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Natural Feature Tracking for Augmented Reality
Ulrich Neumann and Suya You

Abstract— Natural scene features stabilize and extend the
tracking range of augmented reality (AR) pose-tracking systems.
We develop robust computer vision methods to detect and track
natural features in video images. Point and region features are
automatically and adaptively selected for properties that lead
to robust tracking. A multistage tracking algorithm produces
accurate motion estimates, and the entire system operates in
a closed-loop that stabilizes its performance and accuracy. We
present demonstrations of the benefits of using tracked natural
features for AR applications that illustrate direct scene anno-
tation, pose stabilization, and extendible tracking range. Our
system represents a step toward integrating vision with graphics
to produce robust wide-area augmented realities.

Index Terms— Motion estimation, natural feature tracking,
optical flow, (3-VAR) augmented reality.

I. INTRODUCTION

A. Purpose and Motivation

A
UGMENTED reality (AR) is an advanced technology

for enhancing or augmenting a person’s view of the real

world with computer generated graphics. Enhancements could

include label annotations, virtual object overlays, or shading

modifications. An enhanced view of the real world also offers

a compelling technology for navigating and working in the

real world. The AR metaphor of displaying information in the

spatial context of the real world has a wide range of potential

applications in multimedia computing and human-computer

interaction [2], [5], [7], [21], [24], [26].

Maintaining accurate registration between real and computer

generated objects is one of the most critical requirements

for creating an augmented reality. As the user moves his or

her head and viewpoint, the computer-generated objects must

remain aligned with the three-dimensional (3-D) locations

and orientations of real objects. Alignment is dependent on

tracking (or measuring) the real-world viewing pose accu-

rately. The viewing pose is a six-degree of freedom (6DOF)

measurement: three degrees of freedom for position and three

for orientation. The tracked viewing pose defines the projection

of 3-D graphics into the real-world image so tracking accuracy

determines the accuracy of alignment.

General tracking technologies include mechanical arms and

linkages: accelerometers and gyroscopes, magnetic fields, ra-
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dio frequency signals, and acoustics [9], [10], [17]. Tracking

measurements are subject to signal noise, degradation with

distance, and interference sources. Active tracking systems

require calibrated sensors and signal sources in a prepared and

calibrated environment [2], [10], [22]. Among passive tracking

approaches, computer vision methods can determine pose as

well as detect, measure, and reduce posetracking errors derived

by other technologies [15], [19], [21], [22], [24]. The combined

abilities to both track pose and manage residual errors are

unique to vision-based approaches. Vision methods offer a

potential for accurate, passive, and low-cost pose tracking.

However, they suffer from a notorious lack of robustness. This

paper presents our efforts at addressing some of the robustness

issues through the detection and tracking of natural features

in video images.

The term “tracking” is in common use for describing both

6DOF pose measurement and 2-D feature correspondence in

image sequences. We use the term for both purposes in this

paper and clarify its meaning by context.

B. Optical Tracking in Augmented Reality

Optical tracking systems often rely upon easily detected

artificial features (fiducials) or active light sources (beacons) in

proximity to the annotated object(s). The positions of three or

more known features in an image determine the viewing pose

relative to the observed features [27]. These approaches are

applied in many AR applications prototypes [13], [19], [20],

[21], [22], [24]. Since the tracking measurements are made

with the same camera used to view the scene, the measurement

error is minimized for the view direction and scaled relative

to the size of the object(s) in the image [2], [20]. These

tracking methods require that scene images contain natural

or intentionally placed features (fiducials) whose positions are

known a priori. The dependence upon known feature positions

inherently limits a vision-based pose tracking system in several

ways.

• Operating regions are limited to areas that offer unob-

structed views of at least three known features.

• The stability of the pose estimate diminishes with fewer

visible features.

• Known features do not necessarily correspond to the

desired points or regions of annotation.

The work presented in this paper take a step toward al-

leviating the above limitations by making use of natural

features, with a priori unknown positions. The use of such

natural features in AR pose-tracking systems is novel, and we

demonstrate its utility.

