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Abstract. A displacement based semi-analytical method is utilized to study non-linear free vibration 

and mode shapes of an exponential tapered axially functionally graded (AFG) beam resting on an 

elastic foundation. In the present study geometric nonlinearity induced through large displacement is 

taken care of by non-linear strain-displacement relations. The beam is considered to be slender to 

neglect the rotary inertia and shear deformation effects. In the present paper at first the static 

problem is solved through an iterative scheme using a relaxation parameter and later on the 

subsequent dynamic analysis is carried out as a standard eigen value problem. Energy principles are 

used for the formulation of both the problems. The static problem is solved by using minimum 

potential energy principle whereas in case of dynamic problem Hamilton’s principle is employed. 

The free vibrational frequencies are tabulated for exponential taper profile subject to various 

boundary conditions and foundation stiffness. The dynamic behaviour of the system is presented in 

the form of backbone curves in dimensionless frequency-amplitude plane and in some particular 

case the mode shape results are furnished. 

Introduction 

The ceramic-metal gradation technique in structural materials initiated by the Japanese material 

scientists in Sendai indicated the beginning of an era of advanced class of materials known as 

Functionally Graded Materials (FGMs). Since then various possibilites of using FGMs for different 

structural applications have been explored [1]. These FGMs, first invented in 1984, are increasingly 

being utilized in aerospace, aircraft, automobile and defense industrial applications. Their popularity 

is mainly due to their ability of mitigating the problem caused by the sudden change of thermo-

mechanical properties as in the case of laminated composites [2,3]. Since the behavior of structural 

members made up with FGMs are of critical importance, they have received great attention from 

researchers in the last decades.  

For functionally graded beams, gradient variation may be orientated in the cross-section or/and in 

the axial direction. For the former, there have been a large number of researches devoted to 

understand the static, buckling and dynamic behavior of the functionally graded structural 

components. Various methods are employed, including analytical method, semi-analytical method 

and numerical methods such as finite element method (FEM), differential quadrature method 

(DQM) and harmonic differential quadrature method (HDQM), various meshless methods, and 

quadrature element method (QEM) etc. Su et al. [4] formulated the dynamic stiffness method to 

investigate the free vibration behaviour of functionally graded beams. In their analysis derivation of 

the governing differential equations of motion was done utilizing Hamilton’s principle. Kodali et al. 

[5] used displacement field based on higher order shear deformation theory to represent the static 
behavior of functionally graded metal–ceramic (FGM) beams under ambient temperature. Jin and 

Wang [6] established an N-node novel weak form quadrature functionally graded (FG) beam 

element based on the classical beam theory (CBT) and differential quadrature (DQ) rule. Yaghoobi 
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and Fereidoon [7] carried out the bending analysis of simply supported FG beam under uniformly 

distributed load and commented on the influence of the neutral surface position on deflection. Jia et 

al. [8] studied the size effect on the free vibration of functionally graded micro-beams under the 

combined electrostatic force, temperature change and Casimir force based on Euler–Bernoulli beam 

theory and von Kármán geometric nonlinearity. Ebrahimi and Salari [9]  represented the thermal 

effect on buckling and free vibrational behaviours of functionally graded (FG) size-dependent 

Timoshenko nanobeams loaded to an in-plane thermal loading by implementing a Navier type 

solution. Pradhan and Chakraverty [10] implemented classical and first order shear deformation 
beam theories to investigate the free vibration behavior of functionally graded material (FGM) 

beams which is subjected to different sets of boundary conditions. Static bending and elastic 

buckling analysis of shear deformable functionally graded porous beams on the assumption of 

Timoshenko beam theory were performed by Chen et al. [11]. Ebrahimi and Zia [12] investigated 

the large-amplitude nonlinear vibration behaviours of functionally graded (FG) Timoshenko beams 

made of porous material. Hemmatnezhad et al. [13] investigated the large-amplitude free vibration 

analysis of functionally graded beams by means of a finite element formulation, where Von-Karman 

type nonlinear strain–displacement relationships were emloyed. 

As already stated, vast body of literature exists on FG beam which is graded in thickness 

direction. However, analysis of the axial functionally graded (AFG) structural element is the 

relatively newer domain, where there exists a few papers on different aspects of such components. 

