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Abstract: There has been much effort to provide eco-friendly and biodegradable materials for
the next generation of composite products owing to global environmental concerns and increased
awareness of renewable green resources. This review article uniquely highlights the use of green
composites from natural fiber, particularly with regard to the development and characterization of
chitosan, natural-fiber-reinforced chitosan biopolymer, chitosan blends, and chitosan nanocomposites.
Natural fiber composites have a number of advantages such as durability, low cost, low weight,
high specific strength, non-abrasiveness, equitably good mechanical properties, environmental
friendliness, and biodegradability. Findings revealed that chitosan is a natural fiber that falls to the
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animal fiber category. As it has a biomaterial form, chitosan can be presented as hydrogels, sponges,
film, and porous membrane. There are different processing methods in the preparation of chitosan
composites such as solution and solvent casting, dipping and spray coating, freeze casting and drying,
layer-by-layer preparation, and extrusion. It was also reported that the developed chitosan-based
composites possess high thermal stability, as well as good chemical and physical properties. In these
regards, chitosan-based “green” composites have wide applicability and potential in the industry of
biomedicine, cosmetology, papermaking, wastewater treatment, agriculture, and pharmaceuticals.

Keywords: natural fiber; chitosan; chitosan blends; chitosan nanocomposites; cellulose; nanocellulose

1. Introduction

Nowadays, ecological concerns have resulted in renewed interest in natural materi-
als. Recyclability and environmental safety are becoming increasingly important in the
consideration of a better future in sustainability [1–4]. Hence, the need for more versatile
polymer-based materials has led to increasing interest in polymer composites filled with
natural, organic fillers, for example, fillers that are biodegradable and come from renewable
sources [5–8]. Day by day, biomaterials are crucial in the development of a sustainable
environment. Even though biomaterials are newly in development for the delivery of
drugs, tissue engineering, and medical diagnostics, but there has been good improvement
for both physical and chemical methods that can manage biological responses [9].

The most suitable definition for a biomaterial is any substance that is not a drug or
synthetic substance that can be used any time to partially or totally replace any tissue or
other parts of body, which can improve the quality of life for an individual [10]. There
are four different types of biomaterials that are commonly known in industries, which are
polymers, metals, ceramics, and composites.

In general, chitosan is a sugar that is contained in the hard outer skeleton of shellfish
such as crab, lobster, and shrimp, which is used in medication [11,12]. In fact, chitosan is a
derivative from chitin, and it is one of the most bountiful natural biopolymers as opposed to
cellulose [10]. The composition of chitin in seashell waste consists of proteins (30–40%) cal-
cium carbonate and calcium phosphate (30–50%), and chitin (20–30%) [10,13]. This review
paper discusses green composites of natural fibers in detail and also discusses the devel-
opment and characterization of chitosan, natural-fiber-reinforced chitosan biopolymers,
chitosan blends, as well as chitosan nanocomposites.

2. Natural Fiber

Natural fiber is a lignocellulosic material which is mainly composed of cellulose,
hemicelluloses, lignin, pectin, wax, ash, and moisture [14–16]. It is important to understand
the composition because the mechanical properties of natural fibers are dependent on it, as
stated by Farok et al. [17]. From previous study, Sinha et al. [18] stated that natural fibers
are hair-like or thread-like naturally existing substances with a high aspect ratio, and the
application of these fibers is in high demand due to their advantages such as low cost, low
weight, and biodegradability. However, natural fibers also come with drawbacks, which
includes their hydrophilic nature [19–22]. The hydroxyl group will absorb the moisture
and prevent from damage and degradation [23–28].

According to Sinha et al. [18], natural fiber is classified into three categories, which
are animal, vegetable, and mineral fibers. Natural fibers such as abaca, cotton, jute, flax,
hemp, and coir are deployed for different industrial applications. Recently, there has been
in rapid growth in research and innovation in natural fiber composites in multidisciplinary
areas [29–33]. The characteristics of natural fiber composites are durability, low cost, low
weight, high specific strength, non-abrasiveness, equitably good mechanical properties,
eco-friendliness, and biodegradability [6,29,34,35]. These materials possess promising
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potential for a wide range of industries, including medical, structural and construction,
packaging, military, aerospace, and automobile industries [36–47].

2.1. Types of Green Composites and Chemical Composition of Natural Fibers

Green composites are a type of biocomposites in which natural fibers are used to
strengthen a bio-based polymer matrix [48]. Animal fiber is extracted from the fur of
animals, mineral fiber is a naturally occurring fiber or modified fiber produced from
minerals, while the main content of plant fiber is cellulose [49,50]. Examples of these
classifications are shown in Table 1.

Table 1. Examples of natural fibers [49].

Natural Fibers Example

Mineral

Asbestos

Fibrous brucite

Wollastonite

Plant

Bast

• Flax
• Hemp
• Kenaf
• Jute

Leaf

• Sisal
• Banana

Fruit

• Cotton
• Coir

Grass

• Bamboo
• Indiangrass
• Switch grass

Straw

• Corn
• Rice

Wood pulp

Animal

Silk

Wool

Feathers

Natural fiber manufacturing is expanding worldwide as the product base expands.
Table 2 lists the major manufacturers as well as the yearly outputs of these fibers across the
globe [51]. Chemical composition refers to the arrangement of particles and the types and
ratios of atoms in chemical substances where the composition is different when there is an
addition or subtraction of chemicals, and when the ratios changes. Table 3 shows the chem-
ical composition of natural fibers. The common chemical constituents in green or natural
fibers are cellulose, hemicelluloses, lignin, pectin, and wax. All natural fibers have similar
components but different compositions, which make them behave differently [52–55].
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Table 2. Production amount of natural fiber produced [56].

Fiber Producer Production Amount (×103 ton)

Abaca Philippines (85%), Ecuador 70

Alpaca Peru, Bolivia, Chile 7

Angora wool China, Argentina, Chile, Czech Republic, Hungary, France 3

Bagasse Brazil, China, India, Thailand, Australia, USA 75,000

Bamboo China, Japan, India, Chile, Ecuador, Indonesia, Myanmar, Nigeria,
Sri Lanka, Philippines, Pakistan 30,000

Camel hair China, Mongolia, Afghanistan, Iran 2

Cashmere wool China, Mongolia, Australia, India, Iran, Pakistan, New Zealand,
Turkey, USA 20

Coir India, Sri Lanka, Thailand, Vietnam, Philippines, Indonesia, Brazil 1200

Cotton China, Brazil, India, Pakistan, USA, Uzbekistan, Turkey 25,000

Flax France, Belgium, Netherland, Poland, Russian Federation, China 830

Hemp China (80%), Chile, France, Germany, UK 214

Jute India (60%), Bangladesh, Myanmar, Nepal 3450

Kapok Philippine, Malaysia, China, South America, Indonesia, Thailand 101

Kenaf India (45%), China, Malaysia, USA, Mexico, Thailand, Vietnam 970

Mohair wool South Africa, USA 5

Ramie China, Brazil, Lao PDR, Philippines, India 280

Silk China (70%), Brazil, Bulgaria, Egypt, Madagascar, India, Thailand,
Vietnam, Uzbekistan, Turkmenistan 150

Sisal Brazil (40%), Kenya, Tanzania, China, Cuba, Haiti, Madagascar,
Mexico, Sri Lanka, India 378

Wool Australia, Argentina, China, Iran, New Zealand, Russia, UK,
Uruguay 2100

Table 3. Chemical composition of lignocellulosic fiber [18].

Type of Fiber Cellulose Hemi Cellulose Lignin Pectin Wax Ash Moisture Others

Abaca 56–64 25–29 11–14 - - - - -

Jute 64.4 12 0.2 11.8 0.5 0.5–2.1 10 -

Sisal 65.8 12 0.8 9.9 1.2 0.3 10 -

Kenaf 44.4 - 20.1 - - 4.6 - -

Coconut 37–43 24–28 26–28 - - - - 7

Bamboo 78.83 - 10.15 - - - - -

According to Table 3, different types of fiber consist of different compositions of cellu-
lose, hemicellulose, lignin, pectin, wax, ash, moisture, and other contents. For cellulose,
bamboo [57] contains the highest composition, which is 78.83%, followed by sisal, which
is 65.8%, and the lowest one is coconut, which only contains 37–43% cellulose. For hemi-
cellulose, coconut and abaca are the highest, the percentages of which are around 24% to
29%. Coconut also has the highest content of lignin, up until 28%, and is followed by kenaf,
which is 20.1%, and the lowest is jute, which is only 0,2%. Meanwhile for pectin, wax, ash,
moisture, and others, there are only a few fibers that contain these compositions, such as
jute, sisal, kenaf, and coconut [58,59].
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2.2. Mechanical Properties of Green Fibers

Generally, mechanical properties give meaning to the physical properties which the
materials show as forces are applied; examples of these properties are elasticity, strength
of tensile, elongation, hardness, and fatigue limit. Nowadays, natural or green fibers are
widely used for production in a few types of applications, including automotive, aircraft,
construction, and building [29,60–63]. Thus, mechanical properties of natural fibers are
crucial so that benefits can be utilized as much as possible. As well as advantages, natural
fibers also have major drawbacks such as their hydrophilic nature, which means they have
a high degree of moisture absorption and poor dimensional stability. Few studies have
comprehensively discussed the limitations of natural fiber composites such as compatibility
with polymers, low thermal properties, as well as irregular properties [64–66]. Table 4
shows the mechanical and physical properties of natural fibers.

Table 4. Physical and mechanical properties of lignocellulosic fibers [18].