We define natural feature tracking as computing the motion

of a point, locus of points, or region in a scene. These feature
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classes correspond, respectively, to zero-dimensional (0-D),

one-dimensional (1-D), and two-dimensional (2-D) subsets

of an image. A 1-D locus of points arises from an edge

or silhouette, which can vary abruptly with pose and whose

motion along the edge is ambiguous. Since our goal is to

estimate the motion of a camera from 2-D feature motions, we

limit ourselves to 0-D points and 2-D regions as the feature

classes to track.

C. Approach

We develop an architecture for robust tracking of naturally

occurring features in unprepared environments and demon-

strate how such tracking enhances vision-based AR systems.

The architecture integrates three functions—feature selection,

motion estimation, and evaluation in a closed-loop cooperative

manner that achieves robust 2-D tracking. The main points are

summarized in two categories:

Natural feature tracking

—natural feature (points and regions) detection and selec-

tion

—multi-stage motion estimation integrating point and re-

gion tracking

—evaluation feedback for stabilized detection and tracking

AR applications

—direct annotation of 2-D image sequences

—extendible tracking ranges

—pose stabilization against occlusions and noise.

D. Paper Organization

Section II presents an overview of the closed-loop motion

tracking architecture. Section III describes the adaptive feature

selection and detection strategy used for identifying the most

reliable 0-D features (points) and 2-D features (regions).

Section IV describes the integrated point and region tracking

method and the closed-loop evaluation feedback. Sections V

and VI present test results that illustrate the advantages of

our approach and example AR applications. We conclude with

remarks and discussions of future work in Section VII.

II. CLOSED-LOOP MOTION TRACKING ARCHITECTURE

Fig. 1 depicts the overall tracking system architecture. It in-

tegrates three main functions—feature selection, feature track-

ing, and evaluation feedback, in a closed-loop cooperative

manner.

The feature selection stage identifies 0-D and 2-D features

(points and regions) with characteristics that promote stable

tracking. The selection criteria also include dynamic evalua-

tions fed back from the feature tracking stage. The tracking

stage uses multiscale optical-flow for region tracking and a

multiscale correlation-peak search for point tracking. Region

and point tracking results are fit to an affine motion model,

and an evaluation metric assesses the tracking error. High error

evaluations cause iterative refinement until the error converges.

Large motions and temporal aliasing are addressed by

coarse-to-fine multiscale tracking. The affine motion model

allows for local geometric distortions due to large view vari-

Fig. 1. Functional blocks for closed-loop motion tracking.

ations and long-sequence tracking. The affine parameters also

facilitate tracking evaluations by modeling region and point

motions. A comparison of the modeled motion and the ob-

served motion evaluates the model error, and this information

enables the feature detection stage to continuously select

the best features to track. This closed-loop control of the

tracking system is inspired by the use of feedback for sta-

bilizing errors in nonlinear control systems. The process acts

as a “selection-hypothesis-verification-correction” strategy that

makes it possible to discriminate between good and poor

tracking features, thereby producing motion estimates with

consistent quality.

III. FEATURE SELECTION AND EVALUATION

A. Integrating Point and Region Features

Robust 2-D motion tracking depends on both the structures

of the selected features and the methods used to track them.

Because of their complementary tracking qualities, 0-D point

features and 2-D region features are combined in our method.

In general, region features are easier to track because the whole

region participates in the temporal matching computation.

However, region features are prone to significant imaging

distortions that arise from variations of view, occlusion, and

illumination. For example, a region that includes a foreground

fence against a background hillside creates difficulties under

camera translation because of the different motions within

the region. Is the region motion defined by the fence or the

hillside motions? Our philosophic approach to this question

is that it does not matter which one is tracked, as long as the

region motion tracks one of them consistently. Region tracking

requires strong constraints to compensate for these conditions.

Unfortunately, the scene geometry needed to model these
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constraints is usually unknown, so region features often only

recover approximate image motion. Our approach constrains

each region to track a planar part of the scene. During evalua-

tion, regions are rejected if their motions do not approximate a

planar scene motion model. The actual plane orientation is not

significant, and each region is free to approximate a different

planar orientation.

Accurate 2-D feature motions are required to estimate

egomotion. Small-scale point features have the advantage that

motion measurements are often possible to at least pixel reso-

lution. The related disadvantage of point tracking is that it be-

comes difficult in complex scenes, especially under large cam-

era motions. If many point features are detected and tracked re-

liably, they produce a sparse but accurate motion field suitable

for computing egomotion. Observations from methods using

large-scale features or dense motion fields indicate that the

most reliable measurements often occur near feature points [4].

