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ABSTRACT
Stellar-population analyses of today’s galaxies show ‘downsizing’, where the stars in more

massive galaxies tend to have formed earlier and over a shorter time-span. We show that

this phenomenon is not necessarily ‘antihierarchical’ but rather has its natural roots in the

bottom-up clustering process of dark-matter haloes. While the main progenitor does indeed

show an opposite effect, the integrated mass in all the progenitors down to a given minimum

mass shows a robust downsizing that is qualitatively similar to what has been observed. These

results are derived analytically from the standard extended Press–Schechter (EPS) theory,

and are confirmed by merger trees based on EPS or drawn from N-body simulations. The

downsizing is valid for any minimum mass, as long as it is the same for all haloes at any

given time, but the effect is weaker for smaller minimum mass. If efficient star formation is

triggered by atomic cooling, then a minimum halo mass arises naturally from the minimum

virial temperature for cooling, T � 104 K, though for such a small minimum mass the effect is

weaker than observed. Baryonic feedback effects, which are expected to stretch the duration

of star formation in small galaxies and shut it down in massive haloes at late epochs, are likely

to play a subsequent role in shaping up the final downsizing behaviour. Other appearances of

downsizing, such as the decline with time of the typical mass of star-forming galaxies, may

not be attributed to the gravitational clustering process but rather arise from the gas processes.

Key words: galaxies: elliptical and lenticular, cD – galaxies: haloes – cosmology: theory –

dark matter.

1 I N T RO D U C T I O N

A key issue in the study of galaxy formation is the anticorrelation

between the stellar mass of a galaxy and the formation epoch of the

stars in it, which is referred to in general terms as ‘downsizing’. In

its most pronounced form, this is simply the fact that elliptical galax-

ies consist of old stellar populations and tend to be more massive,

while disc galaxies have younger stars and are typically less mas-

sive. However, a similar correlation between stellar mass and age is

detected within each of the two major classes of galaxies, whether

they are classified morphologically as ellipticals versus spirals or

by colour as ‘red-sequence’ versus ‘blue-sequence’ galaxies. These

trends are quite robust, for example, they are insensitive to how

luminosity is translated to stellar mass and colour to stellar age.

A downsizing effect can actually appear in different forms which

refer to different phenomena, involving different types of galaxies

and different epochs in their histories. One form, which is the main

focus of the current paper, is the fact that the star formation histories

inferred from present-day galaxies using synthetic stellar evolution

�E-mail: eyal n@phys.huji.ac.il (EN); vdbosch@mpia-hd.mpg.de

(FCvdB); dekel@phys.huji.ac.il (AD)

models correlate with galactic stellar mass. The stars in more mas-

sive galaxies tend to form at an earlier epoch and over a shorter

time-span. This phenomenon is termed ‘archaeological downsizing’

(ADS; following Thomas et al. 2005). Using observed line indices

and abundance ratios, ADS has been detected in elliptical galaxies

(Nelan et al. 2005; Thomas et al. 2005), and in a large sample of

galaxies from the Sloan Digital Sky Survey (Heavens et al. 2004;

Jimenez et al. 2005).

The other face of downsizing is the fact that the sites of active star

formation shift from high-mass galaxies at early times to lower mass

systems at lower redshift. We term this phenomenon ‘downsizing in

time’ (DST). It has first been detected by Cowie et al. (1996), who

found that the maximum rest-frame K-band luminosity of galaxies

undergoing rapid star formation has been declining smoothly with

time in the redshift range z = 0.2–1.7. This DST phenomenon has

been confirmed by numerous subsequent studies (Guzman et al.

1997; Brinchmann & Ellis 2000; Kodama et al. 2004; Bell et al.

2005; Bundy et al. 2005; Juneau et al. 2005).

It is important to realize that these two forms of downsizing can

be very different, and possibly even orthogonal to each other. The

archaeological analysis of local galaxies highlights the formation

epoch of the majority of their stars, which at least in the case of

ellipticals occurs at high redshifts, z ∼ 2–5. In contrast, DST refers
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to the specific star formation rate (SSFR) at relatively low redshifts,

z � 1, and therefore focuses on later phases of star formation, which

may involve only a small fraction of the stars in the galaxy. Unless

the stellar-mass ranking of present-day galaxies is the same as that of

their progenitors at higher redshifts, these two forms of downsizing

do not necessarily reflect the same phenomenon. Since hierarchical

clustering in general does not preserve this mass ranking, the two

forms of downsizing should be treated as two different phenomena.

Indeed, as we will demonstrate below, the understanding of one does

not imply an understanding of the other.

In the standard � cold dark matter (�CDM) cosmological sce-

nario, dark-matter (DM) haloes are built hierarchically bottom up.

This is obvious for the evolution of individual haloes, as they are con-

structed by the gradual gravitational assembly of smaller progenitor

haloes that have collapsed and virialized earlier on. The bottom-up

clustering can also be inferred statistically from the power spectrum

of initial density fluctuations, which indicates that the mass distri-

bution of collapsing systems is shifting in time from small to large

masses. These hierarchical aspects of the clustering process have

led to the misleading notion that one expects big haloes to ‘form’

later than small haloes, without distinguishing between the dynami-

cal collapse or assembly of these haloes and the formation epoch of

the stars in them. The observed downsizing is therefore frequently

referred to in the literature as ‘antihierarchical’, and thus as posing

a severe challenge to the standard model for structure formation.

However, when comparing the histories of different haloes, the evo-

lution may be interpreted as bottom-up or top-down depending on

how ‘formation’ is defined.

The evolution of DM haloes has traditionally been studied through

the histories of the main progenitors (Lacey & Cole 1993; Eisenstein

& Loeb 1996; Nusser & Sheth 1999; Firmani & Avila-Reese 2000;

van den Bosch 2002b, hereafter vdB02; Wechsler et al. 2002; Li, Mo

& van den Bosch 2005). The main-progenitor assembly history is

constructed by following back in time the most massive progenitor

in each merger event. We term Mmain(z) the main progenitor mass

at redshift z. The corresponding formation redshift zmain of a halo of

mass M0 at z = 0 is commonly defined as the time at which the main

progenitor contained one-half of today’s mass, Mmain(zmain) = M0/2.

According to this definition, more massive haloes indeed form later.

The formation redshift of the main progenitor has been computed by

Lacey & Cole (1993) based on the extended Press–Schechter (EPS)

formalism, and the trend with mass has been confirmed for various

cosmologies (see e.g. vdB02). This has also been tested using trees

extracted from cosmological N-body simulations (Lacey & Cole

1994; Wechsler et al. 2002). We confirm this behaviour below using

a new analytic estimation of the full time evolution of Mmain(z),

based on the EPS formalism itself without the need to construct

merger-tree realizations.

However, the history of the main progenitor of a given halo does

not represent the history of the whole population of progenitors in

which the stars of a present-day halo have formed. Perhaps more

directly relevant for the stellar population at any given epoch is

the sum over the masses of all the virialized progenitors in that

specific tree at that time, which we term Mall(z). If this summation

is performed down to a zero minimum mass, we have by definition

Mall(z) = M0. However, when a non-zero minimum mass Mmin(z) is

applied, the same for all haloes, we find a robust ADS behaviour.1

We demonstrate this effect analytically based on the EPS formalism

1A similar point has been made in parallel by Mouri & Taniguchi (2006)

using a very different methodology.
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Figure 1. An illustration of the upsizing of Mmain versus the downsizing

of Mall in dark-halo merger trees. Compared are random trees drawn from

the EPS probabilities for haloes of current masses M0 ∼ 10 and ∼100Mmin.

The mass of the main progenitor versus the total mass in all the progenitors

above Mmin is shown at z = 3. The progenitors, of mass M, are marked

by circles of sizes and spacings proportional to (M/M0)1/3. The values of

Mmain/M0 and Mall/M0 are indicated. The main progenitor, along the left-

hand branch, is more massive in the less massive M0, showing upsizing. The

integrated mass in all the progenitors down to Mmin is larger in the massive

M0, demonstrating ‘downsizing’.

and confirm it using Monte Carlo EPS merger trees as well as trees

extracted from N-body simulations. We prove that this phenomenon

is valid for any realistic power-spectrum shape and for any choice

of Mmin(z), as long as it is the same for all haloes at a given time.

We note that a similar trend has been found by Bower (1991) for an

Einstein–deSitter cosmology and a power-law power spectrum.

The difference between Mmain and Mall is illustrated in Fig. 1,

which compares the z = 3 progenitors above a given Mmin in random

realizations of merger trees corresponding to current haloes of M0 ∼
10 and ∼100Mmin. The downsizing behaviour for Mall is apparent,

while for Mmain the familiar opposite trend stands out. (We term this

trend as ‘upsizing’.) The average distributions of relative masses

in z = 3 progenitors, derived using EPS (see below) for the same

two values of M0 as in Fig. 1, are shown in Fig. 2. The upsizing

of Mmain is indicated by the excess of massive progenitors for the

smaller current halo. The downsizing of Mall is demonstrated by the

excess of the overall integral down to Mmin/M0 for the more massive

current halo.

A realistic and necessary condition for star formation is that the

gas is able to cool efficiently. This is only possible if the gas resides

in a halo whose virial temperature exceeds a critical threshold of

T ∼ 104 K, above which atomic cooling becomes efficient. This
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Figure 2. Upsizing of Mmain versus downsizing of Mall in the distribution

of mass in progenitors at z = 3. The area under each curve, from log(M/M0)

to 0, is the total mass in progenitors above M relative to M0. The excess of

mass in massive progenitors for the smaller current halo indicates upsizing

of Mmain. The excess in total mass down to Mmin/M0 for the more massive

current halo demonstrates downsizing of Mall.

provides a natural threshold Mmin(z) for Mall(z). If star formation is

of the maximum possible efficiency, namely if all the gas in haloes

above Mmin(z) turns into stars on a free-fall time-scale, then the ADS

in the stellar population emerges naturally from the ADS of Mall(z).

