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Abstract

Background: Genetic variation is an important determinant of RNA transcription and splicing, which in turn
contributes to variation in human traits, including cardiovascular diseases.

Results: Here we report the first in-depth survey of heart transcriptome variation using RNA-sequencing in 97
patients with dilated cardiomyopathy and 108 non-diseased controls. We reveal extensive differences of gene
expression and splicing between dilated cardiomyopathy patients and controls, affecting known as well as novel
dilated cardiomyopathy genes. Moreover, we show a widespread effect of genetic variation on the regulation of
transcription, isoform usage, and allele-specific expression. Systematic annotation of genome-wide association SNPs
identifies 60 functional candidate genes for heart phenotypes, representing 20% of all published heart genome-wide
association loci. Focusing on the dilated cardiomyopathy phenotype we found that eQTL variants are also enriched for
dilated cardiomyopathy genome-wide association signals in two independent cohorts.

Conclusions: RNA transcription, splicing, and allele-specific expression are each important determinants of the dilated
cardiomyopathy phenotype and are controlled by genetic factors. Our results represent a powerful resource for the
field of cardiovascular genetics.
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Background
In recent years genome-wide association studies (GWAS)

have identified thousands of disease-associated genetic

variants. However, the underlying disease-causing molecu-

lar mechanisms have remained largely elusive because

these variants are located predominantly in the noncoding

part of the genome [1]. Many variants have been shown to

coincide with regulatory elements residing in the noncod-

ing part of the genome [2, 3]. Large scale analysis of the

genetics of intermediate molecular phenotypes, such as

gene and transcript expression levels [4–7] and markers of

chromatin states [8–11], can be used to identify regulatory

variants and to characterize their role in disease [2, 8, 9,

12]. Regulatory elements, and therefore also the effects of

variants on the functioning of these elements, can be

highly tissue-specific; hence, it is important to investigate

the tissue relevant for the disease [2, 3, 7, 13].

Here we characterized global gene expression in the

left ventricular myocardium of human hearts to study

dilated cardiomyopathy (DCM), a common cause of heart
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failure ultimately leading to premature death [14].

Myocardial ischemia as well as toxic, metabolic, and

immunologic factors [15] can lead to the DCM phenotype.

Moreover, genetic susceptibility plays an important role,

with at least 23% of DCM cases being familial [16], and

more than 50 genes linked to inherited DCM [15]. The

most common genetic cause of DCM are truncating

mutations in the gene encoding Titin (TTN), a giant

sarcomeric protein that spans from the A-band to the

Z-disc of the sarcomere [17, 18]. These mutations either

introduce a premature stop codon [19, 20] or affect alter-

native splicing of the >100-kb-long messenger RNA [21].

Titin transcript processing is controlled by the DCM-

associated splicing factor RBM20 [21–24], which targets a

number of additional DCM-associated genes. The myosin

heavy chain locus represents a well characterized example

of transcriptional regulation of both protein-coding [25]

and noncoding DCM-associated genes [26].

In this study we surveyed the cardiac transcriptome of

left ventricular tissue of DCM patients and non-diseased

donors. These datasets were used to characterize the im-

pact of regulatory variation on gene expression and spli-

cing in the heart, and its relation to the biology of DCM.

We analyzed the differences in expression levels between

diseased and non-diseased cardiac tissue, identifying 228

differentially expressed genes. Furthermore, we identified

regulatory variants impacting gene and exon expression

levels. An overlay of our data with published genome-

wide association loci for DCM showed that the identi-

fied regulatory variants are enriched for SNPs tagging

loci associated with DCM risk. Extending our analysis to

GWA loci related to heart physiology in general, we

were able to identify candidate genes for about 20% of

all reported loci.

Results

Gene expression differences between DCM and donor

samples

We generated a detailed inventory of the heart tran-

scriptome by deep RNA sequencing of heart samples of

97 patients with DCM and 108 non-diseased donors.

Selection of the samples and the two study populations

are summarized in Additional file 1: Tables S1 and S2.

Additional clinical information of the DCM patients is

given in Additional file 1: Table S3. On average we gen-

erated 168 million mapped paired-end reads per sample

(Additional file 1: Tables S4 and S5), providing sufficient

depth for detailed characterization of gene expression and

alternative splicing. We have quantified gene expression of

57,820 annotated genes (Gencode v19), including protein-

coding genes, antisense transcripts and long noncoding

RNAs (lncRNAs).

To assess the quality of our data, we first investigated

genes with strong association to DCM described in the

literature. We investigated gene expression differences

between DCM and donor samples for the well-known

DCM-related myosin heavy chain genes MYH6 and

MYH7. We confirmed that the fraction of the adult MYH6

transcripts among all myosin heavy chain RNAs is, on

average, around 10% in donors and virtually absent in the

DCM patients [25] (Additional file 1: Figure S1). Principal

component analysis shows that cases and controls are sep-

arated along the direction of largest variance (Additional

file 1: Figure S2).

We performed a systematic analysis of differential

gene expression between DCM cases and non-diseased

controls and identified 228 protein-coding genes and 53

noncoding RNAs with significant expression differences

and fold changes of at least 20% (Additional files 2 and

3). The top 20 most up- and down-regulated genes are

shown in Table 1. Of these, more than half (11/20) have

been associated with cardiomyopathy prior to this study

while the two most upregulated genes, NPPA and NPPB,

are well established markers of heart failure [27–30].

The latter result confirms the validity of the comparison of

relative expression between DCM cases and non-diseased

donors. Differentially expressed genes were enriched for

Gene Ontology (GO) terms such as structural con-

stituent of muscle (P = 4.59E-04), calcium ion binding

(P= 7.06e-04), regulation of heart contraction (P= 2.56e-07),

and cardiac tissue development (P = 8.77e-05). Among

those genes are eight well known DCM-associated genes

(Additional file 1: Table S6, reproduced from [20]), which

is significantly more than expected by chance (odds ratio

(OR) = 7.9, P = 2.09e-05).These include RBM20, LAMA2,

and TBX20, which were all upregulated in DCM. Differen-

tial expression of TBX20, an important cardiac transcrip-

tion factor, is expected to cause expression changes of

its target genes. We annotated orthologous human tar-

gets of TBX20 using previously published mouse ChIP-

seq data [31] and indeed identified 41 differentially

expressed TBX20 target genes, which are mostly upreg-

ulated (OR = 3.3, P = 1.0e-9, Fisher’s exact test (FET);

Fig. 1).

Splicing differences between DCM and donor samples

Alternative splicing is hypothesized to play an important

role in the etiology of DCM [21, 24, 32] and other car-

diovascular diseases. Here we characterized splicing on

the exon level [33–35]. In order to find the differences

in exon usage between DCM patients and donors, we

used the ‘percentage spliced in’ (PSI) metric that makes

use of reads covering the exons as well as the exon–exon

junctions. We identified 1212 exons that were signifi-

cantly different between DCM patients and donors (false

discovery rate (FDR) <0.05, ΔPSI >0.1; Additional file 4)

corresponding to 899 unique genes. These genes included

11 well known DCM candidate genes (LDB3, LAMA4,

Heinig et al. Genome Biology  (2017) 18:170 Page 2 of 21



Table 1 Differentially expressed genes with greatest absolute log fold changes

P value Adjusted
P value

Log
fold
change

DCM
associated

TBX20
target

CMP
associated

Comments

Gene symbol Description

NPPA Natriuretic peptide A 5.61E-09 2.38E-08 0.58 Yes No Yes Natriuretic factor A and B are used
as markers of heart failure progression.
Natriuretic factor implicated in
development and marker of heart failure,
also target of T-box factors [27–30]

NPPB Natriuretic peptide B 1.79E-06 5.57E-06 0.57 Yes Yes Yes See NPPA

TBX20 T-box 20 2.87E-25 3.01E-23 0.49 Yes No Yes TBOX20 has been associated with the
pathophysiology of DCM in both
animal models and human tissue [82]
Furthermore, mutations in TBX20 are
associated with familial DCM [83, 84]

MYLK3 Myosin light chain kinase 3 1.07E-21 3.15E-20 0.42 Yes No Yes Associated with stress adaptation and
progression to heart failure [85–87]

CLIC5 Chloride intracellular
channel 5

2.88E-26 5.40E-24 0.38 No No No CLIC5 is a member of the family of
intracellular Ca2+ channels, associated
with the actin cytoskeletal system.
Thus far no link with DCM has been
described

TRIM44 Tripartite motif containing 44 4.51E-28 3.73E-25 0.38 No No No Thus far no link with DCM has been
described

MAVS Mitochondrial antiviral
signaling protein

5.05E-25 4.67E-23 0.36 No No No Thus far no link with DCM has been
described

NPR3 Natriuretic peptide
receptor 3

3.68E-23 1.68E-21 0.36 No No Yes NPR3 is the receptor for natriuretic
peptides in the heart; it is therefore a
candidate for studies into the modulation
of NPs in (DCM-related) heart failure [88].