Considering the complementary strengths and weaknesses

of point and region tracking, an integration of both features

may attain our goal of an accurate and robust motion field.

The feature selection stage identifies good points for tracking

(as described in Section III-C) and then identifies regions

that encompass clusters of these points. The region tracking

process maintains the global relationships between the points

in a region, and provides an estimate of point motions.

Region motion is coarse but relatively robust for large camera

motions, partial occlusions, and long tracking sequences. The

approximate point motions defined by a region are refined by

correlation to produce an accurate motion field.

General feature detection is a nontrivial problem. For motion

tracking, features should demonstrate reliability and stability

with the tracking method, even if they do not have any physical

correspondence to real-world structure. In another words, the

design of feature detection methods should also consider the

tracking method used for these features, and vice-versa. (In

Sections III-C and III-D, we detail our integrated method

for point and region feature detection.) Our detection and

selection methods are adaptive and fully data-driven, based

on a prediction of the feature’s suitability for tracking and an

evaluation of its actual tracking performance. To help derive

our selection metrics, we first introduce the equations used for

optical flow computing and region tracking.

B. Motion Estimate Equations

As a camera moves, image intensity patterns change as a

function of three variables . However, images taken

at near time instants are usually strongly related to each

other. Formally, this means that the function is not

arbitrary, but satisfies an intensity conservation constraint that

leads to the principal relationship between intensity derivatives

and image motion (optical flow): the optical flow constraint

equation [12]

(1)

where is the feature motion vector, denotes the par-

tial time derivative of ,

and denotes the usual dot product.

Motion estimation based on (1) relies on the spatial-

temporal gradients of image intensity. This formulation is

an ill-posed problem requiring additional constraints. A global

model does not typically describe unconstrained general flow

fields. Different local models facilitate the estimation process,

including constant flow with a local window and locally

smooth or continuous flow [12], [16]. The former constraint

facilitates direct local estimation, whereas the latter model

requires iterative relaxation techniques. We use the local

constant model because the results compare favorably with

other methods [4], and it is efficient to compute. In this

approach, optical flow is constrained to a constant in each

small spatial neighborhood. Motion estimates are computed

by minimizing the weighted least-square fit

(2)

where denotes a window function that gives more

influence to pixels at the center of the neighborhood than those

at the periphery. Minimizing this fitting error with respect to

leads to the equation , from which the optical

flow field is computed

(3)

and

Solving for inter-frame motion at each pixel or feature and

integrating over a sequence of images, estimates a feature’s

motion over an aggregate time interval.

The above equations assume linear or translation motion for

the spatial extent of the window function . While this as-

sumption is adequate for small image regions undergoing small

inter-frame motions, large image motions, large image regions,

or motion discontinuities at foreground and background sil-

houettes often violate the assumption. To compensate for the

geometric deformations caused by large motions and regions

we apply a more general affine motion constraint to the motion

of a whole region [11], [23]. Motion discontinuities still cause

problems for region tracking; however, these are addressed by

our integration of region tracking with point tracking and a

verification process (as described below).

C. Point Feature Selection

Consider the motion-estimation equation (3), given above.

The system has a closed-form solution when the 2 2

matrix is nonsingular. The optical flow at a point is only

reliable if is constructed from image measurements that

allow its inversion at that point. The rank of is full

unless the directions of gradient vectors everywhere within

the window are similar. must be well conditioned, meaning

its eignvalues are significant and similar in magnitude. The

matrix is a covariance matrix of image derivatives, which
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indicates the distribution of image structure over a small patch

[4], [23]. Small eignvalues of correspond to a relatively

constant intensity within a region. One large and one small

eignvalue arise from a unidirectional texture pattern. Two

large eignvalues represent corners, salt-and-pepper textures,

or uncorrelated intensity patterns.

The eigendistribution of covariance matrix predicts the

confidence of the optical flow computation at a point and is

therefore useful as a metric for selecting point features. Image

points with both eignvalues above a threshold are accepted as

candidate point features. (Our implementation uses a 7 7

patch to define a point feature.)

