
Research Article

Natural Frequencies and Mode Shapes of Drill Pipe in
Subsea Xmas Tree Installation

Wensheng Xiao ,1 Haozhi Qin ,1 Jian Liu,1 Qi Liu,1 Junguo Cui,1 and Fengde Wang2

1College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao,
Shandong 266580, China

2College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China

Correspondence should be addressed to Haozhi Qin; qinhao_zhi@163.com

Received 7 January 2020; Revised 18 March 2020; Accepted 17 April 2020; Published 14 May 2020

Academic Editor: Jian Li

Copyright © 2020 Wensheng Xiao et al. .is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In this study, experimental and numerical investigations on the vibration characteristics of a drill pipe during the lowering of a
subsea Xmas tree were presented. A fourth-order partial differential equation with variable coefficients was established based on
Euler–Bernoulli beam theory. .e natural frequencies and mode shapes are obtained by using the differential transformation
method. Four drill pipe models of different sizes were used in the experiments which were measured using piezoelectric ac-
celeration sensors and fiber Bragg grating sensors, respectively. .e factors that affect the natural frequencies and mode shapes,
such as length, diameter, lumped mass, and boundary conditions, were analyzed. .e results show that all factors have remarkable
effects on the natural frequency, but changes in the length and diameter of the pipe have little effect on the mode shapes; the main
factors affecting the mode shape are the boundary conditions and lumped mass. .e results of the numerical calculation were
validated by a comparison with the experimental results and showed good agreement.

1. Introduction

A subsea Xmas tree (hereafter referred to simply as a tree) is
a key piece of equipment in a subsea production system and
is widely used in deep water [1]. .e installation cost and
installation risk in deep water have risen rapidly relative to
those in shallow water due to the complex combination of
waves and currents [2]. A deep water drill pipe (hereafter
referred to simply as a pipe), which is a slender and elastic
cylinder, may experience vortex-induced vibration (VIV)
exerted by currents and waves. Such vibrations due to vortex
shedding lead to cyclic stresses and could result in fatigue
damage [3]. In order to improve the service life of the drill
pipe, the natural frequency of the system is usually separated
from the excitation frequency. .erefore, it is necessary to
predict the natural frequency and mode shape of the pipe.

.e power series method, the Wentzel–Kramers–
Brillouin (WKB) method, the dynamic stiffness method, the
variable conversion technique, and other numerical

methods have been applied to calculate the vibration
characteristics of cylindrical structures such as the pipe or
marine risers. Dareing and Huang [3] used the power series
method to solve the vibration partial differential equation
and obtained an approximate solution for the frequencies of
the riser operating in water depths up to 600 ft. Sol-
tanahmadi [4] presented a method based on Fourier analysis
to determine the natural frequencies of systems containing
either single and multiple flexible risers from the numeri-
cally predicted results; this method showed good results in
comparison with the linearization method studied by Tri-
antafyllou and Bliek [5]. A simplified analytical approach
was proposed by Sparks [6] to examine the physics of the
transverse modal vibrations of risers induced by VIV; he
believed the flexural rigidity (EI) generally has a small in-
fluence on the natural frequency of deep water riser in the
low-frequency domain. Considering internal flows,
Krawczyk [7] used the Galerkin finite element method to
find the fundamental natural frequencies for various internal
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flows by neglecting the flexural stiffness of the riser; it was
also found that the fundamental natural frequency decreases
as the velocity of the internal fluid increases. Montoya-
Hernández et al. [8] presented a numerical algorithm to
evaluate the natural frequency of marine production risers
under internal multiphase flow, in which the riser behavior
is affected by the internal fluid density. .e solution of the
nonlinear partial differential equation involves variable
coefficients that cause research on the dynamic responses of
marine risers to be highly complex [9], as it is evident in
equation (1) later in this paper. In previous research, authors
usually simplified the governing equation by ignoring the
flexural rigidity and assuming a uniform tension. Although
this method is considered to be effective, the accuracy of this
approach was found to be limited to low-mode frequencies.

In addition to practical marine engineering researchers,
theoretical researchers have focused on the vibration anal-
ysis of tensioned beams. Howson and Williams [10] pre-
sented a convenient dynamic stiffness matrix method to
analyze the natural frequencies of Timoshenko beam under
constant tension. .e WKB-based dynamic stiffness method
[11] has been applied to study the nonuniform marine risers
based on the assumption that the properties within risers
slowly vary. Based on the Wittrick–Williams algorithm, Si
et al. [12] presented a new Newton-type method for non-
linear eigenvalue problems that results in secure second-
order convergence at natural frequencies and on mode
vectors. Xi et al. [13] investigated the free transverse vi-
brations of standing and hanging Rayleigh beam-columns
subjected to a vertically orientated gravity load; by seeking a
nontrivial solution of the partial differential equation of
motion for the transverse deflection, the natural frequencies
and mode shapes of the beam-columns were calculated. In
addition, through both experimental and theoretical ana-
lyses, Virgin et al. [14] confirmed that the natural fre-
quencies of very slender vertical cantilevers are affected by
their orientation due to gravity. In addition, Anye and Ziguo
[15] transformed the fourth order differential equation of a
Rayleigh beam into a second-order Fredholm integral
equation and obtained the frequency equation by the in-
tegral equation method.

