
Shock and Vibration 13 (2006) 429–444 429
IOS Press

Natural frequencies and modal damping

ratios identification of civil structures from

ambient vibration data

Minh-Nghi Ta∗, Joseph Lardiès and Berthillier Marc
University of Franche-Comte, FEMTO-ST, UMR CNRS 6174, Applied Mechanics Laboratory R. Chal éat, 24 rue de
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Abstract. Damping is a mechanism that dissipates vibration energy in dynamic systems and plays a key role in dynamic response

prediction, vibration control as well as in structural health monitoring during service. In this paper a time domain and a time-scale

domain approaches are used for damping estimation of engineering structures, using ambient response data only. The use of

tests under ambient vibration is increasingly popular today because they allow to measure the structural response in service.

In this paper we consider two engineering structures excited by ambient forces. The first structure is the 310 m tall TV tower

recently constructed in the city of Nanjing in China. The second example concerns the Jinma cable-stayed bridge that connects

Guangzhou and Zhaoqing in China. It is a single tower, double row cable-stayed bridge supported by 112 stay cables. Ambient

vibration of each cable is carried out using accelerometers. From output data only, the modal parameter are extracted using a

subspace method and the wavelet transform method.
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1. Introduction

Modal parameters identified from the measured data can reflect the dynamic characteristics of a vibrating system
and often serve as input to model updating, health monitor or damage diagnosis. To identify the modal parameters
of a system, both the excitation force and the response of the system should be measured and the frequency response
function between the excitation and the response need to be calculated. In laboratory cases this experimental modal
analysis method is effective and practical. However, for large and heavy structures, expensive and very strong
exciting equipment is needed and the testing process may damage the mechanical structure. The last ten years, more
attention was paid to so-called ambient excitation structures. The structural response is measured to freely available
natural forces such as wind, traffic, waves and micro earthquakes. Obviously, the excitation force cannot be measured
and is not available as input measurement. The mechanical system is subject to an uncontrolled, unmeasured and
non-stationary excitation. The advantage of using ambient forces is that they are more representative for the true
excitation to which a structure is subjected during its lifetime. Hence, the need arises to identify modal parameters
in real operational conditions, from output only measurements. In this paper the modal parameters of structures
are extracted from output-data only using subspace methods [1–3] and the wavelet transform [4,5]. Two examples
using real data are presented. The first experiment concerns the TV tower in the city of Nanjing in China [6]. This
tower is 310 m high and the acceleration response of the structural system measured under ambient conditions is
used to identify its dynamic characteristics. The second experiment concerns the Jinma cable-stayed bridge that
connects Guangzhou and Zhaoqing in China [7]. It is a single tower, double row cable-stayed bridge supported by
112 stay cables. Ambient vibration of each stay cable is carried out using accelerometers. The identification of
modal parameters is compared using the subspace method and the wavelet transform technique.
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2. Subspace identification

2.1. The stochastic state-space model and the modal model

The subspace identification method assumes that the dynamic behaviour of a structure excited by ambient forces

can be described by a stochastic state space model [1–3]:

zk+1 = A zk + wk state equation (1)

yk = C zk + vk observation equation (2)

where yk is the (mx1) vector of observations, wk , vk are white noise terms representing process noise and measure-

ment noise together with the unknown inputs; zk is the (nx1) internal state vector; A is the (nxn) state matrix de-

scribing the dynamics of the system and C is the (mxn) output matrix, translating the internal state of the system into

observations. The modal parameters of a vibrating system are obtained by applying the eigenvalue decomposition

of A:

A = ΨΛΨ−1 (3)

where Λ = diag(λi), i = 1, 2, . . . , n, is the diagonal matrix containing the discrete-time complex eigenvalues

and Ψ contains the eigenvectors as columns. The eigenfrequencies f i and damping ratios ζi are obtained from the

eigenvalues:
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The mode shapes are obtained by pre-multiplying the eigenvectors with C:

Φ = CΨ (5)

Our purpose is to determine the state matrix A and the output matrix C in order to obtain the modal parameters

of the vibrating system.