TH (4)

Candidate features have a predicted tracking confidence based

on their minimum eignvalue . The predicted

confidence is combined with a measured tracking evaluation

fed back from the tracking stage. The final confidence value

assigned to a point feature is defined as

(5)

where are weighting coefficients. Ranked by their

confidence values , the best candidate features are selected

as the final point feature set PF . (The number selected is

an application parameter, but 10–50 is typical for our tests.)

PF candidate set, threshold (6)

The point feature set is updated dynamically. No updates are

needed while the system tracks a sufficient number of points

and regions. New features are added to the set to replace

features whose confidence values fall below an acceptance

threshold or features that move off-screen. Since feature con-

fidence derives from both the information that determines

the tracking algorithm’s stability and an evaluation of

the algorithm’s tracking performance , the total system

automatically adapts to a scene, locating and tracking the best

features available.

D. Region Feature Selection

Region features provide global guidance for accurate point

motion estimation so regions are deemed reliable for tracking

if they include a sufficient number of point features. In our

implementation, the image is divided into nonoverlapping (31

31-pixel) candidate regions . The number of points in

each candidate region is tabulated, and the regions with the

most features are selected as final region features RF

RF candidate region, threshold (7)

where the quality metric is , given by

(8)

where is the number of point features within the region, de-

fined by (6), and is the total number of pixels in the region.

The number of region features is arbitrary, depending on the

complexity of the scene structure and the application. (Three

to six regions are typical for our applications.) Processing time

is approximately linear in the number of regions.

IV. FEATURE TRACKING AND FEEDBACK

Imaging distortions, especially in the natural environment,

can significantly alter feature appearance and cause unreliable

tracking. A tracking system cannot prevent these effects,

and their variety and complexity make it difficult for any

algorithm to track accurate motions in their presence. Our

algorithm attempts to detect and purposefully ignore scene

features that suffer from distortions. With feedback from the

tracking stage, our algorithm detects poor tracking of point

and region features. The system automatically rejects point and

region motions that disagree or fail to match the piece-wise

planar scene assumption. This strategy assumes that the scene

contains regions with point features that are approximately

planar, a fairly general assumption for natural scenes. Even

at the silhouettes of different foreground and background

motions, our method tracks points in one or the other scene

plane. Where severe conditions cause tracking to fail, the

points (and regions) are automatically rejected and do not

corrupt the tracking system output.

A. Tracking Algorithm Design

The optical flow constraint equation (3) is ill-posed because

there are two unknown components of velocity constrained

by only one linear equation. Only the motion component in the

direction of the local image gradient may directly be estimated.

This phenomenon is commonly known as the aperture problem

[28]. The motion can be fully estimated at image locations

with sufficient intensity structure. Constraints in addition to

(1) are necessary to solve for both motion components at a

given point.

A tracking evaluation or confidence measure is an important

consideration for optical flow computing and tracking. It

is almost impossible to estimate accurate motion for every

image pixel, due to the aperture problem, imaging distortions,

and occlusions. Observations with many methods attempting

to recover full motion fields show that the most reliable

measurements often occur near significant feature points, and

it is commonly realized that appropriate confidence measures

are necessary to filter the estimated motion field. Confidence

measures in current optical flow algorithms make use of

local image gradient, principal curvature, condition number

of solution, and eignvalues of covariance matrix. In these

methods, however, the measures are often employed as a post-

process to threshold the optical flow field at every pixel. Recent

work on image motion estimation focuses on finding a balance

between local dense motion estimates and global approaches.

In our method, the confidence measure is a dynamic measure

of a feature’s tracking stability. We do not attempt to perform

a global computation, favoring instead the dynamic properties

of region and point motion estimates.