SMCR8 Smith-Magenis syndrome
chromosome region,
candidate 8

3.66E-28 3.46E-25 0.34 No No No Thus far no link with DCM or the heart
has been described

JAK2 Janus kinase 2 2.45E-22 8.67E-21 0.32 No Yes Yes JAK2/STAT3 signaling is, amongst other
processes, involved myocardial infarction/
reperfusion injury, and hypertrophic
remodeling in mice. Thus far no direct
link with DCM has been described [89]

TUBA3D Tubulin alpha 3d 1.66E-08 6.63E-08 -0.26 No No No Thus far no link with DCM or the heart
has been described

GADD45B Growth arrest and DNA
damage inducible beta

1.43E-08 5.75E-08 -0.27 No No Yes Changes in expression of GADD45B are
observed in MI induced HF [90]

DLK1 Delta like non-canonical
Notch ligand 1

9.83E-09 4.03E-08 -0.28 No No No Thus far no link with DCM or the heart
has been described

TUBA3E Tubulin alpha 3e 1.17E-10 6.04E-10 -0.30 No No No Thus far no link with DCM or the heart
has been described

GADD45G Growth arrest and DNA
damage inducible gamma

2.87E-11 1.58E-10 -0.31 No Yes Yes Gadd45g overexpression promotes heart
failure and cardiac remodeling after MI;
while knockout mice are resistant to
heart failure [91]

RASD1 Ras related dexamethasone
induced 1

3.32E-07 1.14E-06 -0.32 No No No RASD1 may be involved in the cardiac
release of ANF and BNP upon atrial
volume overload in rats [92]. The RASD1
locus is associated with coronary artery
disease in human GWAS [93]

MYL7 Myosin light chain 7 8.29E-10 3.89E-09 -0.33 No No No Thus far no link with DCM has been
described

FOS Fos proto-oncogene, AP-1
transcription factor subunit

5.58E-08 2.09E-07 -0.33 No Yes Yes c-FOS is used as a marker of heart
failure [94]
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DTNA, TMPO, TTN, TAZ, FLT1, DSP, SYNE1, EYA4, and

DMD), which is significantly more than expected by

chance (OR = 3.8, FET P = 4.4e-04). Differentially spliced

genes were enriched for the GO terms MAPK binding

(P = 6.77E-05), cytoskeleton organization (P = 1.07E-07),

actin filament organization (P = 2.12E-05), Z disc (P =

1.10E-03), and I band (P = 4.40E-03). We have previously

shown that the splicing factor RBM20 is implicated in

DCM [21] and directly regulates splicing of TTN, LDB3,

and other DCM candidate genes [21, 24]. In this data set

the known RBM20 targets TTN, CAMK2D, RTN4, and

paralogs PDLIM5 and SORBS2 of the known targets

Pdlim3 and Sorbs1 were differentially spliced. DCM hearts

expressed longer TTN isoforms, which is known to cause

disease in RBM20-mediated cardiomyopathy [24].

Genetic effects on the transcriptome

We characterized the impact of naturally occurring gen-

etic variation on the regulation of gene expression and

splicing. To this end genotype data were obtained from

SNP arrays for all samples. After stringent quality control

(see Methods: Additional file 1: Table S7), we imputed var-

iants from the 1000 Genomes project [36]. Imputation

quality was assessed using genotype calls obtained from

the RNA-seq reads and was high for variants with minor

allele frequency (MAF) >10% (Additional file 1: Figure S3).

Table 1 Differentially expressed genes with greatest absolute log fold changes (Continued)

MYH6 Myosin heavy chain 6 2.12E-09 9.50E-09 -0.34 Yes Yes Yes MYH6 mutations are associated with
familial DCM [95]

DHRS7C Dehydrogenase/
reductase 7C

3.31E-09 1.45E-08 -0.39 No No Yes Decrease of DHRS7C is observed in
mouse models of heart failure and
in human cardiac tissue of heart
failure patients [96, 97]
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Fig. 1 DCM-associated expression of TBX20 targets. Differential expression of human orthologs of TBX20 targets in the mouse heart is shown as a
heatmap of gene expression values standardized to mean zero and standard deviation one
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We therefore selected only variants with MAF >10%,

resulting in 1,851,329 high confidence imputed variants

for quantitative trait locus (QTL) analysis.

Cis expression QTL (eQTL) analysis of protein-coding

and long noncoding transcripts uncovered widespread

genetic effects on gene expression levels. In concordance

with earlier studies in cell lines [4–6] and other tissues

[7] as well as previous studies in the heart [7], we found

eQTL for 17% of protein-coding genes and for 18% of

noncoding transcripts (Table 2). In total we identified

188,821 SNPs affecting the transcript levels of 5074

unique genes in the combined expression data of controls

and DCM samples adjusted for sex, age, disease status,

and additional covariates. We systematically compared

our results to eQTL from left-ventricular tissue of the

GTEx project [7] (see also Additional file 1: Supplemental

notes for a concise summary of all GTEx comparisons),

which comprises 190 samples in version 6. For the com-

parison on the SNP level, we selected the most significant

marker for each gene with cis eQTL in our study (nominal

P < 1e-5). Among the top SNPs, 82% were also analyzed in

the GTEx study. Of these, 97% had concordant allelic ef-

fects (Additional file 1: Figure S4), although only 40%

reached the significance threshold in GTEx. The larger

number of eQTL detected in our study is most likely due

to reduced statistical power caused by a slightly smaller

sample size or the use of post-mortem tissues in the GTEx

project. Using Storey’s q-value method [37], we estimated

that 93% of eQTL are actually shared. Conversely, we have

analyzed 18% of the top GTEx SNPs for genes with cis

eQTL, of which 72% were significant in our study, 97%

had concordant allelic effects, and 92% were estimated to

be shared. Together these estimates suggest that our study

is well replicated by the GTEx study.

As cis-regulatory variation is dependent on the con-

text, such as the expression or activity of trans-factors

(i.e., transcription factors), which might be dramatically

altered in the hearts of DCM patients, we studied the

presence of DCM/donor specific cis eQTL (Additional

file 5). Using nested linear models we found 100 DCM-

specific and 128 eQTL that were specific for donors.

Only three of the specific eQTL SNPs showed evidence of

differences in allele frequencies between groups (Armitage

trend test, P < 0.01). Given the presence of DCM and

donor-specific eQTL, we repeated the comparison of

eQTL results from each population separately with GTEx

(Additional file 1: Figures S5 and S6 and Table S8). We

also compared the 100 DCM-specific eQTL with GTEx

results and found that only 9.3% were also significant

in this non-diseased population.

We looked for examples of genes with specific cis

eQTL that have previously been discussed in the context

of DCM in the literature. A DCM-specific eQTL was

JUND, which is specifically expressed during heart de-

velopment [38]. Higher levels of JUND expression are

observed in DCM patients. Interestingly, DCM patients

carrying the A allele of rs11085247 show even higher

expression levels (Fig. 2a). In donors TXNDRD2 had an

eQTL at rs11704083, which was not present in DCM

samples (Fig. 2b). Mutations in TXNDRD2 have been

associated with DCM [39] and heart-specific loss of

TXNDRB2 expression leads to a DCM-like phenotype

in mice [40].

Genetic effects on splicing

Since alternative splicing is hypothesized to play an im-

portant role in the etiology of DCM [21, 24, 32] and

other cardiovascular diseases, we set out to identify spli-

cing QTL (sQTL) using an exon-based model similar to

DEXSeq [33]. In addition we also used a gene level test

that associates changes of relative transcript isoform

abundance with genotypes [41] to identify transcript

ratio QTL (trQTL). We found evidence for extensive

genetic regulation of splicing, with 11.8% of tested exons

and 14.6% of tested genes showing sQTL and trQTL, re-

spectively (Table 2). In both approaches we ruled out con-

founding by RBM20 expression by estimating that the

upper limit for the fraction of significant trans associations

of sQTL SNPs to RBM20 was below 1%. We compared

the exon-based (sQTL) and the transcript-based (trQTL)

approaches in terms of overlapping genes and overlapping

SNPs with significant QTL. The gene level comparison

showed that 45% of genes with trQTL were also detected

as sQTL and, vice versa, 24% of genes with sQTL were

also detected as trQTL. Similar numbers were obtained

on the SNP level, with 41 and 26%, respectively. Both

comparisons revealed a higher power to detect QTL with

the exon-based approach, which is most probably due

to the uncertainty in transcript isoform quantification.

