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	e nonlinear structural acoustic problem considered in this study is the nonlinear natural frequency analysis of 
exible double
panels using the elliptic integral solution method. 	ere are very limited studies for this nonlinear structural-acoustic problem,
although many nonlinear plate or linear double panel problems have been tackled and solved. A multistructural/acoustic modal
formulation is derived from two coupled partial di�erential equations which represent the large amplitude structural vibrations of
the 
exible panels and acoustic pressure induced within the air gap. One is the von Karman’s plate equation and the other is the
homogeneous wave equation. 	e results obtained from the proposed method approach are veri�ed with those from a numerical
method. 	e e�ects of vibration amplitude, gap width, aspect ratio, the numbers of acoustic modes and harmonic terms, and so
forth on the resonant frequencies of the in-phase and out of phase modes are examined.

1. Introduction

In practice, thin double panels are very common for sound
reduction. As it is easy to get thin panels excited nonlin-
early, the nonlinear e�ect on the resonant frequencies of
double panel is studied in this paper. However, there are
very limited studies for this nonlinear structural-acoustic
problem, although many nonlinear plate or linear double
panel problems have been tackled and solved. 	us, the
following paragraphwould be the reviews about linear double
panel and nonlinear panel vibration.

Over the past decades, many researchers such as London
[1], Cummings and Mulholland [2], and Price and Crocker
[3] studied double panels and adopted themultiple-re
ection
theory and statistical energy analysis to develop various
formulas for prediction. In their works, the panel sizes were
assumed very large so that the �rst few structural resonant
frequencies were far below 50Hz and not concerned. 	us,
the concept of themass-cavity-mass, which ignored the panel
sti�ness, was valid for common audible frequency range.	e
statistical energymethodwas suitable for cases of highmodal
density or high frequency. If a smaller panel is considered,

the �rst few fundamental resonant frequencies would move
to a higher frequency range (say 80–150Hz). Under this
condition, the bending sti�ness of the panel cannot be
ignored, and the statistical energy method would not be
suitable. In the works of Xin and Lu [4–7] and Xin et al. [8–
10], the detailed theoretical and experimental investigations
about the sound absorptions, radiations, and vibrations of
various sandwich panels and double panels were included.
In some of their works, the solution method adopted was
suitable for double panel systems of �nite or in�nite extent
and applicable for both low- and high-frequency ranges with
these merits; the proposed method compares favorably with
a number of other approaches. Besides, it was pointed out
that the structural-acoustic coupling a�ected signi�cantly the
sound and vibration behaviors at low frequencies and could
not be ignored. Pan and Bao [11] and Kaiser et al. [12] adopted
the modal analysis to develop their theoretical models for
studying a linear double panel problem at low frequencies.
Langer and Antes [13] studied double walls with di�erent
pane con�gurations using the �nite and boundary element
methods. In [14, 15], the works considered the resonant
frequencies of the �rst two modes of the structural-acoustic
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Figure 1: A double panel and its mode shapes.

problem. It was proven experimentally and theoretically
in these works that the �rst two modes could seriously
deteriorate the noise reduction performance. 	at was an
important �nding. Hence, the in-phase and out of phase
modes of double panels are the focus of this paper. 	e
structural-acousticmodels in the aforementionedworkswere
capable of predicting multimode responses, but not the large
amplitude vibration e�ect, and the modal coupling e�ects on
the resonant frequencies were not investigated.	ere are very
limited studies for nonlinear double panel problems. Some
studies (e.g., [16–24]) are related to the nonlinear structural
vibrations, but their focuses are di�erent from that in this
paper. In fact, there are numerous theories used for solving
various nonlinear vibration problems (e.g., [25–35]). In some
approaches for solving the problems of large amplitude
structure or nonlinear oscillation (e.g., [36–39]), they require
a signi�cant e�ort in the tedious eigenvalue solution steps.
	epresent study uses the proposed elliptical integralmethod
to develop a concise elliptical integral solution for the large
amplitude free vibration analysis.

2. Theoretical Formulation

According to the formulation of Chu and Herrmann [25],
the governing equation for the large amplitude vibration of
a rectangular plate is given by

��2���2 + ��2�� + ��3 = 0. (1a)

Note that in the studies of [23–25], the panel vibration
amplitude ranges are zero to 1.4ℎ, where ℎ = panel thickness.
Within this vibration amplitude range, no panel buckling
occurs.