.e differential transformation method (DTM) is par-
ticularly effective when solving the initial and boundary
value problem of the nonlinear partial differential equations
[16], and thus has been used with some success in applied
mathematics in recent years. .e DTM, a transformation
technique based on Taylor series expansion, is used to solve
the ordinary and partial differential equation approximately
[17]. .is method reduces the governing differential equa-
tion and the boundary conditions to a set of algebraic
equations according to certain transformation rules. Hence,
the DTM is treated as an iterative procedure to get higher
order series. Mei [18] applied DTM to analyze the free lateral
vibrations of a centrifugally stiffened rotating
Euler–Bernoulli beam and obtained the natural frequencies
and mode shapes. Ho and Chen [19] solved the free and
forced vibration problems of a general elastically end-re-
strained nonuniform beam resting on a nonhomogeneous
elastic foundation and subjected to axial tensile and

transverse forces. Chen et al. [9] used the DTM to calculate
the natural frequency of a marine riser and compared their
findings with the numerical and experimental results ob-
tained by other methods.

Regarding the vibrations of circular slender rod-like
structures such as marine risers or drill pipes, most previous
studies used boundary conditions in which the ends are fixed
or hinged. In recent years, scholars have performed many
studies on the vibration characteristics of cylindrical
structures such as drill risers or drill pipes; however, most of
these investigations focused on risers in working environ-
ments, whereas the vibration characteristics of risers or pipes
during the installation process have not been frequently
reported.

In this paper, the DTM is applied to solve the vibration
problems of a suspended pipe. .e governing differential
equation is transformed into a recursive algebraic equation,
and the boundary conditions are also transformed into
simple algebraic equations. .us, the difficulty of solving
governing differential equation is greatly reduced. Fur-
thermore, the analytical model is validated by comparing the
experimentally measured natural frequencies of a marine
riser model with the predicted ones.

2. Mathematical Model

2.1. Governing Equation. In the process of installing a tree,
the top of the pipe is connected with a vessel through rigid
coupling [20], and the bottom is connected to the tree as a
lumped mass. .e pipe is subjected to the axial tension force
generated by the self-weight and the tree weight and also the
lateral force generated by the combined action of wave and
current, as shown in Figure 1(a).

To conveniently calculate and derive the formula, the
following assumptions are applied during the deduction of
the governing equation:

(i) .e material of the drill pipe is linearly elastic,
isotropous, and homogeneous.

(ii) .e outer pipe diameter is constant.

(iii) .e mechanical characteristics of the pipe are
measured under large deformation with a small
strain:

z2

zz2
E(x)I(x)

z2x(z, t)

zz2
( ) − z

zz
T(z)

zx(z, t)

zz
( )

+me(z)
z2x(z, t)

zt2
� 0.

(1)

In equation (1), t is the time; z is the coordinate measured
along the axis of the pipe; x(z, t) is the transverse deflection
of the beam axis and is a function of the vertical coordinate z
and time t; E(x) is the modulus of elasticity; I(x) is the area
moment of inertia; me(z) is the effective mass of the pipe per
unit length; and T(z) is the axial tension force of the beam.

For a hang-off drilling pipe, T(z) can be represented by
the following:
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w �
1

4
πg ρs − ρw( ) D2

− d2( ),

T(z) � mBg + ∫l
z
wdz,


(2)

where z is the distance from the section to the top of the pipe;
w(z) is the net weight of the pipe (per unit length); mBg is
the suspend weight at the pipe bottom, i.e., the combined
weight of the tree and installation tool; ρs is the density of the
pipe; ρw is the density of seawater; and D and d are the outer
and inner diameters of the pipe, respectively.

.e effective mass of the pipe per unit length includes the
pipe body, internal fluid, and added mass. me(z) is calculated
by

me(z) � mp +mf +ma,

mp �
1

4
πρs D

2
− d2( ),

mf �
1

4
πρfd

2,

ma �
1

4
πCaρwD

2,
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(3)

where mp is the mass of the pipe; mf is the mass of the
internal fluid; ma is the added mass; Ca is the added mass
factor; and ρf is the density of the internal fluid. .e internal

and external fluids are both seawater with the same density
because seawater can flow freely into the pipe from the
bottom of the tree during the lowering process.

Equation (4) presents the boundary conditions of the
pipe at z� 0 and z� l:

x(z, t) | z�0 � 0,

zx(z, t)

zz

∣∣∣∣∣∣∣ z�0 � 0,
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(4)

In order to solve equation (1), the separation of variable
method is used as follows:

x(z, t) � φ(z)c(t), (5)

where the lateral deflection of the pipe is expressed as the
product of a spatial function φ(z) and a temporal function
c(t).

