that same year and 
one previous year (yjt, Yit-I) =Yj, small diameter timber removals in that county in 
the three previous years (hit-I, hit-2, h il-3)=hjt, historical proportions burned by wild­
fire in that county for the previous twelve years (1tit-l , 1tjt-2, ••• , 1til- 12)= 1til, the EI 
Nino-Southern Oscillation Nino-3 sea surface temperature anomaly in degrees 
centigrade (Et), a dummy measuring a Super EI Nino cycle (D t ) in 1998, and the 
county's housing density (Vii). The proportion of forest area burned is assumed 
stochastic, such that 

In(n-it ) = a; + fJ'ln(7t it ) + y'ln(Yit) + o'ln(h it ) + f-LIEI + f-L2DI + f-L3 ln(Vit ) + cit 3.1 

Equation (2) is estimated with weighted least squares and a heteroscedasticity 
correction, using a short panel (1994-1999) and 37 cross-sections. Mercer and 
Prestemon (2005) and Mercer et al. (2007) estimate similar models with longer 
and wider panels of data. Prestemon et al. (2002) found that prescribed fire can 
have an effect on wildfire activity, but that its effect is not large relative to long 
run climatic patterns and historical wildfire activity. 

4.4 Effects Models 

Effects models describe how independent variables influence the characteristics 
of a particular event. For example, the species diversity of a forest might be 
altered as a result of successful invasion of an exotic species. The effect could 
be measured in terms of changed species diversity levels observed following an 
invasion. Another example is timber quality changes following a storm. Because . 
damages to timber quality might take years to manifest following a storm, an 
effects model would relate the presence or absence of storm damage in each 
forest stand some number of years following the storm to features of the storm in 
that location, site conditions, and vegetation conditions before the storm. 

For a wildfire example, the proportion of fire-killed timber per unit area or the 
soil temperatures observed during a wildfire in each location might be related to 
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wind, humidity, temperature, and the amounts of fuels of different sizes in each 
location. If forest fuels can be manipulated by a land manager and are known to 
affect the intensity of wildfires that burn in the forest, then a statistical model 
relating the degree of wildfire-related losses of goods or services provided per 
unit area of wildfire area burned would describe how purchased inputs into fuels 
management would directly affect these losses. 

4.5 Combined Models 

Any version of at least two of the above models can be combined to yield another 
class of disturbance model. For example, size-frequency distribution models, 
which quantify the parameters of a statistical distribution of wildfire across size 
classes, summarize disturbance activity across broad landscapes and long time 
scales. Research has shown that size-frequencies of many natural phenomena 
including disturbances are distributed in log-linear fashion (Strauss et al. 1989, 
Li et al. 1999, Holmes et al. 2004). Extreme value functions (Moritz 1997) are 
models increasingly used in insurance applications, can describe how the number 
of events of different ordered classes are distributed in probability (see chapter 
4). As with aggregate extent models, size-frequency distribution and extreme 
value models could be used to identify the effects of long-run or large-scale 
changes in free and purchased inputs. For example, estimates of the parameters 
of size-frequency distributions of wildfires occurring in simulated or otherwise 
identical landscapes with and without fuels management could reveal the effect 
of efforts to reduce negative outcomes of wildfires in the landscape. 

In another wildfire example, a measure of overall damages by wildfire in a 
season across a landscape can be constructed by combining both the intensity and 
the aggregate extent of wildfires in a landscape over a fire season. This measure 
of damages can then be related to variables hypothesized to influence the effect 
and the aggregate extent of damages. For example, Mercer et al. (2007) relate an 
aggregate of the product of wildfire intensity (an effect) and area burned by all 
the fires occurring in one year in one county (aggregate extent) to several hypoth­
esized explanatory variables, including prescribed fire and relate historical data 
on intensity-weighted area burned to the economic damages associated with 
wildfire in the State of Florida. In their economics application, the benefits of 
wildfire economic damages averted by intense wildfires trade-off with the costs 
of to identify economically preferable fuels management rates. A variation on 
the Mercer et al. (2007) and Holmes et al. (2004) approaches would be to identify 
a family of wildfire size-frequency distributions, a distribution for each fire inten­
sity level. Similarly, one might use combination models to analyze whether spot 
sizes of southern pine beetle infestations possess the kinds of spatial dynamics 
identified by Gumpertz et al. (2000). 

Another kind of combined model is of spatio-temporal point processes (STPP). 
These models describe how a collection of events is distributed across space and 
time. The empirical manifestation of a STPP is a spatio-temporal point pattern. 
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A primary focus of STPP analyses is to evaluate whether the pattern observed 
differs significantly from a random distribution of events across space and time. 
Examples of such patterns might be the occurrences of disease outbreaks, wild­
fire ignitions, and pest infestations. STPP's could be of use to wildland managers 
if analysts were able to link the patterns to variables that managers can affect, 
or if optimal planning for a disturbance depends on the amount of clustering of 
events. For example, wildfire managers might want to understand the STPP's to 
understand wildfire suppression resource needs. Examples of published research 
include Podur et al. (2003), who use STPP's to analyze lightning fires in Canada, 
and Genton et al. (2006), who apply STPP's to analyze wildfires produced by all 
major ignition categories in the United States. 

5. IMPLICATIONS FOR MANAGEMENT, POLICY, 
AND SCIENCE 

This chapter has sought to explain what disturbance production processes are, 
describe how they differ from classical economic production processes, char­
acterize the various forms of disturbance processes, and briefly describe how 
analysts have modeled them. The availability of large and long term datasets on 
natural disturbances and improvements in software and computing power have 
led to advances in science and management. These advances include a better 
understanding of the long-run, broad scale effects of human interventions and free 
inputs into disturbance processes (e.g., societal variables not intended to affect 
the process but nevertheless do affect it, climate, weather), quantification of the 
long-run economic net benefits and effects of various kinds of interventions into 
these processes, and revelations about previously unidentified spatial and temporal 
patterns in disturbances. We anticipate that application of the kinds of modeling 
approaches outlined here could lead to advances in questions of current and future 
importance to society, including those associated with large scale spending on 
fuels management to reduce the net economic damages from wildfire. 

An avenue for further\ study involves examining how agents of disturbances 
respond to actions to limit the agents' effectiveness. Research into agent-based 
disturbance modeling would focus on how humans and pests respond to interven­
tions to mitigate the effecti veness of the interventions. For example, little is known 
about how arsonists might change their behavior in response to stepped up law 
enforcement (Prestemon and Butry 2005). Research should focus on how greater 
enforcement in one area could lead to simple shifts of arson activities in space 
and time. Similarly, controls on the importation of invasive species could create 
averting actions by importers to get around rules and regulations. In terms of inva­
sive species spatial processes, barrier zone management might induce changes in 
the aggregate spread behavior of popUlations. Alternatively, pesticide use may, in 
the long-run, lead to increased pesticide resistance in the population, requiring 
more complex models of pest spread and control (Carpentier and Weaver 1997). 
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A better understanding of these kinds of feedbacks may reveal important limi­
tations and open up new approaches to forest and landscape management with 
disturbances. 
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