Consider the acoustic pressures within the gap acting on
the two panels (see Figure 1). Equation (1a) is modi�ed and
given by

��2���2 + ��2�� + ��3 + 	� = 0, (1b)

��2
��2 + ��2�
 + �
3 − 	� = 0, (1c)

where �(�) and 
(�) are the modal displacements of the two
panels at � = 0 and �. 	e mode shapes of the two panels are

(�, �) = sin(��/�) sin(��/�); � is time; � is the panel surface
density;	� and	� are themodal pressure force induced by the

panel vibration; �� = √�ℎ2/12�(1 − ]
2)((�/�)2 + (�/�)2) are

the fundamental linear natural frequencies of the panels; � =
(�ℎ/12(1−]2))(�/�4) is the nonlinear sti�ness coe�cient that
is due to the large amplitude vibration; � is Young’s modulus

of the panels; � = 3�4[((3/4)−(]2/4))(1+�4)+]�2]; � = �/� is
the aspect ratio; ] is Poisson’s ratio; and � and � are the panel
length and width.

�(�) and 
(�) are periodic and considered to be a
summation of harmonic terms and are given by

� (�) =
�∑
ℎ=1,3,5,...

�ℎ (�) , (2a)


 (�) =
�∑
ℎ=1,3,5,...


ℎ (�) , (2b)

where �ℎ and 
ℎ are the ℎth-order harmonic responses and
� = the number of harmonic terms used.

Similarly, the total modal acoustic pressure forces acting
on the panel surfaces are given by

	� (�) =
�∑
ℎ=1,3,5,...

�ℎ� (�) , (2c)

	� (�) =
�∑
ℎ=1,3,5,...

�ℎ� (�) , (2d)

where�ℎ� (�) and�ℎ� (�) are the acoustic pressure forces induced
by the ℎth-order harmonic components of the two nonlinear
panel vibrations, respectively.

In Figure 1, the acoustic pressure within the gap induced
by the 
exible enclosure panel and panel absorber is given by
the following homogeneous wave equation [14, 15]:

∇2�ℎ − 1
�2�

�2�ℎ
��2 = 0, (3)

where �ℎ is the acoustic pressure within the gap induced by
the ℎth harmonic component of the nonlinear panel vibration
and �� is the speed of sound.

	e boundary conditions of the air gap are

��ℎ
�� = 0 at � = 0, � (4a)

��ℎ
�� = 0 at � = 0, � (4b)

��ℎ
�� = −�� �

2�ℎ� (�, �, �)
��2 at � = 0 (4c)

��ℎ
�� = −�� �

2�ℎ� (�, �, �)
��2 at � = �, (4d)

where � and � are the panel width and length, respectively; �
is the gap width; �� = air density, �ℎ� (�, �, �), and �ℎ� (�, �, �)
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are the ℎth harmonic components of the nonlinear panel
displacements at � = 0 and �, respectively, which can be
rewritten as

�ℎ� (�, �, �) = �ℎ (�)  (�, �) at � = � (5a)

�ℎ� (�, �, �) = 
ℎ (�)  (�, �) at � = 0, (5b)

where

�� (�, �, �) =
�∑
ℎ=1,3,5,...

�ℎ� (�, �, �) =
�∑
ℎ=1,3,5,...

�ℎ (�)  (�, �) ,
(6a)

�� (�, �, �) =
�∑
ℎ=1,3,5,...

�ℎ� (�, �, �) =
�∑
ℎ=1,3,5,...


ℎ (�)  (�, �) ,
(6b)

��(�, �, �) and ��(�, �, �) are the ℎth harmonic components
of the nonlinear panel displacements at � = 0 and �,
respectively. (�, �) = sin((�/�)�) sin((�/�)�) is the panel
mode shape.

According to [14, 15], the general multiacoustic mode
solution of (1a)–(1c) is

�ℎ = �∑
	


∑
V

(!ℎ	V sinh ("ℎ	V�)

+$ℎ	V cosh ("ℎ	V�)) %	V (�, �) & (�) ,
(7)

where "ℎ	V = √('�/�)2 + (V�/�)2 − (ℎ�/��)2; %	V(�, �) =
cos(('�/�)�) cos((V�/�)�) is the acoustic mode; ' and V are
the acoustic mode numbers; � is the excitation frequency.

!ℎ	V and $ℎ	V are coe�cients that depend on the boundary
conditions at � = 0 and � = �; * and - are the numbers
of acoustic mode numbers used. �� is sound speed. &(�) is
the time function.