In comparison to the GTEx study (242 trQTL, ~1.2%

of tested genes), we identified over ten times as many

trQTL. To investigate the possible factors leading to

this increase in detection rate, we matched our data set

to the GTEx data set in terms of read depth, sample

size and size of the cis window (see “Methods”). In this

matched analysis we estimated that 1.5% of genes have

trQTL (Table 3), which is in accordance with GTEx. This

estimate suggests that the increased rate of detection in

Table 2 Summary of QTL results

Type Number
tested

Number of
significant cis QTL

Percentage
significant cis QTL

Exons 48,119 5,702 11.8

Transcript
isoform ratios

19,736 2,874 14.6

Protein-coding 17,323 3,360 19.2

lncRNA 2,887 547 18.5
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our study is attributable to the increased sample size, in-

creased cis window size, as well as sequencing depth,

highlighting the importance of sequencing depth to inves-

tigate post-transcriptional regulation (Table 3).

eQTL and sQTL are overrepresented in known regulatory

regions

We functionally annotated the genetic variants that affect

gene expression and splicing. eQTL and sQTL have previ-

ously been shown to frequently reside in cis regulatory

elements [6, 7, 42, 43]. We have annotated variants with

features based on transcript annotation, position of the

variant relative to its target, and an epigenome annotation

specific for the left ventricle of the heart from the Epige-

nomics Roadmap project [44] based on the ChromHMM

[45] segmentations of histone modification ChIP-seq data.

As described previously [6, 42, 43], we found a strong en-

richment of QTL variants around the transcription start

site (TSS) for eQTL (Additional file 1: Figure S7a) and

around the target exon for sQTL (Additional file 1: Figure
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Fig. 2 DCM- and control-specific eQTL. Boxplots show examples of eQTL where the genotype only affects expression levels in a DCM patients or
b controls. Expression levels are shown as log transformed normalized read counts. The x-axis indicates the genotype of the SNP

Table 3 Effect of read depth, sample size, and covariate adjustment on trQTL detection

Cis radius Reads matcheda Samples matchedb Adjusted for covariates Genes tested Genes with trQTLc Percentage with trQTLc

500 kb Yes Yes No 462 19 4.11%

500 kb Yes Yes Yes 457 26 5.69%

500 kb Yes No No 465 43 9.25%

500 kb Yes No Yes 458 58 12.66%

500 kb No No No 19,736 2874 14.56%

500 kb No No Yes 14,586 3588 24.60%

5 kb Yes Yes No 394 6 1.52%

5 kb Yes Yes Yes 377 9 2.39%

5 kb Yes No No 398 32 8.04%

5 kb Yes No Yes 351 33 9.40%

5 kb No No No 16,208 2088 12.88%

5 kb No No Yes 10,304 2469 23.96%
aAnalysis of chromsome 20 matched to 1.7 million reads corresponding to an estimated total read count of 80 million (GTEx median = 82.1 million)
b83 non-diseased samples (GTEx left ventricle, 83)
cFDR <0.05
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S7b). Figure 3 shows that eQTL are enriched in TSSs,

exons, and introns even when adjusting for distance ef-

fects. Moreover, there was also enrichment in more distant

elements such as enhancers, whereas heterochromatin re-

gions were depleted of eQTL. sQTL showed the strongest

enrichment when they were located directly within the

target exon but also the downstream neighboring exon. In

contrast, SNPs in neighboring introns were depleted for

sQTL. In addition to the enrichment within the target

exon, SNPs that were located in exonic splice enhancer

sequences show an enrichment for sQTL, corroborat-

ing the important role of these cis regulatory sequences

for splicing [46]. We also found enrichment of annota-

tions related to transcriptional regulation, such as pro-

moters and DNAse hypersensitivity sites as well as

polycomb-associated regions (Fig. 3).

Genes with allelic imbalance differences are enriched for

DCM-related processes

Allele specific expression (ASE) is an additional mechan-

ism for naturally occurring variation to affect gene expres-

sion. To assess ASE, reference-alternative allele ratios

were determined in the aligned RNA-seq reads for all het-

erozygote sites in each individual, and their deviation from

the expected 50:50 ratio was used as a measure of allelic

imbalance. Only sites passing strict quality criteria were

considered (see “Methods” section) and we observed an

overrepresentation of sites located in the 3′ UTR, likely

caused by increased sequencing depth due to poly(A) se-

lection for the RNA-seq analysis (Additional file 1: Figure

S8). Although this commonly observed technical bias in

RNA-seq analysis leads to variants within the 3′ UTR be-

ing detected with greater coverage and quality, these vari-

ants are used to detect imbalance on the gene level

irrespective of relative location. Using this approach, we

identified 6499 sites with allelic imbalance (Additional file

6) in at least one individual, corresponding to 3307 genes.

Enrichment analysis of these genes revealed enrichments

for significant eQTL effects (OR = 1.10, P < 0.05, FET)

and differential splicing (OR = 1.68, P < 2e-06, FET), in

addition to presence of miRNA binding sites (OR = 1.94,

P < 2.2e-16, FET) (Fig. 4a). Enrichment tests for

localization are not affected by the 3′ UTR bias, as the

background set of all tested variants is also enriched in

the 3′ UTR.

We next looked at consistent effects across multiple

individuals. Out of all imbalanced genes, 1582 showed a

difference larger than 0.10 between alternative and refer-

ence allele frequencies consistently across imbalanced

individuals. The remaining 1725 genes demonstrate lar-

ger inter-individual differences in allelic imbalance,

where at the same site either the alternative or reference

allele was overexpressed in different individuals, leading

to an approximate 50:50 ratio when averaged across
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Fig. 3 Functional annotation of QTL variants. Enrichment of sQTL (a) and (b) eQTL in functional categories is shown as estimated odds ratios and
95% confidence intervals of the multiple logistic regression model on the x-axis for each annotation category on the y-axis. Odds ratios greater
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individuals. Allelic imbalance observed for these latter

sites could be the result of parental imprinting, although

overlap with known imprinted genes was only small

(n = 20).

Next, we compared ASE between the DCM cases and

donors. We observed significant differences in the rela-

tive number of imbalanced individuals at 448 shared

sites. Out of all differential ASE sites, 133 showed a dif-

ference between alternative and reference allele ratio

larger than 0.10. These sites are located in 132 unique

genes (Additional file 7), which were significantly

enriched for differential splicing (OR = 2.55, P < 0.05,

FET) and presence of miRNA binding sites (OR = 1.66,

P < 0.05, FET) (Fig. 4b). Next, we assessed the biological

function of the differentially imbalanced genes. One of

the top ten differentially imbalanced genes is FSTL1

(DCM, 24 out of 42 heterozygotes imbalanced; donors,

10 out of 44 heterozygotes imbalanced; alternative/refer-

ence ratio = 40:60; P < 0.05, FET). Apart from showing a

strong difference in imbalance between DCM cases and

donors, FSTL1 is a known cardioprotective gene, acting as

an autocrine/paracrine regulatory factor that antagonizes

myocyte hypertrophic growth and the loss of ventricular

performance in response to pressure overload [47], and

shown to be able to prevent myocardial ischemia/reperfu-

sion injury by inhibiting apoptosis and inflammatory re-

sponse [48]. The only known DCM-related gene that is

differentially imbalanced between DCM cases and donors

is TTN, but sample size for the heterozygous variant used

in the ASE analysis is very low (DCM, 4 out 9 imbalanced;

donors, 12 out of 13 imbalanced; alternative/reference

ratio = 38:62; P < 0.05, FET). Extending on this beyond

differential imbalance, we did not observe any consistent

strong allele-specific expression effects in TTN across all

samples. GO enrichment analysis revealed biological

processes known to be implicated in DCM [20], includ-

ing heart development, actin filament-related processes,

muscle development and mitochondrial processes

(Additional file 1: Table S9). Furthermore, we observed

enrichment for genes involved in cytoskeletal protein

binding, as well as external matrix and laminin binding,

pointing to genes involved in maintaining structural

stability on both the cellular and tissue level. Laminins

are pivotal for the maintenance and survival of tissues

and defects in laminins are known to lead to forms of

muscular dystrophy [49, 50]. Together, these results

suggest that in DCM hearts, overexpression of specific

alleles of genes involved in processes known to play im-

portant roles in establishing the DCM phenotype occurs

partly through differential splicing and partly through

miRNA interference.

