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Abstract

We introduce a set of novel multiscale basis transforms for signals on graphs that

utilize their “dual” domains by incorporating the “natural” distances between graph

Laplacian eigenvectors, rather than simply using the eigenvalue ordering. These basis

dictionaries can be seen as generalizations of the classical Shannon wavelet packet dic-

tionary to arbitrary graphs, and do not rely on the frequency interpretation of Laplacian

eigenvalues. We describe the algorithms (involving either vector rotations or orthogo-

nalizations) to construct these basis dictionaries, use them to efficiently approximate

graph signals through the best basis search, and demonstrate the strengths of these basis

dictionaries for graph signals measured on sunflower graphs and street networks.

Keywords Graph Laplacian eigenvectors · Dual geometry of graph · Wavelet packet

dictionaries on graphs · Best basis algorithm · Graph signal approximation

Mathematics Subject Classification 65T60 · 68R10 · 90C35 · 94A08 · 94A12 · 94C15

1 Introduction andMotivation

There is an explosion of interest and demand to analyze data sampled on graphs and

networks. This has motivated development of more flexible yet mathematically sound

dictionaries (i.e., an overcomplete collection of atoms or basis vectors) for data analy-

sis and signal processing on graphs. Our main goal here is to build smooth multiscale

localized basis dictionaries on an input graph, with beneficial reconstruction and spar-

sity properties, and to fill the “gap” left from our previous graph basis dictionary

constructions [18–21,52] as we explain below. Our approach differs from the standard

literature as we fully utilize both the similarities between the nodes (through the graph
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adjacency matrix) and the similarities between the eigenvectors of the graph Laplacian

matrix (through new nontrivial eigenvector distances).

Previous approaches to construct such graph basis dictionaries break down into

two main categories. The first category partitions the nodes through recursive graph

cuts to generate multiscale basis dictionaries. This includes: the Hierarchical Graph

Laplacian Eigen Transform (HGLET) [19]; the Generalized Haar-Walsh Transform

(GHWT) [18]; its extension, the eGHWT [52]; and other Haar-like graph wavelets

(see, e.g., [6,13,27,38,57]). But their basis vectors either are nonsmooth piecewise

constants or have non-overlapping supports. The second category uses spectral fil-

ters on the Laplacian (or diffusion kernel) eigenvalues to generate multiscale smooth

dictionaries. This includes: the Spectral Graph Wavelet Transform [16]; Diffusion

Wavelets [7]; extensions to spectral graph convolutional networks [29]. However,

these dictionaries do not fully address the relationships among eigenvectors [5,31,49],

which should be utilized for graph dictionary construction; instead, they focus on the

eigenvalue distributions to organize the corresponding eigenvectors (although there are

some works, e.g., [43,44,55], which recognized the graph structures strongly influence

the eigenvector behaviors). These relationships among eigenvectors can result from

eigenvector localization in different clusters, differing scales in multi-dimensional

data, etc. These notions of similarity and difference between eigenvectors, while stud-

ied in the eigenfunction literature [5,31,49], have yet to be incorporated into building

localized dictionaries on graphs.

We combine the benefits of both approaches to construct the graph equivalent of

spatial-spectral filtering. We have two approaches: one is to utilize the dual geometry of

an input graph without partitioning the input graph, and the other is to utilize clustering

and partition information in both the input graph and its dual domain.

Our first approach, detailed in Sect. 3, fills the “gap” in the cycle of our development

of the graph basis dictionaries, i.e., HGLET, GHWT, and eGHWT. This approach is

a direct generalization of the classical wavelet packet dictionary [34, Chap. 8] to the

graph setting: we hierarchically partition the dual domain to generate a tree-structured

“subbands” each of which is an appropriate subset of the graph Laplacian eigenvectors.