Li et al. [14] analyzed the free vibration of axially inhomogeneous exponentially graded beams. A 

simple approach to calculate the critical buckling loads of beams with arbitrary axial inhomogeneity 

was developed by Huang and Luo [15]. Akgöz and Civalek [16] investigated vibration response of 

non-homogenous and non-uniform microbeams in conjunction with Bernoulli–Euler beam and 

modified couple stress theory. Shahba et al. [17] carried out free vibration and stability analysis of 

axially functionally graded tapered Timoshenko beams. The authors employed finite element 

technique to analyze the effects of taper ratio, elastic constraint, attached mass and the material non-

homogeneity on the natural frequencies and critical buckling load. Huang et al. [18] presented a 

new approach for investigating the vibration behaviors of axially functionally graded Timoshenko 

beams with non-uniform cross-section. Shahba and Rajasekaran [19] presented the free vibration 

and stability of axially functionally graded tapered Euler–Bernoulli beams through solving the 

governing differential equations of motion. Zeighampour and Beni [20] carried out the vibration of 

axially functionally graded material (AFGM) nanobeam by using strain gradient theory. Kien [21] 

performed the large displacement response of tapered cantilever beams made of axially functionally 

graded material by the finite element method. Free vibration analysis on axially functionally graded 

(AFG) tapered slender beams under different boundary conditions were  represented through energy 

principle by Kumar et al. [22] and Sarkar and Ganguli [23]. 

Boundary conditions of a real physical system are seldom classical, hence simulation of beams 

with elastically restrained ends or beams resting on elastic foundations are important domains of 

research. Beam on elastic foundation is used to model a lot of engineering problems and has wide 

application in bio-mechanics, road, rail road, geo-technics and marine engineering. Extensive 

research work is performed on FG beam with classical boundary. So far, a few literatures are 

available on beams supported or resting on elastic foundation. Yas and Samadi [24] dealt with free 

vibrations and buckling analysis of nano-composite Timoshenko beams reinforced by single-walled 

carbon nanotubes (SWCNTs) resting on an elastic foundation. Simsek and Cansız [25] represented 

the dynamic responses of an elastically connected double-functionally graded beam system 

(DFGBS) carrying a moving harmonic load at a constant speed by using Euler–Bernoulli beam 

theory. Murin et al. [26] formulated a differential equation of the homogenized functionally graded 

material (FGM) beam deflection and its solution which used in free vibration analysis of the beams 
with polynomial continuous longitudinal and transversal variation of material properties. The FGM 

beams are considered to be resting on longitudinal variable (Winkler) elastic foundation. Simsek 

and Reddy  [27] based on the modified couple stress theory (MCST), proposed a unified higher 
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order beam theory which contains various beam theories as special cases for buckling of a 

functionally graded (FG) micro-beam embedded in elastic Pasternak medium. Akgöz and Civalek 

[28] performed the bending response of non-homogenous micro-beams embedded in an elastic 

medium based on modified strain gradient elasticity theory in conjunctions with various beam 

theories. Kanani et al. [29] studied the large amplitude free and forced vibration of FG beam resting 

on nonlinear elastic foundation containing shearing layer and cubic nonlinearity. Niknam and 

Aghdam [30] made an attempt to obtain a closed form solution for both natural frequency and 

buckling load of nonlocal FG beams resting on nonlinear elastic foundation. 

Literature review reveals that the field of free vibration study of depth-wise functionally graded 

beams is explored comprehensively, while the AFG is the newer domain. AFG beam on elastic 

foundation incorporate a higher level of complexity. Hence, the present study is taken up with the 

objective of analyzing the large amplitude free vibration problem of axially functionally graded 

(AFG) tapered beams on elastic foundation with exponential taper profiles. Variation of material 

properties (elastic modulus and density) along the length of the beam is considered according to 

different functions. Effect of variation of foundation stiffness on the dynamic behaviour is also 

studied. The large amplitude free vibration behavior is presented as backbone curves in non-

dimensional amplitude-frequency plane and in some particular case the mode shape results are 

furnished. 