2.2. Estimation of the state matrix A

We define the (mfx1) and (mpx1) future and past data vectors as

y+
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k , yT

k+1, . . . , y
T
k+f−1

]T
and y−

k−1 =
[

yT
k−1, y

T
k−2, . . . , y

T
k−p

]T
(6)

and the (mfxmp) covariance matrix between the future and the past as:
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(7)

where E[•] denotes the expectation operator, H is the block Hankel matrix (a block band counter diagonal matrix)

formed with the (mxm) theoretical covariance matrices:

Ri = E
[

yk+iy
T
k

]

= CA
i−1

G, with G = E
[
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T
k

]

(8)

In practice we estimate sample covariance matrices from data yk, k = 1, 2, . . . , N

R̂i =
1

N

N−i
∑

k=1

yk+iy
T
k ; i = 0, 1, 2, . . . , f + p (9)
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which are used to estimate a sample block Hankel matrix Ĥ.

In order to obtain the state matrix A, two matrix decompositions of the block Hankel matrix are employed: the

singular value decomposition and the factorization of Ĥ into its observability and controllability matrices. The

singular value decomposition of Ĥ is Ĥ = ÛŜV̂
T

with Û and V̂ orthogonal matrices and Ŝ a diagonal matrix

of singular values. The second factorization of the block Hankel matrix into its (mfxn) observability and (nxmp)

controllability matrices, O and K is:
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The two factorisations of the estimated block Hankel matrix can be equated to give:

H = USV
T =
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implying:

O = US
1/2 and K = S

1/2
V

T (12)

Two methods are used to estimate the state matrix A: the shifted block Hankel matrix method and the observability

matrix method.

– The shifted block Hankel matrix method

To estimate A, it is necessary to introduce a time shifted block Hankel matrix,
←

H, obtained by shifting a block

column or a block row:
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We obtain:
←

H = OAK (14)

The state matrix A is obtained by applying the pseudo inverses of O and K, yielding:
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#
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where (•)# represents the pseudo inverse of a matrix.

– The observability matrix method:

We introduce two matrices:
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where O
↓(m(f − 1)xn) is the matrix obtained by deleting the last block row of O and O

↑(m(f − 1)xn) is the

matrix obtained by deleting the first block row of O. We obtain then:

O
↑ = O

↓
A (17)

Finally:

A = (O↓)#O
↑ (18)
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2.3. Estimation of the output matrix C

Two methods are used to determine the output matrix C: the Hankel matrix method and the observability matrix

method.

– The block Hankel matrix method

Consider H1L, the first block row of the block Hankel matrix H, we have H 1L = CK. We obtain

C = H1LK
# = H1LVS

−1/2 (19)

– The observability matrix method

It is easy to show that C is the first block row of the observability matrix O:

C = O1L = {first block row of O} (20)

With the determination of the output matrix C and the eigenvector matrix Ψ, we obtain the mode shapes of the

structure using Eq. (5).

2.4. Identification of modal parameters: practical aspect

When performing modal analysis one of the key decisions that must be upon starting to analyse the data is to

decide how many modes there are in the frequency range of interest. This can be done with the stabilization diagram

which is developed to track the estimates of eigenfrequencies and damping ratios, in the frequency range of interest,

as a function of the model order (the size of the transition matrix A). As the model order is increased, more and

more frequencies and damping ratios are estimated, but hopefully, the estimates of the physical modal parameters

stabilize as the correct model order is found. For modes that are very excited in the measured data, the modal

parameters stabilize at a very low model order. For modes that are poorly excited in the measured data, the modal

parameters may not stabilize until a very high model order is chosen. Nevertheless, the non physical modes (in

generally computational modes, or modes due to noise) do not stabilize at all during the process and can be sorted

out of the modal parameter data set more easily. Note that inconsistencies (frequency shifts, leakage errors . . . ) in

the measured data set obscure slightly the stabilization diagram and a tolerance in percentage is given for the stability

of each of the modal parameters that are being evaluated.

In practice, we progressively increase the model order n, determine the state matrix A and form its eigenvalue

decomposition to obtain the eigenfrequencies and damping ratios of the system for each n. We establish then

the stabilization diagram. The output matrix C is also determined to obtain the mode shapes. In order to select

the physical modes and to suppress the spurious modes, eigenfrequencies, damping ratios and mode shape vectors

between two successive orders are compared. The criteria are 1% for eigenfrequencies, 10% for damping ratios and

99.5% for mode shape vectors (MAC).

f (n) − f (n+1)

f (n)
� 0.01;

ζ(n) − ζ(n+1)

ζ(n)
� 0.1;

(21)

MAC(n, n + 1) =

∣

∣φ(n)Hφ(n+1)
∣

∣

2

(

φ(n)Hφ(n)
) (

φ(n+1)Hφ(n+1)
) � 0.995

Experimental results showing the effectiveness of the procedure are presented in Section 4.