We also want to note the following correspondence: The HGLET [19] is a graph version

of the Hierarchical Block Discrete Cosine Transform (DCT) dictionary [34, Sect. 8.3]

(i.e., the non-smooth non-overlapping version of the local cosine dictionary [9], [34,

Sect. 8.5]), and the former exactly reduces to the latter if the input graph is PN , a path

graph with N nodes. The former hierarchically partitions the input graph while the

latter does the same (with a non-adaptive manner) on the unit interval [0, 1] in the

time domain. On the other hand, the GHWT [18] is a graph version of the Haar-Walsh

wavelet packet dictionary [8], [34, Sect. 8.1], and the former exactly reduces to the

latter if the input graph is PN . The latter hierarchically partitions the interval [0, N ) in

the sequency domain while the former does the same by the graph domain partitioning

plus reordering; see [18,20,21] for the details. Our graph basis dictionary using this first

approach is a graph version of the Shannon wavelet packet dictionary [34, Sect. 8.1.2],

which hierarchically partitions the interval [0, 1/2) (or [0, π ] depending on how one

defines the Fourier transform) in the frequency domain. Again, the former essentially

reduces to the latter if the input graph is PN .
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Our second approach, detailed in Sect. 4, partitions both the input graph and its

dual domain; more precisely, we first hierarchically partition the dual domain, and then

partition the input graph with constraints imposed by the dual domain partition. This

approach parallels and generalizes classical time-frequency analysis, where the time

domain is replaced by a general node-domain geometry and the frequency domain is

replaced by a general eigenvector-domain organization. A version of this approach

of node-eigenvector organization that embeds the eigenvectors to a one-dimensional

Euclidean domain has also been considered as a visualization technique for low-

frequency eigenvectors on clustered graphs [14].

We aim for the significance and impact of this research to be twofold. First, these

results will provide the first set of graph wavelet packet bases that adaptively scale to the

local structure of the graph. This is especially important for graphs with complicated

multiscale structure, whose graph Laplacians have localized eigenvectors, for example.

This is an impactful direction, as most of graph wavelet packet bases previously

proposed only tile the node-eigenvector “plane” along the node “axis,” while Laplacian

eigenvectors only tile that plane along the eigenvector “axis”. Our approach in Sect. 4

constructs filters in both the node-domain and eigenvector-domain, which is related

to the classical time-frequency adapted wavelet packets that tile both the time and the

frequency domains [17,59].

Second, in the long term, this is a first method of systematically using the novel

concept of eigenvector dual geometry [5,31,49]. This direction can set a path for future

modification of spectral graph theory applications to incorporate dual geometry.

The structure of this article is organized as follows. Section 2 reviews funda-

mentals: the basics of graphs, i.e., graph Laplacians and graph Fourier transform

as well as graph wavelet transforms and frames that were proposed previously. It

also reviews nontrivial metrics of graph Laplacian eigenvectors, which are used to

analyze the dual geometry/eigenvector-domain of an input graph. Section 3 presents

a natural graph wavelet packet dictionary constructed through hierarchical partition

of the eigenvector-domain. Section 4 presents a second version of a natural graph

wavelet packet dictionary constructed through a pair of hierarchical partitions, one on

the input graph and one on its dual domain. In Sect. 5, we demonstrate the useful-

ness of our proposed graph wavelet packet dictionaries in graph signal approximation

using numerical experiments. Code scripts to reproduce all the figures in this article

can be found at [30]. Finally, we discuss our findings gained through these numerical

experiments and near-future projects for further improvements of our dictionaries.

2 Background

2.1 Graph Laplacians and Graph Fourier Transform

Let G = G(V , E)be an undirected connected graph. Let V = V (G) = {v1, v2, . . . , vN }
denote the set of nodes (or vertices) of the graph, where N := |V (G)|. For sim-

plicity, we typically associate each vertex with its index and write i in place of vi .

E = E(G) = {e1, e2, . . . , eM } is the set of edges, where each ek connects two ver-

tices, say, i and j , and M := |E(G)|. In this article we consider only finite graphs
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(i.e., M, N < ∞). Moreover, we restrict to the case of simple graphs; that is, graphs

without loops (an edge connecting a vertex to itself) and multiple edges (more than

one edge connecting a pair of vertices). We use f = [ f (1), . . . , f (N )]T ∈ RN to

denote a graph signal on G, and we define 1 := [1, . . . , 1]T ∈ RN .