In reality, however, the star formation rate is likely to be slowed

down by a variety of baryonic processes, especially by ‘feedback’ ef-

fects. As a result, the star formation history may or may not maintain

the ADS seeded by Mall(z) of the DM haloes. This should in princi-

ple be modelled by semi-analytic models (SAMs) of galaxy forma-

tion, which attempt to incorporate the baryonic physical processes

in merger trees of DM haloes. Unfortunately, early SAMs failed to

reproduce the ADS of ellipticals as we know it today (e.g. Baugh,

Cole & Frenk 1996; Kauffmann 1996; Kauffmann & Charlot 1998;

Thomas 1999; Thomas & Kauffmann 1999), probably due to an

inadequate treatment of feedback effects. SAMs also failed to re-

cover the similar global trend obeyed by blue-sequence galaxies

in colour–magnitude diagrams (van den Bosch 2002a; Bell et al.

2003), thus highlighting the apparent discrepancy between theory

and observation. However, more recent models (e.g. Bower et al.

2006; Cattaneo et al. 2006; Croton et al. 2006; De Lucia et al. 2006)

do succeed in reproducing an ADS behaviour, largely because of an

improved treatment of the feedback effects. The early SAMs only

included supernova feedback, which is efficient in slowing down

star formation preferentially in smaller galaxies below a virial ve-

locity of ∼100 km s−1 (Dekel & Silk 1986). The problem is that this

process only causes a delay in the star formation: the gas is only

prevented from forming stars until the halo has grown sufficiently

massive that supernova feedback is no longer efficient. Because this

results in relatively late star formation, even in massive galaxies,

the SAMs were unable to predict the correct stellar ages. The main

success of the more modern SAMs is the inclusion of active galactic

nucleus (AGN) feedback and shock heating physics, which causes

a shutdown, rather than a delay, of star formation at relatively late

times (e.g. Birnboim & Dekel 2003; Binney 2004; Scannapieco,

Silk & Bouwens 2005; Cattaneo et al. 2006; Croton et al. 2006;

Dekel & Birnboim 2006). Although the details of AGN feedback

are still poorly understood, it has been argued that it is the main

mechanism that explains the ‘antihierarchical’ nature of the relation

between stellar mass and stellar age of galaxies.

However, we show below that the simulated star formation his-

tories of elliptical galaxies (De Lucia et al. 2006) are qualitatively

similar to the histories predicted by Mall(z) of DM haloes. This in-

dicates that the roots of the observed ADS can be found already in

the natural downsizing of the DM haloes. Apparently, the complex

feedback processes affecting the star formation do not change the

general trend and only provide fine-tuning to the ADS effect. We

conclude that ADS should not be regarded as a surprising ‘antihier-

archical’ phenomenon of complex gas physics – it is rather the most

natural, expected behaviour in the hierarchical clustering scenario.

On the other hand, we find that the DST, as observed at relatively

low redshifts, cannot be easily traced back to the bare properties

of the DM merger trees. The mass distribution of late-type efficient

star formers at late times must be strongly affected by feedback or

other gas processes and therefore the modelling of this aspect of

downsizing should involve more realistic star formation rates. We

show that only when Mmin(z) is properly increasing with redshift,

possibly mimicking the required baryonic effects, the star formation

rate associated with Mall(z) can be forced to a qualitative agreement

with the observed DST.

This paper is organized as follows. In the following introductory

section, Section 2, we spell out the relevant items from the EPS

formalism and describe how we generate Monte Carlo merger trees

that serve us as a reference when needed. In Section 3, we address

the average Mmain(z), derive an analytic approximation for it and

confirm that it behaves opposite to downsizing. In Section 4, we

study the average Mall(z), compute it analytically from the EPS

formalism and demonstrate that it shows a robust ADS behaviour.

We also study the mutual correlation between the formation times

associated with Mmain and Mall. In Section 5, we compute the EPS

formation rate of DM haloes of a given mass, and compare it with star

formation histories in semi-analytic simulations and in observations.

In Section 6, we address the DST of the SSFR as observed at different

redshifts out to z ∼ 1. In Section 7, we summarize our results and

discuss them.

Throughout this paper, we use a flat �CDM cosmology, with

the standard power spectrum P(k) = kT2(k). The transfer function

(Bardeen et al. 1986) is

T (k) = ln(1 + 2.34q)

2.34q

× [1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4]−1/4.

(1)

Here, q = k/�, with k in hMpc−1, and � is the power spectrum

shape parameter (Sugiyama 1995)

� = �mh exp[−�b(1 + √
2h/�m)], (2)

where �b = 0.044 throughout the paper. Unless specifically stated

otherwise, we use the standard cosmological parameters, with

�� = 0.7, �m = 0.3, σ 8 = 1.0 and h = 0.7. (Whenever we modify

�m or h, we recompute � according to the above definition.)

2 E X T E N D E D P R E S S – S C H E C H T E R T H E O RY

2.1 The formalism

In the standard model for structure formation, the initial density

contrast δ(x) = ρ(x)/ρ̄ − 1 is considered to be a Gaussian random

field, which is therefore completely specified by the power spectrum
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P(k). As long as δ � 1, the growth of the perturbations is linear and

δ(x, t2) = δ(x, t1) D(t2)/D(t1), where D(t) is the linear growth factor.

Once δ(x) exceeds a critical threshold δ0
crit, the perturbation starts to

collapse to form a virialized object (halo). In the case of spherical

collapse δ0
crit � 1.68. In what follows, we define δ0 as the initial

density contrast field linearly extrapolated to the present time. In

terms of δ0, regions that have collapsed to form virialized objects

at redshift z are then associated with those regions for which δ0 >

δc(z) ≡ δ0
crit/D(z).

In order to assign masses to these collapsed regions, the

Press–Schechter (PS) formalism considers the density contrast δ0

smoothed with a spatial window function (filter) W(r; Rf). Here, Rf

is a characteristic size of the filter, which is used to compute a halo

mass M = γfρ̄R3
f /3, with ρ̄ the mean mass density of the Universe

and γ f a geometrical factor that depends on the particular choice of

filter. The ansatz of the PS formalism is that the fraction of mass

that at redshift z is contained in haloes with masses greater than M is

equal to two times the probability that the density contrast smoothed

with W(r; Rf) exceeds δc(z). This results in the well-known PS mass

function for the comoving number density of haloes:

dn

d ln M
(M, z) dM

=
√

2

π
ρ̄

δc(z)

σ 2(M)

∣∣∣∣ dσ

dM

∣∣∣∣ exp

[
− δ2

c (z)

2σ 2(M)

]
dM (3)

(Press & Schechter 1974). Here, σ 2(M) is the mass variance of the

smoothed density field given by

σ 2(M) = 1

2π2

∫ ∞

0

P(k) Ŵ 2(k; Rf) k2 dk, (4)

with Ŵ (k; Rf) the Fourier transform of W(r; Rf).

The EPS model developed by Bond et al. (1991) is based on the

excursion set formalism. For each point, one constructs ‘trajectories’

δ(M) of the linear density contrast at that position as a function of the

smoothing mass M. In what follows, we adopt the notation of Lacey

& Cole (1993, hereafter LC93) and use the variables S = σ 2(M) and

ω = δc(z) to label mass and redshift, respectively. In the limit Rf →
∞, one has that S = δ(S) = 0, which can be considered the starting

point of the trajectories. Increasing S corresponds to decreasing the

filter mass M, and δ(S) starts to wander away from zero, executing

a random walk (if the filter is a sharp k-space filter). The fraction

of matter in collapsed objects in the mass interval M, M + dM at

redshift z is now associated with the fraction of trajectories that have

their first upcrossing through the barrier ω = δc(z) in the interval S,

S + dS, which is given by

f (S, ω) dS = 1√
2π

ω

S3/2
exp

(
−ω2

2S

)
dS (5)

(Bond et al. 1991; Bower 1991; LC93). After conversion to num-

ber counting, this probability function yields the PS mass function

of equation (3). Note that this approach does not suffer from the

arbitrary factor 2 in the original PS approach.

Since for random walks, the upcrossing probabilities are inde-

pendent of the path taken (i.e. the upcrossing is a Markov process),

the probability for a changed �S in a time-step �ω is simply given

by equation (5) with S and ω replaced with �S and �ω, respec-

tively. This allows one to immediately write down the conditional
probability that a particle in a halo of mass M2 at z2 was embedded

in a halo of mass M1 at z1 (with z1 >z2) as

P(S1, ω1|S2, ω2) dS1 = f (S1 − S2, ω1 − ω2)dS1

= 1√
2π

(ω1 − ω2)

(S1 − S2)3/2
exp

[
− (ω1 − ω2)2

2(S1 − S2)

]
dS1. (6)

Converting from mass weighting to number weighting, one ob-

tains the average number of progenitors at z1 in the mass interval

M1, M1 + dM1 which by redshift z2 have merged to form a halo of

mass M2:

dN

dM1

(M1, z1 | M2, z2) dM1 = M2

M1

P(S1, ω1|S2, ω2)

∣∣∣∣ dS

dM

∣∣∣∣ dM1.

(7)

2.2 Constructing merger trees

The conditional mass function can be combined with Monte Carlo

techniques to construct merger histories (also called merger trees)

of DM haloes. If one wants to construct a set of progenitor masses

for a given parent halo mass, one needs to obey two requirements.