sQTL and eQTL are enriched for DCM variants

We analyzed genome-wide association (GWA) data from

two studies that looked for loci involved in DCM in a

German population [51] and a set of European popula-

tions [52]. We investigated whether the transcriptome

altering QTL variants (not specific for DCM or controls)

we have identified are enriched for DCM-GWA associ-

ation signals. Since the GWA studies and eQTL studies

were carried out on different genotyping platforms, we

defined linkage disequilibrium (LD) blocks [53] with Rsq

>0.6 from 1000 Genomes data and tested whether the

distributions of association P values of LD blocks with

and without QTL differ [54]. We found a highly significant

enrichment (Fig. 5; P < 2.2e-16) of small GWA P values

for LD blocks with a sQTL in the German DCM GWAS

(909 cases versus 2120 controls), which was subsequently

a b

Fig. 4 Enrichment for significant eQTLs, miRNA interference, and significant differential splicing in genes with allele-specific expression. Odds
ratios with 95% confidence intervals for enrichment are given. a All genes with allele-specific expression in at least one individual. Significant
enrichment for significant eQTLs, differential splicing, and presence of miRNA binding sites was observed. b All genes with differential allele-specific
expression between DCM and non-diseased controls with alternative/reference allele frequency difference >0.10. Significant enrichment for differential
splicing and presence of miRNA binding sites was observed, with suggestive enrichment for significant eQTLs
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replicated (P < 2.2e-16) in the international DCM GWAS

(1179 cases versus 1108 controls). Similarly, LD blocks

with eQTL were also enriched for small GWA P values in

both GWAS (Fig. 5; P < 2.2e-16). A similar comparison of

LD blocks with ASE variants to the background of all LD

blocks of SNPs tested for ASE also showed significant

shifts in the P value distributions in both GWA studies

(Fig. 5c, d; P = 6.80e-07 and P = 4.20e-08). Focusing on

DCM-specific eQTL, we also observed this shift in the P

value distributions (P < 5.78e-10 in [51] and P < 8.99e-12

in [52]). These results indicate that the genomic regions in

which we have identified these sQTL, eQTL, and ASE

SNPs contain genetic variants regulating splicing and tran-

scription that are important in the development of DCM
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Fig. 5 Enrichment of QTL and ASE variants for DCM GWAs. Cumulative density function (CDF) plots for DCM GWA P values for LD blocks that
have sQTL (red) and eQTL (yellow) compared to the background set of all tested LD blocks using GWA data from a German DCM population (a)
and a European DCM population (b). Similarly, CDF plots of DCM GWA P values for LD blocks with ASE variants (red) are compared to the
background set of all LD blocks with coding SNPs tested for ASE (grey) for a German DCM population (c) and a European DCM population (d)
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in the general population. As such these variants could

point to biologically relevant candidate genes and poly-

morphisms in the context of DCM.

Hence, we were interested in whether these genetic

variants could be used to improve the prediction of

DCM risk. We trained a multilocus genetic risk score

(see “Methods”) using DCM GWA data [51], which

comprises 909 DCM cases and 2120 controls from

Germany. We selected the most predictive variables

from covariates (sex and age), eQTL SNPs, sQTL SNPs,

and the DCM GWA SNP rs9262636. In a tenfold cross

validation we found that the selection based on all can-

didate variables yielded risk scores with the largest area

under the ROC curve (median AUC = 0.70; Additional

file 1: Figure S9). A model based only on the GWA SNP

yielded a median AUC = 0.65 and a model based on age

and sex only resulted in median AUC = 0.63. Overall we

observed a moderate improvement of the risk score

when including eQTL and sQTL, indicating that these

SNP sets encoded relevant information on DCM risk.

eQTL are enriched for heart GWA SNPs

The sQTL and eQTL detected in this study may also

shed light on the underlying biology of other disease/

phenotype-associated variants reported in GWAS for the

heart. We collected SNPs associated with cardiac pheno-

types from the GWA literature [55] and annotated these

with our QTL results (Additional file 8) for genes with

RPKM >1 in >5% of the samples. Overlap between

GWA and eQTL SNPs can be used as functional evidence

to prioritize and implicate candidate genes. Overall we

have identified eQTL (nominal P < 1.0e-05) at 60 of the

298 heart GWA loci, which represents a highly significant

enrichment (OR = 3.4, P < 2.2e-10, FET) of eQTL for

GWA variants. This is many more than identified in the

donors only in a previous study [56], probably due to a

near doubling in sample size and higher sensitivity of

RNA-seq compared to the gene expression microarray

platform used previously. In the GTEx data, 39 GWA

SNPs were significant eQTL, of which 24 were also identi-

fied in our study. When also considering lowly expressed

genes, the numbers of GWA SNPs with eQTL in our

study increased to 70 (OR = 3.1, P = 2.2e-16, FET) and 45

in GTEx. Overall, these results demonstrate the added

value of an increased sample size for the interpretation of

disease variants. Using a similar strategy, we have also

identified ten GWA SNPs that were trQTL (Additional

file 9).

Inspecting all loci with eQTL in our study or the

GTEx study, we found 19 cases where the GWA SNP

was exclusively an eQTL for the candidate gene nomi-

nated in the original publication, i.e., the lead SNP of the

GWAS was significantly associated with the expression

of the candidate gene. In 17 cases, the GWA SNP was

an eQTL for the candidate gene as well as an additional

gene. These new genes should be considered as possible

alternative candidate genes. In more than half of the

GWA loci with eQTLs (39) the disease SNP was not an

eQTL for the original candidate gene, but for a different

gene in the same locus, which should be considered as

better candidate genes. One example is the SNP

rs2485376, which is associated with the duration of the

QTc interval on the electrocardiogram (ECG)—a param-

eter of cardiac repolarisation [57]. In the original study,

GBF1 was identified as a candidate gene. In our data we

did not find evidence of an association between the SNP

and GBF1, but with PITX3 (P = 4.75E-10). PITX3 is an

interesting candidate, as PITX2, a transcription factor

from the same family, has been implicated in transcrip-

tional regulation of cardiac ion channel genes [58, 59]

and genetic variants close to PITX2 have been associated

with atrial fibrillation [60].

Discussion

In this work we present the largest heart eQTL data

set to date (compare [7, 56]) based on deep RNA-

sequencing of DCM patients and non-diseased donors.

DCM and non-diseased left ventricular tissue showed

marked transcriptome differences. Transcript levels of

both protein-coding and long noncoding genes as well

as their splicing patterns were altered. This affected

many known genes and biological processes involved

in DCM (e.g., TBX20, RBM20) or heart failure (NPPA,

NPPB) and also revealed many novel DCM candidate

genes. Differentially expressed genes such as TBX20

and its target genes constitute a relevant starting point

for mechanistic studies to identify the genes whose

regulation in failing hearts suggests their biological in-

volvement in disease, which may provide novel leads

to study their mechanistic role. Our results provide a

rich source of information about the molecular mecha-

nisms that are altered in DCM, including the differential

expression of non-coding genes and differential splicing,

which previous RNA-seq studies were not able to detect

due to a limited number of samples (two DCM cases

compared to three non-failing controls [61]). Differ-

ences in alternative splicing are particularly interesting

as this process has previously been implicated in the

etiology of DCM [21, 24, 32]. Our results provide fur-

ther support for the role of RBM20 in DCM, as we have

identified differential splicing of RBM20 targets that we

previously identified in rat [24].

The current experimental design has a few limitations

with respect to the differential expression analysis due to

logistical reasons and challenges related to obtaining hu-

man myocardial tissue samples. Ideally the DCM cases

and non-diseased controls would have all been recruited in

the same centers, sequencing should have been performed
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in mixed runs, and both populations should have been

more deeply phenotyped. We have implemented the

following strategies to control the effects of unwanted

confounding: the RNA-seq data were generated in the

same lab, handled via the same procedures, and ana-

lyzed using the same pipeline. The statistical analysis

included all known covariates as applicable and we im-

posed additional thresholds on the fold changes to ob-

tain conservative results. The effectiveness of these

considerations was supported by the observation that

genes and processes were identified that had previously

been associated with DCM. Apart from being a bio-

logical validation, this confirmed that the known and

unknown sources of technical or biological variation

were handled sufficiently. Within the eQTL analyses

we addressed any residual confounding by including la-

tent confounder estimates through the PEER procedure

[62]. The latter approach has been shown to be a ro-

bust and effective method for controlling the influence

of latent confounding factors on detection of eQTLs

based on multi-center RNA-seq data [6, 63]. Neverthe-

less, the fact that samples were collected at different

centers and sequenced over an extended period in a

non-randomized order could still lead to confounding

in the comparison of DCM patients and controls, which

cannot be ruled out completely.