3. The continuous wavelet transform

3.1. Definitions

The wavelet transform (WT) gives time and frequency information about the analyzed data. The wavelet transform

of a signal x(t) is defined as [8,9]
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Wψ [x] (a, b) = 〈x, ψa,b〉 =
1√
a

∫ +∞

−∞

x(t)ψ∗

(

t − b

a

)

dt (22)

where ψ(t) is an analyzing function called mother wavelet, a is the dilatation or scale parameter defining the

analysing window stretching and b is the translation parameter localising the wavelet function in the time domain.

The WT represents the correlation between the signal x(t) and a scaled version of the function ψ(t). The idea of the

WT is to decompose a signal x(t) into wavelet coefficients using the basis of wavelet functions. The decomposition

is obtained locally at different time windows and frequency bands. The size of the time window is controlled by the

translation parameter b while the length of the frequency band is controlled by the dilatation parameter a. Hence,

one can examine the signal at different time windows and frequency bands by controlling translation and dilatation.

Since the wavelet transform is a linear representation of a signal, it follows that the WT of P signals is

Wψ

[

P
∑

i=1

xi

]

(a, b) =

P
∑

i=1

Wψ [xi] (a, b) (23)

this property is convenient for the analysis of multi-component signals.

A number of different analyzing functions have been used in the wavelet analysis. One of the most known and

widely used is the Morlet wavelet defined in the time domain as [4,5,8]

ψ(t) = e
−t

2

2 ejωot (24)

where ωo is the wavelet frequency. The dilated version of the Fourier transform is

ψ̂(aω) =
√

2πe−
1

2
(aω−ωo)2 (25)

In practice the value of ωo is chosen ωo � 5 which meets approximately the requirements of admissibility

condition [9]. Note that ψ̂(aω) is maximum at the central frequency ωc = ωo/a and the Morlet wavelet can be

viewed as a linear bandpass filter whose bandwidth is proportional to 1/a or to the central frequency. Thus, the value

of the dilatation parameter a at which the wavelet filter is focused on the wavelet frequency can be determined from

a = ωo/ωc.

For a given value of the dilatation parameter a the spectrum of the Morlet wavelet has a fixed bandwidth. If the

analysed frequency is important the dilatation parameter becomes small and the spectrum of the Morlet wavelet

function is wide. There is then a bad spectral resolution. An alternative is to modify the Morlet wavelet function

by introduction of a parameter N which controls the shape of the basic wavelet: this parameter balances the time
resolution and frequency resolution of the Morlet wavelet. The modified Morlet wavelet function used in this paper

is:

ψ(t) = e
−t

2

N ejωot (26)

with N > 0 and whose dilated version of its Fourier transform is:

ψ̂(aω) =
√

Nπe−
N

4
(aω−ωo)2 (27)

The wavelet filter central frequency is ωc = ωo/a and gives then a relation between the scale parameter a and the

central frequency of the modified Morlet wavelet.
The duration and bandwidth of the modified Morlet wavelet function are given by:

∆tψ =

√
N

2
; ∆ωψ =

1√
N

(28)

When N tends to infinity the modified Morlet wavelet tends to e jωot which has the finest frequency resolution

allowing a better resolution of closely spaced modes, but at the expense of time resolution. Indeed, increasing N
will increase the frequency resolution but it decreases the time resolution. So, there always exists an optimal value

of N that has the best time-frequency resolution for a certain signal localized in the time-frequency plane. This

modified Morlet wavelet function offers a better compromise in terms of localization, in both time and frequency

for a signal, than the traditionally Morlet wavelet function. The optimal value of N is obtained by minimizing the

entropy of the wavelet transform [10].
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3.2. Application of the wavelet transform to modulated signals

Consider the case of a signal x(t) modulated in amplitude:

x(t) = A(t) cos(ϕ(t)) (29)

if x(t) is assumed to be asymptotic, the WT of x(t) can be obtained by means of asymptotic techniques and can be

expressed as [4,5]