First, the number distribution of progenitor masses of many inde-

pendent realizations needs to follow (7). Secondly, mass needs to be

conserved, so that in each individual realization the sum of the pro-

genitor masses is equal to the mass of the parent halo. In principle,

this requirement for mass conservation implies that the probabil-

ity for the mass of the nth progenitor needs to be conditional on the

masses of the n − 1 progenitor haloes already drawn. Unfortunately,

these conditional probability functions are unknown, and one has to

resort to an approximate technique for the construction of merger

trees.

The most widely adopted algorithm is the N-branch tree method

with accretion developed by Somerville & Kolatt (1999, hereafter

SK99). This method is more reliable than, for example, the binary-

tree method of LC93. In particular, it ensures exact mass conserva-

tion and yields conditional mass functions that are in good agree-

ment with direct predictions from EPS theory (i.e. the method is

self-consistent).

The SK99 method works as follows. First, a value for �S is drawn

from the mass-weighted probability function

f (�S, �ω) d�S = 1√
2π

�ω

�S3/2
exp

[
− (�ω2)

2�S

]
d�S (8)

(cf. equation 6). Here, �ω is a measure for the time-step used in

the merger tree, and is a free parameter (see below). The progenitor

mass, Mp, corresponding to �S follows from σ 2(Mp) = σ 2(M) +
�S. With each new progenitor, it is checked whether the sum of the

progenitor masses drawn thus far exceeds the mass of the parent,

M. If this is the case, the progenitor is rejected and a new progenitor

mass is drawn. Any progenitor with Mp < Mmin is added to the mass

component Macc that is considered to be accreted on to the parent in

a smooth fashion. (That is, the formation history of these small mass

progenitors is not followed further back in time.) Here, Mmin is a free

parameter that has to be chosen sufficiently small. This procedure

is repeated until the total mass left, Mleft = M − Macc − ∑
Mp, is

less than Mmin. This remaining mass is assigned to Macc, and one

moves on to the next time-step.

As all other methods for constructing merger trees (e.g. LC93;

Kauffmann & White 1993), the SK99 algorithm is only an approx-

imation. In particular, it is based on the mass-weighted progenitor

probability function (8), rather than on the number distribution (7),

and mass conservation is enforced ‘by hand’ by rejecting progeni-

tor masses that overflow the mass budget. Consequently, the number
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distribution of the first-drawn progenitor masses is different from

that of the second-drawn progenitor masses, etc. Somewhat for-

tunately, the sum of these distributions closely matches the num-

ber distribution (7) of all progenitors, but only if sufficiently small

time-steps �ω are used (see SK99; vdB02). In principle, since the

upcrossing of random walks through a boundary is a Markov pro-

cess, the statistics of progenitor masses should be independent of

the time-steps taken, indicating that the method is not perfectly jus-

tified. Consequently, not all statistics of the merger trees thus con-

structed are necessarily accurate, something that has to be kept in

mind.

In this paper, we adopt a time-step of

�ω =
√∣∣∣∣ dS

dM

∣∣∣∣ 10−3 M

[
b + a log10

(
M

Mmin

)]−1

, (9)

where a = 0.3 and b = 0.8. As shown in SK99, this time-step

yields number distributions of progenitor masses that are in good

agreement with (7). The average number of progenitors per time-

step is ∼1.5 for 109 h−1 M
 � M � 1014 h−1 M
 and Mmin =
108 h−1 M
.

3 G ROW T H O F T H E M A I N P RO G E N I TO R

The full merger history of any individual DM halo is a complex struc-

ture containing a lot of information. It has therefore been customary

to define a main progenitor history, sometimes termed mass accre-
tion history (Firmani & Avila-Reese 2000; Wechsler et al. 2002;

vdB02) or mass assembly history (Li et al. 2005), which restricts

attention to the main ‘trunk’ of the merger tree. This main trunk is

defined by following the branching of a merger tree back in time,

and selecting at each branching point the most massive progenitor.

We denote by Mmain(z) the mass of this main progenitor as a function

of redshift z. Note that with this definition, the main progenitor is

not necessarily the most massive progenitor of its generation at a

given time, even though it never accretes other haloes that are more

massive than itself.

3.1 Analytical derivation

Using EPS merger trees and cosmological N-body simulations,

vdB02 and Wechsler et al. (2002) have obtained simple fitting for-

mulae for the main progenitor history. We show here that one can

actually derive a useful analytical approximation for the average

M̄main(z), defined at each redshift as the average mass of Mmain(z)

over an ensemble of merger trees. We derive it directly from the

EPS formalism, without the need to construct Monte Carlo merger

trees. As shown in the Appendix, M̄main(z) obeys the differential

equation

dM̄main

dω
= −

√
2

π

M̄main√
Sq − S

. (10)

Here, S = S(M̄main), Sq = S(M̄main/q) and the value of q is between

2 and a maximum value qmax. We show in the Appendix that the

uncertainty in q is an intrinsic property of the EPS theory; different

algorithms for constructing merger trees may correspond to different

q within the allowed range. The maximum value, qmax, depends

slightly on cosmology and mass. For example, qmax is between 2.1

and 2.3 for flat cosmogonies with �m between 0.1 and 0.9 and halo

masses between 108 and 1015 h−1 M
.
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Figure 3. Growth of the main progenitor for haloes of different present-day

masses. The mass M̄main(z) is the average at a fixed redshift z. The curves

are normalized to match at z = 0. The halo masses, from top to bottom, range

from 5 × 109 to 5 × 1013 h−1 M
 equally spaced in the log. The symbols

refer to the averages over Monte Carlo merger trees, and the curves represent

our analytic results. The upsizing of the main progenitor is obvious.

Solving the differential equation for M̄main, we come up with a

useful fitting formula:

M̄main(z) = �m

�3
F−1

q

{
g(32�)

σ8

[ω(z) − ω0] + Fq

(
�3

�m

M0

)}
.

(11)

Here, g and Fq are analytic fitting functions motivated by the shape

of the power spectrum (see Appendix for their definition and range

of accuracy). For the �CDM concordance cosmology, we find that

the standard algorithm of SK99 for constructing random merger

trees yields a M̄main(z) which is well fitted by equation (11) with

q = 2.2. We therefore adopt this value below. Varying q between

2 and 2.3 (the maximum range allowed) gives rise to a rela-

tively small change in M̄main; near M̄main = 0.5M0 this change is

∼8 per cent.

Fig. 3 shows M̄main(z)/M0, the average, main progenitor his-

tory for haloes of different masses today, all normalized to today’s

mass. The figure compares our analytic estimate based on equa-

tion (11) with the averages over histories computed from Monte

Carlo merger-tree realizations described in Section 2.2. We see that

the analytic estimate reproduces the results from the realizations

quite well, although there is a slight mismatch at high z. This dif-

ference may either reflect the allowed intrinsic uncertainty within

the EPS formalism or be due to other inaccuracies in the SK99

algorithm used to construct the trees.

3.2 Archaeological upsizing

We see in Fig. 3 that the average growth curve of the main progen-

itor is shifted towards later times in more massive haloes, implying

the opposite of downsizing, termed here as upsizing. One way to

quantify the downsizing behaviour is via the quantity

Dmain(z | z0, M0) ≡ d

dM0

[
M̄main(z)

M0

]
. (12)
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Figure 4. Growth of the total mass in all the progenitors, M̄all(z), for haloes

of different present-day masses. The minimum progenitor mass is ∼109 M
,

specified in equation (20) as a function of redshift. The masses, curves and

symbols are the same as in Fig. 3. A downsizing behaviour is clearly seen.

It is more pronounced at small masses which are closer to Mmin.

Positive values of Dmain mark an ADS behaviour, negative values

refer to upsizing and |Dmain| measures the strength of the effect. As

is clear from Fig. 3, Dmain(z) < 0 at all z, indicating that the main

progenitor histories of DM haloes reveal upsizing.

Is this upsizing a generic feature of M̄main(z)? To answer this, we

write the average main progenitor mass of a halo of mass M0 a small

time-step �ω ago as

M̄main(�ω)

M0

=
∫ Sq −S0

0

f (�S, �ω) d�S (13)

(see Appendix). Differentiating with respect to M0 while keeping

�ω fixed yields the ADS strength

Dmain(z | z0, M0) = f (Sq − S0, �ω)

[
1

q

dS

dM
(M0/q) − dS

dM
(M0)

]
.

(14)

Whether this is negative or not depends on the shape of S(M). For

a self-similar power spectrum, S ∝ M−α , we have that Dmain < 0

as long as α > 0. We have also verified numerically that Dmain <

0 for the standard �CDM power spectrum at all masses. While the

above expression for Dmain is valid only for small �ω, its sign is the

same at all z. A more accurate expression for Dmain at any z can be

obtained by differentiating equation (11).

3.3 Assembly time of the main progenitor

Following numerous other studies (see Section 1), we define the

assembly redshift zmain of a halo of mass M0 at time ω0 according

to Mmain(zmain) = M0/2. Using equation (11), we obtain

ω̄main ≡ ω(z̄main)

= ω0 + σ8

g(32�)

[
Fq

(
�3

�m

M0

2

)
− Fq

(
�3

�m

M0

)]
. (15)

In the case of scale-free initial conditions, where the power spectrum

is a pure power law, P(k) ∝ kn , we have that S ∝ M−α with α = (n +
3)/3. In this case, the expression simplifies to

ω̄main = ω0 +
√

2π(qα − 1)

α
(
√

Sq −
√

S0). (16)

9 11 13
0

1.5

3

4.5

6

Log(M
0
) [h

–1
 M

sun
]

R
e
d
s
h
if
t,
 z

z
all

z
main

Figure 5. Formation redshifts, when the mass was one-half of today’s mass,

for the main progenitor (z̄main, solid lines, circles) and for all the progenitors

(z̄all, dashed lines, squares) versus today’s halo mass. The symbols and error

bars refer to an ensemble of random EPS merger trees. The thickness of the

z̄main curve refers to the allowed range obtained by varying q between 2 and

qmax in equation (15). The dashed line is the theoretical prediction (23) for

z̄all. zmain shows upsizing while zall shows downsizing.