B. Multistage Tracking Iterations

The multistage strategy includes three basic steps: a) image

warping, b) motion residual estimation, and c) motion model

refinement. Let be a region selected for tracking

in the frame . is the corresponding target region

at time . A parameter vector describes
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Fig. 2. Tracking evaluation compares the motion predicted by the current affine parameters to the observed motion.

the translation motion of the region (at its the center) and

its affine deformation parameters. As shown in Fig. 2, a new

region can be reconstructed, based on the parameters,

by warping the region toward

(9)

The newly constructed region is called a confidence

frame. The new region, derived from the motion estimate pa-

rameters, facilitates an evaluation of how well the parameters

model the observed motion. The error of the motion estimate is

computed as the least-squares distance between the confidence

frame and its target

(10)

Region and feature motion estimates are computed at multiple

image scales to handle large inter-frame motion and temporal

aliasing effects. (Three scales are typical for our implemen-

tation and tests.) Gradient-based optical flow methods are

sensitive to numerical differentiation, and the coarse-to-fine

process keep the images sufficiently well registered at each

scale for numerical differentiation. Starting at the highest scale

(coarse), region motion is estimated by optical flow (3), and the

resulting field determines (by least-squares fit) a set of affine

motion parameters . These parameters are evaluated by the

confidence frame method described above, producing an error

. Point motions within the region are estimated from the

region parameters . Point motion estimates are refined by

local correlation searches to subpixel resolution. The refined

point motions determine a new affine parameter set for

the whole region. These parameters are evaluated, producing

error . If , the parameters are used to determine

a new region for an optical flow calculation, and the region

motion is estimated again to start another iteration. If ,

the next iteration is performed at a lower scale, and once the

lowest scale is reached, the iterations terminate. This iterative

multi-stage tracking procedure is summarized in the following

pseudocode:

from coarse to fine image scale levels do

compute from region optical flow

confidence frame evaluation of

refine point motions and compute

confidence frame evaluation of

while ( && (iterations limit))

If the residual error diverges or remains above a threshold

after a preset number of iterations, the region points have their

tracking confidence reduced to eliminate them from the point

feature list. If the number of point features or regions drops

below a threshold, a reselection process identifies new regions

and points for tracking.

The integration of region and point tracking is related

to multiscale methods [25]. Our approach, however, tracks

regions and points differently, and their agreement or disagree-

ment provides the additional information about scene motion

that facilitates tracking evaluation.

C. Tracking Evaluation and Feedback

Tracking evaluations are fed back to the feature selection

stage to dynamically “optimize” the system for tracking the

most reliable features. In (5), the tracking confidence is em-

ployed to select and rank features according to their dynamic

reliability. This allows the system to respond gracefully as

features become occluded or distorted over time. Tracking

confidence is derived from the evaluation processes

(11)

where is the motion residual defined in (10).

V. TEST RESULTS AND COMPARISONS

Our tracking system implementation is tested on a number

of synthetic image sequences (for which the true motion fields

are known) and real video sequences. To quantify accuracy,

we use the angle error measure [4] and standard RMS error
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(a) (b)

Fig. 3. Synthetic image sequence (Yosemite-Fly-Through) for accuracy comparison (a) detected tracking features (b) estimated motion field.

measure. The angle error measure treats image velocity as a

spatio-temporal vector in units of (pixel, pixel,

frame). The angular error between the correct velocity and

the estimate is defined as

Error (12)

where . This angle error measure is convenient

because it handles large and small speeds without the ampli-

fications inherent in a relative measure of vector differences.

The measure also has a potential bias, for example, directional

errors at a small velocity do not give as large an angular

error as a similar directional error at large velocity. For these

reasons, we also use the RMS error measure

Error (13)

where is a size region of a real image sequence

at time , and is the reconstructed region based on the

estimated motion field. Note that this error measure is similar

to the tracking evaluation measure we use in Section IV.

A. Optical Flow Tracking Comparison

Extensive experiments have been conducted to evaluate and

compare our multi-stage technique with traditional optical

flow methods. Fig. 3 illustrates an experimental result for

the Yosemite-Fly-Through sequence. The motion of a camera

along its view axis toward the mountain and valley generates

diverging motion flow around the upper right of the mountain,

producing one pixel-per-frame translation motion in the cloud

area and about four pixels per-frame of motion in the lower-

left area. For this test, only one image region is selected as

a tracking region with its size equal to the original image

size (256 256). In the region, the top 50% of the pixel

evaluation values are selected as point features. We chose these

numbers for performance comparisons with other optical flow

approaches that compute motion estimates for full images.