By applying the boundary conditions in (2c) and (2d) to

(5a) and (5b), the unknown coe�cients, !ℎ	V and$ℎ	V, can be
found, and thus the ℎth harmonic component of the modal

internal pressure forces within the gap at � = � and 0 (i.e., �ℎ�
and �ℎ� ) is given by

�ℎ� = 5ℎ��ℎ − 5ℎ�
ℎ, (8a)

�ℎ� = 5ℎ��ℎ − 5ℎ�
ℎ, (8b)

where

5ℎ� =
�∑
	


∑
V

�� (ℎ�)2
"ℎ	V

(6	V)2
6	V	V6

1
sinh ("ℎ	V�) ;

5ℎ� =
�∑
	


∑
V

�� (ℎ�)2
"ℎ	V

(6	V)2
6	V	V6

coth ("ℎ	V�) ;
(9)

6	V = ∫�0 ∫�0 %	V����; 6	V	V = ∫�0 ∫�0 %	V%	V �� ��; 6 =
∫�0 ∫�0 2 �� ��; * and - are the maximum acoustic mode

numbers.
	en, the total modal pressure forces within the gap at

� = � and 0 and the external pressure force acting on the panel
absorber (	�, 	�, and 	�) are given by

	� =
�∑
ℎ=1,3,5,...

�ℎ� , (10a)

	� =
�∑
ℎ=1,3,5,...

�ℎ� , (10b)

where� is the number of harmonic terms used.
Putting (10a) and (10b) into (1a)-(1b) yields

��2���2 + ��2�� + ��3 + �∑
ℎ=1,3,5,...

5ℎ��ℎ − 5ℎ�
ℎ = 0 (11a)

��2
��2 + ��2�
 + �
3 + �∑
ℎ=1,3,5,...

5ℎ�
ℎ − 5ℎ��ℎ = 0. (11b)

Note that � and 
 are the displacement responses of the two
panels and given by

� (�) =
�∑
ℎ=1,3,5,...

�ℎ (�) , (12a)


 (�) =
�∑
ℎ=1,3,5,...


ℎ (�) . (12b)

Figure 1 shows the two modes of the double panel. 	en set
�(�) = 
(�) for the in-phase mode and �(�) = −
(�) for
the out of phase mode in (8a) and (8b). Hence, we get the
following.

For the in-phase mode

��2���2 + ��2�� + ��3 + �∑
ℎ=1,3,5,...

(5ℎ� − 5ℎ�)�ℎ = 0. (13a)

For the out of phase mode

��2���2 + ��2�� + ��3 + �∑
ℎ=1,3,5,...

(5ℎ� + 5ℎ�)�ℎ = 0. (13b)

Consider the dummy term 51� and52� in (13a) and (13b):

��2���2 + (��2� + 51)� + ��3

+ �∑
ℎ=1,3,5,...

(5ℎ� − 5ℎ�)�ℎ − 51� = 0,
(14a)

��2���2 + (��2� + 52)� + ��3

+ �∑
ℎ=1,3,5,...

(5ℎ� + 5ℎ�)�ℎ − 52� = 0,
(14b)

where51 and52 are unknowns to be determined.
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	en, consider the elliptical integral solutions in [23] for
the following equations:

��2�1��2 + (��2� + 51)�1 + ��13 = 0, (15a)

��2�2��2 + (��2� + 52)�2 + ��23 = 0, (15b)

where �1 = �1�8('(91)) and �2 = �2�8('(92)); '(91)
and '(92) are the elliptic integrals; 91 = ��21/2(��20 + 51 +��21) and 92 = ��22/2(��20 + 52 + ��22) are the modulus
of '; �8 is the elliptic cosine; and �1 and �2 are the modal
displacements at � = 0 or the vibration amplitudes.

	e periods of the nonlinear modal vibrations are given
by

&1 = 4
√�20 + ((51 + ��21) /�)

∫�/2
0

1
√1 − 921 sin (<) �<,

(16a)

&2 = 4
√�20 + ((52 + ��22) /�)

∫�/2
0

1
√1 − 922 sin (<) �<.

(16b)

Replacing�1 with�1 and�2 with�2 in (14a) and (14b) gives

��2�1��2 + (��2� + 51)�1 + ��13

+ �∑
ℎ=1,3,5,...

(5ℎ� − 5ℎ�)�ℎ1 − 51�1 = >1,
(17a)

��2�2��2 + (��2� + 52)�2 + ��23

+ �∑
ℎ=1,3,5,...