Type of Fiber Diameter
( µm )

Density
(g/cm3)

Tensile Strength
(MPa)

Young’s Modulus
(GPa)

Abaca 250–300 1.5 717 18.6

Jute 250–2500 1.3–1.49 393–800 13–26.5

Sisal 205–230 1.41 350–370 12.8

Kenaf 83.5 1.2 282.60 7.13

Coconut 396.98 1.2 140–225 3–5

Bamboo - 1.2–1.5 500–575 27–40

The physical and mechanical properties of natural fibers consist of the diameter of
fiber, density of the fibers, tensile strength, and the Young’s modulus value of the fiber. For
diameter [67], jute fiber has the greatest diameter, which is around 250 µm to 2500 µm. This
is followed by coconut. which has a value of 396.98 µm, and kenaf has the lowest value,
which is 83.5 µm. Abaca, bamboo and jute fibers have the highest density, which is around
1.5 g/cm3. For the tensile strength which represents the resistance of fibers, jute’s tensile
strength can reach 800 MPa. This is followed by abaca and bamboo, with values of 717 MPa
and 500–575 MPa, respectively [68]. The Young’s Modulus represents the elasticity of fiber,
and bamboo has the highest value of Young’s Modulus, with the value of 27–40 GPa [69].
Since the tensile strength is higher, it used as reinforcement in order to improve or upgrade
the mechanical properties of a composite such as cement mortar and polymer-reinforced
composites [70–72]. Abaca fiber also has higher tensile strength, which is about 717 MPa,
and its strength is good for any natural fibers. Thus, it is usually used in the production of
the exterior of passenger vehicles, where it can resist stone strikes [73,74] However, abaca
fibers have not been fully explored to their fullest potential as a composite [18].

3. Chitosan
3.1. Advantages and Disadvantages of Chitosan

As a biomaterial, chitosan provides many advantages and disadvantages. As a bio-
material form, chitosan can be made into a few forms, such as hydrogels, sponges, films
which appear in 3D forms, and also porous membrane which appears in 2D form, and each
of them have specific applications in industries [75,76]. The advantages and disadvantages
for each of the type are shown in Table 5.
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Table 5. Advantages and disadvantages of biomaterials for chitosan [75].

Type Descriptions Advantages Disadvantages

Hydrogels (3D)

- Physically related
(reversible)

- Chemically cross-linked
(irreversible)

- Soft, flexible, and safe
- Soft, flexible, and has stable

porous size

- Not stable, low mechanical
resistance and hard to
control the pore size

- Toxic

Sponges (3D) - Free sanding - High porosity and soft - May dry up and low
porosity

Films (2D) - Thin (LB)
- Thin (LBL)

- Coat material
- Coat material, multiple

layer construction

- Difficult for the
construction of many layers

- Has many steps

Porous Membrane (2D) - Nano fibers - High porosity, mimics skin,
and extracellular matrix - Hard for pure chitosan

3.2. Chemical and Physical properties of Chitosan

After cellulose, chitin is the second most ubiquitous natural polysaccharide on Earth
and is composed of β(1→4)-linked 2-acetamido-2-deoxy-β-D-glucose1 (N-acetylglucosamine)
(Figure 1). It is often considered as a cellulose derivative, even though it does not occur in
organisms producing cellulose. It is structurally identical to cellulose, but it has acetamide
groups (−NHCOCH3) at the C-2 positions. Similarly, the principle derivative of chitin,
chitosan, is a linear polymer of α (1→4)-linked 2-amino-2-deoxy-β-D-glucopyranose and is
easily derived by N-deacetylation, to a varying extent that is characterized by the degree of
deacetylation, and is consequently a copolymer of N-acetylglucosamine and glucosamine
(Figure 2). Chitin is estimated to be produced annually almost as much as cellulose [77].
It has become of great interest not only as an under-utilized resource but also as a new
functional biomaterial of high potential in various fields, and the recent progress in chitin
chemistry is quite significant. The production of chitosan from crustacean shells obtained
as a food industry waste is economically feasible, especially if it includes the recovery of
carotenoids. Figure 3 displays the process of making chitosan from crustacean shells.
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Figure 1. Structure of chitin.

Generally, chitosan is a derivative from chitin, where a certain group of polymers
deacetylated from chitin. Hence, chitin and chitosan are different based on the degree
of deacetylation [78,79]. In addition, the production of chitosan is mainly based on a
further reaction of chitin. Besides, the properties of every chitosan produced is different
due to different raw materials [80,81]. However, the qualities can be measured using
same properties such as viscosity, deacetylation, molecular weight, and polymorphous
structure [82]. The physical properties of chitosan-based polymer are shown in Table 6.
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Table 6. Physical properties of chitosan-based polymer.

Type of Chitosan-Based Physical properties Explanation References

Chitosan—tapioca starch
edible film

• Water vapor permeability
• Water solubility

• Determined gravimetrically
• Solubilized in distilled water [83]

Chitosan film—natural
antioxidants

• Surface color measurement
• Opacity and transparent
• Water content, solubility and

swelling degree

• Measurement of CIE-L*a*b*
coordinates

• Spectrum scan using
UV/VIS spectrophotometer

[84]

Chitosan—green tea extract
• Film color and opacity
• Water vapor permeability

coefficient and density

• Using effects of GTE
concentration [85]

3.3. Mechanical Properties of Chitosan

To comprehend the mechanical behavior of chitosan-based films, the mechanical
properties of chitosan films must be investigated. The efficiency and integrity of the
films are determined by their tensile strength and percentage elongation at break during
preparation, use, and handling. Since chitin and chitosan have poor mechanical strength, it
is necessary to change some of their properties so that they can be used as bioadhesives,
nanocomposites, and waste materials that pollute the atmosphere [86]. Based on Table 7,
the highest value of tensile strength is for chitosan—spirulina extract (21.24 MPa–29.65MPa)
with percentage range between 2.5% and 50.0%. However, the higher elongation is for
chitosan—graphene oxide, with 57.34% to 72.70% and less than 2%.
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Table 7. Mechanical properties of chitosan.

Type Percentage (%) Elongation (%) Tensile Strength
(MPa)

Young’s Modulus
(GPa) References

Chitosan (CS) 2.0–10.0 (CS) - 9.0–16.0 250–380 [87]

Chitosan—
antimicrobial 2.0–10.0 (CS) - 14.0–18.0 150–440 [87]

Chitosan—Spirulina
Extract (SE) 2.5–50.0 (SE) 26.13–39.53 21.24–29.65 - [88]

Chitosan—graphene
oxide (GO) 0.0–2.0 (GO) 57.34–72.70 6.99–15.32 - [89]

Chitosan—glycerol 1.0–3.0 (CS) 9.50–67.93 0.281–12.147 - [90]

3.4. Thermal Properties of Chitosan

Chitosan exhibits a high sensitivity to numerous types of degradation, including
thermodegradation. Thermal study revealed that this biopolymer cannot resist temper-
atures beyond 200–220 ◦C [91,92]. Figure 4 depicts the thermogravimetry (TG) curve of
chitosan. In a chitosan polymer, there are two levels of degradation. Weight reduction in
the first stage begins at 220 ◦C and progresses to 320 ◦C, with a 50 percent weight loss.
The overall weight loss rate is measured by derivative equipment. At 295 ◦C, there is a
reaction connected with the TG apparatus. The second stage achieves a mean temperature
of 470 ◦C, with a weight loss of 40%. The activation energy of the degradation of chitosan
was found to be 52.2 kJ/mol [93,94].
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4. Processing of Chitosan Green Composites

As chitosan is created from the derivation of chitin, the usual industrial process that
are applied for the extraction of chitin involve three main steps; the deproteinization of raw
material with the addition of alkaline solution, followed by demineralization through a
treatment using acidic solution, and lastly the discoloration of product obtained through
the treatment using alkaline solution [96]. There are different ways of converting chitin to
chitosan, such as through an enzymatic method or a process of chemical conversion, but
between these two methods, the chemical process is more preferable since the cost is a lot
cheaper compared to the other method and also when considering the production capacity
of chitosan [96,97].



Polymers 2022, 14, 874 9 of 36

According to Muxika et al. [96], chitosan is a substance or copolymer that comes from
deacetylation using alkaline from chitin, where it formed by D-glucosamine and N-acetyl-
D-glucosamine units, which are also linked by ß-1, 4 glycosidic linkages, and the solubility
of chitosan allows it to be produced in various forms such as films, nanofibers, hydrogels,
or pastes. In the biomaterial industry, chitosan production provides many applications
based on the structure and forms [98,99]. There are various types of chitosan processing
methods, such as solution casting, dipping and spray coating, compression molding, freeze
casting and drying, blending, layer-by-layer processing, and also, rapid prototyping. A few
of the techniques or processes are further discussed.