.e governing equation of the pipe can be deduced by
substituting equation (5) into equation (1) as follows:

z2
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z2φ(z)
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Figure 1: (a) Schematic diagram and (b) mechanical analysis model for the subsea Xmas tree installation process.
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.e boundary condition equations of the pipe can be
converted into a new form by substituting equation (5) into
equation (4) as follows:

φ(z) | z�0 � 0,

zφ(z)

zz

∣∣∣∣∣∣∣ z�0 � 0,
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(7)

2.2. Dimensionless Transformation. Two nondimensional
parameters:

z �
z

l
,

φ �
φ

l
.

(8)

Using a spectral representation [21], equation (6) can be
written as follows:

z2
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Both sides of equation (6) are then divided by E(0) I(0):
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where the following dimensionless quantities can be defined:

a(z) �
E(z)I(z)

E(0)I(0)
,

b(z) �
l2T(z)

E(0)I(0)
,

q(z) �
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(11)

Equation (10) can be written as follows:

z2

zz2 a(z)
z2φ(z)

zz2( ) − z
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zφ(z)

zz
( ) − q(z)λ4φ(z) � 0.
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.e same dimensionless treatment method is used, and
the nondimensional boundary conditions become
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(13)

where ζm � mB/me(0)l.

2.3. Extracting the Frequencies andMode Shapes by the DTM.
.e differential transformation of the kth-order derivative of
a function ϕ(z) is represented as follows:

Φ(k) � 1

k!

zkφ(z)

zzk
[ ]

∣∣∣∣∣∣∣∣∣z � z0, 0≤ z≤ 1, (14)

where Φ(k) is referred to as the kth-order differential
transformation (T-function) at the point x� x0. x0� 0 is
usually assumed for convenience but is not necessary. .e
inverse differential transformation can be written in the
following form:

φ(z) �∑∞
k

z − z0( )k 1

k!

zkφ(z)

zzk
[ ] �∑∞

k

z − z0( )kΦ(k).
(15)

Equation (15) implies that the DTM is derived from
Taylor series expansion of the function ϕ(z) at z� z0.

.e fundamental transformation rules [22] are listed in
Table 1.

Based on the differential transformation of equation (14)
and the basic operations in Table 1, the governing equation
in equation (12) can be converted into the following re-
cursive equation:

∑k
r�0

A(k − r)(r + 1)(r + 2)(r + 3)(r + 4)Φ(r + 4)

+ 2∑k
r�0

(k − r + 1)A(k − r + 1)(r + 1)(r + 2)(r + 3)Φ(r + 3)

+∑k
r�0

(k − r + 1)(k − r + 2)A(k − r + 2)(r + 1)(r + 2)Φ(r + 2)

−∑k
r�0

B(k − r)(r + 1)(r + 2)Φ(r + 2)

−∑k
r�0

(k − r + 1)B(k − r + 1)(r + 1)Φ(r + 1)

� λ4Φ(r)Q(k − r),
(16)
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where Φ(k), A(k), B(k), and Q(k) are the transformed
functions of ϕ(z), a(z), b(z), and q(z), respectively.

.e transformed boundary condition equations can be
deduced by substituting equation (15) into equation (13) as
follows:

∑∞
k�0

z − z0( )kΦ(k)
∣∣∣∣∣∣∣∣∣∣ z�0 � 0,

∑∞
k�0

k z − z0( )(k− 1)Φ(k)
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a(z)∑∞
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k(k − 1)(k − 2) z − z0( )(k− 3)Φ(k)
∣∣∣∣∣∣∣∣∣∣ z�1 −b(z)∑∞

k�0

k z − z0( )(k− 1)Φ(k)
∣∣∣∣∣∣∣∣∣∣ z�1 +ζmλ

2 ∑∞
k�0

z − z0( )kΦ(k)
∣∣∣∣∣∣∣∣∣∣ z�1 � 0,

∑∞
k�0

k(k − 1) z − z0( )(k− 2)Φ(k)
∣∣∣∣∣∣∣∣∣∣ z�1 � 0.



(17)

Considering that equation (16) is a recursive formula;
suppose Φ(0)� ξ1, Φ(1)� ξ2, Φ(2)� ξ3, and Φ(3)� ξ4;
therefore, Φ(k) can be represented by ξ1, ξ2, ξ3, and ξ4.
.en, substitute these terms into the four boundary con-
ditions of equation (17). A set of homogeneous equations of
quaternion polynomials can be obtained, which can be
assembled into a matrix equation of the following form:

[A]4×4 ξ1, ξ2, ξ3, ξ4{ }T1×4 � 0, (18)

where [A] is the coefficient matrix of equation (15). In order
to ensure that equation (18) has nontrivial solutions, the
determinant of matrix [A] must be equal to zero, which will
reveal an nth-order polynomial about the eigenvalue λ. .us,
the eigenvalue λ can be obtained by solving the polynomial
and subsequently solving for the natural frequency of the
pipe as follows:

ω �
λ2

l2

���
EI

me

√
. (19)

.e mode shapes of the pipe can be obtained once the
values of λ are found. By setting ξ1� 1, ξ2, ξ3, and ξ4 can be
determined by substituting λ into equation (18). After
obtaining ξ1∼ξ4, theΦ(k) can be generated by equation (16),
which will allow the mode shape to be solved by the dif-
ferential inverse transformation of equation (15), which can
be subsequently normalized as follows [22]:

φ(z) �
φ(z)

∫1

0
|φ(z)|dz

. (20)

3. Model Experiment

3.1. Experiment Set. In order to verify whether the method
can be used to calculate the frequency of the pipe when
lowering a subsea Xmas tree, four drill pipe models of
different sizes were made from stainless steel (SUS 304), and
their properties are listed in Table 2. .e top end of the
model was fixed on the bracket and the bottom part was set
to be free as a lumped mass, as shown in Figure 2. .e
experiment was carried out in a tank (1500 mm
long× 800 mm wide× 950 mm deep) which was designed
and constructed for water research. Water flowed freely in
the model, and we assumed that the entrained water in the
simulation scheme vibrate with the model.