Mathematical formulation 

The present mathematical formulation is subdivided into two parts. A static solution is obtained 

first under external transverse loading and it is followed by a linear eigenvalue problem based on the 

previously obtained static solution. Formulation for both the static and dynamic part is based on 

energy methods, where, the basic principle is to extremize the total energy of the system in its 

equilibrium condition. 

In the present study, an axially functionally graded tapered beam of length L is considered as 

shown in fig 1(a). The beam is further considered to be rested on an elastic foundation with different 

end conditions such as CC, CF, SS and CS respectively as shown in fig. 1(b). For schematic 

representation the figure shows the taper profile of the beam as linear. However, for the present 

work, exponential variation of thickness has been considered along axial direction and it is 

expressed through the equation given below.  

 

 
1

2
0 expt t 

 
  

 
            (1) 

 

Here t0 is the thickness of the beam at the root of the beam and α is the taper parameter. ξ is the 

normalized axial coordinate, where normalization has been carried out by length of the beam, i.e., ξ 
= x/L. It is worth mentioning that the present formulation and solution methodology is capable of 

handling any taper pattern (both along thickness as well as width) mathematically expressible as 

function of the axial coordinate. The thickness of the beam is considered to be small compared to 

lengths, so the effect of shear deformation and rotary inertia may be neglected. So the Euler-

Bernoulli hypothesis is considered. The beam material properties are considered to be graded in the 

axial direction (modulus of elasticity, E(x), and mass density, ρ(x)) according to different gradation 

functions. The elastic foundation is idealized as a series of parallel massless linear spring of same 

stiffness value (K).  
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(a) 

 

 

(b) 

Fig. 1: (a) Schematic representation of an AFG beam on Elastic Foundation, (b) Idealization of 

elastic foundation by a series of linear springs for (i) CC, (ii) CF, (iii) SS and (iv) CS end 

conditions. 

 

Large displacement is taken into consideration for mathematical formulation and as a result 

geometric nonlinearity is incorporated into the system. In deriving the strain energy expressions 

nonlinear strain-displacement relations are used. It is well known that for large displacement 

analysis of beam both bending and stretching effects are taken into account. So, the strain energy 

expression for the system includes strain energy stored due to bending (Ub) and stretching effect 

(Um) along with strain energy stored in the foundation (Uf). 

 

b m fU U U U                (2) 
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Incorporating the strain-displacement relations the nonlinear strain energy of the system under 

transverse loading can be expressed as, 

 

       
2 2 4 22

2

2

0 0 0

1 1 1 1

2 2 4 2

L L L
d w du dw dw du

U E x I x dx E x A x dx Kw dx
dx dx dx dx dx

                        
           

  
  

(3) 

  

Here, w and u are transverse and in-plane displacements of mid-plane of the beam. E(x), I(x) and 

A(x) are elastic modulus, moment of inertia about the mid-plane of the beam cross-section and 

cross-sectional area of the beam respectively. These parameters are functions of the axial coordinate 

and hence, introduce added complexity to the present formulation. A separate list of symbols used 

for the present formulation is provided as Appendix 1 at the end of the paper. The potential energy 

(V) due to externally applied transverse load P(x) is given by,  

 

 
0

L

V P x wdx               (4) 

 

Although the above energy functionals (Eq. (3) and (4)) are expressed with respect to 

dimensional axial coordinate (x), all computations are performed in non-dimensional domain (ξ). 

The static problem is formulated from the minimization total potential energy of the system, 

which can be written as, δ(U + V) = 0.          (5) 

The energy functionals (U and V) can be evaluated from the assumed transverse and in-plane 

displacement fields. The expressions assumed for these displacements are in terms of unknown 

coefficients (ci) and orthogonal admissible functions (  and  ).  

 

   
1

nw

i i

i

w c  


  and    
1

nw nu

i i nw

i nw

u c  



 

             (6) 

 

The bending displacements of the beam are described by functions , while  describe 

stretching of the mid-plane of the beam. Start functions for these displacement fields are assumed in 

such a way that they are continuous and differentiable within the domain and also satisfy the 

boundary conditions of the beam. The higher order functions are generated by using Gram-Schmidt 

orthogonalisation scheme from the selected start functions. Hence, an orthogonal set of 

kinematically admissible functions are obtained. 