4.1. Solution and Solvent Casting

The solution casting method is the most commonly known method for chitosan
processing. This process involves an acidic solution in which the chitosan powder is
dissolved and poured into a Petri dish (Figure 5). This process needs to be carried out
in dry conditions at room temperature or in an oven at a certain temperature until the
film is completely dry and peels off the mold by itself [96]. Through the application of
multisolution coatings on glass substrate, this technique is not only appropriate for the
production of single-layered film or membrane, but also for the fabrication of multilayered,
dense films. The addition of highly volatile solvents to the casting solution followed by
an evaporation stage before phase inversion in a non-solvent immersion may aid in the
development of a top dense layer. However, even though this method is commonly used
as a method or technique to prepare chitosan films at a small scale, further research must
be done to analyze the possibility for the manufacturing scale production of chitosan [100].
For the production of different kinds of nanocomposite membranes, the solution casting
approach has been widely researched [101].
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4.2. Dipping and Spray Coating

In industry, coating is usually applied in edible active packaging systems, where the
system must preserve the quality of products and extend the lifetime of products [104,105].
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According to Muxika et al. [96], chitosan edible coating is used and tested on vegetables
and fruits, and there are two ways to apply the coating: dipping and spraying. Dipping is
introduced in the food product through acidic solution forming and spraying, introducing
the method of pulverizing the film-forming solution [106] (Figure 6). There is difference
between them, as they are affected by coating properties or thickness. The formation
of polymeric coatings via spraying systems is influenced by factors such as drying time,
temperature, and technique, due to the protonation of chitosan amine groups in acidic
environments, which gives chitosan caustic properties that eventually decreases certain
sensory qualities [107]. However, even dipping and spraying have their own advantages
in controlling the quality of food and bacteria growth, but there are still drawbacks present,
and these must be considered before implementing dipping and spray coating [96].
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4.3. Freeze Casting and Drying

Freeze casting, also known as ice templating, is one of the most common methods that
is used in tissue engineering applications in order to obtain chitosan scaffolds. The structure
obtained from this technique gives a proper environment for the attachment of cells, growth,
and the final form of new production tissue [108]. In addition, this method was created to
manipulate the degree of porosity, pore size, pore shape, and pore orientation to modify the
pore structure of porous materials [109]. According to Muxika et al. [96], the freeze casting
process involves dissolution in a small quantity of acidic aqueous solution followed by
freezing the solution in a copper or stainless-steel mold which cools down the solution in a
very short time and results in the formation of two distinct phases: the frozen solvent and
polymer phase. Wang and Wakisaka [110] used this method in combination with ultrasonic
atomization in the production of uniformly oriented chitosan nanofibers (Figure 7). The
good mixing of chitosan powder, formic acid, acetic acid, and/or l-lactic acid in distilled
water followed by ultrasonic atomization–freeze casting and drying resulted in excellent
fiber formability, as well as the minimization of volatile organic solvent use, which made
the obtained chitosan nanofibers safe, environmentally friendly and compatible. Because it
is a flexible process for manufacturing porous materials, that has attracted a lot of interest
in recent years [111–113].
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4.4. Layer-by-Layer

The layer-by-layer (LbL) deposition technique, which involves building up successive
layers of oppositely charged species, has been extensively utilized for producing multilayer,
thin films. The electrostatic force of attraction, hydrogen bonding, and affinity between
synthetic polymers, proteins, polysaccharides, and other molecules are used in the layer-
by-layer technique. According to Costa and Mano [114], because of its cationic character,
chitosan has been utilized to create LbL-based films and coatings. Figure 8 shows general
processes involved in the LbL method. In this method, substrate is immersed in the
chitosan solution, resulting in the formation of a very thin layer on the surface. Numerous
properties of the multifunctional chitosan-based films produced can be controlled, namely
the thickness difference, permeability to gases and glucose, film strength, as well as film
flammability. The characteristics of these films are determined by a few factors such as
pH, type of chemical, and ionic cross-linking during deposition, which may influence
mechanical film performance [115,116].

Polymers 2022, 14, x FOR PEER REVIEW 12 of 38 
 

 

 

Figure 7. The processes involved in the ultrasonic atomization–freeze casting of chitosan nanofibers 

[110]. 

4.4. Layer-by-layer 

The layer-by-layer (LbL) deposition technique, which involves building up succes-

sive layers of oppositely charged species, has been extensively utilized for producing mul-

tilayer, thin films. The electrostatic force of attraction, hydrogen bonding, and affinity be-

tween synthetic polymers, proteins, polysaccharides, and other molecules are used in the 

layer-by-layer technique. According to Costa and Mano [114], because of its cationic char-

acter, chitosan has been utilized to create LbL-based films and coatings. Figure 8 shows 

general processes involved in the LbL method. In this method, substrate is immersed in 

the chitosan solution, resulting in the formation of a very thin layer on the surface. Nu-

merous properties of the multifunctional chitosan-based films produced can be con-

trolled, namely the thickness difference, permeability to gases and glucose, film strength, 

as well as film flammability. The characteristics of these films are determined by a few 

factors such as pH, type of chemical, and ionic cross-linking during deposition, which 

may influence mechanical film performance [115,116]. 

 

Figure 8. Layer-by-layer technique used in the production of edible coatings based on chitosan,
pullulan, linseed, nopal cactus, and aloe mucilage [117].



Polymers 2022, 14, 874 12 of 36

4.5. Extrusion

Biodegradable, chitosan-based packaging has also been extensively produced via
extrusion due to it having a higher productivity and requiring less space. One of the
most common extrusion methods is melt extrusion, which produces a film with excellent
mechanical characteristics and thermal stability (Figure 9). Basically, this method can
produce a final product according to a specific formulation and composition based on
requirements. The process involved in this method is simple and involves a continuous
flow, where the materials blend in the mixer, followed by an extruder to produce a pellet.
The pellets are then used in the production of a film through the twin-screw extruder,
usually for medical [118,119], 3D-printing [120], and packaging applications [121,122].
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5. Mechanical Properties of Chitosan-Based Green Composites

Over the past decade, significant efforts have been made in the development of green
composites by utilizing chitosan. This advancement opened the path for future natural-
fiber composites (NFCs) with improved mechanical characteristics to be developed by
engineers and researchers. Natural fibers such as plant fibers offer a number of benefits,
including low weight, cheap cost, and biodegradability. The mechanical characteristics
of chitosan-based green composites are important to allow them to be used to their full
potential in specific applications. Table 8 lists the mechanical properties of chitosan-based
green composites from varying source of fibers.

Table 8. Mechanical properties of chitosan-based green composites.

Polymers Fibers Processing Technique
Mechanical Properties

References
Tensile Strength Tensile Modulus

Chitosan Cellulose-modified Ionic liquid treatment 22–80 MPa 236–3316 MPa [91]

Chitosan Bamboo charcoal Blending 25–75 MPa 4600–5400 MPa [124]

Chitosan Modified bamboo
charcoal Blending 75–110 MPa 5400–7000 MPa [124]

Chitosan Thyme Dissolution 5.59–12.2 MPa - [125]

Chitosan Clove Dissolution 6.54–12.2 MPa - [125]

Chitosan Cinnamon Dissolution 12.2–21.35 MPa - [125]

Chitosan PLA/CS Solution casting 30.95 MPa 4.10 MPa [126]

Chitosan PLA/CS/ENR Solution casting 10.0 MPa 4.70 MPa [126]
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6. Thermal Properties of Chitosan-Based Green Composites

The effect of filler form on composite thermal stability was investigated using a
thermogravimetric analyzer (Jupiter STA 449F3, Netzsch). With an initial sample weight
of approximately 5 mg, measurements were taken in a nitrogen atmosphere (flow rate
20 cm3 min−1) at a heating rate of 10 K min−1 over a temperature range of 30–1100 ◦C.
Previous research by Grząbka-Zasadzińska et al. [91] used the solvent casting technique
to make chitosan/nanocrystalline cellulose composites. To begin, chitosan was dissolved
in CH3COOH at a concentration of 2% (v/v). Next, various amounts of nanocrystalline
celluloses were applied to chitosan to produce mixtures of CNC mass/mass ratios of 1,
3, and 5% (in comparison to the dry mass of chitosan). Composites of 5% cellulose I
and cellulose II were also made as a reference. All of the mixtures were ultrasonically
homogenized for 20 min, then added to Petri dishes and dried for 12 h at 35 ◦C.

The samples were named using the following convention: CHT stands for chitosan,
the number represents the percentage of filler added, and C I, C II, CNC I, or CNC II
represent the filler form. CHT/5 CNC II, for example, denotes chitosan containing 5%
nanocrystalline cellulose II. Thermogravimetric (TG) curves of chitosan and its composites
with micro- and nanometric celluloses are given in Figure 10.
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The TG findings indicate that the sample containing CNC II has greater thermal
stability than the film containing CNC I. However, CNC II composites proved to be
more thermally stable than C II composites. A similar trend was observed in composites
dependent on (nano)cellulose I, but only when high mass loss was taken into account. In
terms of thermal stability, it appears that not only polymorphic variation but also filler size
is essential.

7. Chitosan-Blend Composites

Despite several benefits of chitosan such as biodegradability, lack of toxicity, and
abundance in nature, chitosan-based materials have poor water barrier capabilities owing
to their hydrophilic nature, which mainly impacts their mechanical, gas permeability, and
thermal properties. Thus, one method for reducing the hydrophilic nature of chitosan is to
blend biopolymers to make composites. Blending chitosan with other polysaccharides was
found to generate improved barrier, mechanical characteristics, and aesthetic composite
properties [127]. This section provides an overview of the research on chitosan-blend com-
posites divided by property characterization, namely mechanical and thermal properties.
Table 9 summarizes some of the mechanical properties of chitosan-blend composites for
many applications, including packaging and medical applications.

Table 9. Mechanical properties of chitosan-blend composites.