We now discuss several matrices associated with graphs. The information in both

V and E is captured by the edge weight matrix W (G) ∈ RN×N , where Wi j ≥ 0

is the edge weight between nodes i and j . In an unweighted graph, this is restricted

to be either 0 or 1, depending on whether nodes i and j are adjacent, and we may

refer to W (G) as an adjacency matrix. In a weighted graph, Wi j indicates the affinity

between nodes i and j . In either case, since G is undirected, W (G) is a symmetric

matrix. We then define the degree matrix D(G) as the diagonal matrix with entries

Di i =
∑

j Wi j . With this in place, we are now able to define the (unnormalized) Lapla-

cian matrix, random-walk normalized Laplacian matrix, and symmetric normalized

Laplacian matrix, respectively, as

L(G) := D(G) − W (G)

L rw(G) := D(G)−1L(G)

Lsym(G) := D(G)−1/2L(G)D(G)−1/2. (1)

We use 0 = λ0 ≤ λ1 ≤ . . . ≤ λN−1 to denote the sorted Laplacian eigenvalues

and φ0,φ1, . . . ,φN−1 to denote their corresponding eigenvectors, where the specific

Laplacian matrix to which they refer will be clear from either context or subscripts.

Denoting � := [φ0, . . . ,φN−1] and � := diag([λ0, . . . , λN−1]), the eigendecom-

position of L(G) can be written as L(G) = ���T. Since we only consider connected

graphs here, we have 0 = λ0 � λ1, and φ0 = 1/
√

N , which is called the direct current

component vector or the DC vector for short. The second smallest eigenvalue λ1 is

called the algebraic connectivity of G and the corresponding eigenvector φ1 is called

the Fiedler vector of G. The Fiedler vector plays an important role in graph partition-

ing and spectral clustering; see, e.g., [61], which suggests the use of the Fiedler vector

of L rw(G) for spectral clustering over that of the other Laplacian matrices.

Remark 2.1 In this article, we use the Fiedler vectors of L rw of an input graph and its

subgraphs as a tool to hierarchically bipartition the graph although any other graph

partition methods can be used in our proposed algorithms. However, note that we use

the unnormalized graph Laplacian eigenvectors of L(G) for simplicity to construct

the dual domain of G and consequently our graph wavelet packet dictionaries. In

other words, L rw is only used to compute its Fiedler vector for our graph partitioning

purposes.

The graph Laplacian eigenvectors are often viewed as generalized Fourier modes

on graphs. Therefore, for any graph signal f ∈ RN and coefficient vector g ∈ RN ,

the graph Fourier transform and inverse graph Fourier transform [54] are defined by

FG( f ) := �T · f ∈ RN and F
−1

G (g) := � · g ∈ RN . (2)
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Since � is an orthogonal matrix, it is not hard to see that F
−1

G ◦ FG = IN . Thus,

we can use FG as an analysis operator and F
−1

G as a synthesis operator for graph

harmonic analysis.

As an important example and for future reference, let us consider the Laplacian

eigenpairs of a path graph PN , which we also discussed earlier [20,40,48,50,51]. In

this case, the eigenvectors of L(PN ) are exactly the DCT Type II basis vectors (used

in the JPEG standard) [56]:

λk = λk;N := 4 sin2

(
πk

2N

)

, φk(x) = φk;N (x) := ak;N cos

(
πk

N

(

x −
1

2

))

,

(3)

where k = 0 : N − 1, x = 1 : N , and ak;N is a normalization constant to have

‖φk;N ‖2 = 1. It is clear that the eigenvalue is a monotonically increasing function of

the frequency, which is the eigenvalue index k divided by 2 in this case.

2.2 GraphWavelet Transforms and Frames

We now briefly review graph wavelet transforms and frames; see, e.g., [42,54] for more

information. Translation and dilation are two important operators for classical wavelet

construction. However, unlike Rd (d ∈ N) or its finite and discretized lattice graph

PN1 ×· · ·× PNd
, we cannot assume the underlying graph has self-symmetric structure

in general, i.e., its interior nodes may not always have the same neighborhood structure.