Substituting the appropriate expressions in Eq. (5), the governing differential equations of the 

system is written in matrix form as,     sK c f                     (7) 

Here, [Ks] is the stiffness matrix and {f} is the load vector. The form and elements of the matrix 

and vector are provided in the Appendix. 

Once the solution of the static analysis is obtained, the stiffness matrix is completely known for 

the corresponding deflected configuration. Now, a small amplitude vibration is assumed to be 

taking place about the deflected position of the system. This problem is described by a standard 

eigenvalue analysis and the formulation is based on Hamilton principle, which is presented by, 

 

 
2

1

0T U d





 
 

   
 
              (8) 

 

Here, δ is the variational operator and τ denotes time coordinate. T and U indicate the kinetic 

energy and strain energy of the system respectively. Potential energy (V) due applied load is 
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considered to be zero, as the system executes free vibration. The kinetic energy of the system is 

expressed as, 

 

     dxxAxuwT

L

)()(
2

1

0

22    ,          (9) 

 

where,  and  are differentiations with respect to time, ρ(x) is density of the beam material. The 

displacements w and u are to be assumed as approximate displacement fields, separable in time and 

space. They can be represented by linear combination of unknown coefficient (di) and orthogonal 

admissible function,  and  , which are identical to those used for the static analysis. 

 

   
1

,
nw

i

i i

i

w d e    


 and    
1

,
nw nu

i

i i

i nw

u d e    


 

        (10) 

 

Here, ω is the natural frequency of the system. nw and nu are number of functions for w and u 

respectively. di is a new set of unknown coefficients that represent the eigenvector in the matrix 

form. Substituting the appropriate relations in Eq. (8) gives the set of governing equations in the 

matrix form.  

 

- ω2
[M]{d} + [Ks]{d} = 0          (11) 

 

Here, [M] is mass matrix, [Ks] is the stiffness matrix, {f} is the force vector and {d} is a vector of 

unknown coefficients. 

Solution Procedure 

From the mathematical formulation for the static analysis it is clear that the elements of the 

stiffness matrix [Ks] are functions of the unknown parameter, ci. Hence the governing equation (Eq. 

(7)) is nonlinear in nature and cannot be solved directly. To solve the set of equations an iterative 

numerical technique is introduced and a direct substitution technique with successive relaxation 

scheme is utilized. The solution steps are given below, 

Step 1: The input parameters i.e. appropriate load, allowable error limit and the relaxation 

parameter are defined. It is assumed that the unknown coefficients have zero value at the initial 

stage. 

Step 2: Utilizing the input parameter the stiffness matrix for bending and stretching (and thus the 

total stiffness matrix) are generated, along with the load vector. As the initial values for cis are zero 

the initial stiffness matrix corresponds to a linear situation.   

Step 3: A new set of unknown coefficients are evaluated by inversion of the stiffness matrix and 

subsequent pre-multiplication with the load vector. {c}
(n + 1)

 = [Ks({c}
(n)

)]
-1

{f}, where n represents 

the iteration counter. 

Step 4: The calculated set of unknown coefficients is compared with the ones from previous 

iteration and if the error is above the predefined allowable error limit, the next iteration is performed 

with modified values of unknown coefficients. The modification takes into account a relaxation 

parameter to predict the guess for the next iteration.  

Step 5: The modified coefficient values are used to generate the modified stiffness matrix and the 

process is repeated till convergence is achieved, i.e., the error value falls below the predefined limit. 

The corresponding flowchart for the solution procedure is given in Fig. 2.  

The converged stiffness matrix from the static analysis is carried into the dynamic analysis, 

which is a standard eigenvalue problem. The solution to Eq. (11) is obtained by developing a 

Matlab code that utilizes the subroutine ‘eig’. The square root of the eigenvalues gives the natural 
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frequency of the system at the deflected configuration, whereas the eigenvectors associated with 

these eigenvalues can be processed to plot the modeshapes of the vibrating system. 

 

Fig. 2: Flowchart of the solution procedure  

Results and discussions 

In the present analysis, it is considered that the beam is supported by four different boundary 

condition, namely, CC, CS, SS, CF. These are the four possible combinations arising out of three 

different end conditions of the beam, namely, Clamped (C), Simply supported (S) and Free (F) end. 