Polymers Polymers Blend Processing Technique
Mechanical Properties

References
Tensile Strength Tensile Modulus

Chitosan Polyhydroxybutyrate Melting 7.5–11 MPa 1044–2499 MPa [128]

Chitosan Deacetylated chitosan Gel spinning 59.8–117.1 MPa 2.1–4.1 GPa [128]

Chitosan CMC-CH-OL Magnetically stirring 7.0 ± 0.8 MPa - [129]

Chitosan CMC-CH-OL-CEO Magnetically Stirring 4.8 ± 0.9 MPa - [129]

Chitosan Carbon nanotubes Magnetically Stirring - - [130]

Chitosan Cellulose nano
whiskers Solution casting 21.6–31.25 MPa 399.5–535.76 MPa [131]

Chitosan Cellulose nano
whiskers Solution casting 21.6–38.25 MPa 399.5–644 MPa [131]

Chitosan Glycerol-free Solution casting 28–44.5 MPa 1.05–1.15 GPa [132]

Chitosan Glycerol-plasticized Solution casting 22.5–33 MPa 0.6–1.0 GPa [132]

Chitosan Nano diamond
(4.5–1%) Solution casting 100 ± 2.5 MPa 3314 ± 416 MPa [133]

Chitosan Biogenic silver
nanoparticles Ultra sonication 65.04 ± 1.46 MPa - [134]

Chitosan Poly vinyl alcohol
(PVA)

Film-forming
dispersions and

casting
24–43 MPa - [135]

Low and high
molecular weight

(LMw/HMw)
chitosan

Glycerol Solution casting

LMw CS:
31.89–61.82 MPa

HMw CS:
23.87–55.83 MPa

- [106]

7.1. Chitosan-Blend Composites

As reported by Rajan et al. [126], the addition of a high amount of chitosan lowers
the crystallinity of Poly(hydroxybutyrate) (PHB) composites, thus decreasing its thermal
stability. Similarly, the tensile and impact strengths of composites decrease with the addition
of chitosan. On the other hand, some essential oils (such as cinnamon and ginger) can
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enhance the characteristics of bio-based films of chitosan–carboxymethyl cellulose [128].
These green materials could be used to improve food safety and quality by preserving it.

Thou et al. [129] also pointed out that the mechanical and surface properties of chi-
tosan can be improved by blending it with some carbonaceous materials such as cellulose
and multiwall carbon nanotubes [130]. The study also showed that the composites expe-
rienced a significant improvement in thermal stability by delaying the degradation time.
Cobos et al. [131] synthesized chitosan/graphene (CS/GS) nanocomposites and evaluated
their thermal and mechanical properties. CS/GS nanocomposites showed an enhance-
ment in mechanical and thermal properties when compared with native chitosan. This
might be due to strong interaction between both polymers through covalent/non-covalent
functionalization [136–138]. Furthermore, a high weight percent of chitosan matrix dis-
solved in acetic acid, on the other hand, was able to contribute to the integration of a
large quantity of nanofiller reinforcement [139]. Delavar and Shojaei [132] reported that
nanodiamond/chitosan composites (ND/CS) possessed good mechanical properties (20%
better than unmodified materials) through the dispersion of nanodiamond in chitosan
matrix and strong intermolecular interactions between them. Therefore, chitosan-blend
composites could be an option to be used industrial applications.

7.2. Thermal Properties of Chitosan-Blend Composite

The effect of cinnamon and ginger essential oils (EO) on thermal properties of chitosan–
carboxymethyl cellulose films emulsified with oleic acid was studied by Noshirvani
et al. [129]. Various cinnamon and ginger EO levels were used in the production of
biobased films. From the thermogravimetric results, it was found that the combination of
oleic acid and EO causes a reduction in thermal stability; the thermal stability decreased as
the volume of EO increased, as shown in Figure 11. This is due to the fact that the polymer
network’s composition changes, resulting in the formation of a discontinuous structure.
This leads to a reduction in the density of the framework and an expansion of free volume
locations. Given the presence of EOs, this result may be ascribed to a potential link between
cinnamaldehyde and chitosan, which was destroyed as a consequence of the second event.

Polymers 2022, 14, x FOR PEER REVIEW 17 of 38 
 

 

 
Figure 11. (a) TGA for chitosan–essential oil for the first event and (b) TGA for chitosan–essential 
oil and cinnamon essential oil for the second event [129]. 

The incorporation of chitosan into PVA films seems to be a viable approach for ob-
taining antibacterial and biodegradable food packaging [140]. Bonilla et al. [135] found 
that the thermal stability was increased in the chitosan blend films. From the TGA analy-
sis, the addition of chitosan increased the Tmax of the blends, indicating that the PVA films 
were more thermally stable as a consequence of the chitosan addition. This is due to the 
fact that the thermal behavior of chitosan, and particularly its glass transition temperature 
(Tg), is higher. Furthermore, polymer interactions result in an increase in effective mean 
molecular weight, and therefore, Tg values as a consequence of hydrogen bond formation. 
The increase in Tg values in the blends also indicates that the two macromolecules are 
miscible. The excellent miscibility of the polymers has an impact on the PVA crystalliza-
tion process. This decrease in crystallization or melting temperature is indicated the com-
patibility of the chitosan blend. 

8. Chitosan Hybrid Composite 
This section reviews and discusses the chitosan hybrid composite. The sources of hy-

brid materials could be synthetic fiber, natural fiber, clay, mineral, polymer, and nano-
materials. 

8.1. Mechanical Properties of Chitosan Hybrid Composites 
Table 10 shows the mechanical properties of chitosan hybrid composites. Arumugam 

et al. [141] investigated the hybridization of a glass fiber (GF)/sisal fiber (SF)/chitosan 
(CTS) hybrid composite for orthopedic bone fracture plate applications in future. The 
composites possessed high mechanical properties due to a unique sandwich structure. It 
exhibited the bending strength of 343 MPa, ultimate tensile strength of 146 MPa, and com-
pressive strength of 380 MPa with a higher Young’s modulus in the bending tests (21.56 
GPa) compared to the tensile (6646 MPa) and compressive modulus (2046 MPa). On the 
contrary, green composites of chitosan and calcium phosphate were hybridized and re-
sulted in the significant reduction in strength and modulus [141]. The optimal composi-
tion (in terms of initial strength and degradation behavior) weight to volume ratio of chi-
tosan/calcium phosphate was 10 wt/v%. In addition, a hybrid composite of chitosan and 
clay was successfully synthesized via electrostatic interaction between positively charged 
chitosan and negatively charged clay [142]. The hybridization of both materials improved 
the mechanical strength and anti-fatigue properties of the composites. Guo et al. [143] in-
corporated nanostructured hydroxyapatite with chitosan (HA–CS) and investigated their 
mechanical properties. They pointed out that the hybrid composites have great potential 
for bone tissue engineering due to excellent biocompatibility and mechanical properties. 

  

(a) (b) 

Figure 11. (a) TGA for chitosan–essential oil for the first event and (b) TGA for chitosan–essential oil
and cinnamon essential oil for the second event [129].

The incorporation of chitosan into PVA films seems to be a viable approach for obtain-
ing antibacterial and biodegradable food packaging [140]. Bonilla et al. [135] found that
the thermal stability was increased in the chitosan blend films. From the TGA analysis, the
addition of chitosan increased the Tmax of the blends, indicating that the PVA films were
more thermally stable as a consequence of the chitosan addition. This is due to the fact that
the thermal behavior of chitosan, and particularly its glass transition temperature (Tg), is
higher. Furthermore, polymer interactions result in an increase in effective mean molecu-
lar weight, and therefore, Tg values as a consequence of hydrogen bond formation. The
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increase in Tg values in the blends also indicates that the two macromolecules are miscible.
The excellent miscibility of the polymers has an impact on the PVA crystallization process.
This decrease in crystallization or melting temperature is indicated the compatibility of the
chitosan blend.

8. Chitosan Hybrid Composite

This section reviews and discusses the chitosan hybrid composite. The sources of hybrid
materials could be synthetic fiber, natural fiber, clay, mineral, polymer, and nanomaterials.

8.1. Mechanical Properties of Chitosan Hybrid Composites

Table 10 shows the mechanical properties of chitosan hybrid composites. Arumugam
et al. [141] investigated the hybridization of a glass fiber (GF)/sisal fiber (SF)/chitosan
(CTS) hybrid composite for orthopedic bone fracture plate applications in future. The
composites possessed high mechanical properties due to a unique sandwich structure.
It exhibited the bending strength of 343 MPa, ultimate tensile strength of 146 MPa, and
compressive strength of 380 MPa with a higher Young’s modulus in the bending tests
(21.56 GPa) compared to the tensile (6646 MPa) and compressive modulus (2046 MPa).
On the contrary, green composites of chitosan and calcium phosphate were hybridized
and resulted in the significant reduction in strength and modulus [141]. The optimal
composition (in terms of initial strength and degradation behavior) weight to volume
ratio of chitosan/calcium phosphate was 10 wt/v%. In addition, a hybrid composite
of chitosan and clay was successfully synthesized via electrostatic interaction between
positively charged chitosan and negatively charged clay [142]. The hybridization of both
materials improved the mechanical strength and anti-fatigue properties of the composites.
Guo et al. [143] incorporated nanostructured hydroxyapatite with chitosan (HA–CS) and
investigated their mechanical properties. They pointed out that the hybrid composites
have great potential for bone tissue engineering due to excellent biocompatibility and
mechanical properties.

Table 10. Mechanical properties of chitosan hybrid composites.

Polymers Fiber Processing Technique
Mechanical Properties

References
Tensile Strength Tensile Modulus

Chitosan
Sisal fiber reinforced
with hybrid polymer
sandwich composite

Layer-by-layer 110–146 MPa 5800–6646 MPa [141]

Chitosan
Calcium

phosphate-flexible
chitosan

Mixing and heating 45.7 MPa - [142]

Chitosan Clay–chitosan hybrid Electro-stimulus-
responsive 2.25–2.70 MPa 0.2–1.5 MPa [143]

Chitosan
Bioactive calcium
phosphate-flexible

chitosan
Mixing and heating 1.6–45.7 MPa 10.2–77.3 MPa [142]

Chitosan Hydroxyapatite
Dip-coating and bio

inspired
mineralization

3.12 MPa 73.67 MPa [144]

Chitosan CS fiber porous scaffold
Dip-coating and bio

inspired
mineralization

0.68 MPa 3.40 MPa [144]

Chitosan Trabecular bone
Dip-coating and bio

inspired
mineralization

- - [144]
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Table 10. Cont.