Therefore, it is difficult to construct graph wavelet bases or frames by translating and

dilating a single mother wavelet function of a fixed shape, e.g., the Mexican hat mother

wavelet in R, because the graph structure varies at different locations. Instead, some

researchers, e.g., Hammond et al. [16], constructed wavelet frames by shifting smooth

graph spectral filters to be centered at different nodes. A general framework of building

wavelet frames can then be summarized as follows:

ψ j,n :=

Filtering
︷ ︸︸ ︷

�F j�
T δn for j = 0, 1, · · · , J and n = 1, 2, · · · , N , (4)

where the index j stands for different scale of spectral filtering (the greater j , the finer

the scale, and J ∈ N represents the finest scale specified by the user), the index n

represents the center location of the wavelet, δn is the standard basis vector centered

at node n, and the diagonal matrices F j ∈ RN×N satisfies F0(l, l) = h(λl−1) and

F j (l, l) = g(s jλl−1) for l = 1 : N , j = 1 : J . Here, h is a scaling function (which

mainly deals with the small eigenvalues), while g is a graph wavelet generating kernel.

For example, the kernel proposed in [16] can be approximated by the Chebyshev

polynomial and lead to a fast algorithm. Note that {s j } j=1:J are dilation parameters.

Furthermore, one can show that as long as the generalized partition of unity

A · IN ≤
J

∑

j=0

F j ≤ B · IN , 0 < A ≤ B (5)
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holds, {ψ j,n} j=0:J ;n=1:N forms a graph wavelet frame, which can be used to decom-

pose and recover any given graph signals [16].

2.3 AMotivating Example

However, one important drawback of the above method is that the construction of

the spectral filters F j solely depends on the eigenvalue distribution (except some

flexibility in choosing the filter pair (h, g), and the dilation parameters {s j }) and does

not reflect how the eigenvectors behave. For simple graphs such as PN and CN (a cycle

graph with N nodes), the graph Laplacian eigenvectors are global sinusoids whose

frequencies can be simply read off from the corresponding eigenvalues, as discussed in

Sect. 2.1. Hence, the usual Littlewood-Paley wavelet theory (see, e.g., [11, Sect. 4.2],

[22, Sect. 2.4]) applies for those simple graphs. Unfortunately, the graph Laplacian

eigenvectors of a general graph — even if it is ever so slightly more complicated than

PN and CN — can behave in a much more complicated or unexpected manner than

those of PN or CN , as discussed in [5,20,31,40,48–51].

In order to demonstrate this serious problem concretely and make this article self-

contained, let us examine the following example that was also discussed in [5,31,49].

Let us consider a thin rectangle in R2, and suppose that this rectangle is discretized

as PNx × PNy (Nx > Ny > 1). The Laplacian eigenpairs of this lattice graph can be

easily derived from Eq. (3) as:

λk = λ(kx ,ky) := λkx ;Nx
+ λky;Ny

φk(x, y) = ϕkx ,ky (x, y) := φkx ;Nx
(x) · φky;Ny

(y)

where k = 0 : Nx Ny − 1; kx = 0 : Nx − 1, ky = 0 : Ny − 1, x = 1 : Nx ,

and y = 1 : Ny . As always, let {λk}k=0:Nx Ny−1 be ordered in the nondecreasing

manner. Figure 1a shows the corresponding eigenvectors ordered in this manner (with

Nx = 7, Ny = 3). Note that the layout of 3 × 7 grid of subplots is for the page saving

purpose: the layout of 1 × 21 grid of subplots would be more natural if we use only

the eigenvalue size for eigenvector ordering. For such a 2D lattice graph, the smallest

eigenvalue is still λ0 = λ(0,0) = 0, and the corresponding eigenvector is constant. The

second smallest eigenvalue λ1 is λ(1,0) = 4 sin2(π/2Nx ), since π/2Nx < π/2Ny , and

its eigenvector has half oscillation (i.e., half period) in the x-direction. But, how about

λ2? Even for such a simple situation there are two possibilities for λ2, depending

on Nx and Ny . If Nx > 2Ny , then λ2 = λ(2,0) < λ(0,1). On the other hand, if

Ny < Nx < 2Ny , then λ2 = λ(0,1) < λ(2,0). More generally, if K Ny < Nx <

(K + 1)Ny for some K ∈ N, then λk = λ(k,0) = 4 sin2(kπ/2Nx ) for k = 0, . . . , K .