(5ℎ� + 5ℎ�)�ℎ2 − 52�2 = >2,
(17b)

where >1 and >2 are the harmonic residuals, as�1 and�2 are
not the exact solution to (14a) and (14b). �ℎ1 and �ℎ2 are the
harmonic components of �1 and �2.

Using (15a) and (15b), the summation of the �rst three
terms in (17a) and (17b) are set to zero, as follows:

�∑
ℎ=1,3,5,...

(5ℎ� − 5ℎ�)�ℎ1 − 51�1 = >1, (18a)

�∑
ℎ=1,3,5,...

(5ℎ� + 5ℎ�)�ℎ2 − 52�2 = >2. (18b)

According to (15a) and (15b),�1,�2, 91, and 92 depend on the
unknowns, 51 and 52, respectively. Hence, (18a) and (18b)
can be rewritten as

�∑
ℎ=1,3,5,...

(5ℎ� − 5ℎ�)�ℎ1 (51) − 51�1 (51) = >1 (51) , (19a)

�∑
ℎ=1,3,5,...

(5ℎ� + 5ℎ�)�ℎ2 (52) − 52�2 (52) = >2 (52) . (19b)

Let 51 and 52 be the optimum values for the minimization
of the overall harmonic residual squares in (19a) and (19b).
Hence, the periods of the large amplitude modal vibrations
are given by

&1 (51)

= 2�
�1

= 4
√�20 + ((51 + ��21) /�)

∫�/2
0

1
√1 − 91 (51)2 sin (<)

�<,

(20a)

&2 (52)
= 2�

�2
= 4

√�20 + ((52 + ��22) /�)
∫�/2
0

1
√1 − 91 (52)2 sin (<)

�<,

(20b)

where �1 and �2 are the natural frequencies of the two
nonlinear modes.

3. Results and Discussions

Using (20a) and (20b), the resonant frequencies of the in-
phase and out of phase modes of simply supported double
panels can be obtained for various vibration amplitude
ratios. Each double panel is made of two aluminum panels
measuring 0.3048m × 0.3048m × 1.2192mm. 	e material

properties are Young’s modulus � = 7 × 1010N/m2, Poisson’s
ratio ] = 0.3, and mass density � = 2700 kg/m3. In Tables 1(a)
and 1(b), the �rst 25 symmetrical acoustic modes and the
�rst four harmonic terms are used for the convergence
checks of the resonant frequencies of the in-phase and out
of phase modes. 	e frequency ratio is de�ned as ��/��. It
is shown that the nine acoustic modes and two harmonic
terms approach is good enough for a converged and accurate
frequency solution. Figures 2(a) and 2(b) show the compar-
isons between the free vibration time histories of the in-phase
and out of phase mode vibrations obtained from the present
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Figure 2: (a) Free vibration time histories obtained from the two solution methods (in-phase mode, initial amplitude ratio = 1.4, gap
width/panel width = 0.5). (b) Free vibration time histories obtained from the two solution methods (out of phase mode, initial amplitude
ratio = 0.4, gap width/panel width = 0.5).

Table 1: (a) Acoustic mode and harmonic convergences of the
frequency ratio of an aluminum plate (in-phase mode, vibration
amplitude/thickness = 1). (b) Acoustic mode and harmonic conver-
gences of the frequency ratio of an aluminum plate (out of phase
mode, vibration amplitude/thickness = 1).

(a)

��/��
Number of
harmonic
terms = 1

2 3 4

Number of
acoustic modes
= 1

1.3981 1.3981 1.3981 1.3981

4 1.3961 1.3962 1.3962 1.3962

9 1.3961 1.3961 1.3961 1.3961

16 1.3961 1.3961 1.3961 1.3961

25 1.3961 1.3961 1.3961 1.3961

(b)

��/��
Number of
harmonic
terms = 1

2 3 4

Number of
acoustic modes
= 1

2.9676 2.9676 2.9676 2.9676

4 2.9505 2.9505 2.9505 2.9505

9 2.9502 2.9502 2.9502 2.9502

16 2.9502 2.9502 2.9502 2.9502

25 2.9502 2.9502 2.9502 2.9502

elliptical integral method and numerical integration method
[36]. It can be seen that the two sets of time histories are well
agreed with each other.

In Figures 3–6, the cases of vibration amplitude = 0
represent the results of linear vibration. It is because the
nonlinear sti�ness term is zero (in the linear vibration theory,
there is no nonlinear term in the governing equation).