Polymers Fiber Processing Technique
Mechanical Properties

References
Tensile Strength Tensile Modulus

Chitosan
Sodium montmorillonite

and zinc oxide
nanoparicles

Polymer intercalation 22.34 MPa± 1.75 1.750 MPa± 0.06 [145]

Chitosan Nano-ZnO
nanocomposite Polymer intercalation 30.49 MPa± 1.17 2.190 MPa± 0.02 [145]

Chitosan
Nano-ZnO and

organoclay
nanocomposite-C4

Polymer intercalation 38.86 MPa± 1.49 2.410 MPa± 0.01 [145]

Chitosan Grape pomace extract Solvent casting 9.89–13.58 MPa 0.13–0.20 MPa [146]

Chitosan Potato starch Solution
blending/casting 9.27–12.5 MPa - [147]

Chitosan Cellulose nanocrystal
(CNC) Solution casting 79.3–104.7 MPa 1607–2068 MPa [148]

Chitosan Galangal rhizome
extract

Chitosan film forming
solution 46.1–67.5 MPa - [149]

Chitosan as a
coating material

Soy protein isolated and
human hair fibers

Hot pressed and
compression molding 11.67–24.54 MPa - [150]

Chitosan Viscose rayon filaments Film molding 105–151 MPa 1.94–2.43 GPa [151]

Chitosan Corn starch and flax
fabric Compression molding 17.64–24.03 MPa 0.63–0.66 GPa [152]

Chitosan as a
coating material

Soy protein and
sisal fiber

Hand lay-up and
solution casting

method
11.67–23.70 MPa - [153]

8.2. Thermal Properties of Chitosan Hybrid Composites

An experiment that was performed by Yeh et al. [154] showed the thermal properties of
chitosan hybrid materials with different weights of tetraethoxysilane/vinyltriethoxysilane
(VTES/ TEOS). Table 11 indicates that the hybrid materials all possessed better thermosta-
bility and thermal decomposition. They improved with an increase in the amount of VTES
and TEOS as reticular inorganic SiO2 was formed. The hybrid material that was made of
TEOS was higher in thermostability than that of VTES because it is difficult for SiO2 to take
shape in poorly soluble VTES.

Table 11. Thermal properties of chitosan and hybrid materials [154].

Weight of VTES/TEOS (g)
Thermal Properties

Td (◦C) Tm (◦C) Char Yield (%)

0/0 245 303 34.1

0/0.8 249 306 37.2

0.8/0.8 253 308 40.4

0.8/1.6 257 310 43.8

0.8/2.4 260 313 45.6

0.8/3.2 263 315 47.1

1.2/0 247 304 36.3

Because of the decomposition of low-molecular-weight species, chitosan loses weight
more slowly between 160 ◦C and 270 ◦C. Thermal decomposition is more pronounced be-
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tween 170 ◦C and 450 ◦C, owing to the complex dehydration of the saccharide rings, depoly-
merization, and decomposition of the polymer’s acetylated and deacetylated units [155].
Yeh, Chen, and Huang [154] studied the effect of silica with chitosan and analyzed the
thermogravimetric of nanocomposites, and it was under synthetic air in the temperature
range of 50–750 ◦C. Figure 12 shows the result of TGA.
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The initial weight loss observed between 100 and 160 ◦C tends to be caused by the
loss of absorbed water on the surface of chitosan as well as a byproduct of subsequent
condensation of the Si–OH groups. Because of the decomposition of low-molecular-weight
species, chitosan loses weight more slowly between 160 ◦C and 270 ◦C. Thermal decompo-
sition is more pronounced between 170 ◦C and 450 ◦C, owing to the complex dehydration
of saccharide rings, depolymerization, and the decomposition of the polymer’s acetylated
and deacetylated units.

The incorporation of a silica network and its contact with the polymer increases the
hybrids’ thermal tolerance and, as a result, the thermal decomposition temperature. The
amount of silica material incorporated in the hybrids correlated to the amount of residue
retained at 750 ◦C, suggesting that the sol–gel reaction was active [157].

Thermal properties of potato starch mixed with chitosan films were found to be higher
with the addition of citric acid (CA) [147]. The existence of a crosslinking effect with CA
addition added to the thermal stability of this film, which may further improve the interac-
tions between molecules. When CA was included in the films, the maximum temperature
corresponding to each step in the TGA analysis appeared to emerge at higher temperatures,
which may indicate greater intermolecular interactions among the components. On the
other hand, Yadav, Behera, Chang, and Chiu [148] studied the thermal properties of cellu-
lose nanocrystal/chitosan (CNC/CS) composite films by varying the CS loading of 2, 4,
6, and 8 wt.%. The TGA results showed that the incorporation of CS at different loadings
showed almost the same thermal stability. Due to interactions between the CNC and the CS
matrix, the thermal stability of CNC-reinforced CS composite films improved marginally
after CNC insertion.

Thakhiew, Devahastin, and Soponronnarit [149] developed a blended film of chitosan
and galangal rhizome extract at different drying methods, i.e., hot-air drying (HAD) and



Polymers 2022, 14, 874 19 of 36

low-pressure, superheated steam drying (LPSSD), and different loadings of galangal rhi-
zome extract, i.e., 0%, 0.6%, 0.9%, 1.2%, and 1.5%. They found that the usage of a higher
temperature in the LPSSD may have resulted in more widespread thermal cross-linkage
compared to the HAD method. In the case of the incorporation of galangal extract, a higher
number of chemical cross-linkage interactions between the galangal extract and chitosan
was observed. These phenomena were due to the electrostatic interactions and hydrogen
bonding that may have caused conformational changes when the galangal extract was
integrated into the chitosan matrix. From the DMA analysis, the storage modulus, loss
modulus, and tan δ of the chitosan films across a temperature range of −120 to 230 ◦C were
obtained, which show evidence of cross-linkage interactions.

Deepmala, Jain, Singh, and Chauhan [150] manufactured chitosan-coated, human-
hair-reinforced, phytagel-modified, soy-protein-based composite for packaging and coating
applications. Various wt.% of human hair were used with coated and non-coated chitosan.
The experimental data prove that the tensile stress was enhanced to 24.54 MPa with the
application of chitosan coating, due to the fact that the maximum surface cracks and voids
were filled with the chitosan solution and the stress concentration was decreased. In the
view of thermal properties, chitosan coating was found to improve the storage modulus
and the glass transition temperature; 2 wt.% human hair had the highest value of storage
modulus but the lowest value of tan δ. The stiffness of the manufactured samples was
enhanced as a result of the chitosan coating application on the final composites, as the
non-coated surface contained many cracks, while chitosan coating covered all gaps and
surface cracks of the composite’s surface. Because the energy dissipation process was
ineffective in this case, composites started to behave like brittle materials, thus increasing
stiffness and storage modulus.

Gorade, Chaudhary, Parmaj, and Kale [151] prepared a composite with viscose rayon
filaments and reinforcement with chitosan to produce a chitosan–viscose rayon biocompos-
ite. Various weights of viscose rayon filament (15, 20 and 25 wt.%) were examined in the
view of microstructure and thermal properties. As the weights of viscose rayon filament
increased, some voids were observed due to the fact that the chitosan solution did not
penetrate completely during biocomposite production, as shown in Figure 13. However, in
terms of thermal stability, the result of including viscose rayon filament into the chitosan
polymeric matrix increased the biocomposite’s thermal stability owing to viscose rayon
filament’s greater thermal stability, as shown in Figure 14. The sample decomposition
generally involved breaking down of glycosidic units into smaller pieces, followed by the
production of volatile gases. In addition, the glycosyl unit was completely decomposed
and depolymerized, resulting in the production of char [158].

Prabhakar and Song [152] examined the composite prepared by hybridizing corn
starch, chitosan, and flax fabric to produce effective flame-retardant, eco-biodegradable
composites for industrial applications. They concluded that the decomposition at higher
temperatures from the TGA analysis shows that corn starch has a beneficial effect on the
composites’ thermal stability due to the multihydroxyl groups in corn starch, which may
create additional molecular hydrogen bonds. In terms of flammability, the flame retardancy
improved substantially as the amount of corn starch increased. In addition, the thick char
produced by the carbonaceous ingredient corn starch was thought to be responsible for the
composites’ flame-retardant characteristics.

Sabzevari et al. [159] found that the graphene oxide (GO) chitosan composite has
greater thermal stability over GO, as shown by its stability upon heating to the upper-
temperature limit of 500 ◦C (Figure 15). In this study, low-molecular-weight chitosan was
cross-linked with GO to produced GO–chitosan composite. The higher thermal stability
of the GO–chitosan composite was due to higher crystallinity observed from the X-ray
diffraction (XRD) and scanning electron microscope (SEM) analyses. The chitosan chains
were well introduced and firmly bound to the oxygen functional groups of GO, while
preserving the stacked structure of GO sheets in the material, which indicated excellent
cross-linking occurred.
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Verma, Singh, Singh, and Jain [153] conducted an experiment on hybrid composites
reinforced with soy protein and sisal fiber by varying sisal fiber weight percentages of
0, 3, 4, 5, 6, 7, and 10. In this study, chitosan was used as a coating material, where the
composites were coated with chitosan by immersing the samples in chitosan solution. They
reported that the inclusion of sisal fiber at a higher weight percentage and chitosan coating
to the thermal tests resulted in an improvement in thermal stability. The DMA analysis
also demonstrated that the storage modulus and glass transition temperature for different
compositions were greater for chitosan-coated specimens than for non-coated specimens,
with the maximum values observed at 5 wt. percent sisal fiber composites in both instances.
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9. Application of Chitosan-Based Green Composites

Chitosan has many usages or applications in industries, for example, biomedicine, cos-
metology, papermaking, wastewater treatment, agriculture, or pharmaceutical applications,
and others. The applications are further explained in the next section, which consists of an
explanation for biomedical applications and the specific usage of chitosan in the industry.
Chitosan has many benefits towards biomedical applications such as biocompatibility and
control biodegradability, which lead to the degradation of products. In addition, it is not
harmful and does not produce any dangerous reactions [96]. Besides that, chitosan can be
modified by blending it with other polymeric materials such as cellulose because it has
modifiable functional groups; thus, the stability of blends enhances. Some of the potential
applications of chitosan–cellulose blends are tabulated in Table 12. It can be summarized
that the stability of chitosan-based materials can be improved by blending them with other
compatible biopolymers that can be commercially utilized.