We note that Lacey & Cole (1993) computed a related expression

for the average assembly redshift of the main progenitor (see the

Appendix for more details).

Fig. 5 shows the average assembly redshift of the main progenitor,

z̄main, as a function of the present-day halo mass, for the �CDM

concordance cosmology. The thickness of the curve corresponds to

the allowed range of intrinsic uncertainty in q in equation (15), as

computed in the Appendix. The ADS strength, Dmain, associated

with the slope of z̄main(M), does not change significantly with halo

mass. The theoretical EPS curve shows an excellent agreement with

the z̄main obtained from an ensemble of random EPS merger histories

(circles with error bars). The error bars correspond to the standard

deviation in zmain over the individual merger trees.

Fig. 5 demonstrates again the upsizing behaviour of the main

progenitor. This has been one of the reasons for interpreting the

observed downsizing as ‘antihierarchical’.

The distribution of zmain in our ensemble of EPS merger trees is

plotted in Fig. 6 for three different masses. One of them is compared

to the theoretical prediction by LC93,

Q(z) = − d

dz

∫ S2

S0

M0

M
f [S − S0, ω(z) − ω0] dS, (17)

where f is as defined in equation (5). As discussed in the Appendix,

the theoretical distribution agrees with the random realizations at

low z, and any deviations are due to the limitations of the SK99

algorithm used.

4 G ROW T H O F A L L T H E P RO G E N I TO R S

Mmain(z) defined above only describes the mass growth history of the

main trunk of the full merger tree. It is unlikely, however, that this is

an honest estimator of the star formation histories of the associated

galaxies. After all, star formation can occur in all progenitors that

obey the necessary physical conditions, and is not restricted to the

main progenitor. Since gas needs to cool before it can form stars,

and since the cooling time is primarily a function of halo mass

and redshift, we assume that star formation occurs in haloes with
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Figure 6. The distribution of zmain and zall for different halo masses. Halo

masses are 5 × 1011, 5 × 1012 and 5 × 1013 h−1 M
 (dotted, dash–dotted

and solid lines). The solid thick line is the theoretical prediction for the

distribution of zmain, equation (17), for a halo mass of 5 × 1012 h−1 M
.

The minimum progenitor mass is ∼109 M
, specified in equation (20) as a

function of redshift.

a mass above a threshold mass, Mmin(z). This prompts us to define

the formation history Mall(z) of a present-day DM halo as the sum

of the masses of all progenitors that obey this condition. Supporting

evidence for the possible success of such a model comes from the

finding that the integral of Mall(z) over the entire present-day halo

mass function provides a useful backbone for understanding the

observed, universal star formation history (Hernquist & Springel

2003).

4.1 Analytical derivation

The construction of Mall(z) for individual DM haloes requires a full

merger tree, with a mass resolution that exceeds Mmin(z). However,

the formation history of a halo of mass M0, averaged over many

merger trees per each redshift z, can be derived straightforwardly

from the EPS formalism. It should equal the integral over the pro-

genitor mass function in the range M = Mmin(z) to M0:

M̄all(z) = M0

∫ M0

Mmin(z)

P(S, ω | S0, ω0)

∣∣∣∣ dS

dM

∣∣∣∣ dM, (18)

where P(S, ω |S0, ω0) is as defined in equation (6). Performing the

integral, we obtain

M̄all(z)

M0

= 1 − erf

[
ω(z) − ω0√

2Smin(z) − 2S0

]
(19)

where Smin(z) ≡ S[Mmin(z)]. Note that M̄all(z)/M0 depends on M0

through S0, so that equation (19) cannot be written in an explicit

form.

We see that for a given cosmology, the average formation history

of a halo of mass M0 is completely specified by Mmin(z). As a first

attempt, we associate Mmin with the halo mass that corresponds to

a virial temperature of Tvir = 104 K, the temperature above which

atomic gas is able to cool and subsequently form stars. For a com-

pletely ionized, primordial gas, this yields

Mmin(z) = 1.52 × 109h−1 M

(

�vir

101

)−1/2 [
H (z)

H0

]−1

, (20)
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Figure 7. Individual realizations of all-progenitor histories (thin solid

curves) compared to the average at fixed z as calculated analytically (thick

dashed curve). The curves are all normalized to M0 at z = 0. The upper and

lower panels are for M0 = 5 × 1013 and 5 × 1010 h−1 M
, respectively.

Mmin is specified in equation (20).

where �vir(z) is the average overdensity of a virialized halo at red-

shift z relative to the critical density at that redshift (Bryan & Norman

1998) and H(z) is the Hubble parameter. Unless specifically stated

otherwise, we use this minimum threshold mass in what follows.

The lines in Fig. 4 show M̄all(z) for several halo masses based

on equation (19). We now see that when ‘formation’ is defined by

M̄all(z) we obtain ADS, with more massive haloes forming earlier.

Also plotted in Fig. 4 are the results of the merger trees (symbols).

We see that while there is a fair, qualitative agreement between

the histories extracted from the Monte Carlo realizations and the

exact EPS predictions, the level of agreement becomes progressively

worse for more massive haloes (relative to Mmin). The merger trees

predict an earlier formation time than what follows directly from

EPS. A similar behaviour has been noted by SK99 (their fig. 7),

when comparing the empirical total mass contained in haloes above

a minimum mass to the theoretical value. These deviations arise

from the approximations made in the algorithm for constructing the

Monte Carlo merger trees (see Discussion in Section 2.2).

Fig. 7 shows the Mall(z) histories of individual haloes, obtained

from Monte Carlo merger-tree realizations (thin lines), compared to

the average formation history M̄all(z), calculated from equation (19)

(thick dashed line). The scatter is higher for lower mass haloes. This

can be crudely understood as a Poisson noise associated with Nall,

the number of progenitors above Mmin at every given redshift. For

the massive halo, M0 = 5 × 1013 h−1 M
, Nall is indeed quite large

at all redshifts, leading to a small scatter. For the less massive halo,

M0 = 5 × 1010 h−1 M
, we have Nall < 20 at all redshifts, which

results in a larger scatter.

4.2 Archaeological downsizing

The all-progenitor histories Mall(z) depend on the definition of the

threshold mass Mmin(z). Here, we investigate the necessary condi-

tions for these threshold masses in order for M̄all(z) to reveal ADS.

Similar to what was done in Section 3.2, we define the ‘downsizing

strength’, Dall, as the derivative of M̄all/M0 with respect to M0. In

order to study the M0 dependence, we rewrite equation (18) using
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different variables,

M̄all(ω)

M0

=
∫ Smin−S0

0

f (�S, ω − ω0)d�S, (21)

where the function f is defined as in equation (5). This enables us

to differentiate Mall/M0 with respect to M0, while keeping ω fixed,

which yields

Dall(ω | ω0, M0) = − f (Smin − S0, ω − ω0)
dS

dM
(M0) > 0. (22)

Since f is a probability function, and dS/dM < 0 for all M, we have

that Dall is always positive. This implies that ADS occurs for any

choice of the threshold masses Mmin(z) and for any cosmological

power spectrum of fluctuations. The only assumptions used are (i)

that the threshold is global, i.e. that Mmin does not depend on the

specific halo mass M0, and (ii) that the excursion-set trajectories

are Markovian, which allows the change of variables leading from

equation (18) to (21). Note that the downsizing aspect of M̄all(z)

does not depend on the actual shape of f, which implies that ADS

will occur for non-Gaussian density fluctuation fields as well.

The opposite effect of upsizing could in principle occur if the

Markovian assumption of the EPS random walks breaks down, so

that the mass-weighted probability distribution P(S, ω | S0, ω0) de-

pends on S0 rather than being a function of S − S0 only. An additional

requirement in this case is that the probability has a higher contribu-

tion from the low-mass end for larger M0. Therefore, the Markovian

nature of the random walks is a sufficient, but not a necessary, con-

dition for ADS to occur.

4.3 Formation time of all progenitors

Following the definition of assembly redshift, we define the forma-

tion redshift of DM haloes, zall, by Mall(zall) = M0/2. Using equa-

tion (19), we obtain

ω̄all ≡ ω(z̄all) = ω0 + β
√

Smin − S0, (23)

where β = √
2/erf(1/2) � 0.6745 (see also Bower 1991). The

dashed curve in Fig. 5 shows zall as a function of halo mass computed

using equation (23). The solid square with error bars represents the

average and scatter as obtained from a large ensemble of EPS merger

trees. Note that these deviate significantly from the direct theoretical

EPS prediction, especially at large M0. This is in stark contrast to the

case of zmain(M0), where the merger-tree results agree well with the

direct theoretical predictions. This suggests that the discrepancy in

zall(M0) must originate in the statistics of smaller progenitors with

masses < M0/2. As shown by SK99, the N-branch tree method with

accretion used for the construction of the EPS merger trees slightly

overpredicts the number of small progenitors at high redshifts. Fig. 5

shows that this can have a significant impact on zall; consequently,

SAMs for galaxy formation that are based on such EPS merger trees

might actually overestimate the star formation rates at high redshifts.