Yet we have λK+1 = λ(0,1) = 4 sin2(π/2Ny) and λK+2 is equal to either λ(K+1,0) =
4 sin2((K + 1)π/2Nx ) or λ(1,1) = 4[sin2(π/2Nx ) + sin2(π/2Ny)] depending on Nx

and Ny . Clearly, the mapping between k and (kx , ky) is quite nontrivial, and moreover,

the eigenpair computation does not tell us how to map from k to (kx , ky). In Fig. 1a,

one can see this behavior with K = 2, i.e., notice that φ2(≡ ϕ2,0) has one oscillation

in the x-direction and no oscillation in the y-direction whereas φ3(≡ ϕ0,1) has no

oscillation in the x-direction and half oscillation in the y-direction. In other words, all



Journal of Fourier Analysis and Applications (2021) 27 :41 Page 7 of 33 41

Fig. 1 Laplacian eigenvectors of P7 × P3 ordered sequentially in terms of nondecreasing eigenvalues (a);

those ordered in terms of their natural horizontal/vertical frequencies (b). The color scheme called viridis

[46] is used to represent the amplitude of eigenvectors ranging from deep violet (negative) to dark green

(zero) to yellow (positive) (Color figure online)

of a sudden the eigenvalue of a completely different type of oscillation sneaks into the

eigenvalue sequence. Hence, on a general graph, by simply looking at its Laplacian

eigenvalue sequence {λk}k=0,1,..., it is almost impossible to organize the eigenvectors

into physically meaningful dyadic blocks and follow the Littlewood-Paley approach

unless the underlying graph is of very simple nature, e.g., PN or CN . Therefore, it

will be problematic to design graph wavelets by using spectral filters built solely upon

eigenvalues and we need to find a way to distinguish eigenvector behaviors.

What we really want to do is to organize those eigenvectors based on their natural

frequencies or their behaviors, as shown in Fig. 1b instead of Fig. 1a, without explicitly

knowing the mapping from k to (kx , ky) in this example. In order to do so for a general

graph, we need to define and compute quantitative similarity or difference between its

eigenvectors. However, we cannot use the usual ℓ2-distances among them since they

all have the same value
√

2 due to their orthonormality. Then a natural question is:

how can we quantify the similarity/difference between the eigenvectors?

2.4 Nontrivial Eigenvector Distances

As a remedy to these issues, we measure the “behavioral” difference between the

eigenvectors using the so-called Difference of Absolute Gradient (DAG) pseudometric

[31], which is also used in all of our numerical experiments in Sect. 5. Note that [5,31,

49] proposed several other affinities and distances between Laplacian eigenvectors.

The reasons why we decided to use the DAG pseudometric in this article are: 1) its

computational efficiency compared to the other eigenvector metrics; 2) its superior

performance for grid-like graphs; and 3) its close relationship with the Hadamard-

product affinity proposed in [5]. See [31,49] for the details on the other eigenvector

metrics and their performance comparison. Below, we briefly summarize this DAG

pseudometric.

Instead of the usual ℓ2-distance, we use the absolute gradient of each eigenvector

as its feature vector describing its behavior. More precisely, let Q(G) ∈ RN×M be the

incidence matrix of an input graph G(V , E, W ) whose kth column indicates the head

and tail of the kth edge ek ∈ E . However, we note that we need to orient each edge of
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G in an arbitrary manner to form a directed graph temporarily in order to construct its

incidence matrix. For example, suppose ek joins nodes i and j , then we can set either

(Qik, Q jk) = (−
√

Wi j ,
√

Wi j ) or (
√

Wi j ,−
√

Wi j ). Of course, we set Qlk = 0 for

l 
= i, j . It is easy to see that Q(G) Q(G)T = L(G).

We now define the DAG pseudometric between φi and φ j by

dDAG(φi ,φ j ) := ‖|∇G |φi − |∇G |φ j‖2 where |∇G |φ := abs .(Q(G)Tφ) ∈ RM
≥0,

(6)

where abs .(·) applies the absolute value in the entrywise manner to its argument. We

note that |∇G |φ, the absolute gradient of an eigenvector φ, is invariant with respect

to: 1) sign flip, i.e., |∇G |φ ≡ |∇G |(−φ) and 2) choice of sign of each column (i.e.,

edge orientation) of the incidence matrix Q(G). We also note that this quantity is not

a metric but a pseudometric because the identity of discernible of the axioms of metric

is not satisfied. In order to see the meaning of this quantity, let us analyze its square

as follows.