Table 12. Some of the potential applications of chitosan–cellulose/nanocellulose composites.

Potential Applications References

Adsorbent for the removal of heavy metal ions [160–162]

Adsorbent for the removal of acidic reagents, metals, amino acids,
proteins, and other compounds [163]

Biocomposite films [164,165]

Biomedical applications [166]

Coronary artery bypass graft [167]

Drug delivery [168]

Electronic [169]

Food packaging [170]

Medical material [171]

Odor treatment [172]

Self-healing [173]

Textiles [174]

Wound dressing [175,176]

Wound healing (good antibacterial effect) [177]
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9.1. Drug Delivery

Nowadays, controlled drug delivery provides many advantages to humans, e.g., it
can enhance efficacy and reduce or eliminate unwanted side effects and also the level
of drugs. Chitosan has some special properties that make it ideal to be used for drug
delivery functions. Furthermore, a chitosan nanoparticle system that is conjugated by
anti-bradykinin B2 can enhance the inhibition of HIV replication. Chitosan used in the drug
industry is solely used to reduce side effects from cancer treatment such as cardiotoxicity.
The drug is confined with chitosan nanoparticles. These nanoparticles of chitosan can
enhance the absorption of a chemical known as doxorubicin in the small intestine. The
type of nanoparticles of chitosan that is commonly used in this specific industry is chitosan
tripolyphosphate (TPP) nanoparticles [178]. Chitosan nanoparticles also can improve the
tea polyphenols stabilities and prevent their reactions of oxidation or degradation in the
gastrointestinal tract. Hence, chitosan that synthesized from polyethylene glycol is probably
suitable for use as a drug controlled release carrier [96]. According to Bernkop-Schnürch
and Dünnhaupt [179] and Ahsan et al. [180], the chemical stability, particle sizes, toxicity,
release kinetic profiles, and type of delivery system are important elements that must be
considered when it comes to processing chitosan for this purpose. Chitosan can be used in
various forms depending on the function and applications of the carrier. Figure 16 shows
that chitosan can be employed in a variety of ways, depending on the carrier’s function
and uses.
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9.2. Wound Dressing

Chitosan is a natural antibacterial polymer with features that make it excellent for
wound dressing, such as being cheap to make, stable for long-term use, biodegradable,
non-toxic, and having a biocidal impact on a wide range of pathogens. Besides, chitosan is
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a suitable material or substance for wound dressing, mainly for the prevention of wound
infection. It is suitable or compatible due to inherent antibacterial activity and other
benefits such as analgesic effects and hemostatic activity. Plus, chitosan can function as a
mechanical barrier on blood that causes immediate clotting. Chitosan efficacy was tested
and carried out in vitro toxicity evaluation on 3T3 cells, and the result showed that it is an
agent suitable for the treatment of internal and external bleeding. Additionally, chitosan-
based products vary from typical dressings such as gauze or cotton wool in that chitosan
actively participates in wound healing processes [182]. Chitosan-based wound dressing
materials have been formed into a number of shapes, including films, sponges, hydrogels,
particles, and fibers, due to its ease of processing, as shown in Table 13. Matica et al. [183]
comprehensively discussed chitosan as a wound dressing in medical sectors.

Table 13. The benefits and drawbacks of major wound dressing types [183].

Type Advantages Disadvantages Refs

Sponges

- high porosity
- thermal insulation
- sustain a moist environment
- absorb wound exudates
- enhance tissue regeneration

- mechanically weak
- may provoke skin maceration
- unsuitable for third-degree burn

treatment or wounds with dry eschar
[183–188]

Films

- impermeable to bacteria
- allow the healing process to be

monitored
- painless removal

- hard to handle
- non-absorbent
- adhere to the wound bed and cause

exudate accumulation

[189–192]

Fibers
- non-adherent
- high porosity and absorption capacity
- mimic the skin’s extracellular matrix

- unsuitable for third-degree, eschar, and
dry wounds

- if the wound is highly exudative, it
needs a secondary dressing

[75,193–198]

Membranes

- act as physical barriers
- membranes simulate extracellular

matrix (ECM) structure
- ensure gas exchange, cell proliferation,

and nutrient supply

- the materials and solvents used in the
production

- process may be harmful
[199–201]

Hydrogels

- high absorption properties
- provide a moist environment at the

wound site
- water retention
- oxygen permeability
- ensure the solubility of growth

factor/antimicrobial agents

- weak mechanical properties
- need a secondary dressing [202–206]

Hydrocolloids

- non-adherent
- high density
- painless removal
- high absorption properties

- can be cytotoxic
- have an unpleasant odor
- low mechanical stability
- maintain acidic pH at the wound site

[183]

9.3. Food Packaging

In the food industry, chitosan is considered as a bioactive polymer that can be used
for food packaging manufacture based on its antioxidant, antimicrobial, mechanical, and
barrier properties. The use of chitosan as a material for packaging can reduce the risk
on human health and also environmental problems. In fact, the mechanical and barrier
properties of pure chitosan films are suitable for food and active packaging. Chitosan
has also been made a reference polymer in order to manufacture active packaging with
the improvement or capability to prevent the growth of microorganisms and upgrade the
safety of food [178]. It is feasible to create food packaging items that are safe against a
broad range of modifying and pathogenic microbes by mixing chitosan with other natural
antimicrobial agents [178,207,208].
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Figure 17. (A) Development of chitosan/gelatin-based polymeric films with inclusion of citrus essen-
tial oils [209]; (B) preservation mechanism of chitosan-based coating to maintain quality of vegetables
and fruits [210]; (C) multifunctional coating composed of Eryngium campestre essential oil encapsu-
lated in nano-chitosan to prolong the shelf-life of fresh cherry [211]; (D) edible film’s antimicrobial
activity against E. coli O157:H7 on cherry tomatoes [212]. Reproduced from Zhang et al. [213].

Chitosan also can be used as a thin edible film/coating with food several methods
such as by dipping, spraying, and pulverizing the film forming solution with an aerosol
spray coating [214–216], as shown in Figure 17. An edible coating is a thin layer generated
as a coating on a food product that is applied in liquid form, while chitosan film is a prefab-
ricated thin coating that may be applied on or between food components once produced.
Because chitosan regulates gas exchange, inhibits the respiration rate, is fungistatic, is
capable of eliciting host defense responses, and lowers the rate of ethylene generation
compared to the control fruit throughout the storage period, it has the potential to extend
the shelf life of perishable fruits and vegetables as a post-harvest treatment [106,217].

Researchers found that chitosan coating significantly preserves the qualitative qual-
ities of sliced mango fruit and extends its shelf life by reducing water loss and sensory
degradation, boosting soluble solid content, titratable acidity, vitamin C, and preventing
microbe development [218–221]. Table 14 shows studies made with chitosan films and
chitosan coatings in food products.
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Table 14. Applications of chitosan-based films and coatings in different food products.

Chitosan Based Combination Food References

Film

Gelatin/grape seed extract/Ziziphora clinopodioides essential oil Minced trout fillets [222]

Chitosan powder/glycerol/NaOH solution Chilled meat [115]

Cassava starch/glycerol/polyethylene glycol Meat slices [223]

Zataria multiflora essential oil/Cinnamomum zeylanicum Green chili [224]

Chitosan powder/glycerol Chilled meat [225]

Chitosan/ Basil Essential Oil Cooked ham [226]

Apricot (Prunus armeniaca) kernel essential oil/glycerol Spiced beef [227]

Coatings

Agar/Artemisia annua oil Cherry tomato [212]

Apple peel polyphenols (APP)/glycerol Strawberry [228]

Essential oils (EO) of Elettaria Cardamomum/glycerol Chicken drumsticks [229]

9.4. Dermatology and Skin Care

In cosmetic applications, chitosan is a natural cationic polymer which turns viscous
when being neutralized with acid and works as a cationic humectant in cosmetics and
topical formulations. It is used in the manufacture of creams, lotions, and other cosmetic
preparations. Additionally, chitosan is known for its application as a film-forming and
hydrating agent. Besides, chitosan also has benefits as sun protection, as the emulsions
of sun protection that were mixed with chitosan have good effects on water resistance,
which improve the safety of skin [230]. By changing the keratin structure, chitosan is
extensively employed as a skin permeability enhancer in drug delivery systems, and it is
absorbed to the negative charges of the skin surface [231]. Chitosan also improves the water
content of the stratum corneum and increases the fluidity of the cell membrane, aided by its
hydrophilic hydroxyl groups, which enable chitosan to interact with water molecules [232].
Chitosan adheres to the skin due to its positive charges and relatively high molecular
weight, allowing it to be used as a percutaneous drug delivery vehicle. In recent years,
there has been increased interest in using chitosan in the creation of nanoparticles as a
carrier for active ingredients in cosmetics and medicine delivery to the skin. Chitosan-based
nanoparticles have been used to treat local problems including skin malignant melanoma
and infection [233].