For haloes with M0 � Mmin, we have that zall > zmain: typically the

progenitors of a massive halo will have grown sufficiently massive

to allow for star formation much before the final halo has assembled

half its present-day mass into a single halo. Note that zall − zmain

decreases with decreasing halo mass. When M0 � 2Mmin, we have

that zall = zmain, by definition, while zall < zmain for haloes with Mmin <

M0 < 2Mmin. Finally, for haloes with M0 < Mmin the formation

redshift zall is not defined. This systematic increase of zall − zmain with

increasing halo mass may have interesting implications for galaxy

formation, as it provides a very natural means to break the self-

similarity between haloes of different masses, and their associated

galaxies.

Although dynamical friction may delay the merging of galaxies

with respect to the epoch at which their host haloes merged, to first

order we may associate zmain with the redshift below which the haloes

and their associated galaxies no longer experience major mergers

(i.e. below zmain the main progenitor never merges with another

halo of similar mass). In massive haloes, with M0 � Mmin, we

expect that the majority of the stars have already formed much before

these last major mergers, and this majority of the stars will thus

have experienced one or more major mergers since their formation.

Consequently, the majority of the stars are most likely to reside in a

spheroidal component, and the galaxy is an early-type with relatively

old stars. Contrary, in low-mass haloes, most of the progenitor haloes

that are being accreted by the main progenitor at z < zmain will have

masses M < Mmin, and will, thus, not have formed stars. The gas

associated with these progenitors can only start to form stars once

they become part of the main progenitor: star formation and galaxy

assembly occur virtually hand in hand, with the stars being born

in situ in what is to become the final galaxy at z = 0. Since the

system has not undergone a major merger since roughly half the

stars formed, the system is likely to resemble a disc galaxy.

Although this is clearly severely oversimplified, it is interest-

ing that some of the most pronounced scaling relations of galaxies,

namely the relations between halo mass, stellar age and galaxy mor-

phology, may well have their direct origin in the backbone of halo

formation histories combined with a simple halo mass threshold for

star formation.

Finally, Fig. 6 shows the distribution of zall for haloes of different

masses, as obtained from our EPS merger trees. Note that the scatter

in zall is smaller for more massive haloes, as expected from the

Poisson statistics discussed in Section 4.1.

4.4 Comparison with N-body simulations

While the merger trees analysed thus far are based on the EPS for-

malism, one can alternatively extract merger trees from cosmologi-

cal N-body simulations. Here, the gravitational dynamics are more

accurate, limited only by numerical resolution effects. However, it

should be kept in mind that the identification of virialized haloes,

and especially connecting them to construct merger trees, is a non-

trivial enterprise involving several significant uncertainties.

We compute M̄all(z) from merger trees extracted from a �CDM

cosmological N-body simulation kindly provided by Risa Wech-

sler. The simulation followed the trajectories of 2563 CDM particles

within a cubic, periodic box of comoving size 60 h−1 Mpc from red-

shift z = 40 to the present. The particle mass is 1.1 × 109 h−1 M
,

and the minimum halo mass dictated by the resolution is 2.2 ×
1010 h−1 M
 (see Wechsler et al. 2002, for details). For the con-

struction of M̄all(z), we impose Mmin values of 5 × 1010 and 5 ×
1011 h−1 M
, and we compare the resulting, average formation his-

tories to those computed from the EPS formalism using the same

threshold masses. The results are shown in Fig. 8, where symbols

correspond to the formation histories extracted from the N-body

simulations, while the lines show the direct, theoretical predictions

based on the EPS formalism (equation 19). Overall, the agreement is

very satisfactory, although the N-body simulations predict a some-

what later formation when Mmin � M0. Note that the EPS merger
trees yield formation times that are earlier with respect to the ana-

lytical formula (Fig. 4). Thus, the difference between N-body sim-

ulations and EPS merger trees is larger than the difference between

the N-body simulations and equation (19). Despite these discrepan-

cies, the N-body results clearly confirm the EPS prediction that Mall

of more massive haloes grows earlier. We therefore conclude that
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Figure 8. All-progenitor histories drawn from N-body simulations (sym-

bols) compared to the EPS predictions (curves). The imposed minimum mass

is Mmin = 5 × 1010 and 5 × 1011 M
 in the top and bottom panels, respec-

tively. The mass bins in log mass are [11.62, 11.78], [12.48, 13.00], [13.48,

14.00] where mass units are h−1 M
. The number of haloes within each bin

is 479, 205 and 23, respectively. The EPS theoretical curves corresponding

to each mass bin are averages over the same distribution of masses.

the ADS aspect of Mall is not an artefact of the EPS approximation,

but is a generic property of DM merger trees.

4.5 The correlation between formation time and assembly time

Since zall increases with increasing halo mass (ADS), while zmain

decreases (‘upsizing’), we have that zall and zmain are anticorrelated

when considering haloes of different masses. But what about the

relation between zall and zmain for haloes of a fixed mass?

Fig. 9 shows the correlation between zall and zmain for haloes of

given masses, with Mmin = 5 × 1010. Results are shown for both the

numerical simulations (solid dots) and EPS merger trees (contours).

For a 5 × 1011 h−1 M
 halo, the number of progenitors is small,

and the full merger tree is not much more than the main trunk. As

a result, the values of zall and zmain are not very different and they

exhibit a rather strong correlation. When the mass gets larger, the

scatter in zall tends to zero while the scatter in zmain remains large.

Consequently, the correlation strength between zmain and zall at fixed

halo mass vanishes at large M0.

This has important implications. Using a large numerical simu-
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Figure 9. Correlations between zmain and zall for random merger trees with

the same final mass. The contours, equally spaced in the log, refer to the

joint distribution from the EPS random merger trees. The minimum mass is

Mmin = 5 × 1010. The points are from N-body merger trees, with the same

mass bins as in Fig. 8.

lation, Gao, Springel & White (2005) and Harker et al. (2006) have

found a positive correlation between zmain and the environment den-

sity: i.e. haloes in an overdense region assemble earlier than haloes

of the same mass in an underdense region. If galaxy properties, such

as stellar age, are correlated with zmain, this means that haloes of a

given mass host galaxies with different properties, depending on

their large-scale environment. The results shown here suggest that

this may be the case for relatively low mass haloes with M0 � Mmin,

since these systems reveal a positive correlation between zmain and

zall. In more massive haloes, however, with M0 � Mmin, no such

correlation is present, suggesting that the correlation between zmain

and environment will not create a similar correlation between stellar

age and environment.

The positive correlation between zmain and zall at fixed mass arises

from their dependence on the merger-tree properties at low redshifts.

For example, assume that the merger tree for some halo is such that

the mass at z = 0.5 is the same as at z = 0. In this case, we can

use the analytical expressions for zall and zmain starting at z0 = 0.5,

and not at z0 = 0. The corresponding zmain and zall will refer to

z0 = 0.5, so both will be delayed by the same amount of time, thus

establishing a positive correlation.

When we increase the halo mass, the ratio M̄main(z)/M̄all(z) de-

creases. (This is true for any specific redshift z.) This implies that

the fraction of mass incorporated in the main trunk is smaller, and

as a result, there is more mass left in progenitors that belong to other

branches. The scatter in M̄all comes from all the tree branches, where

each branch contributes its own random behaviour. When M̄main(z)

is small with respect to M̄all(z), most of the contribution to the scat-

ter in M̄all comes from branches other than the main. This explains

why the correlation between zall and zmain gets poorer for high halo

mass.

5 H A L O F O R M AT I O N R AT E S

We define the halo formation rate as the rate of change in Mall. Using

equation (19), this can be written as
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R for different halo masses. Top panel: mean SSFR of elliptical galaxies

taken from the SAM of De Lucia et al. (2006). Galaxies are binned by

their halo mass at z = 0. Bottom panel: maximum SFR as implied by our

simplified model, namely R of equation (24), for different halo masses at

z = 0. The curves in the two panels refer to halo masses of 1012, 1013, 1014

and 1015 M
 (solid, dashed, dotted, dash–dotted lines, respectively). Mmin

is 1.72 × 1010 h−1 M
, the minimum halo mass in De Lucia et al. (2006).

In the lower panel, we add a curve for a halo mass of 1012 M
 with Mmin

set to 1011 M
 (thin solid line), as an example for the halo formation rate

when Mmin is only one order of magnitude below the halo mass.

R(ω | ω0, M0) ≡ d

dt

[
Mall(ω)

M0

]
= −

√
2

π

1√
Smin − S0

exp

[
− (ω − ω0)2

2Smin − 2S0

]
dω

dt
. (24)

If we make the naive assumption that all the baryonic mass inside

haloes with M > Mmin forms stars instantaneously, then this rate

reflects the star formation history of galaxies that at time ω0 are

located in a halo of mass M0: these formation rates basically reflect

the maximum possible star-formation efficiency.

The upper panel of Fig. 10 shows the star formation histories of

elliptical galaxies as a function of the mass of the halo in which these

galaxies are located at z = 0, from the semi-analytic simulations of

De Lucia et al. (2006, their fig. 3). Note that this model predicts

that ellipticals in more massive haloes formed their stars earlier, and

over a shorter period of time, in good, qualitative agreement with the

observational data of Thomas et al. (2005) and Nelan et al. (2005).

The lower panel of Fig. 10 shows the corresponding formation rates

of the DM haloes, as defined by equation (24). Here, we have adopted

the same cosmological parameters as in De Lucia et al. (i.e. �� =
0.75, �m = 0.25, σ 8 = 0.9, h = 0.73) and we have used a constant

threshold mass of Mmin = 1.72 × 1010 h−1 M
, corresponding to the

mass resolution of the numerical simulation used by these authors.