In Figures 3(a) and 3(b), the vibration amplitude ratios are
plotted against the frequency ratios of the in-phase and out
of phase mode vibrations for various gap widths. 	e aspect
ratio is 1. In Figure 3(a), when the vibration amplitude = 0,
the frequency ratio = 1 (it is purely linear vibration. In the
linear vibration, it is assumed that the vibration amplitude is
very small); when the vibration amplitude= 1.4, the frequency
ratio is about 1.7 (it is highly nonlinear vibration). 	e
natural frequency increases by 70% due to the nonlinear
sti�ness caused by the axial deformation along the panel (see
Figure 3(c) for further explanation). 	e frequency ratios of
the in-phase mode vibration are not very sensitive to the
gap width (the three curves almost exactly coincide) while
they are quite sensitive to and monotonically increasing with
the vibration amplitude. When the amplitude is small, the
frequency ratios increase very slowly. When the amplitude
is large, the increase rates of the frequency ratios are almost
constant. Note that the cases of in�nite gap width in Figures
3(a) and 3(b) can be considered as a single panel without
any gap e�ect. When compared with those in Figure 3(a),
the frequency ratios of the out of phase mode vibration show
higher degree of sensitivity to the gap width and lower degree
of sensitivity to the vibration amplitude, respectively.

In Figures 4(a) and 4(b), the inverses of the gap width/
panel width, �/�, are plotted against the frequency ratios of
the in-phase and out of phase mode vibrations for various
vibration amplitude ratios.	e aspect ratio is 1. In Figure 4(a),
the frequency ratios of the in-phase mode vibration is almost
unchanged for �/� > 0.3. It is implied that the e�ect of �/� is
not signi�cant on the frequency ratios for �/� > 0.3. In the
case of amplitude ratio = 1.4, the frequency ratio signi�cantly
increases when �/� < 0.3. Relatively, the frequency ratio of
amplitude ratio = 1.4 is slightly more sensitive than that of
amplitude ratio = 0. In Figure 4(b), the frequency ratios of
the out of phase mode vibration are sensitive to �/� when
compared with those in Figure 4(a). Again, it can be seen
that the higher the vibration amplitude ratio is, the higher
the frequency ratio is. Besides, the slopes of the three curves,
which represent the cases of amplitude ratio = 0, 1, 1.4, are
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(c)

Figure 3: (a) Vibration amplitude ratio versus frequency ratio (in-phase mode, nine acoustic modes, two harmonic terms). (b) Vibration
amplitude ratio versus frequency ratio (out of phase mode, nine acoustic modes, two harmonic terms). (c) Axial forces and moments acting
on a plate element (side view). When the vibration amplitude is large, B is large, the axial force acting on the panel is signi�cant, and the
nonlinear sti�ness due to the axial deformation must be considered. When the vibration amplitude is small, sin B ≈ 0 and the axial force is
neglectable (the linear vibration theory is valid for small de
ection), where$ is the axial force;D is the bending moment; B is the slope.

almost the same. In Figure 4(c), it can be seen that the
“net cavity volume change” of the in-phase mode vibration
is smaller than that of the out of phase mode vibration.
	e amount of the volume change is larger and the acoustic
sti�ness is higher when the vibration amplitude is larger.
Relatively, the e�ect of vibration amplitude on the natural
frequency is relatively smaller when the acoustic sti�ness is
higher. 	at is why the frequency ratio of the in-phase mode
vibration is less sensitive.

In Figures 5(a) and 5(b), the aspect ratios, �/�, are plotted
against the frequency ratios of the in-phase and out of phase
mode vibrations for various vibration amplitude ratios. 	e
gap width is 0.0508m. In Figure 5(a), the frequency ratios of
the in-phase mode vibration are almost constant for the zero
vibration amplitude or �/� > 0.8 in the cases of amplitude
ratio = 1 and 1.4. 	ey are almost linearly decreasing with the
aspect ratio for �/� < 0.8. 	e e�ect of vibration amplitude
is larger when the aspect ratio is smaller. In Figure 5(b), the
frequency ratio of the out of phase mode is almost constant

for �/� < 0.25. 	ey are increasing with the aspect ratio for
the cases of �/� > 0.25. Relatively, they are more sensitive to
the aspect ratio than those of the in-phase mode vibration.
When the aspect ratio is larger, the di�erences between the
three frequency ratio curves are smaller (i.e., the e�ect of
vibration amplitude is smaller).