Two kinds of sensors were used to test the natural
frequency of model: the piezoelectric acceleration (PA)
sensor and the fiber Bragg grating (FBG) sensor. As shown in
Figure 2, the optical sensing interrogator, which has a full
spectrum at 5 kHz with 80 nm and a wavelength accuracy of
2 pm/3 pm, was used to detect optical signals from the FBG
sensor. .e PA sensor signal was collected and processed by
a DH5902N data acquisition and analysis system with a
2 kHz sampling rate.

Seven locations were selected to place the PA sensors and
FBG sensors; their arrangements are shown in Figure 3. “x1”
was used to capture the x-axis vibration, and “y2” was used to
capture the y-axis vibration.

3.2. Test Content. In this paper, we carried out oscillating
experiments in still water. .e values of the diameter D and

Table 1: Basic operations for applications of differential transformation.

Original function f(z) Transformed function F(k)

f(z) � λg(z) F(k) � λG(k)
f(z) � g(z) ± h(z) F(k) � G(x) ± H(k)
f(z) � g(z)h(z) F(k) � ∑kr�0 G(r) ± H(k − r)
f(z) � g1(z)g2(z) · · ·gn−1(z)gn(z) F(k) � ∑k

kn−1�0∑kn−1

kn−2�0 · · ·∑k3

k2�0∑k2

k1�0 G1(k1)G2(k2 − k1) · · ·Gn−1(kn−1 − kn−2)Gn(kn − kn−1)

f(z) � (dkg(z))/dxk F(k) � (k + 1)(k + 2) · · · (k + i)G(k + i)
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the lumped mass m used in experiment for all test cases are
listed in Table 3.

3.3. DTM. Since the pipe model adopted in this paper is
uniform in the whole length direction, the governing
equation of equation (10) can be simplified as follows:

d4φ(z)

dz4 −
d

dz
(α − βz)

dφ(z)

dz
( ) − λ4φ(z) � 0, (21)

where α � (l2/EI)(wl +mBg), β � wl3/EI, and
λ4
� meω

2l4/EI. Equation (16) can be correspondingly
converted into the following recursive equation using the
DTM:

Φ(k + 4) �
μ + vx0( )Φ(k + 2)

(k + 3)(k + 4)
+

v(k + 1)Φ(k + 1)

(k + 2)(k + 3)(k + 4)

+
λ4Φ(k)

(k + 1)(k + 2)(k + 3)(k + 4)
.

(22)

3.4. Experimental Results. Table 4 shows the error in the
prediction of the natural frequencies of the model pipe,
where the error is defined as the percentage of the ratio of the
absolute difference between experimental values and theo-
retical calculating values. Error1 is the error between value
measured by the PA sensor and the theoretical calculating
value; the maximum error occurs at the fourth frequency of
Exp20, and the error is 15.53%, while the minimum error is
0.04%, which occurs at the fourth frequency of Exp10, and
the average error is less than 5%. Error2 represents the error
between the value from the FBG sensor and the theoretical
calculating value; the maximum error is 8.93%, which occurs
at the fifth frequency of Exp22, while the smallest error is
0.05% for the fifth frequency of Exp21, and the mean error is
2.8%. Error3 is the error between the two experimental
sensors, and the mean error is 3.09%. .e frequency ob-
tained using the DTM is acceptable enough for design
purposes because the mean error is generally less than 5%;
thus, the frequency of the pipe when lowering a subsea Xmas
tree can be determined using the equations and technique
proposed in this paper.

(a) (b)

Figure 2: Riser pipe model and its part. (a) Pipe model and measuring devices and (b) part of the pipe model.

Table 2: Characteristics of the pipe model.

Property
Value

Model 1 Model 2 Model 3 Model 4

Length of the pipe (l) m 0.9 1.5 0.9 1.5
Outside diameter (D) mm 10 10 40 40
.ickness of pipe (δ) mm 1 1 2.3 2.3
Density of drill pipe (ρs) kg/m3 7930 7930 7930 7930
Elastic modulus of steel (E) GPa 206 206 206 206
Add mass coefficient (Ca) 1 1 1 1
Bottom mass of model (WB) kg 0∼0.55 0∼0.55 0∼5 0∼5
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Figure 4 shows a plot of the experimentally measured
natural frequencies of the model pipe in still water in
comparison with the natural frequencies predicted by the
DTM using the equations developed in this paper. Results of
experimental tests prove that the theoretical calculating
values match well with the experimental measuring values.