The formation rates of DM haloes, as seen in Fig. 10, reveal a qual-

itatively similar ADS behaviour as for elliptical galaxies in the SAM

of De Lucia et al. (2006) and in the observational data (e.g. Thomas

et al. 2005). Although the agreement is extremely good for the mas-

sive haloes, the SAM predicts a significantly later formation in lower

mass haloes, indicating that the downsizing strength is larger in the

SAM. This highlights the crudeness of our simplified model for star

formation, while assumes that stars form instantaneously as soon as

the halo mass exceeds Mmin. The comparison with the SAM suggests

that this is a fairly accurate assumption in massive haloes. In low-

mass haloes, however, the baryonic feedback processes modelled

in the SAM must have caused a significant delay in the formation

of the stars. Indeed, the efficiency of supernova feedback to cause

such a delay is larger in lower mass haloes (Dekel & Silk 1986).

In principle, we can increase the downsizing strength for the DM

haloes by increasing Mmin. For example, the thin solid line plots the

formation rates for a halo of 1012 M
 but with a higher Mmin of

1011 M
. This brings the formation rates in better agreement with

the SSFR of elliptical galaxies in haloes of 1012 M
 in the SAM.

Thus, one may mimic the delays in star formation due to supernova

feedback effects by an increase in the star formation threshold mass

Mmin, even though we do not necessarily consider this very physical.

We conclude that the ADS in galaxies has its natural origin in the

ADS of Mall, while the baryonic physics associated with cooling,

star formation and feedback merely cause the shifting and stretching

of the relative formation histories. The main trend with halo mass,

however, simply relates to the DM formation histories.

We define the mean formation epoch of a DM halo as

ωR ≡
∫ t0

0
R(ω)ωdt∫ t0

0
R(ω)dt

. (25)

If, for simplicity, we keep the star formation threshold mass constant,

i.e. Mmin(z) = Mmin, then this reduces to

ωR = ω0 +
√

2

π
(Smin − S0), (26)

where we have used the fact that the denominator of equation (25) is

equal to unity. Note that this mean formation epoch is very similar

to ω̄all of equation (23), but with β � 0.67 replaced by
√

2/π � 0.8.

Fig. 11 compares our analytic estimates for the mean formation

epoch of DM haloes to the star formation histories deduced from

nearby elliptical galaxies by Thomas et al. (2005), for ellipticals
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Figure 11. Effective formation epoch versus mass in EPS theory versus

observations. The formation epoch for DM haloes of present mass M0, based

on equation (26), is plotted for Mmin = 109 and 1011 M
 (solid curves). Halo

masses are divided by 30 in order to roughly translate DM into stellar masses.

The epoch for star formation as deduced from local ellipticals by Thomas

et al. (2005) is shown (shaded area) between the two dashed lines which

refer to galaxies in low- and high-density environments. Here h = 0.75 as

in Thomas et al. (2005). There is a downsizing behaviour in both cases.
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in both low- and high-density environments.2 The solid lines corre-

spond to our estimates of equation (26) for Mmin = 109 and 1011 M
,

as indicated. Note that we have divided the DM masses by 30 to ob-

tain a very rough proxy for the stellar mass. A comparison with

the data of Thomas et al. is only truly meaningful if (i) all gas in

haloes with M > Mmin is turned into stars instantaneously, and (ii)

haloes host only one galaxy whose stellar mass is equal to M0/30.

Although neither of these is likely to be correct, the data and ‘model’

are in qualitative agreement in that the more massive structures have

formed earlier, i.e. the model shows ADS. If Mmin = 109 h−1 M
,

the DS strength is too weak, across the mass range of interest, com-

pared to the data. This indicates that the baryonic physics need to

delay and/or suppress star formation relatively more in lower mass

haloes. Alternatively, if Mmin is significantly larger (∼1011 h−1 M
),

the DS strength at fixed halo mass is stronger, and there is less

need to delay or suppress star formation in order to globally match

the data. However, this requires a yet-unknown physical mecha-

nism that can prevent star formation in all haloes below this mass

limit.

Yet another way to view the ADS aspect of halo formation histo-

ries is via the mean epoch at which a halo of mass M0 at time ω0 has

a progenitor of mass M. The number density, d N(ω), of progenitors

with masses in the interval M to M + dM at time ω is given by

equation (7). Using it to weight the averaging of ω, we obtain

ωp ≡
∫

dN (ω)ω dω∫
dN (ω) dω

= ω0 +
√

2

π
(S − S0). (27)

This resembles ωR in equation (26), meaning that the mean forma-

tion epoch for a given Mmin is equivalent to the mean epoch for

progenitors to be of a given mass, M = Mmin. The ADS behaviour

is apparent in equation (27) from the fact that ωp increases with

M0 (via S0). This implies that progenitors of a given mass appear

earlier in the merger tree of a more massive present-day halo. This

is similar to the result obtained by Mouri & Taniguchi (2006), who

also argue that downsizing is a natural prediction of hierarchical

formation scenarios.

6 D OW N S I Z I N G I N T I M E

As mentioned in Section 1, there is another observed downsizing

effect, different from the ADS dealt with so far, which refers to the

decrease with time of the characteristic mass of the galaxies with

the highest SSFR. We show here that, unlike the ADS, this DST is

not in general rooted in the hierarchical clustering of DM haloes.

The dark haloes show such an effect only if Mmin is decreasing with

time in a sufficiently steep pace.

The symbols in Fig. 12 show the DST obtained from the data in

Brinchmann & Ellis (2000). For a given SSFR, we select from their

data the stellar mass and redshift of a galaxy with that SSFR. The

solid squares, connected by a dotted curve, plot the stellar mass of

objects forming their stars with a SSFR of 1 Gyr−1, corresponding to

a doubling time-scale τc = 1 Gyr. Note that the characteristic stellar

mass of systems forming stars at this rate is lower at lower red-

shift; this is DST. The other symbols correspond to lower SSFRs of

0.1 Gyr−1 (solid dots connected by dashed curve) and 0.05 Gyr−1

(stars connected by solid curve). Note that each of these curves re-

veals DST, and that more massive systems have lower SSFRs, at

each redshift.

2The density is defined as the number of galaxies within one-degree radius

[see Thomas et al. (2005) for details].
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Figure 12. The mass of haloes which form at a given rate Rc at z, Mc(R =
Rc , z) from equation (29). The curves are marked by τc = R−1

c . For high

enough τc , the mass Mc depends solely on dω/dt, while for low τc it is

given by Mc(z) = Mmin(z). The connecting symbols refer to the observed

star formation time-scale for galaxies of a given stellar mass from fig. 3

of Brinchmann & Ellis (2000), for the corresponding values of τc . The Mc

values for the dark haloes were divided by 30 in order to allow a crude

comparison with the stellar mass of the galaxies.

In order to compare this with DM haloes, we define the ‘current’,

specific formation rate of DM haloes as the rate of change of Mall

normalized to Mall. This rate is obtained by setting ω = ω0 in the

general expression for R(ω | ω0, M0) of equation (24):

R(ω | ω, M0) = −
√

2

π

1√
Smin(z) − S(M0)

dω

dt
(z). (28)

For a fixed rate R = Rc, one can solve for Mc(z), the mass of haloes

that are formed with the rate Rc:

S [Mc(z)] = Smin(z) − 2

π

(
dω

dt

)2

τ 2
c , (29)

where τc ≡ R−1
c is the corresponding time-scale. The curves with-

out symbols in Fig. 12 show the Mc(z) relations thus obtained for

four different time-scales τc, as indicated. In order to allow for a

comparison with the data, we have divided the halo masses by 30,

as a rough proxy for stellar mass. The first thing to note is that these

‘model predictions’ have almost nothing in common with the data.

First of all, all Mc(z) seem to converge to the same mass at low z,

independent of τc. This owes to the fact that R → ∞ if M0 → Mmin;

the specific formation rate becomes infinite at Mmin. Secondly, for

high specific formation rates (low τc), the Mc(z) decreases with in-

creasing z, opposite to the DST observed. This simply owes to the

fact that low τc implies that Mc(z) ∼ Mmin(z), which, according to

equation (20), decreases with increasing redshift. When τc is suffi-

ciently high (�10 Gyr), however, the dark haloes show a qualitative

DST, in that Mc increases with redshift. This basically owes to the

fact that the contribution from the dω/dt term in equation (29) be-

comes dominant over the term governed by the Mmin(z) behaviour.

We conclude that, in general, the formation histories of DM haloes

do not show a DST effect as observed for galaxies. It is clear that

DST must be driven by baryonic processes, which must strongly

decouple the star formation rates from the halo formation rates. The

challenge for the models will be to do so while maintaining a fairly

tight coupling at high z, which, as we have shown, is required in

order to explain the ADS.
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Figure 13. Average halo mass MR weighted by halo formation rate R as

a function of redshift for different z-dependences of Mmin(z). DST is seen

only when Mmin(z) is increasing linearly with (1 + z) or faster.

Another measure of DST for DM haloes is the time evolution

of the average halo mass at which DM is being added to virialized

progenitors, namely

MR =
∫

R(ω | ω, M)M dn
dM dM∫

R(ω | ω, M) dn
dM dM

. (30)

Here, R is given by equation (28) and dn/dM is the number density

of haloes per comoving volume (e.g. from Sheth & Tormen 2002).

In Fig. 13, we plot MR for several different growth rates of Mmin(z),

all normalized to coincide with our standard value of Mmin at z =
0. Similar to Mc defined above, the characteristic mass MR is de-

creasing with redshift when we set Mmin to correspond to a constant

virial temperature Tvir = 104 K (see equation 20), or when Mmin is

constant in time. Only when Mmin is increasing with redshift roughly

as 1 + z or faster does the mass MR show a DST behaviour.