In Figures 6(a)–6(d), the vibration amplitudes are plotted
against the acoustic sti�ness ratios of the in-phase and out of
phasemodes for various gapwidths.	e aspect ratio is 1. Note

that (51� − 51�) and (51� + 51�) are de�ned as 5air in Figures
6(a) and 6(b). In Figure 6(a), the acoustic sti�ness ratio of
the in-phase mode is almost constant for ��/ℎ < 0.25, while
it is nonlinearly decreasing with the vibration amplitude for
��/ℎ > 0.25. 	e physical meaning of negative acoustic
sti�ness is that the acoustic force direction is the same as
the panel vibration direction. Besides, when the gap is small,
the acoustic sti�ness is strong (it can be imagined that a
larger force is required to compress a smaller cavity). 	us,
the e�ect of vibration amplitude on the natural frequency
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Figure 5: (a) Aspect ratio versus frequency ratio (in-phase mode, nine acoustic modes, two harmonic terms). (b) Aspect ratio versus
frequency ratio (out of phase mode, nine acoustic modes, two harmonic terms).

is relatively smaller when the gap width is smaller (or the
acoustic sti�ness is higher). 	at is why the acoustic sti�ness
of large gap width in Figure 6(a) is more sensitive than that
of small gap width. Unlike those in Figure 6(a), the three
curves in Figures 6(b)–6(d) are far from each other (that is
why they are plotted in three graphs). 	e slopes of the three

curves are similar to each other, and the acoustic sti�ness
vales are nonlinearly decreasingwith the vibration amplitude.
Generally, the acoustic sti�ness of the out of phase mode
vibration is less sensitive to the vibration amplitude than that
of the in-phase mode vibration. It is because the acoustic
sti�ness value of the out of phase mode vibration, (51� + 51�),
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Figure 6: (a) Vibration amplitude ratio versus acoustic sti�ness (in-phase mode, nine acoustic modes, two harmonic terms). (b) Vibration
amplitude ratio versus acoustic sti�ness (gap width = 0.3048m, out of phase mode, nine acoustic modes, two harmonic terms). (c) Vibration
amplitude ratio versus acoustic sti�ness (gap width = 0.1524m, out of phase mode, nine acoustic modes, two harmonic terms). (d) Vibration
amplitude ratio versus acoustic sti�ness (gap width = 0.0508m, out of phase mode, nine acoustic modes, two harmonic terms).

is higher than that of in-phase mode vibration, (51� − 51�).
As aforementioned, the e�ect of vibration amplitude on the
natural frequency is relatively smaller when the acoustic
sti�ness is higher.

From Figure 6(a), it is known that the acoustic sti�ness
values would be negative and the frequency ratios in some
cases could be less than 1 (see Figures 5(a) and 5(b)). Unlike
the acoustic sti�ness, the nonlinear structural sti�ness is
always positive and nonlinearly increasing with the vibration
amplitude (see Figure 7). It is noted that the nonlinear
sti�ness is zero when the vibration amplitude is zero (in the
linear vibration, it is assumed that the vibration amplitude is
very small). When the vibration amplitude is small, the slope
of the curve representing the nonlinear sti�ness is deep (it
means that the nonlinear sti�ness increases quickly). When
the vibration amplitude is large, the slope is almost constant.
	enonlinear sti�ness constantly increaseswith the vibration
amplitude.

4. Conclusions

Amultistructural/acousticmode formulation, which is based
on the classical nonlinear plate equation and homogeneous
wave equation, has been presented for the large amplitude
free vibrations of a double panel. 	e present study proposes
the elliptical integral method to obtain the natural frequen-
cies of various nonlinear double panels. 	e e�ects of the
gap width, aspect ratio, and vibration amplitude ratio on the
resonant frequencies of the in-phase and out of phase modes
have also been investigated. It has been found that (1) the
present elliptic integral solutions agree reasonably well with
those obtained from the numerical integration method, and
they are convergent with increasing the numbers of acoustic
modes and harmonic terms; (2) the frequency ratio of the in-
phase mode of a double panel is more like that of a single
panel, and the frequency ratio of the out of phase mode is
more sensitive to the gap width and aspect ratio; (3) the
acoustic sti�ness of the in-phase mode is more sensitive to
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Figure 7: Vibration amplitude ratio versus structural nonlinear
sti�ness.

the vibration amplitude than that of the out of phase mode;
and (4) unlike the structural sti�ness, the acoustic sti�ness of
a double panel may be negative and depends on the vibration
amplitude.

In practice, when acoustic engineers design a double
panel used for noise reduction, they would set the natural fre-
quency not overlapping with the dominant noise frequency
bandwidth. 	us, the natural frequency results in this study
can be used as reference in noise reduction panel design.
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