dDAG(φi ,φ j )
2 =

〈

|∇G |φi − |∇G |φ j , |∇G |φi − |∇G |φ j

〉

E

=
〈

|∇G |φi , |∇G |φi

〉

E
+

〈

|∇G |φ j , |∇G |φ j

〉

E
− 2

〈

|∇G |φi , |∇G |φ j

〉

E

= λi + λ j −
∑

x∈V

∑

y∼x

|φi (x) − φi (y)|

· |φ j (x) − φ j (y)| thanks to Q(G) Q(G)T = L(G)

where 〈·, ·〉E is the inner product over edges. The last term of the formula can be

viewed as a global average of absolute local correlation between eigenvectors. In this

sense, this quantity is related to the Hadamard-product affinity between eigenvectors

proposed by Cloninger and Steinerberger [5]. Note that the computational cost is

O(M) for each dDAG(·, ·) evaluation provided that the eigenvectors have already been

computed.

Let us demonstrate the power of the DAG pseudometric using the 2D lattice graph

P7 × P3 used in the previous subsection. Figure 2 displays the embedding of the

21 eigenvectors shown in Fig. 1a into R2 by computing the distances among all the

eigenvectors via Eq. (6) followed by applying the classical Multidimensional Scaling

(MDS) [2, Chap. 12]. Of course, in general, when a graph is given, we cannot assume

the best embedding dimension a priori. Here we simply embedded into R2 because

the top two eigenvalues of the Gram matrix of the configurations (i.e., the outputs of

the MDS) were about twice the third eigenvalue. Figure 2 clearly reveals the natural

two-dimensional organization of the eigenvectors, and is similar to a rotated version

of Fig. 1b.

2.5 GraphWavelet Packets

Instead of building the graph wavelet packet dictionary by graph wavelet frames using

spectral filters as summarized in Sect. 2.2, one could also accomplish it by generalizing

the classical wavelet packets to graphs. The classical wavelet packet decomposition (or
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Fig. 2 Embedding of the Laplacian eigenvectors of P7 × P3 into R2 via dDAG and the classical MDS (Color

figure online)

dictionary construction) of a 1D discrete signal is obtained by passing it through a full

binary tree of filters (each node of the tree represents either low-pass filtered or high-

pass filtered versions of the coefficients entering that node followed by the subsampling

operation) to get a set of binary-tree-structured coefficients [10], [34, Sect. 8.1]. This

basis dictionary for an input signal of length N has up to N (1 + log2 N ) basis vectors

(hence clearly redundant), yet contains more than 1.5N searchable orthonormal bases

(ONBs) [10,59]. For the purpose of efficient signal approximation, the best-basis

algorithm originally proposed by Coifman and Wickerhauser [10] can find the most

desirable ONB (and the expansion coefficients of the input signal) for a given task

among such an immense number of ONBs. The best-basis algorithm requires a user-

specified cost function, e.g., the ℓp-norm (0 < p ≤ 1) of the expansion coefficients

for sparse signal approximation, and the basis search starts at the bottom level of

the dictionary and proceeds upwards, comparing the cost of the coefficients at the

children nodes to the cost of the coefficients at their parents nodes. This best-basis

search procedure only costs O(N ) operations provided that the expansion coefficients

of the input signal have already been computed.

In order to generalize the classical wavelet packets to the graph setting, however,

there are two main difficulties: 1) the concept of the frequency domain of a given

graph is not well-defined (as discussed in Sect. 2.3); and 2) the relation between the

Laplacian eigenvectors and sample locations are much more subtle on general graphs.

For 1), we propose to construct a dual graph1 G⋆ of the input graph G and view it as

1 Our definition of a dual graph is different from the standard definition in the graph theory; see Remark 3.1

for the details.
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the natural spectral domain of G, and use any graph partition method to hierarchically

bipartition G⋆ instead of building low and high pass filters like the classical case.

This can be viewed as the generalized Littlewood-Paley theory. For 2), we propose a

node-eigenvector organization algorithm called the pair-clustering algorithm, which

implicitly provides a downsampling process on graphs; see Sect. 4 for the details.