7 C O N C L U S I O N S

We have introduced a new quantity to quantify the growth of a DM

halo merger tree, Mall(z), the sum of the masses of all the virialized

progenitors at redshift z down to a minimum halo mass Mmin(z). We

have shown, using EPS theory, that this quantity reveals an ‘ADS’

behaviour in that Mall(z) of more massive haloes grew earlier and on

shorter time-scales. This behaviour is present for any choice of non-

zero Mmin(z) and any cosmology. The only two conditions are (i)

that the threshold mass Mmin(z) is independent of the mass M0 of the

present-day halo, and (ii) that the progenitor mass function, P(M1,

z1 | M0, z0) (equation 6) either depends on S(M0) − S(M1) alone

(i.e. the trajectories δ(S) are Markovian) or is such that the fraction

of mass in progenitors below Mmin decreases with increasing M0.

The fact that a similar ADS effect is revealed by EPS merger trees

and in N-body simulations indicates that these conditions are, at

least, approximately valid. One should note that the first condition,

although quite robust, might be violated in certain circumstances.

For example, today’s halo mass M0 could be interpreted at high

z as reflecting the local environment density, and if the threshold

mass is somehow affected by its environment this could introduce

a dependence of Mmin(z) on M0.

Using the EPS formalism, we have analytically formulated the

virial mass growth curve Mall(z), the corresponding formation red-

shift zall and the formation rate. The latter is found to be qualitatively

similar to the formation rate of stars in elliptical galaxies, indicating

that the observed ADS in these systems has its roots in the formation

histories of the DM haloes. However, Mall(z) is only a good tracer of

the star formation histories of galaxies if all the gas in haloes with

M > Mmin forms stars instantaneously. In reality, this will not be the

case, as cooling and various feedback processes can delay and/or

prevent the formation of stars, even in haloes with M � Mmin. What

is clear from our study, however, is that the halo mass dependence

of these baryonic processes has to be such that it does not undo the

mass dependence already encoded in Mall(z).

We have also studied the more common halo assembly histories,

defined as the mass growth histories, Mmain(z), of the main progenitor

of the merger tree. We have developed an analytical approximation

for it based on EPS theory, and confirmed the known ‘upsizing’

behaviour of this assembly history. We have shown that it depends,

in principle, on the shape of the power spectrum, but it is valid for

all power-law spectra as well as for the CDM power spectrum. The

formation times zmain and zall, for a sample of equal-mass haloes,

were found to be correlated in a way that can be understood in

terms of the mass growth at low redshifts.

The DST, namely the decline with time of the mass of star-forming

galaxies, cannot be easily traced back to the properties of the DM

halo merger trees. With our idealized recipe of rapid star formation

in virialized haloes above Mmin(z), DST can be reproduced only if

Mmin(z) is rapidly increasing with z. Otherwise, this kind of down-

sizing is most likely a result of feedback effects on star formation,

which requires a more sophisticated modelling of the baryonic pro-

cesses. The lesson is that the different faces of ‘downsizing’ reflect

different phenomena, one naturally rooted in the hierarchical DM

clustering process and the other determined by non-trivial baryonic

processes, which are yet to be properly modelled.
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A P P E N D I X A : A NA LY T I C A L F O R M U L A E
F O R Mmain

We use M̄main(z) to denote the main progenitor mass at redshift

z, averaged (at fixed z) over many individual merger trees for the

same parent mass M0. Here, we use the EPS formalism to derive an

analytical estimate for M̄main(z).

A1 Basic equation

Let us start with a halo of mass M0 at time ω0, and take a small

time-step, �ω, back in time. At the time ω0 + �ω, we want to

compute the average mass of the main progenitor. This requires the

full probability distribution, P(Mmain | M0, �ω), that a halo of mass

M0 at ω0 has a main progenitor of mass Mmain at time ω0 + �ω.

For Mmain � M0/2, one has that P(Mmain | M0, �ω) is equal to the

total progenitor distribution d N/dM given by equation (7), simply

because any progenitor whose mass exceeds M0/2 must be the main
progenitor. For Mmain < M0/2, however, the only valid condition is

that P � dN/dM, which is not sufficient to predict P(Mmain | M0,

�ω).

As a first naive approximation, we assume that P(Mmain | M0,

�ω) = 0 for Mmain < M0/2, so that the main progenitor always

has a mass Mmain � M0/2. Using this approximation, the average

mass of the main progenitor, M̄main(�ω), can be written as

M̄main(�ω) =
∫ M0

M0/2

P(M | M0, �ω)MdM . (A1)

Using the definition of dN/dM, this reduces to

M̄main(�ω) = M0

[
1 − erf

(
�ω√

2S2 − 2S0

)]
, (A2)

with S2 = S(M0/2) and S0 = S(M0).

We assume that M0 is just the main progenitor of the previous

time-step.3 The rate of change, dM̄main/dω, can then be computed

as

dM̄main

dω
= lim

�ω→0

M̄main(�ω) − M0

�ω

= −M0 lim
�ω→0

1

�ω
erf

(
�ω√

2S2 − 2S0

)
. (A3)

Using the limit erf(x) → 2x/
√

π when x → 0 yields

dM̄main

dω
= −

√
2

π

M̄main√
S2 − S

. (A4)

In the case of scale-free initial conditions, where the power spec-

trum is a pure power law (S ∝ M−α), we can solve for M̄main ana-

lytically:

M̄main(ω) =
[

M
− α

2
0 + cα(ω − ω0)

]− 2
α

, (A5)

where cα = α [2πS(M = 1) (2α − 1)]−1/2.

The above derivation is based on the assumption that the main

progenitor always has a mass Mmain � M0/2 in the limit �ω → 0.

However, as we show below, when �ω → 0 the probability that

Mmain < M0/2 decrease like �ω. Consequently, this will give a

non-negligible effect for sufficiently large ω.

A2 Towards better accuracy

The dot–dashed line in Fig. A1 shows the distribution of the main

progenitor masses of a halo of mass M0 = 1012 h−1 M
 in a single

time-step �ω = 0.1, obtained from 10 000 realizations based on

the SK99 algorithm. One can clearly see that P(Mmain | M0, �ω)

has a non-negligible tail for Mmain < M0/2. The following analysis

aims to find the solution for M̄main taking this low-mass tail into

account.

The correct shape of P(Mmain | M0, �ω) can be constrained by

the following conditions.

(i) The integral of P(Mmain | M0, �ω) over all masses should

equal unity, for all time-steps �ω.

(ii) P(Mmain | M0, �ω) = dN/dM, for Mmain � M0/2 (equation 7),

and P(Mmain | M0, �ω) � dN/dM, for Mmain < M0/2.

(iii) P(Mmain | M0, �ω) should not depend on the time-step sub-

divisions. This can be written as

P(Mmain | M0, �ω1 + �ω2)

=
∫

P(M1|M0, �ω1)P(Mmain|M1, �ω2)dM1. (A6)

3Equation (A2) becomes linear in �ω for small enough �ω, and this gives

M̄main(�ω1 + �ω2|M0) = M̄main[�ω2|M̄main(�ω1|M0)].

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 372, 933–948

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/372/2/933/984325 by U
.S. D

epartm
ent of Justice user on 16 August 2022



946 E. Neistein, F. C. van den Bosch and A. Dekel

0 0.2 0.4 0.6 0.8 

10
–2

10
0

10
2

10
4

M/M
0

d
N

/d
M

 ×
 M

0

Figure A1. Average number of progenitors of mass M one time-step

�ω = 0.1 before the present for halo of mass M0 = 1012 h−1 M
. The

solid curve is the theoretical prediction. The dot–dashed lines indicate that

mass distribution of the main progenitor (defined as the most massive pro-

genitor), as obtained from 10 000 Monte Carlo EPS realizations based on

the SK99 algorithm. Note that the probability distribution for the mass of the

main progenitor equals d N/dM down to M0/2, but does not vanish down to

M ∼ 0.25M0. Finally, the dashed line indicates the mass distribution of the

least-massive progenitors obtained in these 10 000 realizations.

In what follows, we estimate the limits on P(Mmain | M0, �ω)

using conditions (i) and (ii), and show that they give a narrow range

for M̄main(z). Condition (iii) does not force the solution to be unique,

hence it enables a set of solutions, each of them is valid within the

EPS formalism. Because condition (iii) is more difficult to imple-

ment, we do not compute its effect on M̄main, and assume that it will

not significantly affect the range of solutions.

The first condition on P(Mmain | M0, �ω) is that its integral equals

unity. We define ntail as the integral over P(Mmain | M0, �ω) from

Mmain = 0 to Mmain = M0/2:

ntail = 1 − M0√
2π

∫ S2

S0

1

M

�ω

�S1.5
exp

(
−�ω2

2�S

)
dS, (A7)

where �S = S − S0 = S(M) − S(M0).

We can estimate the possible effect any tail will have on M̄main

by computing the effect of the most extreme tails possible. The first

extreme is to concentrate all the tail in a small range near M =
0. In this case, the integral of Mmain P(Mmain | M0, �ω) over the

range 0 � Mmain < M0/2 will be zero. As a result, the M̄main(z)

that corresponds to this extreme is given by equation (A2). The

second extreme is that all the tail is concentrated near M0/2, that is,

P(Mmain | M0, �ω) has its maximum values (= dN/dM) down to a

lower mass limit, M/qmax, which is set by the requirement that

ntail = M0√
2π

∫ Sq+

S2

1

M

�ω

�S1.5
exp

(
−�ω2

2�S

)
dS, (A8)

where Sq+ = S(M/qmax). If we focus our attention on small time-

steps �ω, then we can use that d P(Mmain | M0, �ω)/dMmain � 0

near M0/2 to approximately write that

Sq+ � S2 +
√

π

2

(S2 − S0)1.5

�ω
ntail. (A9)

This enables us to use a simple equation for Sq+, combined with the

definition of ntail in equation (A7).