Wψ [x] (a, b) =

√
a

2
A(b)ejϕ(b)ψ̂∗ (aϕ̇(b)) (30)

the point indicating a derivative. The dilatation parameter can be calculated in order to maximize ψ̂∗ (aϕ̇(b)), that is

using the Morlet wavelet (or the modified Morlet wavelet) for the dilatation a(b) = ω o/ϕ̇(b). The wavelet transform

is essentially concentrated in a neighbourhood of a curve given by a(b).
Consider now the free response of a viscously damped single degree of freedom system:

x(t) = Be−ζωnt cos(ωdt + χo) (31)

with B the residue magnitude, ωn the undamped natural frequency, ωd = ωn

√

1 − ζ2 the damped natural frequency,

ζ the viscous damping ratio. If the system is underdamped, that is if the damping ratio is smaller than 1, (in general

0 < ζ ≪ 1, so ωd; ωn) the signal x(t) can be considered asymptotic, and therefore the results obtained previously

can be used considering:

A(t) = Be−ζωnt (32)

ϕ(t) = ωdt + χo ⇒ ϕ̇(t) = ωd (33)

The wavelet transform of the damped sinusoid is:

Wψ [x] (a, b) =

√
a

2
Be−ζωnbej(ωdb+χo)ψ̂∗ (aωd) (34)

For a fixed value ao of the dilatation parameter the logarithm of the wavelet transform amplitude is:

ln |Wψ [x] (ao, b)| = −ζωnb + ln

(√
ao

2
B

∣

∣

∣
ψ̂∗ (aoωd)

∣

∣

∣

)

(35)

Thus the decay rate σ = ωnζ of the signal can be estimated from the slope of the straight line of the logarithm of

the wavelet transform modulus. The wavelet transform phase is given by:

Arg (Wψ [x] (ao, b)) = ωdb + χo ⇒ d

db
Arg (Wψ [x] (ao, b)) = ωd (36)

and the plot of d
dbArg (Wψ [x] (ao, b)) should be constant in time and equal to the damped natural frequency ω d.

The damping ratio and eigenfrequency estimation procedures, based on the wavelet transform presented above,

can be extended to multi degrees of freedom systems by selecting the right value of the dilatation parameter a i

corresponding to the mode of interest. Consider now the free response of a P degrees of freedom system:

x(t) =

P
∑

i=1

Bie
−ζiωnit cos(ωdit + χoi) (37)

where Bi is the residue magnitude, ζi is the damping ratio, ωni the undamped natural frequency and ωdi the damped

natural frequency associated to the i-th mode. From Eqs (23) and (34), the wavelet transform of the multi degrees

of freedom system is:

Wψ [x] (a, b) = Wψ

[

P
∑

i=1

xi

]

(a, b) =

P
∑

i=1

√
a

2
Bie

−ζiωnibej(ωdib+χoi)ψ̂∗ (aωdi) (38)
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(a) 

(b) 

Fig. 1. (a) Main structure of the tower and accelerometers location; (b) Stabilization diagram.
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Table 1

Natural frequencies and damping ratios using the subspace method and the WT method

Modes Subspace Method WT Method

Frequency (Hz) Damping ratio (%) Frequency (Hz) Damping ratio (%)

1 0.235 0.655 0.234 0.683

2 0.726 0.436 0.734 0.383

3 1.271 0.324 1.273 0.440

4 1.586 0.359 1.594 0.314

5 2.495 0.321 2.501 0.326

The wavelet transform is a signal decomposition procedure working as a filter in the time-frequency domain: it

analyzes a signal only locally at windows defined by the wavelet. Thus, multi-degrees of freedom system can be

decoupled into single degree of freedom. For a fixed value of the dilatation parameter (a = a i), which maximizes

ψ̂∗ (aωdi), only the mode associated with ai gives a relevant contribution in the wavelet transform, while all the

other terms are negligible. Thus the wavelet transform of each separated mode i = 1, 2, . . . , P becomes:

Wψ [xi] (ai, b) =

√
ai

2
Bie

−ζiωnibψ̂∗ (aiωdi) ej(ωdib+χoi) (39)

Clearly, the wavelet transform offers a decoupling of multi degrees of freedom systems into single modes. However,

Eq. (39) is true under the assumption of vanishing ψ̂∗ (aiωdi) outside the interval [ωi − ∆ωψ/ai, ωi + ∆ωψ/ai],
that is, if none of the other frequencies of the system except ω i and more likely if neither ωi−1 or ωi+1 belongs to

the interval [ωi − ∆ωψ/ai, ωi + ∆ωψ/ai]. The resolution of the wavelet transform is good enough to separate the

i-th mode from the neighbouring modes.