9.5. Cosmetics for Oral Care Products

As oral care products affect human health, the cosmetics industry tends to use and
focus on natural compounds such as chitin, chitosan, and their derivatives. Since chitosan
has a lower molecular weight, it shows inhibition on the oral adsorption of streptococci
and is proposed as a potential anticavity agent. Chitosan also able to interfere with
microorganisms’ adherence and other factors [230]. Achmad et al. [234] evaluated the
efficacy of chitosan against dental plaque development in actual formulations. In the study,
chitosan was incorporated into toothpastes, rinses, and other vehicles. Chitosan, which is
used in toothpaste and mouthwashes to prevent biofilm development in the mouth owing
to the presence of S. mutans, has been shown to reduce S. mutans colonies. Chitosan has a
broad antibacterial spectrum; thus, its efficacy against various bacterial strains associated
with dental caries has been studied by a number of researchers [235–237].

10. Challenges and Opportunities

Chitosan captures a special position as a natural source in the composite industry due
to its appealing characteristics such as antibacterial and film-forming properties. Currently,
many products and applications are utilizing chitosan, primarily in the food and medical
lines. Extensive research and manufacturing efforts have supported the development of
chitosan-based products, which has been aided by rising customer demand for natural and
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safer additives with useful qualities, as well as rising environmental concerns [238,239].
However, there are few challenges that need to be focused on to widen the application
of chitosan-based composites. The methods or techniques involved in chitosan-based
products are mostly for small-scale production. To move closer to industrial production,
these current technologies may be improved or integrated with other beneficial technology
in order to produce mass numbers of chitosan-based products with the necessary charac-
teristics for various applications. Due to some chitosan limitation properties such as low
thermal stability to fulfil specific needs, more chitosan derivatives must be researched, and
the degradation and environmental impact of chitosan-based products must be studied.
Furthermore, more research is needed, especially in terms of toxicity and antibacterial
properties, to improve chitosan-based products for food packaging before they may be
used commercially. Improvements in thermal and strength characteristics, as well as the
ability to bind contaminants, are also required.

11. Conclusions

Nature provides a variety of biomaterials that can be obtained easily from animals and
plants. Chitosan is one natural fiber with promising characteristics as a composite material.
As a biomaterial form, chitosan can be made into a few forms such as 3D (hydrogels and
sponges) and 2D (films and porous membranes); each of them have their own set of indus-
trial applications. On the other hand, chitosan has relatively poor mechanical, thermal, and
barrier properties. For example, chitosan experienced weight reduction (50%) at 220–320 ◦C
and a further 40% weight loss at the temperature of 470 ◦C. With the combination of two
or more polymers, biomaterials can significantly increase the properties of composites.
Therefore, chitosan-based composites are extensively investigated and explored. There are
various methods available in the literature according to applications for the development
of chitosan-based composites, including solution and solvent casting, dipping and spray
coating, freeze casting and drying, layer-by-layer processes, and extrusion. The mechanical
properties and thermal properties of different types of composites have been discussed
from different resources. It was reported that the developed chitosan-based green compos-
ites, chitosan-blend composites, and chitosan hybrid composites showed thermal stability
improvement due to the highly crystalline structure of the composites observed by XRD
and SEM analysis. Not only that, but their mechanical properties also enhanced with the
increase in tensile strength. As chitosan green composites offer many advantages, they have
a wide range of applications and potential in the biomedicine, cosmetology, papermaking,
wastewater treatment, agriculture, and pharmaceutical industries. In future, the use of
chitosan-based composites in industrial applications may be able to completely replace
synthetic fibers, thus reducing environmental pollution. In-depth research is still needed in
terms of investigating the environmentally friendly chemical treatment used, as well as the
toxicity and antibacterial properties of materials, so that composite materials reinforced
with natural fibers can perform better in the future.

Author Contributions: Conceptualization, R.A.I., H.A.A.; validation, R.A.I., H.A.A.; investiga-
tion, R.A.I.; writing—original draft preparation, R.A.I., H.A.A., A.H.N., N.N., M.Y.M.Z., M.R.M.A.,
S.M.S., E.S.Z., S.S., H.A., M.A., E.S., N.H.S., M.R., S.Z.S.Z., M.R.R., N.A.M., Z.R., A.A., S.P.B., R.I.;
writing—review and editing, R.A.I., H.A.A., A.H.N., N.N., M.Y.M.Z., M.R.M.A., S.M.S., E.S.Z., S.S.,
H.A., M.A., E.S., N.H.S., M.R., S.Z.S.Z., M.R.R., N.A.M., Z.R., A.A., S.P.B., R.I.; funding acquisi-
tion, S.Z.S.Z., M.R.R., N.A.M., Z.R. All authors have read and agreed to the published version of
the manuscript.

Funding: The authors would like to express their gratitude for the financial support received from
the Universiti Teknologi Malaysia, project CRG 30.3, “Retardant coating using graphene/bamboo
aerogel mixtures on SAR robotics system, grant number PY/2020/03495—R.J130000.7351.4B534”.
The research has been carried out under the program Research Excellence Consortium (JPT (BPKI)
1000/016/018/25 (57)) provided by the Ministry of Higher Education Malaysia (MOHE). This
work was funded by Universiti Kebangsaan Malaysia (UKM) for the financial support through
research grants, Dana Pecutan Penerbitan—LESTARI UKM: PP/LESTARI/2022, XX-2020-010 and



Polymers 2022, 14, 874 27 of 36

XX-2021-002. In addition, this work was also funded by Universiti Putra Malaysia, and Fundamental
Research Grant Scheme FRGS/1/2021/TK0/UPM/02/21 provided by Ministry of Higher Education
Malaysia (MOHE).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Roslan, Z.; Ramli, Z.; Razman, M.; Asyraf, M.; Ishak, M.; Ilyas, R.; Nurazzi, N. Reflections on Local Community Identity by

Evaluating Heritage Sustainability Protection in Jugra, Selangor, Malaysia. Sustainability 2021, 13, 8705. [CrossRef]
2. Ali, S.; Razman, M.; Awang, A.; Asyraf, M.; Ishak, M.; Ilyas, R.; Lawrence, R. Critical Determinants of Household Electricity

Consumption in a Rapidly Growing City. Sustainability 2021, 13, 4441. [CrossRef]
3. Rozilah, A.; Jaafar, C.N.A.; Sapuan, S.M.; Zainol, I.; Ilyas, R.A. The Effects of Silver Nanoparticles Compositions on the Mechanical,

Physiochemical, Antibacterial, and Morphology Properties of Sugar Palm Starch Biocomposites for Antibacterial Coating. Polymers
2020, 12, 2605. [CrossRef] [PubMed]

4. Sapuan, S.M.; Aulia, H.S.; Ilyas, R.A.; Atiqah, A.; Dele-Afolabi, T.T.; Nurazzi, M.N.; Supian, A.B.M.; Atikah, M.S.N. Mechanical
Properties of Longitudinal Basalt/Woven-Glass-Fiber-reinforced Unsaturated Polyester-Resin Hybrid Composites. Polymers 2020,
12, 2211. [CrossRef]

5. La Mantia, F.P.; Morreale, M. Green composites: A brief review. Compos. Part A Appl. Sci. Manuf. 2011, 42, 579–588. [CrossRef]
6. Ilyas, R.; Sapuan, S.; Harussani, M.; Hakimi, M.; Haziq, M.; Atikah, M.; Asyraf, M.; Ishak, M.; Razman, M.; Nurazzi, N.; et al.

Polylactic Acid (PLA) Biocomposite: Processing, Additive Manufacturing and Advanced Applications. Polymers 2021, 13, 1326.
[CrossRef]

7. Ramamoorthy, S.K.; Skrifvars, M.; Persson, A. A Review of Natural Fibers Used in Biocomposites: Plant, Animal and Regenerated
Cellulose Fibers. Polym. Rev. 2015, 55, 107–162. [CrossRef]

8. Tarique, J.; Sapuan, S.; Khalina, A.; Sherwani, S.; Yusuf, J.; Ilyas, R. Recent developments in sustainable arrowroot (Maranta
arundinacea Linn) starch biopolymers, fibres, biopolymer composites and their potential industrial applications: A review. J. Mater.
Res. Technol. 2021, 13, 1191–1219. [CrossRef]

9. Mitragotri, S.; Lahann, J. Physical approaches to biomaterial design. Nat. Mater. 2009, 8, 15–23. [CrossRef]
10. Bakshi, P.S.; Selvakumar, D.; Kadirvelu, K.; Kumar, N.S. Chitosan as an environment friendly biomaterial—A review on recent

modifications and applications. Int. J. Biol. Macromol. 2020, 150, 1072–1083. [CrossRef]
11. Hu, X.; Ricci, S.; Naranjo, S.; Hill, Z.; Gawason, P. Protein and Polysaccharide-Based Electroactive and Conductive Materials for

Biomedical Applications. Molecules 2021, 26, 4499. [CrossRef]
12. Ismail, M.I.; Roslan, A.; Saari, N.S.; Hashim, K.H.; Kalamullah, M.R. Ethanolic extract of propolis for biodegradable films

packaging enhanced with chitosan. In AIP Conference Proceedings, Proceedings of the 3rd Electronic and Green Materials International
Conference 2017, Krabi, Thailand, 29–30 April 2017; AIP Publishing: Melville, NY, USA, 2017; Volume 1885, p. 020231.