For selecting the start functions for the transverse displacement (w) the above mentioned flexural 

boundary conditions are used. Similarly, the start function for axial displacement (u) is selected on 

the basis of the in-plane boundary conditions, which is taken as zero at the ends of the beam. These 

start functions for both transverse and in-plane displacements are shown in Table 1. Gram-Schmidt 

orthogonalization scheme is used to generate the higher order functions and the number of functions 

is taken as 8 for each displacement. The number of Gauss points to be used for generation of results 

is taken as 24. 
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Table 1: Start functions for assumed displacement field (w, u) 

Flexural Boundary Condition  1   

CC   21   

CF  2 2 4 6     

SS  sin   

CS  2 22 5 3     

In-plane Boundary Condition   1   

Immovable  1   

 

Table 2: Three different material model used for gradation 

Material  E       

Material 1 
0E  0  

Material 2  0 1E    20 1     

Material 3 
0E e

  
0e

  

 

Table 3: Stiffness values for the elastic foundation 

K [N/m] 0K   1000K   10,000K   50,000K   100,000K   

 

Table 4: Thin beam geometric and material property 

L [m] b [m] 
0t  [m] 0E  [GPa] 0  [kg/m

3
] 

1.0 0.02 0.005 210 7850 

 

In the present analysis the thickness of the beam is considered to be tapered with an exponential 

profile, as shown in Eq. (1). The value of the taper parameter (α) is kept constant throughout the 

analysis and the numerical value for the parameter is 0.510826. The material of the beam is taken to 

be axially functionally graded, which implies material properties such as elastic modulus and 

density vary along the axis of the beam. Three different material models are chosen for the paper as 

shown in Table 2. It is to be pointed out that Material 1 is in fact homogeneous in nature (constant 

elastic modulus and density) and it is included in the results for comparison purpose.   

The AFG tapered beam is supported on elastic foundation, which is idealized as series of parallel 

linear spring of same stiffness. Five different values of the spring stiffness are considered here and 

are given in Table 3. The geometric dimensions and the material properties of the beam are given in 

Table 4. These numerical values are utilized to generate the results for the analysis. In the present 

work, emphasis is on investigating the dynamic behaviour of the system corresponding to changes 

in flexural boundary condition and spring stiffness. 

The present formulation and solution technique is validated by comparison with established 

results already available in literature. A clamped-clamped homogeneous uniform beam is 

considered and the resulted backbone curve for fundamental mode is validated with the results 

published by Gupta et al. [31] as shown in Fig. 3. It should be mentioned here that to comply with 

the system analyzed by Gupta et al. [31] the spring stiffness is considered as 0 N/m. The two sets of 

results show similar trends and the values show satisfactory matching, hence, establishing the 

validity of the present method. 
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Fig. 3: Comparison of backbone curves for fundamental mode of a clamped-clamped homogeneous 

uniform beam. 

 

Table 5: Values of natural frequencies for 1st and 2nd mode (ω1 and ω2) corresponding to 

exponential tapered AFG beam for different combinations boundary condition, spring stiffness and 

material property 

 

Boundary 

Condition 

Stiffness 

(N/m) 

Material 1 Material 2 Material 3 

ω1 ω2 ω1 ω2 ω1 ω2 

CC 

0 19.47 52.81 17.53 47.95 19.29 52.57 

1000 20.64 53.25 18.25 48.22 20.00 52.83 

10000 29.07 57.04 23.76 50.60 25.46 55.15 

50000 52.01 71.49 39.82 60.07 41.8 64.45 

100000 70.83 86.25 53.34 70.20 55.75 74.50 

CF 

0 3.79 20.20 2.65 16.97 2.82 18.37 

1000 8.09 21.35 5.25 17.68 5.52 19.07 

10000 22.88 29.80 14.52 23.09 15.22 24.50 

50000 50.21 53.29 31.70 39.01 33.29 40.78 

100000 70.12 73.24 44.49 52.46 46.73 54.70 

SS 

0 8.14 33.08 7.52 30.28 8.19 33.06 

1000 10.61 33.77 9.08 30.71 9.73 33.47 

10000 22.97 39.46 17.72 34.35 18.51 37.03 

50000 48.51 58.50 36.29 47.46 37.76 49.99 

100000 67.80 76.03 50.21 60.20 52.38 62.72 

CS 

0 14.01 43.42 11.94 38.82 13.01 42.41 

1000 15.62 43.95 12.93 39.15 13.99 42.73 

10000 25.93 48.50 19.67 42.01 20.81 45.53 

50000 50.68 65.01 36.76 52.95 38.46 56.36 

100000 70.15 81.11 50.32 64.16 52.61 67.59 

 

