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Abstract. - A large class of musical sélections exhibits a spectral density of audio power 
fluctuations characterized by a low-frequency behaviour typical of 1// noise. We show that this 
1// behaviour foUows from natural flicker noise theory. 

Flicker noise—also known as «excess noise» or «1//noise»—w^as first observed more than 
60 years ago by JOHNSON, w^hile studying fluctuation processes in électron tubes. 
Subséquent investigations revealed the existence of spectra of the form llf" ( w i t h / = CDIZK, 

and V = 1 in the low-frequency range) in a wide variety of fluctuation processes in nature and 
in the laboratory. More recently it was shown [1-3] that the spectral density of audio power 
fluctuations in music also behaves like 1 / / up to some frequency W m a x - This resuit was 
obtained by investigating the long time dynamics of music recordings, that is by considering 
the time séries generated by an audio variable on a time scale that characterizes the overall 
dynamics of the full pièce, i.e. beyond the characteristic time scales commonly identified in 
music composition, like the reciprocal frequency of the notes, the time signature, or the 
tempo. Voos and C L A R K E [ 1 ] chose to measure the audio power as the characteristic slow 
variable of the music (instead of the audio signal itself); then, after low-pass filtering, they 
constructed the audio power spectral density and observed that for ail sélections (from BACH 
to STOCKHAUSEN) the spectral density of audio power fluctuations showed a l / / - type 
behaviour below ~ 1 Hz. 

When it was discovered as a gênerai feature of a large class of music pièces, the l / f nature 
of music was recognized as an important step towards an objective characterization of music 
a) as intermediate between randomness and predictabiUty [3,4], and b) as having «time 
scaling» property [2,4], i.e. the property of self-similarity typical of fractal objects {}). 

C) We have investigated this aspect of the problem for a variety of musical sélections and found 
that they could be classified according to their fractal dimension as obtained from phase-space analysis; 
thèse results will be presented in a forthcoming paper[5]. 
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Therefore, it was also suggested (and tested) [1 ,3] that 1 / /no ise could provide an interesting 
basis for stochastic composition (^). On the other hand, it was clearly stated [1 ,4] that there 
was no satisfactory theory that could explain this 1 / / behaviour. 

In the présent paper w e show that «1/ /noise» in music can be explained on the basis of 
natural flicker noise theory as developed in [7-9]. We first rev iew the essential features of 
the theory; then w e présent its application to music. 

1) Natural flicker noise arises as a conséquence of the intrinsic structure of the System 
(the molecular structure in physical Systems) in the frequency range ai^in < w < w^ax- The 
upper limit of the flicker noise domain is defined by 

W m a x ~ DeffL^n , (1) 

where D^ff is the effective diffusion coefficient and Leff is the shortest effect ive dimension of 
the Sys tem. The lower hmit cumin is set by the duration of observation: w ^ i n ~ "̂ ôbs- (Flicker 
noise s p e c t r a h a v e b e e n m e a s u r e d d o w n to f requenc ies ~ (10"^H-10~®) H z . ) 

2) The flicker noise intens i ty at a g i v e n f requency ( w m i n < w < w ^ a x ) is inverse ly 
proport ional t o N, the n u m b e r of part ic les in t h e sample (i.e. in the finite Sys tem 
considered) [9]. So flicker noise may be termed «natural». 

3) F l i cker no i se can b e v i e w e d as a feature of t h e spectra l d e n s i t y of Brownian- type 
S y s t e m s in the l o w - f r e q u e n c y domain: w « D e f f L ^ f = TD^, or equ iva lent ly for large 
corrélat ion t imes: T » T D . Under such conditions, the dimensions of the Sys t em play no 
s ignif icant rôle and t h e Sys tem can be t rea ted as a point {i.e. as a Sys tem w i t h zéro 
dimension) . 

4) In the flicker noise domain, the spectral density of any fluctuating quantity Sny 
( a v e r a g e d o v e r the vo lume V of t h e System) can be e x p r e s s e d in t h e fo l lowing form [7-9]: 

(SnvSnv)^=^. tT^^^; z-i«co«r^K (2) 
| w | l n ( T o b s / T D ) 

The mean-square fluctuations {{8nv)^) are given b y [ 9 ] 

{(Snyf)= l {SnvSnv)^ — ^if (3) 
7t Jy 

"obs 

and so increase w i t h t h e duration of observat ion. {(Suv)^} is a character is t ic thermodynamic 
quantity of the System and is température dépendent. 

5) T h e corresponding t ime corrélation funct ion r e a d s [8, 9] 

ln(T/TD) 
C-

I n (Tobs /^D) 
Tobs » ftJ»TD , ( 4 ) 

where C dénotes the residual time corrélations. Note that, since T » T D , the time 
dependence in (4) is extremely weak and {{Snv)^)~ differs very Uttle fi"om C [ 7 , 8]. 