Fig. 3(a) shows the selected tracking points, and Fig. 3(b)

illustrates the final tracking results after fifteen frames. In this

test, about 3% of the initially selected features were declared

as unreliable due to low tracking confidence (with 0.7 as

TABLE I
ACCURACY COMPARISON FOR VARIOUS OPTICAL FLOW METHODS

the feature evaluation threshold and a 15 15 point-feature

window size). The resulting average angle error is 2.84, and

the RMS measure is 7.31.

Fig. 4 illustrates a similar experiment on a real video

sequence from the NASA training scene described in

Section VI-A. The scene undergoes significant changes in

viewing pose, lighting and occlusions. As in the Yosemite

test, the image region is also set equal to the original

image size of 320 240, and the top 50% of the pixel

evaluation values are selected as tracking features. Fig. 4(a)

shows the computed motion fields that produced a 4.21 RMS

error measure after 30 frames with our multistage approach.

Fig. 4(b) shows the results of the same sequence computed

with Lucas and Kanades’s different-based optical flow method

[16]. Lucas’s approach is a typical local different-based optical

flow technique, in which the optical flow field is fitted to a

constant model in each small spatial neighborhood, and the

optical flow estimates are computed by directly minimizing the

weighted least-squared fitting to (2). To select the most reliable

estimates, the eignvalues of the image covariance matrix are

used as a post-processed confidence measure to filter the

estimated flow field at every pixel [4]. This approach performs

a global computation and results in an uncontrolled estimate

distribution, so that in many cases a single scene feature can

not be tracked consistently. The RMS estimate error for this

sequence is 58.11 with a 1.0 eigen-confidence threshold.

As a relative performance comparison, we include our

results with those of other published optical flow methods,

including Horn and Schunck’s global regularization algorithm
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(a) (b)

Fig. 4. Comparison of (a) our closed-loop method with (b) filtered optical flow motion estimates. The images are from the application described
in Section VI-A.

(a) (b)

Fig. 5. Real scene sequence (Hamburg Taxi): (a) first frame with detected region and point features, and (b) motion results at the twentieth frame.

[12], Lucas and Kanade’s local differential method [16],

Anandan’s matching correlation algorithm [1], and Fleet and

Jepson’s frequency-based method [8]. Table I summarizes the

results for this sequence. The data show superior accuracy for

our multistage approach.

B. Tracking System Experiments

These experiments test and evaluate our whole tracking

system with real image sequences captured in different set-

tings and under different imaging conditions. This sequence

of Fig. 5 (Hamburg Taxi) contains four cars moving with

different motion directions and velocities against a static

street background. In this test, three regions are automatically

selected for motion estimation. The sizes of these regions are

61 61, and in each region, about ten top-ranked points

are automatically selected for motion tracking [Fig. 5(a)]. It

is worth noting that automatically detected features cluster

around the significant physical features in the scene such as

object corners and edges. Normally these types of physical

features are expected to be reliable for tracking, as noted in

many publications, but our approach selects them based on

the tracking metrics, as well as their spatial characteristics.

Fig. 5(a) shows a feature that is on the left moving white car

detected in the middle region. Apparently, this feature’s mo-

TABLE II
RMS ERRORS FOR MOTION ESTIMATION OF DIFFERENT

IMAGE SEQUENCES BY OUR CLOSED-LOOP METHOD

tion is inconsistent with the other motions within that region.

The feature is correctly rejected by the tracking evaluation

feedback that controls dynamic feature selection. This example

illustrates the behavior of integrated region and point tracking

under complex imaging conditions.

Table II gives the RMS estimate error produced by our

tracking system for several test sequences, including the Park

sequence shown in Fig. 6(a). This latter sequence shows high

RMS error, which we believe is due to imaging distortions

that occur in the trees as a result of the camera translation.

These errors do not preclude the algorithm from automatically

detecting and robustly tracking the features marked along the

tree-sky silhouette. Both sequences in Fig. 6 were captured



60 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 1, NO. 1, MARCH 1999

(a)

(b)

Fig. 6. Tracking result for an outdoor natural scene show the selection of what the algorithm autmatically selects as the best points and regions to track.
The park sequence (a) illustrates the selection of features and regions along the tree-sky slihouette. The towersequence (b) shows features selected on the
forground trees, background fence, and structure. Both sequences are obtained from amoving vehicle by a hand-held 8 mm camcorder.

with an 8-mm camcorder from a moving vehicle while viewing

to the right of the motion direction and panning the camera.