What remains is to find an appropriate expression for ntail which

is valid in the limit of small time-steps �ω. We therefore split the

integral in equation (A7) into two parts. The first one (n1) is for the

range 0 < �S < �Sε , where �ω � �Sε � 1 and we can make

the approximation M ∼ M0:

n1 � 1√
2π

∫ S0+�Sε

S0

�ω

�S1.5
exp

(−�ω2

2�S

)
dS

= 1 − erf

[
�ω√
2�Sε

]
� 1 −

√
2

π

�ω√
�Sε

. (A10)

The second range (n2) is for �S > �Sε where the approximation

exp[−�ω2/(2�S)] � 1 is valid:

n2 � M0√
2π

∫ S2

S0+�Sε

1

M

�ω

�S1.5
dS. (A11)

Combining equations (A7), (A10) and (A11) then yields

ntail =
√

2

π
�ω

(
�S−0.5

ε − M0

2

∫ S2

S0+�Sε

1

M

dS

�S1.5

)
. (A12)

Finally, we take the limit �Sε → 0, and obtain

ntail =
√

2

π
�ω

(
1

2

∫ S2−S0

0

M − M0

M

d�S

�S1.5
+ 1√

S2 − S0

)
.

(A13)

Substitution in (A9) then yields

Sq+ � 2S2 − S0 + (S2 − S0)1.5

2

∫ S2−S0

0

M − M0

M

d�S

�S1.5
, (A14)

independent of �ω. For the standard �CDM cosmology, this yields

2.1 < qmax < 2.3 for 0.1 < �m � 0.9 and 108 h−1 M
 � M0 � 1015

h−1 M
. This implies that although there is a negligible probability

that the main progenitor has a mass M0/2.3 < Mmain < M0/2 when

�ω→0, this probability behaves like�ω and it cannot be neglected.

We can take this into account by rewriting equation (A4) as

dM̄main

dω
= −

√
2

π

M̄main√
Sq − S

, (A15)

with Sq = S(M0/q) and 2 � q � 2.3. In principle, any value of q in

the range above is allowed. In particular, merger trees constructed

using different algorithms may have different values of q in the

above range, as long as the algorithms adopt a sufficiently small

time-step �ω.

In Fig. A2, we show M̄main for a halo of mass 5 × 1012 h−1 M
.

The triangles show the results obtained from many independent EPS

merger trees, constructed using the SK99 algorithm. Note that the

averaging is done over Mmain(z) at fixed z, which is the same as done

in the analytical estimates (equation A1). The dashed, solid and dot-

ted lines correspond to the analytical prediction of equation (A15)

for q = 2, 2.2 and 2.5, respectively. The curve for q = 2.2 is in excel-

lent agreement with the EPS merger trees. Note that this value for q
is within the expected range. In Fig. 3, we show that our analytical

formula with q = 2.2 also accurately fits the merger-tree results for

other values of M0.

A3 A universal fitting function

Equation (A15) can be solved to obtain a direct, analytical formula

for M̄main(z). We use the fitting function for S(M) given in vdB02:

S(M) = g2

(
c�

�
1/3
m

M1/3

)
σ 2

8

g2(32�)
, (A16)
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Figure A2. The mass of the main progenitor as computed in different ways

for M0 = 5 × 1012 h−1 M
. Big circles are from vdB02. Squares are the

average of EPS merger trees, averaged over z at a fixed M. Triangles are

from the same merger trees but averaged over M at a fixed z. Dashed lines

show the theoretical limits of the analytic formula (q = 2 and 2.5). The solid

line is the analytic formula with q = 2.2.

where c = 3.804 × 10−4, and g(x) is an analytical function:

g(x) = 64.087(1 + 1.074x0.3

−1.581x0.4 + 0.954x0.5 − 0.185x0.6)−10. (A17)

In terms of the new set of variables

M̂ = M
�3

�m

, ω̂ = ω
g(32�)

σ8

, ĝ(x) = g(cx1/3), (A18)

equation (A15) does not depend on cosmology, and can be easily

solved to give

M̂ = F−1
q [ω̂ − ω̂0 + Fq (M̂0)], (A19)

where

Fq (M̂) = −
√

π

2

∫ M̂

0

√
ĝ2(M̂ ′/q) − ĝ2(M̂ ′)

M̂ ′
dM̂ ′. (A20)

Finally, we write the solution in the original variables:

M̄main(ω) = �m

�3
F−1

q

[
g(32�)

σ8

(ω − ω0) + Fq

(
�3

�m

M0

)]
. (A21)

The analytical fitting function for Fq (u) with q = 2.2 is

Fq (u) = −6.92 × 10−5 ln4 u + 5.0 × 10−3 ln3 u

+ 8.64 × 10−2 ln2 u − 12.66 ln u + 110.8,
(A22)

which is accurate to better than 1 per cent over the range 1.6 ×
104 < M�3�−1

m < 1.6 × 1013 h−1 M
.

A4 An alternative method

We now present an alternative method to compute Mmain(z), which

is based on the method originally introduced by LC93. The LC93

argument is as follows. At a specific redshift z, one can compute the

probability for having a progenitor with a mass larger than M0/2.

This probability equals the probability that a tree will have its zmain

greater than z [where zmain is defined by Mmain(zmain) = M0/2]. Al-

though LC93 claim their formula is only an approximation, we have

not found any gap in their argument, so we think this should be an

accurate prediction.

Let us define Q(ω1 | M0, ω0) as the probability that a halo with

mass M0 at time ω0 will have its merger tree obey ω(zmain) = ω1.

The probability for having a progenitor with mass bigger than M0/2

then equals∫ S2

S0

M0

M
f (S − S0, ω − ω0) dS =

∫ ∞

ω

Q(ω1 | M0, ω0) dω1, (A23)

where f is as defined in equation (5), S0 = S(M0) and S2 = S(M0/2).

The distribution Q(ω | M0, ω0) is obtained by differentiating the

above equation with respect to ω and multiplying it by -1. In order

to compute the mean formation time, we need to average ω over the

probability distribution Q:

ω̄main,1 =
∫ ∞

ω0

ωQ(ω | M0, ω0) dω =

−
∫ ∞

ω0

ωdω
∂

∂ω

∫ S2−S0

0

M0

M(S0 + �S)
f (�S, �ω)d�S. (A24)

Here, ω̄main,1 is obtained by averaging over all ω (time) possible for

getting a mass M0/2. This is different from the method used above,

where ωmain was computed by averaging the main progenitor masses

at a fixed time. The two methods should give slightly different re-

sults, even if both are accurate. This is illustrated in Fig. A2 where

the triangles indicate the average, main progenitor history obtained

by averaging over Mmain at fixed z, while the squares show the results

obtained when averaging over z at fixed Mmain.

So far, we have repeated the analysis in LC93. Now, instead

of computing the derivative of equation (A23), we simplify equa-

tion (A24) by a simple integration by parts:

ω̄main,1 = −ω

[∫ S2−S0

0

M0

M
f (�S, �ω)d�S

]∞

ω0

+
∫ ∞

ω0

dω

∫ S2−S0

0

M0

M(S0 + �S)
f (�S, �ω)d�S.

(A25)

The left-hand part is just ω0.4 We can switch the integrals on the

right-hand side of the equation, and compute the integral over ω

first. Finally, we have

ω̄main,1 − ω0 = M0√
2π

∫ S2−S0

0

d�S

M(S0 + �S)
√

�S
. (A26)

For a self-similar power spectrum with S ∝ M−α , the integral can

be done analytically:

ω̄main,1 − ω0 =
√

2

π
(S2 − S0) 2 F1

(
1

2
, − 1

α
,

3

2
, 1 − 2α

)
, (A27)

where 2F1 is the Gauss hypergeometric function. We can see that

(ω̄main,1−ω0)/
√

S2 − S0 has the same value for all masses, and thus it

is the natural variable to choose (as was done in LC93). On the other

hand, we showed in equation (16) that (ω̄main − ω0)/(
√

S2 − √
S0)

is also a constant, when the averaging of the trees is made along the

mass axis.

The above analysis is still valid, if we replace S2 with S(M̄main,1),

so that we can easily generalize this result to obtain M̄main,1 in the

4One should take care when assigning the integral lower limit. The inte-

gral over �S should first be computed, similar to the analysis done for

equation (A7).
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Figure A3. M̄main,1(z) for several halo masses. Symbols are from the merger

trees of vdB02. The halo masses range from 5 × 109 to 5 × 1013 h−1 M
,

spaced by a decade. Smoothed lines are the results of the analytic formula,

equation (A26), replacing S2 with S(M̄main,1). The equation is valid only for

M̄main,1 > M0/2.

range M̄main,1 > M0/2. For masses below M0/2, however, we cannot

compute M̄main,1 since this requires the probability for getting a main

progenitor with mass lower than M0/2. As discussed above, this part

of the probability function is unknown.

In Fig. A3, we compare results from EPS merger-tree realization

(vdB02, plotted as symbols) to the analytical formula (smoothed

lines). There are some deviations between the two, presumably be-

cause the averaging is done over a large range in redshift, where the

SK99 algorithm may have slight inaccuracies. This effect can be

seen in Fig. 6 and in vdB02 (Fig. 4): the distribution of formation

times is only accurate for low values of ωmain. Our previous method

for computing ω̄main was not affected by this inaccuracy because

it was derived using the limit of small time-steps behaviour. This,

combined with the fact that this method can only be used to compute

M̄main(z) down to M0/2, and the fact that equation (A26) cannot be

generalized easily since S0 is buried inside the integrand, clearly

favours the method discussed at the beginning of this appendix over

the one discussed here.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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