Natural frequencies for the first two modes (ω1 and ω2) for the beams are provided in Table 5 

corresponding to various possible combinations of boundary conditions, spring stiffness and 

material models. It is observed that with the increase of stiffness of the foundation the natural 

frequencies in all cases increase. This is due to the fact that natural frequency is the function of mass 

and stiffness. While stiffness of the foundation is increased, overall stiffness of the system increases 
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but the mass of the overall system remain same. It is also observed that for particular taper 

parameter, boundary condition and foundation stiffness value, the natural frequency is the highest 

for Material 1 and lowest for Material 2. It is also observed that for particular taper parameter, 

foundation stiffness value and material model, the natural frequency is the lowest for CF boundary 

condition as the system is less stiff under CF boundary condition and highest for CC boundary 

condition. 

   
Fig. 4: Backbone curves of exponential tapered AFG beam for CC, CF, CS, SS boundary condition 

corresponding to Material Model 1 (   0E E  ,   0   ).  

 

   
Fig. 5: Backbone curves of exponential taper AFG beam for CC, CF, CS, SS boundary condition 

corresponding to Material Model 2 (    0 1E E   ,    20 1       ).  

In order to study the effect of boundary conditions and material model on the large amplitude 

behaviour of AFG beams on elastic foundation, backbone curves for first, second, third and fourth 

mode are furnished for three different material models in Fig. 4-6. In this particular case taper 

parameter (α) is considered to be fixed at 0.510826 while, stiffness (K) is 10,000 N/m. The figures 

are plotted in non-dimensional frequency amplitude plane, where the ordinate is dimensionless 

amplitude (wmax/t0) and abscissa is normalized frequency (ωnl/ωl). In the present study (wmax/t0) is 

taken as 2.0 for all cases.  
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Fig. 6: Backbone curves of exponential taper AFG beam for CC, CF, CS, SS boundary condition 

corresponding to Material Model 3 (
0E e

 ,
0e

 ). 

 

 
(a)     (b) 

 
    (c)     (d) 

Fig. 7: Mode shape of exponential taper AFG beam for Material Model 1 (   0E E  ,   0   ) 

corresponding to different boundary conditions: (a) CC (b) CF (c) CS (d) SS. 
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The fundamental frequency (ωl) used to normalize the nonlinear frequencies are taken from 

Tables 5. For all the cases, stiffness of the beam increases with increasing load due to geometric 

nonlinearity present in the system. This increased stiffness causes increase in free vibration 

frequencies with increase in deflection of the beam, as can be observed from any of the figures. So, 

hardening type nonlinear behaviour is exhibited by the system for all combinations boundary 

conditions. 

 
(a)      (b) 

 
    (c)     (d) 

Fig. 8: Mode shape of exponential taper AFG beam for Material Model 2 (    0 1E E   , 

   20 1       ) corresponding to different boundary conditions: (a)CC (b)CF (c) CS (d) SS. 

First three mode shape of the system corresponding to three material models are provided in Fig. 

7-9. Each of these figures consists of four different sub-plots for the boundary conditions. It is also 

worth pointing out that amplitude of vibration has an effect on the modeshape of the system. To 

study this aspect in more detail, two modeshape plots corresponding to linear (wmax/t0 = 0) and 

nonlinear (wmax/t0 = 2) frequencies are given for each of the vibration modes. It should also be noted 

that the amplitude of vibration for all the plots is normalized by the corresponding maximum 

deflection. It was observed that difference in linear and nonlinear mode shapes increase when the 

boundary condition changes from CC to CF, CS and SS due to the decreasing rigidity at the 

boundary. However no considerable change in the mode shapes could be identified for the different 

stiffness of the foundation perhaps due to normalization of the maximum displacement as shown in 

Fig. 10. 
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(a) ..     (b) 

 
    (c)..     (d) 

Fig. 9: Mode shape of exponential taper AFG beam for Matrial Model 3 (   0E E e  , 

  0e
   ) corresponding to different boundary conditions: (a) CC (b) CF (c) CS (d) SS. 