3 Natural GraphWavelet Packets using Varimax Rotations

Given a graph G = G(V , E, W ) with |V | = N and the nontrivial distance d between

its eigenvectors (e.g., dDAG of Eq. (6)), we build a dual graph G⋆ = G⋆(V ⋆, E⋆, W ⋆)

by viewing the eigenvectors as its nodes, V ⋆ = {φ0, . . . ,φN−1}, and the nontriv-

ial affinity between eigenvector pairs as its edge weights, W ⋆
i j = 1/d(φi−1,φ j−1),

i, j = 1, 2, · · · , N . We note that one can use the alternative and popular Gaussian

affinity, i.e., exp(−d(φi−1,φ j−1)
2/ǫ). This affinity, however, requires a user to select

an appropriate scale parameter ǫ > 0, which is not a trivial task as explained in [33], for

example. Moreover, our edge weights using the inverse distances tend to connect the

eigenvectors more globally compared to the Gaussian affinity with a fixed bandwidth.

Using G⋆, which is a complete graph, for representing the graph spectral domain and

studying relations between the eigenvectors is clearly more natural and effective than

simply using the eigenvalue magnitudes, as [5,31,49] hinted at. In this section, we

will propose one of our graph wavelet packet dictionary constructions solely based on

hierarchical bipartitioning of G⋆. Basic Steps to generate such a graph wavelet packet

dictionary for G are quite straightforward:

Step 1: Bipartition the dual graph G⋆ recursively via any method, e.g., spectral

graph bipartition using the Fiedler vectors;

Step 2: Generate wavelet packet vectors using the eigenvectors belonging to each

subgraph of G⋆ that are well localized on G.

Note that Step 1 corresponds to bipartitioning the frequency band of an input signal

using the characteristic functions in the classical setting. Hence, our graph wavelet

packet dictionary constructed as above can be viewed as a graph version of the Shannon

wavelet packet dictionary [34, Sect. 8.1.2].

Remark 3.1 Our definition of the “dual graph” G⋆ of a given (primal) graph G is

a graph representing the dual geometry/eigenvector domain of the primal graph; in

particular, it is not related to the graph-theoretic notion of dual graph (see, e.g., [15,

Sect. 1.8]), and does not satisfy the equivalence of the double dual graph and the primal

graph. Our definition is also different from that of Leus et al. [28] who defined the dual

graph of a primal graph by first assuming that the eigenbasis of a graph shift operator

(e.g., the adjacency matrix) of the dual graph is the transpose of the eigenbasis of the

graph shift operator of the primal graph. Furthermore, their definition does not work

for graph Laplacian matrices.

Remark 3.2 Our dual domain using the DAG pseudometric among eigenvectors is a

finite pseudometric space. In order to hierarchically partition the points in that space,

our strategy — constructing a complete graph connecting all these points using an
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Fig. 3 The hierarchical bipartition tree of the dual graph nodes V ⋆ ≡ V
⋆(0)
0 , which corresponds to the

frequency domain bipartitioning used in the classical wavelet packet dictionary

appropriate affinity measure as its edge weights followed by the recursive applications

of the spectral graph partitioning, which we will discuss in detail in the next subsection,

and which has been used in all of our numerical examples in this article — is the most

convenient and efficient approach as far as we know.

We now describe the details of each step of our graph wavelet packet dictionary

construction below.

3.1 Hierarchical Bipartitioning of G⋆

Let V
⋆(0)
0 := V ⋆ be the node set of the dual graph G⋆, which is simply the set of the

eigenvectors of the unnormalized graph Laplacian matrix L(G). Suppose we get the

hierarchical bipartition tree of V
⋆(0)
0 as shown in Fig. 3. Hence, each V

⋆( j)
k contains

an appropriate subset of the eigenvectors of L(G). As we mentioned earlier, any graph

bipartitioning method can be used to generate this hierarchical bipartition tree of G⋆.

Typically, we use the Fiedler vector of the random-walk normalized graph Laplacian

matrix L rw (see Eq. (1)) of each subgraph of G⋆, whose use is preferred over that of

L or Lsym as von Luxburg discussed [61].