(̂ ) Note that various methods based on mathematical formulations have recently been proposed 
(and some of them used) as new tools for composition and for producing previously unheard sounds [6]. 
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6) Flicker noise phenomena can be represented by a Langevin-type équation 

(ico + yJ Suvico) = yicj) , (5) 

where yioj) dénotes the random source term and is the dissipative coefficient, with 

7 „ = W , f o r T o b s « W « T D \ ( 6 ) 

The intensity of the random source is given by 

iyy). = 2un YY^^^; T;i«a.«r^\ (7) 
m ( 7 o b s / T D ) 

This relation expresses the fluctuation-dissipation theorem for the flicker noise région. Note 
that for large frequencies ( W » T D ^ ) , ;r/ln (T/TD) ^ 1 and (7) reduces to the classical 
fluctuation-dissipation theorem. Equation (5) yields straightforwardly the usual expression 
for the spectral density 

(STO^Snv).= ^ f ^ . (8) 

So flicker noise theory foUows from the description of the diffusion type stage of fluctuation 
processes in fînite-size Systems. 

The theory can be logically applied to flicker noise in music by considering the Langevin 
équation for a «wave function» UjJJ,) describing the audio signal, i.e. 

ûk + 2Ykùk + MkUk = yk , (9) 

where and œk dénote the dissipative coefficient and eigenfrequency, respectively, for the 
space Fourier component wdth wave number k. For any finite System there exists a 
minimum value fcmin ~ Lën ; correspondingly ym = Yk„^ and = OJ^^.^ are the damping 
coefficient and the eigenfrequency respectively for the mode with the smallest wave 
number. The numerical value of can be evaluated from spectral analyses of the audio 
signal of musical sélections (see, e.g., fig. 2a) in réf. [1]: oj^ ^ 100 Hz). However, in order to 
investigate experimentally more slowly varying quantifies, the audio power u\t) is taken 
instead of the audio signal u ( f ) and its spectral density (M^M )̂„ is measured after low-pass 
filtering[l]. It is found that, whereas the audio signal spectral density 

(uu)^ = 2Rej dT<M(̂ )̂ t(̂  + T))exp[^wT] (10) 
0 

is distributed over the audio frequency range, the spectral density of the audio power 
fluctuations 

{u^u\ = 2Rej ûz{u\t)uKt + T))exp[i(OT] (11) 
0 

exhibits the characteristic Vf behaviour in the very low-fi'equency range, typically from 
10^^ Hz to 1 Hz (see, e.g., fig. 36) in réf. [1]). Thus the quantity that was measured 
experimentally [1] is the monotonically varying audio power of the music which is 
proportional to the square of the audio signal. So, instead of Uk(t), we should consider M|(<) 
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whose time corrélation function can be computed analytically from eq. (9) with the usual 
assumption {uk{t)y,c{t + T)) = 0 . That the signal be decorrelated from the random source 
term is certainly vahd here, since we consider long-time corrélations (as w e are interested in 
the low-frequency domain). One fmds 

{{ulf),^{ul{t)ul{t + z)) = 

i + 4 V sin + i f 1 - ^ j c o s W e x p [ - 2 r ™ T ] (12) 

with 0^ = - T^i- According to flicker noise theory [9] as outlined above, w e must 
invest igate the corresponding power spectrum for the diffusion stage defîned by w « y^ , 

( î *^ î i \ = l 2 ^ J \àkS{o.)e^v\.-lLim{{u'f) , (13) 

where {(u^)"^) dénotes the audio power mean-square fluctuations, that is the characteristic 
fluctuating thermodynamic quantity of the audio system. S(c<j) is obtained by t ime Fourier 
transformation of (12), and is given by 

where the «diffusion stage» condition oj«Ym has been used. Assuming the 

dispersion is given by 

L f „ = L 2 + c 2 ( r ^ w ) - \ (15) 

where c dénotes the sound velocity and L the size of the system. Then, for low frequencies, 
c % m w ) " ^ » L and Lf, c ^ ( 7 „ w ) ~ \ 

N o w the flicker noise domain is defîned by the frequency range 

.2 
•Vobs = J Y - = "̂ D • U D ) 

Ym Ym -^eff 

Since w « 7 ^ , it also foUows from (16) that y ^ / w ^ « 1, which permits to simplify somewhat 
expression (14). Sett ing x'^ = k^iYm^^), we fînd 

iu^u\ - f d x ^ ^ e x p [ - xV2]^^^ , (17) 
V 2 ^ o 1 + ^ 

where again w e used the fact that w«Ym-
The linear dependence ojm = c\k\ used here is most logical; when a more gênerai {w, k) 

dependence of the type Mmlym ^ k^co^'" is taken, it is easy to show that the main resuit, 
eq. (17), remains essentially unchanged, i.e. one fmds 

( î i ^ î t ^ o c i l ! ^ . (18) 

So we have shown that under condition (16), audio power fluctuations in music sélections 
exhibit a low-frequency spectral density with 1/w behaviour («1//noise»). Such a behaviour is 
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subject to the existence of three characteristic quantities: a «thermodynamic function» given 
by the mean-square fluctuations in the audio System; an «effective diffusion» time TD, i-e. 
the time related to Leff which here is the characteristic instrumental length; and Tobs, the 
duration of observation time, here the length of the music pièce. In conclusion flicker noise 
should exist for any audio System {i.e. for any music) for which inequalities (16) hold. 
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