Both contain irregular natural objects such as trees and grass.

It is almost impossible to predict what kind features should be

adopted for detection and tracking in scenes like these.

VI. APPLICATIONS TO AUGMENTED REALITY

In this section, we present examples that show the benefits

of using our natural tracking system for AR applications. We

show the capability of direct scene annotation, extendible AR

tracking range, and pose stabilization with natural features.

A. Direct Scene Annotation

The addition of virtual annotations for task guidance is a

typical AR application, and in many cases, the annotations

appear on objects whose positions in the world may vary

freely without impact on the AR media linked them. For

example, AR annotation can identify specific components on

a subassembly or portion of structure that moves throughout

an assembly facility [2], [19], [29]. A full 6DOF camera pose

is often not needed to maintain this simple form of annotation.

In this example, we use our 2-D tracking method to directly

track structure features that are annotated as a camera moves

to provide more detail and context.

The scenario is developed in collaboration with Dr. A.

Majoros (The Boeing Company) for a NASA astronaut train-

ing application. Space station astronauts may shoot a video

sequence to illustrate a problem that requires assistance from

ground-station experts. Ground-based experts use an AR work-

station to process the video and interactively place annotation.

The experts select keyframes and link text and images (an-

notation) to structural features in the image. The tracking

system then automatically keeps the annotation linked to

the features as the camera moves in the following frames

to show additional structure or views that clarify the con-

text and extent of the problem. In our scenario tests, the

tracking system must do its best in response to hand-held

camera motion. Fig. 7(a) shows three keyframe images taken

from camcorder video sequences. Features in the keyframes

are interactively identified and annotated with text banners.

Fig. 7(b) shows later images from the three sequences. The

numbers between the image pairs specify how many frames

(70 or 75) transpired between the initial and final annotated

images. These sequences demonstrate feature tracking under

significant changes in viewing pose and lighting. Note that

these features are manually selected so the algorithm has

no choice about the features to track. However, even in the

presence of considerable background, lighting, scale, and view

direction changes, the method succeeds in tracking the selected

points.

B. Extendible Tracking and Pose Stabilization

A second application of natural feature tracking is the

automatic extension of an AR system’s workspace. As noted
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Fig. 7. Direct scene annotation (a) initial frames used to interactively place annotations, (b) later frames in the same sequences showing the automatic tracking
of the selected features. Numerals between image pairs indicate how many frames are tracked. (a) Keyframe and (b) endframe.

previously, vision-based AR systems often rely on artificial

landmarks (fiducials), or a priori known models to perform

dynamic tracking and alignment between the real and virtual

camera. These approaches are appropriate in situations where

known and recognizable features are always in view. The

dependence upon known feature positions inherently limits the

tracked range of camera poses to a bounded working space. If

the camera moves beyond these bounds, the image no longer

supports tracking unless additional information is available

to the system. A means of providing this new information

is to track the naturally occurring features and dynamically

calibrate them so they can be used as additional fiducials. In

this way, naturally occurring scene features extend the AR

tracking range.

We developed an extendible AR tracking system by incorpo-

rating our tracking approach with an Extended Kalman Filter

(EKF) that estimates the 3-D positions of natural features

[20]. The 6DOF camera pose is derived from three visible

features, as in many other systems. Initially, the camera pose

is based on the known fiducials, and our method automatically
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selects and tracks natural features. As the camera moves and its

pose is tracked over multiple frames, the recursive filter EKF

automatically estimates the 3-D positions of the tracked natural

features. Once the 3-D positions of the natural features are

known within an accuracy threshold, these features facilitate

continued camera pose computation in the absence of visible

fiducials. This approach allows a system to automatically ex-

tend it AR’s tracking range during the course of its use. In prin-

ciple, an AR system may increase its robustness as it is used.

Fig. 8 illustrates the first of two extendible tracking ex-

periments. Approximately 300 video frames were acquired

by a handheld camera and digitized. In automatic process-

ing of the sequence, ten features were detected, and nine

were automatically selected for tracking [marked with tags in

Fig. 8(a)]. One feature was automatically rejected for being too

close to another selected feature. The annotations and colored

circle fiducials are at known calibrated 3-D positions. Fig. 8(b)

shows the initial frame with fiducial-based camera tracking,

and Fig. 8(c) shows the 295th frame with camera tracking

derived from automatically calibrated natural features. The

calibration convergence of the natural features is illustrated

in the lower row of Fig. 10. The features converge rapidly to

their final position values.