We showed that there is a widespread effect of genetic

variation that affects the regulation of transcription and

splicing, which is congruent with the recently published

insight that transcription and RNA splicing are the pri-

mary links between genetic variation and disease in gen-

eral [12]. We were able to identify significantly more

eQTL in comparison with previously published results

from the GTEx project, which is based on post-mortem

sections [7]. We showed that the effect sizes and direc-

tions were largely concordant between the two studies;

however, many eQTL did not reach genome-wide signifi-

cance levels in the GTEx study, likely due to a slightly

smaller sample size or the effects of post-mortem RNA

degradation. We also detected genetic variants that affect

gene regulation specifically only in DCM patients or in do-

nors, which might be due to an altered trans context in

diseased and non-diseased tissue. Peters et al. [64]

identified cell type- and disease-specific eQTL in im-

mune cells in patients with autoimmune disease, sup-

porting the existence and biological importance of

disease-specific eQTL. We detected ten times as many

QTL affecting the relative abundance of transcript iso-

forms (trQTL) in comparison to the GTEx study and

showed that this is due to increased sample size, se-

quencing depth, and the size of the cis-window. In

agreement with previous studies [6, 7, 42, 43] we

showed that QTL variants are frequently located in cis

regulatory elements, suggesting that these QTL indeed

affect promoters or enhancers for the corresponding

target gene. In line with previous studies [12] we ob-

served that sQTL are located preferentially close to

the exon that they affect. In keeping with results from

[65] we observed enrichment of sQTL in different

chromatin features such as DNAse I sites and pro-

moters. In addition we also observed enrichment in

polycomb-associated regions, which have been shown

to affect splicing [66]. Both observations are compatible

with the idea that chromatin influences co-transcriptional

splicing [67, 68].

We observed allele specific expression for many genes

across DCM and non-diseased donor tissues. Differences

in allelic imbalance between DCM and donors appear to

be small on the individual gene level, yet all differential

allelic imbalanced genes combined are enriched for

DCM-related processes, as well as differential splicing

and miRNA interference. Although we observed ASE in

TTN regardless of disease status, these sites were not

shared between individuals. While truncating variants in

TTN can lead to nonsense-mediated decay [69], there

was no clear pattern emerging from the ASE analysis,

probably due to the difficulty of phasing variants across

the very large TTN transcript. Similar observations

were made in a subset of DCM samples [20]. For the

DCM phenotype, this could indicate that imbalance

shifts towards disease contributing alleles during disease

progression. Although allele-specific expression, allelic

imbalance, and its potential determinants have been

studied genome-wide before [6, 65], to our knowledge

this is the first time that this process has been associated

with a disease.

By analyzing DCM GWA data we showed that eQTL

and sQTL variants are enriched for DCM associations.

However, as we focused solely on DCM GWA data it

remains open whether this enrichment is specific to

DCM or also holds for other diseases and phenotypes.

Building on the enrichment results, we showed that

QTL variants can be used to derive a multilocus risk

score for DCM that outperforms risk scores based on

clinical variables and the GWA hit SNP only. Although

we apply a ten-fold cross validation, this is not a true

replication and is still sensitive to overfitting. In its

current form this risk score therefore has limited use

for clinical applications. It does, however, demonstrate

that QTL variants together encode biological informa-

tion that significantly improves the prediction of the

DCM phenotype. More generally, we found that 20% of

all GWA loci for heart-related phenotypes published to

date alter gene expression levels. Compared to the 13%

identified in the GTEx data set, this increase consti-

tutes a substantial improvement in candidate gene

prioritization, an important bottleneck in GWA study

follow-ups.
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Conclusions
The RNA-seq-based QTL data set of DCM patients and

non-diseased donors generated in this study represents a

powerful resource for the whole field of cardiovascular

genetics. It revealed marked transcriptome differences

between diseased and non-diseased tissue and a wide-

spread effect of genetic variation on the regulation of

transcription and splicing. Moreover it allowed for great

improvements in GWA candidate gene prioritization, fa-

cilitating the elucidation of the mechanisms underlying

the genetic basis of common diseases of the heart.

Methods
Transcriptome profiling in cardiac samples from donors

and patients with DCM

All studies were carried out according to institutional

guidelines, and with appropriate informed consent from

participants or next of kin. Institutional ethics commit-

tees of the centers where the samples were collected

reviewed and approved all protocols.

Left ventricular samples from patients with DCM

Left ventricular tissue samples from patients with end-

stage DCM were retrieved during left ventricular device

implantation or/and cardiac transplantation in the period

between 1993 and 2011. They were snap-frozen and

stored in liquid nitrogen in a tissue bank at the Royal

Brompton and Harefield Hospitals NHS Foundation

Trust. The set of 128 DCM cases originally considered for

this study consisted of end-stage non-ischaemic DCM pa-

tients for whom good quality RNA from left ventricular

tissue was available for RNA-sequencing analysis. Out of

all these included cases, less than 10% report a family his-

tory. The diagnosis of non-ischaemic DCM was confirmed

from medical records, but additional clinical data were not

available. After genotype quality control (see below and

Additional file 1: Table S1) 97 samples were used for data

analysis.

Left ventricular samples from donor hearts

Left ventricular samples were obtained from unrelated

organ donors whose hearts were explanted to obtain

pulmonary and aortic valves for transplant or valve re-

placement surgery or explanted for transplantation but

not used due to logistical reasons. The 108 samples

studied here represent a subset of the 129 samples de-

scribed previously [56]. The selection was based on the

quality of RNA for RNA-seq.

For both cohorts, RNA was extracted from frozen left

ventricle with Trizol (Life Technologies) by following the

manufacturer’s protocol and subsequently the RNA was

quantified using UV spectrophotometry. RNA quality was

assessed with the Agilent 2100 Bioanalyser and RNA 6000

reagents. Non-stranded, poly(A)-selected RNA libraries

were prepared for sequencing using 4 μg of total RNA

as input for the TruSeq RNA Sample Preparation Kit

(Illumina).We then generated 2 × 100-bp reads of barcoded

cDNA fragments of poly(A) + RNA on a HiSeq 2000 (Illu-

mina) using paired-end chemistry. Six samples were pooled

and loaded on three lanes to avoid batch effects and obtain

sufficient coverage for splicing analyses.

Processing of RNA-seq data

The paired-end RNA-seq reads were aligned against the

human genome assembly GRCh37 using TopHat version

1.4.1 with option -r 0. This specifies the mate inner dis-

tance, which is expected to be zero, since we have 200 bp

fragment size and 100-bp reads. In addition we specified

option -M that removes multimapping reads before align-

ing to the transcriptome. The remaining options were set

to their default values. We have supplied transcript anno-

tations from Ensembl version 66, which specifies known

splice junctions and exon boundaries. In addition we also

enabled TopHat’s coverage-based search for novel exons

and splice junctions.

Quantification of the transcriptome

To quantify transcriptome features we have used the

Gencode annotation version 19 and augmented it with

annotation of the MHRT lncRNA locus [26] and a cus-

tom TTN annotation [20]. For gene level quantification

we used htseq-count version 0.5.3p3 and the ‘intersec-

tion-nonempty’ mode that is suited to quantify overlap-

ping transcripts on different strands. Transcript levels

were estimated as fragments per kilobase per million se-

quenced (FKPM) using cufflinks (version 2.2.1) [70] with

the same gene models as above. Exon coverage was

determined using intersectBed from bedtools version

2.15.0. The ‘percent spliced in’ index (PSI) [34] was

computed using scripts from [35] on non-overlapping

exonic parts derived from the Gencode annotation ver-

sion 19 using the script dexseq_prepare_annotation.py

from the DEXSeq R package [2, 9] version 1.8.0.