Using Eq. (39) associated with Eqs (35) and (36), it is possible to follow the amplitude and phase variations in

the time domain of each modal component and to estimate the corresponding damping ratio and eigenfrequency

associated to the isolated mode. This technique requires a previous choice of the value of the dilatation parameter a i

corresponding to the analyzed mode and the resolution of the wavelet transform depends on the value of this scale

parameter, thus the choice of the analyzing wavelet is important.

4. Applications

4.1. The TV tower of Nanjing in China

Figure 1(a) shows the main structure of the TV tower in the city of Nanjing in China [6]. This tower is 310 m

high and the acceleration response of the structural system measured under ambient conditions is used to identify its

dynamic characteristics. The accelerometers are installed on the tower at two sets of different locations, as shown in

Fig. 1(a), to measure the ambient vibrations of the system. The sensors at the first set of locations are concentrated

on the upper part of the structure since this part is more flexible resulting in more vibration than the lower part,

while those at the second set of locations are distributed along the height of the whole structure. The accelerometers

are placed as close as possible to the centre of the cross section of the tower in order to minimise the response

component due to torsional vibration. Acceleration records are obtained simultaneously in one direction each time,

with a sampling time interval of 0.03125 second and a total recording time of approximately 600 seconds.

Figure 1(b) shows the stabilization diagram of the tower using the observability matrix method. From this plot we

extract eigenfrequencies and damping ratios of the tower. Only accelerometer number two on the top of the tower

has been used, this aceelerometer being very excited. To eliminate spurious poles we use Eq. (21). The identified

modal parameters for the five first modes are presented in the Table 1.

The WT estimation technique operates on the free response of the system. A method converting random responses

to free decay responses is the random decrement technique [12]. Its basic concept is that the acceleration response

can be decomposed into free vibration component and forced vibration component. The free vibration component

can be obtained by a special averaging procedure of measurements which remove the random part, leaving its

deterministic part. We apply the random decrement technique to the accelerometer number 2 to obtain its free

response (see Fig. 2). We apply then the WT method.
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(a)

(b)

Fig. 2. (a) Ambient response; (b) Free response from the random decrement technique.

Figure 3 shows the wavelet transform amplitude using accelerometer number 2; the five first modes are visible

from this plot and in particular from Fig. 3(b). The modal parameters are obtained using Eqs (35) and (36) and from

the plots shown in Fig. 4.

Table 1 presents also the modal parameters obtained using this accelerometer by application of the wavelet

transform. In generally the results are similar to those obtained by the subspace method. However the third mode

presents a damping ratio slightly different. The difference comes from spurious poles which appear with the subspace

identification method and are not eliminated automatically.

4.2. The Jinma cable-stayed bridge

The subspace method and the wavelet transform method were applied to the analysis of stay cables of the Jinma

cable-stayed bridge (Fig. 5a, b), that connects Guangzhou and Zhaoqing in Guangdong Province, China. It is a
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Table 2

Natural frequencies, damping ratios and Scruton number using the subspace method

Modes 1 2 3 4 5 6 7 8

Frequency (Hz) 1.388 2.085 2.775 3.476 4.169 4.869 5.562 6.275

Damping ratio (%) 0.251 0.142 0.081 0.127 0.112 0.077 0.079 0.034

Sc,i 3.401 1.926 1.091 1.725 1.520 1.045 1.067 0.454

(a)

(b)

Fig. 3. (a). Wavelet transform amplitude (b) Determination of eigenfrequencies.

single tower, double row cable-stayed bridge, supported by 28*4 = 112 stay cables. The stay cables were excited

by ambient vibrations essentially due to wind. Inputs could evidently not be measured, so only acceleration data are

available. A full description of the test can be found in [7].