13. Alabaraoye, E.; Achilonu, M.; Hester, R. Biopolymer (Chitin) from Various Marine Seashell Wastes: Isolation and Characterization.
J. Polym. Environ. 2018, 26, 2207–2218. [CrossRef]

14. Komuraiah, A.; Kumar, N.S.; Prasad, B.D. Chemical Composition of Natural Fibers and Its Influence on Their Mechanical
Properties. Mech. Compos. Mater. 2014, 50, 359–376. [CrossRef]

15. Paridah, M.T.; Basher, A.B.; SaifulAzry, S.; Ahmed, Z. Retting process of some bast plant fibres and its effect on fibre quality: A
review. BioResources 2011, 6, 5260–5281.

16. Aisyah, H.A.; Paridah, M.T.; Sapuan, S.M.; Khalina, A.; Berkalp, O.B.; Lee, S.H.; Lee, C.H.; Nurazzi, N.M.; Ramli, N.;
Wahab, M.S.; et al. Thermal Properties of Woven Kenaf/Carbon Fibre-Reinforced Epoxy Hybrid Composite Panels. Int. J.
Polym. Sci. 2019, 2019, 5258621. [CrossRef]

17. Faruk, O.; Bledzki, A.K.; Fink, H.-P.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37,
1552–1596. [CrossRef]

18. Sinha, A.K.; Narang, H.K.; Bhattacharya, S. Mechanical properties of natural fibre polymer composites. J. Polym. Eng. 2017, 37,
879–895. [CrossRef]

19. Lau, K.-T.; Hung, P.-Y.; Zhu, M.-H.; Hui, D. Properties of natural fibre composites for structural engineering applications. Compos.
Part B Eng. 2018, 136, 222–233. [CrossRef]

20. Asyraf, M.R.M.; Rafidah, M.; Azrina, A.; Razman, M.R. Dynamic mechanical behaviour of kenaf cellulosic fibre biocomposites: A
comprehensive review on chemical treatments. Cellulose 2021, 28, 2675–2695. [CrossRef]

21. Asyraf, M.; Ishak, M.; Norrrahim, M.; Nurazzi, N.; Shazleen, S.; Ilyas, R.; Rafidah, M.; Razman, M. Recent advances of thermal
properties of sugar palm lignocellulosic fibre reinforced polymer composites. Int. J. Biol. Macromol. 2021, 193, 1587–1599.
[CrossRef]

22. Halimatul, M.; Sapuan, S.; Jawaid, M. Water absorption and water solubility properties of sago starch biopolymer composite
films filled with sugar palm particles. Polimery 2019, 64, 596–603. [CrossRef]

http://doi.org/10.3390/su13168705
http://doi.org/10.3390/su13084441
http://doi.org/10.3390/polym12112605
http://www.ncbi.nlm.nih.gov/pubmed/33171913
http://doi.org/10.3390/polym12102211
http://doi.org/10.1016/j.compositesa.2011.01.017
http://doi.org/10.3390/polym13081326
http://doi.org/10.1080/15583724.2014.971124
http://doi.org/10.1016/j.jmrt.2021.05.047
http://doi.org/10.1038/nmat2344
http://doi.org/10.1016/j.ijbiomac.2019.10.113
http://doi.org/10.3390/molecules26154499
http://doi.org/10.1007/s10924-017-1118-y
http://doi.org/10.1007/s11029-014-9422-2
http://doi.org/10.1155/2019/5258621
http://doi.org/10.1016/j.progpolymsci.2012.04.003
http://doi.org/10.1515/polyeng-2016-0362
http://doi.org/10.1016/j.compositesb.2017.10.038
http://doi.org/10.1007/s10570-021-03710-3
http://doi.org/10.1016/j.ijbiomac.2021.10.221
http://doi.org/10.14314/polimery.2019.9.4


Polymers 2022, 14, 874 28 of 36

23. Nurazzi, N.M.; Asyraf, M.R.M.; Athiyah, S.F.; Shazleen, S.S.; Rafiqah, S.A.; Harussani, M.M.; Kamarudin, S.H.; Razman, M.R.;
Rahmah, M.; Zainudin, E.S.; et al. A Review on Mechanical Performance of Hybrid Natural Fiber Polymer Composites for
Structural Applications. Polymers 2021, 13, 2170. [CrossRef] [PubMed]

24. Aisyah, H.A.; Paridah, M.T.; Sapuan, S.M.; Ilyas, R.A.; Khalina, A.; Nurazzi, N.M.; Lee, S.H.; Lee, C.H. A Comprehensive Review
on Advanced Sustainable Woven Natural Fibre Polymer Composites. Polymers 2021, 13, 471. [CrossRef] [PubMed]

25. Lee, C.; Khalina, A.; Lee, S. Importance of Interfacial Adhesion Condition on Characterization of Plant-Fiber-Reinforced Polymer
Composites: A Review. Polymers 2021, 13, 438. [CrossRef]

26. Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N. Comparison of Static and Long-term Creep Behaviors between Balau Wood
and Glass Fiber Reinforced Polymer Composite for Cross-arm Application. Fibers Polym. 2021, 22, 793–803. [CrossRef]

27. Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N. Influence of Additional Bracing Arms as Reinforcement Members in
Wooden Timber Cross-Arms on Their Long-Term Creep Responses and Properties. Appl. Sci. 2021, 11, 2061. [CrossRef]

28. Asyraf, M.; Ishak, M.; Sapuan, S.; Yidris, N.; Ilyas, R. Woods and composites cantilever beam: A comprehensive review of
experimental and numerical creep methodologies. J. Mater. Res. Technol. 2020, 9, 6759–6776. [CrossRef]

29. Ilyas, R.A.; Zuhri, M.Y.M.; Norrrahim, M.N.F.; Misenan, M.S.M.; Jenol, M.A.; Samsudin, S.A.; Nurazzi, N.M.; Asyraf, M.R.M.;
Supian, A.B.M.; Bangar, S.P.; et al. Natural Fiber-Reinforced Polycaprolactone Green and Hybrid Biocomposites for Various
Advanced Applications. Polymers 2022, 14, 182. [CrossRef]

30. Asyraf, M.; Ishak, M.; Syamsir, A.; Nurazzi, N.; Sabaruddin, F.; Shazleen, S.; Norrrahim, M.; Rafidah, M.; Ilyas, R.;
Rashid, M.Z.A.; et al. Mechanical properties of oil palm fibre-reinforced polymer composites: A review. J. Mater. Res. Technol.
2022, 17, 33–65. [CrossRef]

31. Nurazzi, N.M.; Asyraf, M.R.M.; Rayung, M.; Norrrahim, M.N.F.; Shazleen, S.S.; Rani, M.S.A.; Shafi, A.R.; Aisyah, H.A.; Radzi,
M.H.M.; Sabaruddin, F.A.; et al. Thermogravimetric Analysis Properties of Cellulosic Natural Fiber Polymer Composites: A
Review on Influence of Chemical Treatments. Polymers 2021, 13, 2710. [CrossRef]

32. Nurazzi, N.M.; Asyraf, M.R.M.; Khalina, A.; Abdullah, N.; Aisyah, H.A.; Rafiqah, S.A.; Sabaruddin, F.A.; Kamarudin, S.H.;
Norrrahim, M.N.F.; Ilyas, R.A.; et al. A Review on Natural Fiber Reinforced Polymer Composite for Bullet Proof and Ballistic
Applications. Polymers 2021, 13, 646. [CrossRef] [PubMed]

33. Nurazzi, N.; Khalina, K.; Sapuan, S. Mechanical properties of sugar palm yarn/woven glass fiber reinforced unsaturated polyester
composites: Effect of fiber loadings and alkaline treatment. Polimery 2019, 64, 665–675. [CrossRef]

34. Alsubari, S.; Zuhri, M.Y.M.; Sapuan, S.M.; Ishak, M.R.; Ilyas, R.A.; Asyraf, M.R.M. Potential of Natural Fiber Reinforced Polymer
Composites in Sandwich Structures: A Review on Its Mechanical Properties. Polymers 2021, 13, 423. [CrossRef] [PubMed]

35. Yahaya, R.; Sapuan, S.; Jawaid, M.; Leman, Z.; Zainudin, E. Mechanical performance of woven kenaf-Kevlar hybrid composites.
J. Reinf. Plast. Compos. 2014, 33, 2242–2254. [CrossRef]

36. Asyraf, M.R.M.; Rafidah, M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N.; Ilyas, R.A.; Razman, M.R. Integration of TRIZ, morphological
chart and ANP method for development of FRP composite portable fire extinguisher. Polym. Compos. 2020, 41, 2917–2932.
[CrossRef]

37. Sharma, S.; Sudhakara, P.; Singh, J.; Ilyas, R.A.; Asyraf, M.R.M.; Razman, M.R. Critical Review of Biodegradable and Bioactive
Polymer Composites for Bone Tissue Engineering and Drug Delivery Applications. Polymers 2021, 13, 2623. [CrossRef]

38. Amir, A.; Ishak, M.; Yidris, N.; Zuhri, M.; Asyraf, M. Potential of Honeycomb-Filled Composite Structure in Composite Cross-Arm
Component: A Review on Recent Progress and Its Mechanical Properties. Polymers 2021, 13, 1341. [CrossRef]

39. Amir, A.; Ishak, M.; Yidris, N.; Zuhri, M.; Asyraf, M. Advances of composite cross arms with incorporation of material core
structures: Manufacturability, recent progress and views. J. Mater. Res. Technol. 2021, 13, 1115–1131. [CrossRef]

40. Asyraf, M.R.M.; Ishak, M.R.; Sapuan, S.M.; Yidris, N.; Ilyas, R.A.; Rafidah, M.; Razman, M.R. Potential Application of Green
Composites for Cross Arm Component in Transmission Tower: A Brief Review. Int. J. Polym. Sci. 2020, 2020, 8878300. [CrossRef]
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