Heart tissue is mainly composed of cardiomyocytes

and fibroblast cells. In order to avoid confounding by

cell type heterogeneity in the heart tissue samples we

have defined a fibroblast gene expression signature. We

analysed RNA-seq data from cultured rat cardiomyocytes

and heart fibroblasts in order to identify fibroblast-specific

marker genes. Rat cardiomyocytes and fibroblasts were

isolated from hearts of neonatal SD rats as previously

described with minor modifications [2, 3, 7, 13]. Briefly,

1–2-day-old rats were euthanized and their hearts were

excised. Ventricular tissue was minced and incubated

in 0.1% trypsin (Sigma) in HBSS (Biochrom) overnight

at 4 °C. Five or six digestions for 4 min each were per-

formed with 10 ml of 0.1% collagenase (Worthington)

in HBSS. Cells were pooled, collected by centrifugation
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at 1100 rpm, and resuspended in DMEM supplemented

with 10% FCS. To selectively enrich for cardiomyo-

cytes, cells were preplated for 1 h in a T75 flask during

which period cardiofibroblasts attached readily to the

bottom of the flask. The supernatant was then seeded

in 15 cm dishes (~1 × 107 cells/dish) and cardiomyo-

cytes were cultured for 3 days in DMEM supplemented

with 10% FCS. Fibroblasts were cultured for two pas-

sages in 5 days to increase cell purity by overgrowing

non-proliferating myocytes. RNA-sequencing was per-

formed using the same procedures as for the human

samples. Reads were processed as the human data using

the rat reference genome assembly rn4 and Ensembl

version 66. Differentially expressed genes were identi-

fied using DESeq [71]. We selected genes with high ex-

pression levels in fibroblasts, at least tenfold higher

expression in fibroblasts compared to cardiomyocytes,

and FDR <0.05. From this list, we selected genes that

had human homologs. Using this gene list we com-

puted a fibroblast score for each human sample by

summing up the scaled and log10 transformed expres-

sion levels. This fibroblast score was subsequently used

for adjusting expression levels in eQTL and differential

expression analyses.

Genotyping

DCM patients

DNA isolated from peripheral blood samples was used

for genotyping on the Affymetrix GW6 platform at the

Max Delbrück Center in Berlin according to the manu-

facturer’s protocol. Genotype calls for 906,600 SNPs

were obtained from the Affymetrix genotyping console

software version 4.1.4.840 using the birdseed2 algorithm

with default settings. Prior to imputation, quality control

was performed using GenABEL. We checked for sex

mismatches and removed related individuals and individ-

uals with admixed or non-european ancestry (Additional

file 1: Table S1). After quality control (QC) we retained 97

DCM patients for the analysis.

Non-diseased donors

Genotyping and QC of genotypic data and post-QC

processing of the left ventricular samples obtained from

donors has been described in detail previously [56].

Genome-wide SNP genotyping was performed using

Illumina HumanOmniExpress Beadchips interrogating

733,202 genetic markers. QC was carried out in the

GenABEL package in the statistical programming lan-

guage R using default settings. Only the data of the 108

samples for which RNA-seq data were generated were

used in the present study, all of which passed QC and

were part of the original 129 samples used in the original

study [56].

Using data of both populations we checked for popula-

tion structure and computed the first three principal

components for inclusion in our models as covariates.

As independent quality control for both DCM patients

and donors, we obtained SNP calls from RNA-seq data

for known SNP positions in exons based on the 1000

Genomes data set phase 1 version 3. For this analysis we

ran TopHat with very stringent read mapping criteria to

avoid artifacts from misaligned reads. We have then se-

lected all SNP positions for which we were able to ob-

tain high confidence genotype calls (per sample, for each

genotype call, median PHRED score >30, covered by at

least 30 reads, and reference and alternative allele freq in

{0; 0.5; 1} ± 0.25). We used genotypes at 2043 positions

for which data were available from both platforms and

RNA-seq to compare the accuracy (fraction of correct

genotype calls) of the two platforms (Additional file 1:

Table S7). To rule out potential effects of allele specific

expression, we computed accuracy also for individuals

with heterozygous array genotypes only. In addition, we

computed the non-reference accuracy (fraction of cor-

rect minor allele genotype calls).

Genotype imputation

Since the genotypic data in DCM patients and donors

was obtained on different genotyping arrays, which have

an overlap of around only 200,000 SNPs, we used geno-

type imputation to increase the resolution of our genetic

map. The cases were typed on the Affymetrix GW6

array with 906,600 SNPs, while controls were typed on

the Illumina HumanOmniExpress with 733,202 SNPs.

Both genotype data sets were first filtered according to

the following quality criteria. In each data set, we re-

quired SNPs with minor allele frequency (MAF) greater

than 5% to have a call rate of at least 95% and SNPs with

lower MAF to have a call rate of 99%. Moreover the test

for Hardy–Weinberg equilibrium had to be P > 0.0001.

We selected the set of 195,386 SNPs that were typed on

both platforms and passed the quality criteria as the in-

put for the genotype imputation.

The reference haplotypes were obtained from the 1000

Genomes data set phase 1 version 3 that comprises ref-

erence haplotypes for 1092 individuals. We applied sha-

peit v1 for the prephasing of the genotypes. We used

impute v2 for the actual genotype imputation.

We assessed the quality of the imputed genotype calls

using two data sets. The first data set was based on the

genotype calls from the RNA-seq described in the section

genotyping. The second data set consisted of all genotypes

from the SNP array that were not used for the imputation

because they were specific to one of the two arrays. Imput-

ation quality was measured as overall genotype accuracy

(fraction of correct genotype calls), non-reference accur-

acy (fraction of correct minor allele genotype calls), and
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imputation efficacy (fraction of individuals with genotype

confidence P > 0.95). Additional file 1: Figure S3 shows the

imputation quality based on the RNA-seq data. Overall,

we achieved a good efficacy (Additional file 1: Figure S3a)

and also a good accuracy (Additional file 1: Figure S3b).

The non-reference accuracy, however, shows a bimodal

distribution with very high values, but very low values in

some instances. This is expected to occur for low MAF

variants when all individuals are assigned the major allele.

Indeed Additional file 1: Figure S3d shows that the very

low non-reference accuracy values occur at low MAF.

Therefore, to achieve good non-reference accuracy, we

use imputed variants with MAF >0.1 only. Similar results

were obtained using the SNP array-based evaluation (data

not shown).

In order to avoid artifacts in QTL analyses caused by

rare genotypes that coincide with outliers in the expres-

sion data, we substituted homozygous minor alleles that

occurred less than three times by the heterozygous

genotype.

Differential expression

Gene expression counts were normalized using a

quantile-based scaling method [72]. Differential gene ex-

pression was determined from the normalized gene ex-

pression count matrix as follows. The normalized counts

were log transformed and adjusted for the clinical covar-

iates using a linear model. For each gene we computed

residuals from the linear model and added the mean

expression level to preserve the information about the

absolute expression values. Differential expression be-

tween DCM cases and donors was assessed using the

Wilcoxon–Mann–Whitney test. In addition we required

large expression differences (absolute value of the log fold

change greater than log(1.2)) to avoid spurious findings.

Differential exon usage

PSI values were calculated for 245,309 counting bins.

Only those counting bins with 0 < PSI < 1 for all samples

were considered for the analysis; i.e., counting bins that

are excluded or included in all samples are not of inter-

est. We tested for differential exon usage between the

DCM cases and the donors using the two nested linear

models:

Full : PSI e DCM þ fibroblast score þ age

þ RIN score þ sex

Reduced : PSI e fibroblast score þ age

þ RIN score þ sex

and the likelihood ratio test statistic. To focus on bio-

logically relevant hits, we used a conservative cutoff for

the estimated effect size of 0.1 corresponding to a 10%

difference of PSI values.

Similar approaches based on linear regression of PSI

values have been used for the analysis of sQTL [41]. To

assess the expected sensitivity and false discovery rate of

this approach, we performed a simulation study. For

each sample we obtained the total read counts for each

exon. We removed all exons that had zero counts in

more than 10% of the samples. We fitted a negative bi-

nomial distribution to these counts excluding counts lar-

ger than the 90th percentile. Then we simulated total

read counts for all exons from this distribution. In the

next step we simulated the actual inclusion rates (PSI)

for all exons from a uniform distribution. Then we se-

lected 10% of all exons to be differentially used and

modified the actual PSI values by 10% in the samples of

the case group. Finally, we drew the number of inclusion

reads per exon in that sample from a binomial distribu-

tion with the total reads of the exon as size parameter

and the actual PSI of the sample as success probability

and computed the simulated PSI values as inclusion

reads over total reads. We applied the linear regression

model (without the covariates) to the simulated PSI

values and predicted the differential exons using the cri-

teria defined above. The predictions were compared to the

simulated differential exons to compute the sensitivity

(TP/(FN + TP)) and false discovery rate (FP/(FP + TP)).

