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Natural Gradient Algorithm for Blind Separation of
Overdetermined Mixture with Additive Noise

L.-Q. Zhang, A. Cichocki,Member, IEEE,and S. Amari,Fellow, IEEE

Abstract—In this letter, we study the natural gradient approach
to blind separation of overdetermined mixtures. First we intro-
duce a Lie group on the manifold of overdetermined mixtures,
and endow a Riemannian metric on the manifold based on the
property of the Lie group. Then we derive the natural gradient
on the manifold using the isometry of the Riemannian metric.
Using the natural gradient, we present a new learning algorithm
based on the minimization of mutual information.

I. INTRODUCTION

RECENTLY, blind separation of independent sources has
become an increasingly important research area due to

its rapidly growing applications in various fields, such as
telecommunication systems, image enhancement and biomed-
ical signal processing [1]–[11]. It has been shown that the
natural gradient improves dramatically the learning efficiency
in blind separation [1]–[8]. For the standard case where the
number of sources is equal to the number of sensors, the
natural gradient algorithm has been developed by Amariet al.
[3], and independently as the relative gradient by Cardoso [7].
However, in most practical cases, the number of active source
signals is unknown and changing over time. Therefore, in the
general case the mixing matrix and demixing matrix are not
square and not invertible. The blind separation of more sources
than mixtures was discussed in [10] by using overcomplete
representations. In this letter, we study blind separation of
overdetermined mixtures, where the number of sensors is not
less than the number of sources.

The main objective of this letter is to extend the idea of
natural gradient to overdetermined mixtures, and apply the
natural gradient to derive an efficient learning algorithm. It is
a surprise that the optimal natural gradient algorithm, in the
sense of minimizing the effect of noises on the output signals,
is in the same form as the standard case where the number
of sources is equal to the number of sensors. It is plausible
to use overdetermined mixtures to improve upon blind source
separation algorithms in extracting the signals of interest from
mixtures.

II. BLIND SEPARATION OF OVERDETERMINED MIXTURE

Assume that the unknown source signals
are zero-mean processes and mutually

statistically independent and is
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an available sensor vector, which is a linear instantaneous
mixture of sources by

(1)

where is an unknown mixing matrix of full rank,
is the vector of additive white Gaussian noises. In this

letter we consider the overdetermined case, . The blind
separation problem is to recover original signals from
observations without prior knowledge on the source sig-
nals and the mixing matrix except for independence of the
source signals. The demixing model is a linear transformation
in the form

(2)

where is an estimate of source sig-
nals is a demixing matrix to be determined.
The general solution to the blind separation is to find a matrix

such that , where is a nonsingular
diagonal matrix and is a permutation.

III. N ATURAL GRADIENT

In this section, we discuss some geometrical structures, such
as the Lie group and the Riemannian metric, on the manifold
of demixing matrices defined as

. For , there exists an
orthogonal matrix such that

(3)

where is nonsingular, and .

A. Lie Group

The Lie group plays a crucial role in deriving natural
gradient of the manifold . We introduce the Lie group
structure on the manifold . It is easy to verify that

is a manifold of dimension . The operations
on the manifold are defined as follows:

(4)

(5)

where and are in
is the multiplication operator of two matrices and , and
is the inverse operator on . The identity element

in is defined by . It is easy to prove
that both the multiplication and the inverse mappings are
mappings. The inverse operator satisfies .
Therefore, the manifold with the above operations
forms a Lie Group.
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B. Riemannian Metrics

The Lie Group has an important property that it admits an
invariant Riemannian metric. Let be the tangent space
of , and be the tangent vectors.
We introduce an inner product on with respect to
as . Since is a Lie group, any

defines an onto-mapping: . The
multiplication transformation maps a tangent vectorat
to a tangent vector at . Therefore we can
define a Riemannian metric on , such that the right
multiplication transformation is isometric, that is, it preserves
the Riemannian metric on . Explicitly, we write it
as follows:

(6)

If we define the inner product at the identityby
, then is automatically induced by

(7)

C. Natural Gradient

For a cost function defined on the manifold ,
the natural gradient is the steepest ascent direction
of the cost function as measured by the Riemannian
metric on , which is the contravariant form of partial
derivatives . The natural gradient of
the function is defined by [1]

(8)

for any . Comparing the both side of (8), we have

(9)

where is a block diagonal
matrix, is an identity matrix. It
is worthy noting that the natural gradient on the manifold

has an additional term compared with the one on
the manifold . In the overdetermined case, the matrix

is singular, while is a positive definite
matrix for any . The property ensures that
the natural gradient descent algorithm keeps the same kind
of equilibria of the learning system as the ordinary gradient
descent one.

Remark 1 It is easy to see that the is a projection
matrix. The result indicates that the natural gradient for
overdetermined mixtures is not unique, which depends on the
orthogonal matrix . The redundancy makes it possible to
choose an optimal projection for learning algorithms.

IV. L EARNING ALGORITHM

Assume that are the joint probability
density function (pdf) of and marginal pdf of

respectively. Our target is to make the components
of as mutually independent as possible. To this end, we
employ the Kullback–Leibler divergence as a risk function [3]

(10)

where
. The divergence

measures the mutual independence of the output signals
. The output signals are mutually independent if and

only if . In order to develop an efficient on-line
learning algorithm, we simplify (10) into the following cost
function:

(11)

where is the identity element of the Lie group ,
and is the determinant of matrix . In the
following discussion, we use the following decomposition:

(12)

where and . The ordinary gradient of
with respect to is given by.

(13)

where is a vector of nonlinear activation functions
. Therefore, the natural

gradient learning algorithm on can be implemented
as follows:

(14)

V. OPTIMIZATION OF LEARNING ALGORITHM

The demixing model projects the sensor signals into,
and the projection depends on the matrix. In this section
we consider the optimization of such projection. Decompose
the mixing matrix in the following form:

(15)

where matrix is an orthogonal matrix, is a
nonsingular matrix. The mixing model transforms the source
signal into a hyperplane

. The orthogonal complement of is denoted by .
The question here is that which projection matrix is the
best for learning algorithms in the sense of minimizing the
influence of noises. To this end, we assume that the noises
are Gaussian with the covariance matrix ,
and are independent of sources. We decompose the demixing
matrix using the same orthogonal matrix in (15) as

, and we have

(16)

This means that does not contribute to the main term. To
minimize the effect of noises on the output, We introduce
the following cost functional

(17)

On the other hand, we decompose the vector of noises into the
following form . It is easy to derive
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. Then the cost functional
(17) can be rewritten as

(18)

The minimal solution of the cost functional is
. This means that the transform should be

orthogonal to the normal space , that is, for any
. In this case our natural learning algorithm (14)

is simplified to the standard form

(19)

where is, in general, a nonsquare demixing matrix
. It should be noted that the learning algorithm (19)

has been proposed for the special case when the number of
sensors is exactly equal to the number of sources [3], [8]. It
is apparent that the learning algorithm (19) is of the equivari-
ance property in the sense of Lie multiplication. It has been
proved the natural gradient improves the learning efficiency in
blind separation [1]. Here, we present a rigorous geometric
interpretation why the algorithm (19) works efficiently for
overdetermined mixtures. Using the theory of information
geometry, we can also analyze the effect of noises on the
performance of the learning algorithm. Due to the limited
space, the problem is left for discussion in future work.

VI. CONCLUSION

In this letter, we discuss some geometrical structures on the
manifold of the nonsquare demixing matrices and derive the
natural gradient on the manifold. Using the natural gradient,

we present a novel learning algorithm for blind separation
of overdetermined mixtures. The learning algorithm works
efficiently in blind separation. The detailed derivation of the
natural gradient algorithm and computer simulations will be
given in future work.
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