By comparing the curve of Exp1 with that of Exp7 or by
comparing the curve of Exp13 with that of Exp19 in Figure 5,
it can be observed that as the length of the pipe model
increases, the natural frequencies of each order decreases,
and thus, it can be inferred that the natural frequency of the
system decreases gradually during the process of lowering
the pipe. At the same time, by comparing the curve of Exp1
with that of Exp13 or by comparing the curve of Exp7 with
that of Exp19, it can be seen that the specification of the pipe
is an important factor affecting the natural frequency of the
system. In the case of the same length, the larger the

diameter of the pipe is, the higher the natural frequency of
each order will be.

.e effect of the lumped mass at the bottom of the pipe on
the natural frequency of the model pipe 1 is plotted in Fig-
ure 6. It is obvious from Figure 6 that the natural frequency of
the pipe model decreases with increasing bottom weight, and
the results obtained by the two experimental sensors are
consistent with the theoretical calculation. .erefore, in an
actual project, the weight of the Xmas tree has a significant
impact on the frequency of the whole lowering system.

Figure 7(a)–7(f) show the mode shapes of the pipe
model; these modes are obtained by the DTM and FBG
sensor, respectively. It can be seen that the first five mode
shapes obtained by the theoretical method and experimental
sensor are basically coincident. .e mode shapes of the pipe
can be determined using the equations and technique
proposed in this paper. However, the amplitudes of the

Table 3: Experimental conditions.

.e diameter D (mm) Pipe length L (mm)
.e lumped mass: m (g)

0 103 206 309 412 515

Model 1 10 900 Exp1 Exp2 Exp3 Exp4 Exp5 Exp6
Model 2 10 1500 Exp7 Exp8 Exp9 Exp10 Exp11 Exp12

.e diameter D (mm) Pipe length L (mm)
.e lumped mass: m (g)

0 1155 2097 3032 3972 4912

Model 3 40 900 Exp13 Exp14 Exp15 Exp16 Exp17 Exp18
Model 4 40 1500 Exp19 Exp20 Exp21 Exp22 Exp23 Exp24

x

y2

x1

y

PA

FBG

(a) (b) (c)

Figure 3: Schematic view of the pipe model and measuring points in experiment: (a) a schematic diagram of sensors, (b) a picture of pipe
model with sensors, and (c) sensors.
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Table 4: Error of predicted natural frequencies in experimental cases.

Case Natural frequency .eoretical value PA FBG Error1 (%) Error2 (%) Error3 (%)

Exp1

1st 10.5147 10.7863 10.3401 2.58 1.66 4.14
2nd 65.8235 60.4248 63.2812 8.20 3.86 4.73
3rd 184.2873 174.5605 176.1025 5.28 4.44 0.88
4th 361.1188 345.4591 345.3308 4.34 4.37 0.04
5th 596.9475 562.7441 580.5326 5.73 2.75 3.16
6th 891.7300 825.1953 825.3219 7.46 7.45 0.02

Exp2

1st 6.5076 7.3243 6.2983 12.55 3.22 14.01
2nd 51.3432 48.8281 50.5211 4.90 1.60 3.47
3rd 155.5492 151.3672 153.6025 2.69 1.25 1.48
4th 318.0149 313.1104 312.9178 1.54 1.60 0.06
5th 539.2983 520.6299 520.6002 3.46 3.47 0.01
6th 819.4665 800.2637 810.2438 2.34 1.13 1.25

Exp3

1st 5.1823 5.4145 5.0371 4.48 2.80 6.97
2nd 49.1996 47.6074 47.5933 3.24 3.26 0.03
3rd 152.8061 150.7568 152.4119 1.34 0.26 1.10
4th 315.0362 310.3311 311.5492 1.49 1.11 0.39
5th 536.1817 515.8887 517.5979 3.78 3.47 0.33
6th 816.2613 788.8086 797.3321 3.36 2.32 1.08

Exp4

1st 4.4392 4.8828 4.1414 9.99 6.71 15.18
2nd 48.3092 47.6074 47.6291 1.45 1.41 0.05
3rd 151.7448 149.5361 150.2124 1.46 1.01 0.45
4th 313.9227 307.0068 310.4764 2.20 1.10 1.13
5th 535.0382 509.0332 516.1435 4.86 3.53 1.40
6th 815.0991 787.5117 793.8137 3.38 2.61 0.80

Exp5

1st 3.9487 3.8521 3.8828 2.45 1.67 0.80
2nd 47.8260 47.6074 47.4852 0.46 0.71 0.26
3rd 151.1870 147.0947 148.7914 2.71 1.58 1.15
4th 313.3460 296.6309 307.1457 5.33 1.98 3.54
5th 534.4506 490.957 515.0786 8.14 3.62 4.91
6th 814.5047 781.6836 789.8112 4.03 3.03 1.04

Exp6

1st 3.5945 3.6828 3.4392 2.46 4.32 6.61
2nd 47.5255 46.9971 46.9573 1.11 1.20 0.08
3rd 150.8466 144.8877 140.8317 3.95 6.64 2.80
4th 312.9971 294.8539 297.3333 5.80 5.00 0.84
5th 534.0966 487.3223 513.5267 8.76 3.85 5.38
6th 814.1477 779.2041 782.8726 4.29 3.84 0.47