The simulation was repeated 100 times. Additional file 1:

Figure S10 shows that the false discovery rate is very low

(<1%) and the sensitivity is about 22%, indicating a conser-

vative behavior of the method.

eQTL mapping

We used all 205 samples from DCM patients and donors

for the eQTL analysis. To associate gene expression

values with genotypes we applied the same procedure

that was used in the GTEx study [7]. Briefly, we trans-

formed read counts to RPKM values (reads per kilobase

of transcript per million mapped reads) and selected all

genes that had RPKM >0 in at least 50% of all samples.

We applied quantile normalization across all genes to

obtain comparable gene expression distributions be-

tween samples. Subsequently we quantile normalized the

expression values of each gene across samples to a

standard normal distribution to minimise the effect of

outliers. Ties in the ranking were resolved randomly.

We used the PEER method [62] to correct for hidden

confounding factors in the expression data. Similar to

[6] we evaluated the impact of using different combina-

tions of covariates on the detection rate of cis eQTL. We

compared the number of genes with cis-eQTL (P < 1e-6)

using no covariates, measured covariates (sex, age, fibro-

blast score, RIN score, center), the first three principal

components of the genotype data, measured and genetic

covariates, as well as 5 to 25 PEER factors (Additional

file 1: Figure S11). Note that the DCM status is implicitly
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adjusted for by the center variable, as all DCM cases were

recruited in London. For the final eQTL analysis we used

25 PEER factors and the measured covariates listed above.

eQTL were identified using MatrixEQTL [73] to test all

cis SNPs within a distance of 1 Mb of a gene. In Table 2

and in the comparison with the GTEx study we used

nominal P < 1e-5 as significance threshold, which corre-

sponds to a Benjamini–Hochberg adjusted FDR of 0.1%.

DCM/donor-specific eQTL

DCM- or donor-specific eQTL were identified using a

two-step approach. First we performed separate eQTL

analyses in DCM patients and in donors using the same

method as described above. To avoid imputation arti-

facts we only considered genotypes that were measured

on both platforms. In addition we focused this analysis

on transcripts with Refseq models only. We selected

all SNP–gene pairs for which an eQTL was detected

(FDR <0.05) only in one of the two analyses as candidate-

specific eQTL. In a second step we performed an analysis

using nested linear models to rule out that the eQTL was

not detected due to power issues. We compared a full

model that includes separate slopes and intercepts for

each group, with a reduced model that only contains one

common slope for both groups and intercepts for both

groups. Log transformed normalized gene expression data

adjusted for all available covariates yij of gene i in sample j

was modeled as a linear function of genotype dosage xkj of

SNP k and a group indicator variable gj. Specifically the

two models were:

Full : yij ¼ gj β0 þ β1xij
� �

þ 1 ‐ gj

� �
β2 þ β3xij
� �

þ εij

Reduced : yij ¼ gj β0 þ β1xij þ 1 ‐ gj

� �
β2 þ εij

with εij being the iid normal error term. Models were

compared using the likelihood ratio test as in regular

ANOVA. DCM- or donor-specific eQTL were identified

using FDR <0.05. In addition we required that zero was

in the 95% confidence interval for the estimates of β1 or

β3 to make sure that only one of the two slopes is sig-

nificantly different from zero.

We applied the Armitage trend test (implemented in

GenABEL [74]) for differences in allele frequencies to

assess if DCM- or donor-specific eQTL were due to sys-

tematic differences in allele frequencies between the two

groups.

sQTL mapping

For the sQTL analysis we used exon expression levels of

exon counting bins defined as in [33] using all tran-

scripts from GENCODE v19 that also had a Refseq

model.

We used an adaptation of the DEXSeq model [33] for

sQTL analysis. The original DEXSeq model was designed

for rather small data sets, so it was too slow for analyzing

large numbers of SNPs for each exon and too sensitive for

large sample sizes, detecting very small effects that are

likely false positives. To reduce runtime, we used a regular

linear model with Gaussian error terms instead of a gener-

alized linear model for count data. We therefore quantile-

normalized exon expression levels across all exons within

each sample such that they follow a standard normal

distribution. We encoded SNP genotypes as factors by

rounding the imputed genotype dosages. The normal-

ized exon expression levels yijl of exon l in gene i and

sample j is modeled by two nested models as:

Full : yijl ¼ β0 þ βGij þ βEil þ βSik þ βESilk δll’ þ εij

Reduced : yijl ¼ β0 þ βGij þ βEil þ βSik þ εij

where β0 is an intercept, βGi can be thought of gene ex-

pression level in sample j, βEil can be thought of as the

average difference of exon l to the gene expression level,

βSik represents the contribution of the genotype of SNP

k, βESilk δll’ is an interaction term representing the differ-

ence of the exon expression levels between genotypes at

SNP k for exon l′ and epsijl is the iid error term, follow-

ing a normal distribution. For each exon l′ and each

SNP k in a window of ±1 Mb of the gene, we computed

the likelihood ratio test for the comparison of the full

model and the reduced model. The full model is including

the interaction term βESilk that is multiplied by an indicator

variable δll’ , which is one if l = l′ and zero otherwise. To

evaluate the statistical significance of the likelihood ratio

statistic we used the F-distribution with the appropriate de-

grees of freedom depending on the number of exons per

gene and the number of observed genotypes. We tested

only counting bins that were located within exons that were

annotated as alternatively spliced by Ensembl.

To rule out spurious cis sQTL associations that might

arise if the genotypes of sQTL SNPs were correlated

with expression of the DCM-related trans-acting splicing

factor RBM20, we checked the correlation between

RBM20 expression and all cis sQTL SNPs (potential

trans eQTL for RBM20). We report the 1 – π0 estimate

[37] as the upper limit of the percentage of SNPs that

might be false cis sQTL because of confounding by

RBM20 expression.

Transcript ratio QTL mapping

We used isoform quantifications based on cufflinks for

the transcript ratio QTL mapping. As previously de-

scribed, we selected only transcripts with FPKM >0.01

and only genes with at least two transcript isoforms

expressed [7]. To make the results comparable with the
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exon-based sQTL analysis we tested all SNPs in the range

of 500 kb from the gene for association. We used sQTLee-

ker to test association between SNPs and transcript ratios

[41]. This method is based on multivariate analysis of vari-

ance and tests how well the genotype classes can explain

the variation of the samples on the simplex defined by the

relative transcript isoform expression levels. Significance

was determined by permutations and subsequent control

of the false discovery rate (FDR <0.05).

Moreover, we analyzed the effect of the total read

coverage, sample size, size of the cis window, and covariate

adjustment on the detection rate of trQTL. Our main goal

was to obtain numbers that are comparable to the GTEx

left ventricle data set, which comprises 83 samples assum-

ing a read coverage of 80 million, which is close to the me-

dian of 82.1 million of all GTEx samples [7]. Here we used

numbers from GTEx analysis version 4, as these results

are only reported in the paper and not on the website. To

reduce the computational burden of transcript isoform

quantification and sQTL seeker analysis we restricted our-

selves to chromosome 20. We sampled 1.7 million reads

from chromosome 20, assuming that the number of

aligned reads is distributed among chromosomes accord-

ing to their lengths (chromosome 20, 63,025,520; chrom-

somes 1–22 and X, 3,036,303,846). The 83 samples were

randomly selected from the group of donors to remove

possible influence of the disease state. In addition we re-

stricted the radius for cis SNPs to a maximum of 5 kb. We

also adjusted transcript isoform expression levels for the

measured covariates fibroblast score, age, RIN score, sex,

and contributing clinical center. We first computed mean

transcript expression levels and then added an offset of 1

and log transformed the isoform expression levels. Using

these values we performed linear regression against the

covariates and obtained the residuals from the model. Fi-

nally we reversed the log transformation, subtracted the

offset, and added the means to obtain adjusted isoform ex-

pression levels. All negative values were set to zero.

SNP level functional analysis of QTL

To determine whether QTL SNPs preferentially occur in

certain functional elements, we have annotated all SNPs

that were tested for eQTL and sQTL with features based

on gene models from GENCODE v19 and cis regulatory

elements that were determined based on DNA sequence

and chromatin state annotations [45] for the left ven-

tricle of the heart obtained from the Roadmap Epige-

nomics project [44]. To do so, we built a simple logistic

regression model:

log
Pi

1−Pi

� �
¼ β0 þ

X

j∈P

βjxij

to predict which SNP is ‘causal’ for a target from its

functional annotation. We considered each pair of SNP

and target, i.e., exon for sQTL and gene for eQTL ana-

lysis, as a data point. Each data point i is a tuple (yi, xi),

where x is a binary vector (xi1,.., xip) indicating whether

the SNP–target pair is annotated with feature j, and yi
indicating whether the SNP is the most significantly as-

sociated SNP for the target. This simple model assumes

that the best SNP is also the ‘causal’ SNP for each target.