Conclusions 

In the present analysis, large amplitude free vibration behaviour of axially functionally graded 

thin exponential taper beam with various end condition and material gradation is investigated. The 

beam is further assumed to be on elastic foundation and subjected to uniformly distributed load. 

Energy principle is applied for the mathematical formulation for both static and dynamic analysis. 

The methodology is general in nature as it can be applied for other type of material gradation and 

taper pattern. The obtained results are validated from previously published results and were found to 

be in good agreement. The results for the natural frequencies are tabutated for different 

combinations of boundary condition, foundation stiffness and material model. Results pertaining to 

various material types and flexural boundary conditions for a fixed taper parameter and foundation 

stiffness are furnished as backbone curve for the first four modes. For all combinations of the 

system parameters hardening type of nonlinearity is observed. The results for the mode shape plots 

are also furnished. 
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(a)      (b) 

 
    (c)     (d) 

 
(e) 

Fig. 10: Mode shape of exponential tapered AFG beam for Material Model 3  (   0E E e  , 

  0e
   ) with CC boundery condition: (a) 0K  N/m (b) 1000K  N/m (c) 10000K  N/m (d) 

50000K  N/m (e) 100000K  N/m. 
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Appendix 1: Nomenclature 

0A   cross-sectional area of the beam at the root 

b    width of the beam 

ic    unknown coefficients for static analysis 

id    unknown coefficients for dynamic analysis 

0E    elastic modulus of the beam material at the root 

 f   load vector 

0I   moment of inertia of the beam at the root 

K   Stiffness of the elastic foundation 

 sK    stiffness matrix 

L   length of the beam 

 M   mass matrix 

nw ,nu  number of constituent functions for w and u respectively 

ng   number of Gauss points 

P   magnitude of uniformly distributed load 

0t   thickness of the beam at the root 

T  kinetic energy of the system 

u   displacement field in x-axis 

U   strain energy stored in the system 

V   potential energy of the external forces 

w   displacement field in z-axis 

maxw   maximum deflection of the beam 

   taper parameter 

   variational operator 

0   density of the beam material at the root 

   time coordinate 

1   first natural frequency 

nl   nonlinear frequency parameters 

   normalized axial coordinate 

   total potential energy of the system 

i   set of orthogonal functions for u 

i   set of orthogonal functions for w 

 

Appendix 2: Details of Stiffness matrix, Mass matrix and load vector 

The form of stiffness matrix, mass matrix and load vector are given by, 

  11 12

21 22

s

K K
K

K K

 
  
 

 ,   11 12

21 22

M M
M

M M

 
  
 

  and    11 12

T
f f f

 

The elements of the stiffness matrix [Ks] are 

         

     

221 12

11 3 2 2 3
1 1 1 1 10 0

21 1

1 1 1 1 10 0

1 1

2

1

nw nw nw nw nw
j ji i i

i

j i j i i

nw nw nw nu nw nw
ji nw i

i i j

j i i nw j i

d dd d d
K E I d c E A d

L d d L d d d

dd d
c E A d KL p d

L d d d

        
    

       
  

    




     

 
   

 

 
  

 

   

   
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 12 0K 
 

     
21

21 2
1 1 10

1

2

nw nu nw nw
j nwi i

i

j nw i i

dd d
K c E A d

L d d d

    
  




   

 
  

 
  

 

     
1

22

1 1 0

1 nw nu nw nu
j nwi nw

j nw i nw

dd
K E A d

L d d

   
 

 


   

   
 

The elements of the mass matrix [M] are 

     
1

11

1 1 0

nw nw

i j

j i

M L A d    
 

 
 

 12 0M 
, 
 21 0M 

 

     
1

22

1 1 0

nw nu nw nu

i nw j nw

j nw i nw

M L A d     
 

 
   

   
 

The elements of the load vector {f} are:  

   
1

11

1 0

nw

i

j

f L p d  


 
 

 12 0f 
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