Exp7

1st 3.6311 3.9196 3.7399 7.94 3.00 4.58
2nd 22.6353 24.4731 22.8863 8.12 1.11 6.48
3rd 63.3445 66.7916 61.7196 5.44 2.57 7.59
4th 124.1114 118.3987 120.8129 4.60 2.66 2.04
5th 205.1518 192.9841 197.6397 5.93 3.66 2.41
6th 306.4508 281.2845 300.1003 8.21 2.07 6.69

Exp8

1st 2.6204 2.8489 2.7537 8.72 5.09 3.34
2nd 18.4668 19.3654 18.2873 4.87 0.97 5.57
3rd 54.6145 60.4631 57.3336 10.71 4.98 5.18
4th 110.6133 116.6287 112.7168 5.44 1.90 3.35
5th 186.7600 192.7039 189.0539 3.18 1.23 1.89
6th 283.1069 270.4674 274.4444 4.46 3.06 1.47

Exp9

1st 2.1833 2.3416 2.2396 7.25 2.58 4.36
2nd 17.5189 18.8431 18.0539 7.56 3.05 4.19
3rd 53.2767 57.9743 55.8113 8.82 4.76 3.73
4th 109.0850 112.8 110.3336 3.41 1.14 2.19
5th 185.1139 189.7431 185.6987 2.50 0.32 2.13
6th 281.3824 269.1264 273.1249 4.36 2.93 1.49
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Table 4: Continued.

Case Natural frequency .eoretical value PA FBG Error1 (%) Error2 (%) Error3 (%)

Exp10

1st 1.9161 2.1341 2.0223 11.38 5.54 5.24
2nd 17.0886 16.4631 17.2574 3.66 0.99 4.82
3rd 52.7259 54.7598 53.7434 3.86 1.93 1.86
4th 108.4875 108.4394 109.2253 0.04 0.68 0.72
5th 184.4890 183.3648 183.5464 0.61 0.51 0.10
6th 280.7400 265.153 265.3254 5.55 5.49 0.07

Exp11

1st 1.7319 1.8821 1.7746 8.67 2.46 5.71
2nd 16.8468 16.1428 16.3394 4.18 3.01 1.22
3rd 52.4307 51.3689 51.8531 2.03 1.10 0.94
4th 108.1746 106.2254 107.1038 1.80 0.99 0.83
5th 184.1660 179.6413 177.6599 2.46 3.53 1.10
6th 280.4105 261.2791 260.7397 6.82 7.01 0.21

Exp12

1st 1.5955 1.7325 1.7365 8.58 8.83 0.23
2nd 16.6945 15.9542 15.9987 4.43 4.17 0.28
3rd 52.2501 49.254 48.4355 5.73 7.30 1.66
4th 107.9857 103.3634 105.3333 4.28 2.46 1.91
5th 183.9724 174.9213 176.5189 4.92 4.05 0.91
6th 280.2139 254.3864 259.2547 9.22 7.48 1.91

Exp13

1st 36.8698 34.4861 6.47% 3.05 3.65 6.47
2nd 231.0448 223.3359 3.34% 0.50 2.93 3.34
3rd 646.9281 673.7881 4.15% 0.60 3.41 4.15
4th 1267.7187 1307.829 3.16% 3.38 0.21 3.16
5th 2095.6284 2345.238 11.91% 8.86 2.72 11.91
6th 3130.5047 3380.716 7.99% 5.38 2.42 7.99

Exp14

1st 23.7641 25.9533 22.6144 9.21 4.84 12.87
2nd 182.1634 192.5408 189.4824 5.70 4.02 1.59
3rd 548.7162 520.1795 540.8744 5.20 1.43 3.98
4th 1119.4019 999.7836 1089.3244 10.69 2.69 8.96
5th 1896.4459 1785.127 1823.8248 5.87 3.83 2.17
6th 2880.1461 2769.759 2898.0893 3.83 0.62 4.63

Exp15

1st 19.5296 20.2378 18.8513 3.63 3.47 6.85
2nd 174.6356 187.4995 183.9104 7.37 5.31 1.91
3rd 538.8244 513.7513 533.0132 4.65 1.08 3.75
4th 1108.5160 1174.466 1089.7347 5.95 1.69 7.21
5th 1884.9708 1773.479 1736.2437 5.91 7.89 2.10
6th 2868.2890 2537.492 2727.3099 11.53 4.92 7.48

Exp16

1st 16.9820 15.713 16.4131 7.47 3.35 4.46
2nd 171.1710 159.9923 170.0844 6.53 0.63 6.31
3rd 534.5942 551.7963 547.2145 3.22 2.36 0.83
4th 1104.0262 1208.198 1137.1944 9.44 3.00 5.88
5th 1880.3318 1976.187 1901.003 5.10 1.10 3.80
6th 2863.5560 2761.761 2844.7672 3.55 0.66 3.01