The subspace identification method is used to obtain modal parameters of a cable (cable number 10) and they are
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Fig. 4. Instantaneous frequencies and wavelet transform envelopes for the first four modes Measured (——) and identified (– – –).

presented in Table 2. The instability is assessed by the Scruton number [11] defined as S c,i = ζi.ρ
ρaD2 , where ζi is

the damping ratio for each mode, ρ is the mass of the cable per meter, ρ a is the density of the air and D is the cable

diameter. High values of the Scruton number tend to suppress the oscillation and bring up the start of instability at

high wind speeds. Considering ρ = 66.94 kg/m, ρa = 1.2 kg/m3 and D = 0.203 m, the Scruton number for each

mode is presented in Table 2.

The identification procedure of modal parameters using the WT is carried out as previously. We apply the random

decrement technique to the cable number 10 to obtain its free response (see Fig. 6). We apply then the WT method.

The wavelet transform amplitude is shown in Fig. 7(a) and the dilatation parameter a i for each eigen-mode is

obtained from Fig. 7(b). The estimated modal parameters for the eight first modes of the cable number 10 are shown

in Table 3, with the Scruton number for each mode.

The fundamental frequency of the cable number 10 has been obtained using the subspace method and the WT

method (Fig. 8(a)). We obtain approximately the same value: f 0 = 0.697 Hz. This value is obtained from the slope

of the straight line. The cable tension can be estimated by the approximated expression T = 4ρL 2f2
0 , where L =

180,174 m, ρ = 66.94 kg/m. We obtain T = 4227,593 kN. This cable tension can be considered as a reference and

used as an indicator for monitoring of stay cables in this cable-stayed bridge.
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Table 3

Natural frequencies, damping ratios and Scruton number using the WT method

Modes 1 2 3 4 5 6 7 8

Frequency (Hz) 1.387 2.081 2.774 3.477 4.172 4.870 5.559 6.275

Damping ratio (%) 0.259 0.188 0.106 0.096 0.072 0.074 0.078 0.020

Sc,i 3.509 2.552 1.431 1.302 0.980 1.008 1.061 0.272

(a) 

(b) 

Fig. 5. (a) View of the Jinma cable-stayed bridge; (b) Elevation Drawing.

Figure 8(b) shows fundamental frequencies of all stay cables (on upstream and downstream side). These frequen-

cies vary between 0.533 Hz for the longest cable and 2.703 Hz for the shortest cable. The maximum and minimum

cable forces for the Jinma bridge are then: Tmax = 5052,073 kN (cable number 57), Tmin = 2490,653 kN (cable

number 84). These cable forces can be considered as reference tensions and used as indicators in the field of health

monitoring process.

5. Conclusion

It is shown in the paper that the subspace method and the wavelet transform method can be effectively employed

in operational modal analysis. The results demonstrate that the automatic estraction of damped natural frequencies

and modal damping ratios can be successfully performed from ambient vibration data and eventually used as a non

destructive health monitoring technique. The eigenfrequencies and damping ratios of a tower have been extracted and

can be used as reference for studying the safety comportment of this tower. A cable-stayed bridge has been studied
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(a)

(b)

Fig. 6. (a) Ambient response; (b) Free response from the random decrement technique.

and stay cables eigenfrequencies and damping ratios could be used to assess the health of cables of this bridge. It

is shown how operational modal analysis applied to the dynamic data of stay cables provide useful information to

determine cable force and the current condition of stay cables accurately. A Scruton number has been computed and

used as an indicator to prevent rain-wind induced vibration. A monitoring system which records the vibrations of

stay cables and a software that extracts automatically the force cables and the Scruton number is under investigation.

Large structures tend to present large motions, and therefore nonlinearities. The use of the wavelet transform for

the identification of nonlinearities on damping and stiffness is under investigation. However, the concept established

in the paper, where the hypothesis of linear vibrations is used, can be extended to nonlinear vibrations [13]. Indeed, if

we consider the response of a nonlinear oscillator and apply the wavelet transform, it is shown [13] that the amplitude
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(a)

(b)

Fig. 7. (a) Wavelet transform amplitude; (b) Determination of dilatation parameters ai.

of the wavelet transform is related to nonlinear damping coefficients and the phase of the wavelet transform is related
to to nonlinear stiffness parameters. From the amplitude and the phase of the wavelet transform we can identify
nonlinear damping and nonlinear stiffness in vibrating systems.
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(a)

(b)

Fig. 8. (a) Fundamental cable frequency; (b) Fundamental cable frequency of all stay cables for the Jinma Bridge.
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