Since other significantly associated SNPs might also be

causal and thus functionally relevant, or the causal SNP

might not be the most significantly associated SNP, these

mislabeled data points might dilute the enrichment results

when annotated as ‘not causal’. Therefore, we removed all

data points where the SNP was also significantly associ-

ated with the target but not the top hit. The distance

between SNP and target is an important predictor for

QTL [42], so we grouped the distances into five bins of

size 10 kb, starting from 1 bp, and used these features

for sQTL and eQTL analysis. For both QTL analyses

we used chromatin state annotations from the 25 state

chromHMM segmentation from roadmap. In particular,

we used the states 1) heterochromatin; 2) TSS; 3) bi-

valent promoter; 4) promoter; 5) DNAse; 6) polycomb;

7) weakly transcribed. Additionally, for eQTL analysis,

we annotated whether the SNP was in the 8) promoter

region of the target gene; 9) in an exon of the target

gene; or 10) in an intron of the target gene. And specif-

ically for sQTL analysis, we annotated 11) whether the

SNP was located directly within the target exon; 12)

whether the SNP was located in the neighboring intron

upstream or 13) downstream of the target exon; 14)

whether it was located in the neighboring intron up-

stream or 15) downstream; 16) exonic splice enhancers

(ESE) by matching hexamer sequences defined by [46] to

transcript sequences. We estimated the model parameters

as well as their standard errors, and tested each of the hy-

potheses βj = 0, while controlling for the other variables,

using the likelihood ratio test as implemented in the glm

function of R using the binomial family and logistic link

function [75].

Association of QTL with DCM

To assess the association between regulatory variants

and DCM disease risk we analyzed the results of two

genome-wide association studies for DCM from a Ger-

man [51] and a French [52] population. Enrichment for

DCM GWAs was assessed using an approach that was

initially developed to analyse gene sets [54]. We tested

whether the distribution of GWA P values for QTL vari-

ants is different from the distribution for tested variants

without QTL. Since these studies and our own study

were carried out on different genotyping platforms, we

considered blocks of high linkage disequilibrium (LD)

in the CEU reference population that were tagged by

SNPs in our study and the DCM GWA as basic units
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of analysis. LD blocks were defined using SNAP [53]

with Rsq >0.6. Each LD block was classified as QTL

when it contained at least one SNP with a QTL, and the

smallest DCM GWA P value of all SNPs within the LD

block was considered. The significance of the difference of

P value distributions was assessed using a one-sided

Wilcoxon–Mann–Whitney test with the alternative hy-

pothesis that P values of LD blocks with QTL are smaller.

To assess whether our approach was sensitive towards

outliers that would be selected in the approach consider-

ing the minimal P values, we also repeated the analysis

choosing the second smallest P value for each LD block,

leading to similar results (data not shown).

DCM risk score

We estimated and evaluated different multilocus genetic

risk models trained from varying sets of input variables.

The original DCM GWA [51] genotype data of 292,367

SNPs for 909 DCM cases and 2120 control was gener-

ously provided by the authors. Our method is based on

feature selection by regularized logistic regression (LASSO)

as implemented in the glmnet R package [76]. We prepared

sets of candidate variables for selection into the risk

model. The following SNP sets were considered: 11,771

SNPs with eQTL (P < 10e-5), 9134 SNPs with sQTL

(FDR <0.05), one GWA SNP (rs9262636), and the empty

set. Furthermore we considered combinations of eQTL +

GWA, sQTL +GWA, eQTL + sQTL +GWA. All sets

were extended to include the covariates sex and age. To

evaluate the risk model we performed tenfold cross-

validation. We used the area under the receiver operator

characteristics (ROC) curve as performance measure. In

each fold we reserved 10% of the data for testing and used

the remaining 90% for training of the model. The lambda

parameter, which indicates the weight of the L1 penalty in

the logistic regression model, was determined in a second

nested cross-validation on the training data. We used the

largest lambda, which was within one standard error of

the maximal training AUC as recommended [77] to obtain

parsimonious models.

Analysis of heart GWA SNPs

To assess the value of our eQTL and sQTL results for

nomination of candidate genes for mediating the effect

at loci identified in GWA of heart-related traits, we ob-

tained published GWA results from the GWAS catalog

(accessed 11.12.2015). We selected all traits that were

annotated as heart disease (EFO_0003777) or cardiovas-

cular measurement (EFO_0004298) in the experimental

factor ontology. We removed cardiovascular measure-

ments that were not directly related with the heart. For

the eQTL we intersected the GWA loci with eQTL data

of both our own study and the GTEx study. For each of

the studies, we used proxies (LD >0.8) for GWA SNPs

that were not in the dataset. To avoid double counting

because of LD, we selected only the best proxy SNPs for

each pair of GWA SNP and potential cis eQTL gene. LD

information was obtained from the SNAP database [53].

sQTL were analyzed in the same way, but using only

sQTL data from our study. For eQTL-GWA analysis we

used genes with RPKM >1 in >5% of the samples, to se-

lect candidates that are amenable to biological follow-up

analysis. Enrichment of heart GWA SNPs among eQTL

was assessed as follows. We considered all SNPs tested

for cis eQTL for the selected genes as the basic popula-

tion. Then we classified each SNP as eQTL (P < 1e-5) or

non-eQTL and GWA (GWA SNP or its best) or non-

GWA. Finally, we applied Fisher’s exact test to determine

the significance.

Allele-specific expression analysis

To characterize the allele-specific expression (ASE) in

each individual, we performed an allelic imbalance ana-

lysis analogous to previously published work [6, 78] and

outlined in detail in a best practices article [79]. Briefly,

the analysis was based on binomial testing of each allelic

ratio of heterozygous sites (as determined from the Illu-

mina microarray genotyping data) within each individ-

ual. Sites prone to allelic mapping bias were excluded: 1)

sites in regions with low mappability according to the

mappability track of UCSC (50 bp mappability <1 implies

that the flanking region of the site is non-unique in the

genome); 2) sites for which simulated overlapping 50-bp

reads show >5% difference in the mapping of reads that

carry the reference or non-reference allele (simulation

results kindly provided by the GEUVADIS consortium

[6, 78]). We adhered to strict quality settings in calling

genotypes from the raw RNA-seq reads, requiring a

PHRED base quality score larger than 30 and a coverage

of at least 30 reads for each site. Additionally, only sites

where both alleles are observed in the RNA-sequencing

data were considered to ensure that the observed genotype

for the site is truly heterozygous. To correct for any

remaining genome-wide mapping bias in addition to GC

bias, average reference allele ratios were calculated for

each individual. Using these expected ratios, a binomial

test of the reference and non-reference allele counts was

performed. To account for large differences in expression,

reflected in large differences in total allele counts, driving

the results, all sites were resampled to the mean total allele

count of all heterozygous sites. P values were subsequently

corrected for multiple testing using the q-value method

[37] from the qvalue package in R.

To summarize results afterwards, for all sites (that are

heterozygous in at least one individual) we calculated

how many individuals are heterozygous and how many

show allelic imbalance, both in the total set (n = 205) as

well as in the donors (n = 108) and DCM (n = 97) samples
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separately. Allelic imbalance differences between DCM

and donors were calculated in two ways. Difference in

number of imbalanced individuals was calculated using a

Fisher’s exact test (FET; ‘FET P value’ abbreviated as ‘FET

P’). The difference in imbalanced allele was determined

using a test of proportions. In assessing differentially

imbalanced sites between DCM cases and non-diseased

donors we applied LD pruning on the set of imbalanced

variants using results from SNAP (1000 Genomes;

R2 > 0.8) to keep only independent variants.

Functional enrichment of imbalanced sites was per-

formed using the NEXUS variant annotation tool [80].

Additionally, overlap with known truncating variants

and known imprinted genes (source http://www.geneim-

print.com/site/genes-by-species.Homo+sapiens; accessed

14-01-2016) was determined. To assess co-occurrence of

miRNA binding sites, only conserved predicted sites

from TargetScan 7.0 were used (accessed 30-03-2016).

Overrepresentation of eQTL and differential splicing

identified in the present study was determined using

odds ratios with confidence intervals. Functional enrich-

ment of associated genes was performed using the topGO

package in R, using the parent-child algorithm [81] with a

minimum node size of 5.
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