Exp17

1st 15.2184 15.1349 15.2124 0.55 0.04 0.51
2nd 169.1611 174.3981 177.1978 3.10 4.75 1.61
3rd 532.2258 530.1284 546.2446 0.39 2.63 3.04
4th 1101.5536 1194.7641 1116.3345 8.46 1.34 6.56
5th 1877.7996 1966.9432 1894.1487 4.75 0.87 3.70
6th 2860.9866 2733.9673 2819.6687 4.44 1.44 3.13

Exp18

1st 13.9106 14.9721 14.1121 7.63 1.45 5.74
2nd 167.8552 170.9841 172.3347 1.86 2.67 0.79
3rd 530.7195 526.1192 538.9401 0.87 1.55 2.44
4th 1099.9959 1181.791 1104.0022 7.44 0.36 6.58
5th 1876.2124 1951.764 1884.2546 4.03 0.43 3.46
6th 2859.3811 2710.762 2804.3463 5.20 1.92 3.45
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Table 4: Continued.

Case Natural frequency .eoretical value PA FBG Error1 (%) Error2 (%) Error3 (%)

Exp19

1st 12.6734 13.2563 12.3225 4.60 2.77 7.04
2nd 79.3990 73.7568 78.4572 7.11 1.19 6.37
3rd 222.3127 220.3311 224.6267 0.89 1.04 1.95
4th 435.6404 470.4668 452.6511 7.99 3.90 3.79
5th 720.1421 802.6058 769.3038 11.45 6.83 4.15
6th 1075.7656 975.1812 1002.0375 9.35 6.85 2.75

Exp20

1st 9.3936 10.0974 9.8236 7.49 4.58 2.71
2nd 65.5353 66.8899 66.7954 2.07 1.92 0.14
3rd 192.8674 207.4506 198.1269 7.56 2.73 4.49
4th 389.6997 450.232 420.3284 15.53 7.86 6.64
5th 657.1804 600.2085 650.7065 8.67 0.99 8.41
6th 995.5286 1063.786 987.8547 6.86 0.77 7.14

Exp21

1st 8.0243 7.7562 7.7034 3.34 4.00 0.68
2nd 62.2993 58.189 60.8146 6.60 2.38 4.51
3rd 188.1462 200.0332 192.4503 6.32 2.29 3.79
4th 384.2031 381.5346 390.6624 0.69 1.68 2.39
5th 651.1935 644.4566 650.8563 1.03 0.05 0.99
6th 989.2098 1002.723 990.5333 1.37 0.13 1.22

Exp22

1st 7.1245 6.8512 7.3369 3.84 2.98 7.09
2nd 60.6575 58.2123 57.8555 4.03 4.62 0.61
3rd 185.9753 195.3257 189.6279 5.03 1.96 2.92
4th 381.8073 400.4822 395.1465 4.89 3.49 1.33
5th 648.6642 710.3375 706.5805 9.51 8.93 0.53
6th 986.5939 1023.985 992.3503 3.79 0.58 3.09

Exp23

1st 6.4695 6.3356 6.4365 2.07 0.51 1.59
2nd 59.6564 57.3487 57.0213 3.87 4.42 0.57
3rd 184.7180 188.2234 185.34623 1.90 0.34 1.53
4th 380.4551 394.8947 388.1113 3.80 2.01 1.72
5th 647.2570 690.7536 660.2769 6.72 2.01 4.41
6th 985.1517 1000.325 980.7383 1.54 0.45 1.96

Exp24

1st 5.9677 6.2872 6.1012 5.35 2.24 2.96
2nd 58.9858 60.7298 56.3343 2.96 4.50 7.24
3rd 183.9026 188.9128 180.3843 2.72 1.91 4.51
4th 379.5914 380.9412 377.5567 0.36 0.54 0.89
5th 646.3656 660.9734 652.2794 2.26 0.91 1.32
6th 984.2429 991.5867 980.3444 0.75 0.40 1.13
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Figure 4: Continued.
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Figure 4: .e frequencies of pipes in different methods: (a) model pipe 1 in Exp1, (b) model pipe 1 in Exp2, (c) model pipe 2 in Exp7, (d)
model pipe 2 in Exp8, (e) model pipe 3 in Exp13, (f ) model pipe 3 in Exp14, (g) model pipe 4 in Exp19, and (h) model pipe 4 in Exp20.
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Figure 6: Natural frequencies of the model pipe 1 with a lumped mass: (a) first mode, (b) second mode, (c) third mode, and (d) fourth mode.
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Figure 7: Continued.
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Figure 7: Mode shape of the model pipe 1: (a) first mode, (b) second mode, (c) third mode, (d) fourth mode, (e) fifth mode, and (f) sixth
mode.

Mathematical Problems in Engineering 13



100m

500m

1000m

1500m

0

0.25

0.50

0.75

1

F
ir

st
 m

o
d

e

0.25 0.50 0.75 10

Normalized length z

(a)

100m

500m

1000m

1500m

–1.0

–0.5

0

0.5

1.0

S
ec

o
n

d
 m

o
d

e

0.25 0.50 0.75 10

Normalized length z

(b)

100m

500m

1000m

1500m

–1.0

–0.5

0

0.5

1.0

T
h

ir
d

 m
o

d
e

0.25 0.50 0.75 10

Normalized length z

(c)

100m

500m

1000m

1500m

–1.0

–0.5

0

0.5

1.0

F
o

u
rt

h
 m

o
d

e

0.25 0.50 0.75 10

Normalized length z

(d)

Figure 8: Mode shapes of the pipe of different lengths: (a) first mode, (b) second mode, (c) third mode, and (d) fourth mode.