A similar second experiment is illustrated in Fig. 9. A 250-

frame video sequence of a rack model was digitized from a

mockup of the NASA application described in Section VI-A.

The annotation and colored circle fiducials [on the right side

of Fig. 9(a)] are at known calibrated positions. Twenty natural

features were detected in the first frame, and 12 (shown as

white dots) were selected for tracking; the others were rejected

for being too close to the already-selected features. Fig. 9(a)

shows the 124th frame: the first frame for which camera

pose is computed from calibrated natural features (marked

with yellow crosses). Fig. 9(b) shows a later frame with the

fiducials completely off screen, leaving only the calibrated

features to support camera tracking. The upper row of Fig. 10

shows the convergence of the natural feature’s and

3-D position coordinates. Convergence takes about 90 frames

and remains stable. Note that the initial coordinate estimates

are less accurate than the and coordinates. This is largely

due to the camera image-plane being predominantly aligned

with the - plane.

Extendible tracking stabilizes the pose calculation against

occlusions and noise. In many cases, where users interact

with world object, their hands or tools can easily occlude the

fiducials or features needed to support tracking. As shown

in the examples above, when insufficient fiducials are visible

for computing camera pose, for any reason, a system can

automatically switch to the highest confidence natural features

available.

The above applications use real-time video capture and

off-line processing. Natural feature tracking (for 640 480

images) takes approximately 0.15 ss per image on an SGI O2

workstation. To simulate a real-time application, the offline

processing is completely automatic with no user intervention.

We anticipate that optimizations and near-term DSP or custom

hardware systems will provide the factor of 5–10 increase in

processing power needed for real-time interactive operation.

(a)

(b)

(c)

Fig. 8. This sequence starts by tracking camera pose from fiducials, while
natural features are automatically detected and calibrated. Note the annotation
indicating the blue fiducial and the side door of the truck. As the camera
drops low to the ground at the end of thesequence, the fiducials are no longer
usable for tracking since theiraspect is extreme, and the now-calibrated natural
featuresautomatically support continued tracking. (a) Tags show positions of
automatically detected, tracked, and calibrated natural features. (b) Initial
image with fiducial camera tracking (c) Frame 295 with camera tracking based
on tracked and calibrated natural features.

VII. SUMMARY AND CONCLUSION

Natural scene features can stabilize and extend the tracking

ranges of augmented reality pose-tracking systems. This paper

presents an architecture for robust detection and tracking

of naturally occurring features in unprepared environments.

Demonstration applications illustrate how such tracking ben-



NEUMANN AND YOU: NATURAL FEATURE TRACKING FOR AUGMENTED REALITY 63

(a) (b)

Fig. 9. Equipment rack annotation experiment starts with fiducial-based tracking as shown at left side of (a). Camera pan and zoom isolates the lower rack
section for a detailed view (b) where calibrated natural features continue to support tracking. The text and line annotations indicate where cable connections
are needed and which gain control to set. (a) The 124th frame and (b) the 249th frame.

(a) (b) (c)

(d) (e) (f)

Fig. 10. Convergence of natural feature points in rack and truck model tests.

efits vision-based AR tracking systems. The architecture in-

tegrates three motion-analysis functions: feature selection,

motion tracking, and estimate evaluation in a closed-loop

cooperative manner. Both 0-D point and 2-D region features

are automatically and adaptively selected for properties that

lead to robust tracking.

The biggest single obstacle to building an effective AR

system is the lack of accurate, long-range sensors and trackers

that report the locations of the user and the surrounding

objects in the environment. Active tracking approaches cannot

provide the flexibility and portability needed in wide-area

and mobile tracking environments. Vision-based tracking can

potentially recognize and locate objects in an environment by

measuring the locations of visual features in the natural world

and tracking them over time. Furthermore, since vision-based

approaches do not rely on any active transmitters, they offer

flexibility when dealing with diverse environments. We feel

that it is possible to develop more economic and practical

AR systems based on vision tracking methods, and our work

represents a step toward this goal.
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