Table 5: Known parameters.

Property Value

Length of the pipe (l) m 1500
Density of seawater (ρw) kg/m3 1025
Density of drill pipe (ρs) kg/m3 7850
Elastic modulus of steel (E) GPa 206
Outside diameter (D) mm 127
.ickness of pipe (δ) mm 9.19
Add mass coefficient (Ca) 1
Mass of tree and tool (WB) kg 50000

Table 6: Results of DTM and FEM.

Natural frequency (Hz) 1st 2nd 3rd 4th

DTM 0.01248 0.03769 0.06763 0.09893
FEM 0.01135 0.03414 0.06153 0.09011
Error (%) 9 9.4 9 8.9
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sixth-order mode shape are quite different; the measured
modal amplitude is significantly smaller than the theoreti-
cally calculated amplitude because the test points are too few
to show high order modes accurately.

4. Example Calculation and Analysis

4.1. Example. Taking an actual subsea Xmas tree installation
process as an example, the known parameters are listed in
Table 5:

4.2. Analysis of the Influencing Factors. Table 6 lists natural
frequencies that were calculated using DTM and FEM. It can
be seen from the table that results of two methods are almost
same. Considering that the FEM results can be influenced by
the number of finite elements, we believe that the DTM
results are closer to the exact solution and more convenient
for application.

As noted earlier, the mode shape of the riser can be
readily determined using equation (16). Figure 8 shows the

first four modes shape of the pipe with different heights. It
can be seen from these figures that the mode shape of the
pipe remains basically unchanged during the lowering of the
tree, but a change in the length affects the mode shape only
locally. .e amplitude at the end of the pipe increases as the
length of the drill pipe increases.

Figure 9 shows the first four mode shapes of the pipe
with the Xmas tree having different weights. Under the
condition a pipe with a free end, the maximum amplitude is
at the end of the pipe, but after hanging the tree, the
maximum amplitude does not occur at the end of the pipe.
Moreover, as the weight of the tree increases, the vibration
amplitude at the end of the drill pipe will decrease.

5. Conclusions

In this paper, the DTM is used to solve the natural frequency
and mode shape of a pipe applied in the installation of a
subsea Xmas tree, and the results are verified by using PA
sensors and FBG sensors. Several conclusions are given as
follows:
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Figure 9: Mode shapes of the pipe with different weight trees: (a) first mode, (b) second mode, (c) third mode, and (d) fourth mode.
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(1) .e frequency obtained using the DTM is acceptable
enough for design purposes because the mean error
is generally less than 5%, and thus, the frequency of
the pipe while lowering a subsea Xmas tree can be
determined using the equations and technique
proposed in this paper.

(2) According to the experiments in this paper, it can be
confirmed that the natural frequency of the vertical
cantilever is affected by the length of the beam and
the weight of the suspended end when the material
properties of the beam are constant. .e natural
frequency of the beam is inversely proportional to its
length and the weight of bottom lumped mass. In
other words, during the process of lowering of the
tree, the natural frequency of the system will grad-
ually decrease. Meanwhile, the natural frequency of
the lowering system can be reduced by adjusting the
added weight of the tree to avoid resonance.

(3) .e length of the pipe has little influence on the mode
shape, but the weight of the tree and the counterweight
on the end of the pipe have considerable effects on the
mode shape. Relative to a freely suspended drill pipe,
the end vibration of a pipe with a lumped mass on one
end is more biased towards its equilibrium position.

Nomenclature

D: .e outer diameters of the pipe (m)
d: .e inner diameters of the pipe (m)
E: .e modulus of elasticity (Pa)
I: .e area moment of inertia (m4)
l: .e length of the pipe (m)
mB: .e suspend mass at the pipe bottom (kg)
me: .e effective mass of the pipe per unit length (kg)
mp: .e mass of the pipe (kg)
mf: .e mass of the internal fluid (kg)
ma: .e added mass (kg)
T: .e axial tension force of the beam (N)
t: .e time (s)
w: .e net weight of the pipe per unit length (N)
x: .e transverse deflection of the beam axis (m)
z: .e coordinate measured along the axis of the pipe

(m)
z: Dimensionless parameter of length
δ: .ickness of pipe
ρs: .e density of the pipe (kg/m3)
ρw: .e density of seawater (kg/m3)
ρf: .e density of the internal fluid (kg/m3)
Ca: .e added mass factor
φ(z): .e product of a spatial function
φ(z): Dimensionless parameter of transverse deflection of

the pipe
c(t): A temporal function
ω: .e natural frequency of the pipe (Hz)
ϕ(z): .e differential transformation of the kth-order

derivative of a function
Φ(k): .e kth-order differential transformation
λ: .e eigenvalue.
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