Remark 3.3 We recursively apply the above bipartition algorithm until we reach j =
jmax > 0, where each V

⋆( jmax)

k , k = 0 : N −1, contains a single eigenvector. Note that

our previous graph basis dictionaries, i.e., HGLET [19], GHWT [18], and eGHWT

[52], also constructed such “full” hierarchical bipartition trees in the primal (input

graph) domain, not in the dual domain. Note also that during the hierarchical bipartition

procedure, some V
⋆( j)
k may become a singleton before reaching j = jmax. If this

happens, such a subset is copied to the next lower level j +1. See [21] for the detailed

explanation of such situations. We can also stop the recursion at some level J (< jmax),

of course. Below, we denote jmax as the deepest possible level at which every subset

becomes a singleton for the first time whereas we denote J (≤ jmax) as a more general

deepest level specified by a user.

Figure 4 demonstrates the above strategy for the 2D lattice graph discussed in

Sect. 2, whose dual domain geometry together with the graph Laplacian eigenvectors

belonging to V
⋆(0)
0 was displayed in Fig. 2. The thick red line indicates the first split of
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Fig. 4 The result of the hierarchical bipartition algorithm applied to the dual geometry of the 2D lattice

graph P7 × P3 shown in Fig. 2 with J = 2. The thick red line indicates the bipartition at j = 1 while the

orange lines indicate those at j = 2 (Color figure online)

V
⋆(0)
0 , i.e., all the eigenvectors above this red line belong to V

⋆(1)
0 while those below

it belong to V
⋆(1)
1 . Then, our hierarchical bipartition algorithm further splits them into

{

V
⋆(2)
0 , V

⋆(2)
1

}

and
{

V
⋆(2)
2 , V

⋆(2)
3

}

, respectively. This two-level bipartition pattern is

quite reasonable and natural considering the fact that the size of the original rectangle

is 7 × 3, both of which are odd integers.

3.2 Localization on G via Varimax Rotation

For realizing Step 2 of the above basic algorithm, we propose to use the varimax rota-

tion on the eigenvectors in V
⋆( j)
k for each j and k. Let �

( j)
k ∈ RN×N

j
k be a matrix whose

columns are the eigenvectors belonging to V
⋆( j)
k . A varimax rotation is an orthogonal

rotation, originally proposed by Kaiser [25] and often used in factor analysis (see,

e.g., [37, Chap. 11]), to maximize the variances of energy distribution (or a scaled

version of the kurtosis) of the input column vectors, which can also be interpreted as

the approximate entropy minimization of the distribution of the eigenvector compo-

nents [47, Sect. 3.2]. For the implementation of the varimax rotation algorithm, see

Appendix A, which is based on the Basic Singular Value (BSV) Varimax Algorithm

of [23]. Thanks to the orthonormality of columns of �
( j)
k , this is equivalent to finding

an orthogonal rotation that maximizes the overall 4th order moments, i.e.,
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�
( j)

k := �
( j)

k · R
( j)

k , where R
( j)

k = arg max
R∈SO(N

j
k )

N
∑

p=1

N
j

k∑

q=1

[
(

�
( j)

k · R
)4

]

p,q

. (7)

The column vectors of �
( j)
k are more “localized” in the primal domain G than those

of �
( j)

k . This type of localization is important since the graph Laplacian eigenvectors

in �
( j)
k are of global nature in general. We also note that the column vectors of �

( j)
k are

orthogonal to those of �
( j ′)
k′ as long as the latter is neither a direct ancestor nor a direct

descendant of the former. Hence, Steps 1 and 2 of the above basic algorithm truly

generate the graph wavelet packet dictionary for an input graph signal. We refer to this

graph wavelet packet dictionary
{

�
( j)
k

}

j=0:J ; k=0:2 j −1
generated by this algorithm as

the Varimax Natural Graph Wavelet Packet (VM-NGWP) dictionary. One can run the

best-basis algorithm of Coifman-Wickerhauser [10] on this dictionary to extract the

ONB most suitable for a task at hand (e.g., an efficient graph signal approximation)

once an appropriate cost function is specified (e.g., the ℓp-norm minimization, 0 <

p ≤ 1). Note also that it is easy to extract a graph Shannon wavelet basis from this

dictionary by specifying the appropriate dual graph nodes, i.e., �
(1)
1 , �

(2)
1 , . . . , �

(J )
1 ,

and the father wavelet vectors �
(J )
0 where J (≤ jmax) is the user-specified deepest

level of the hierarchical bipartition tree. We point out that the meaning of the level

index j in our NGWP dictionaries is different from that in the general graph wavelet

frames (4) discussed in Sect. 2.2: in our NGWP dictionaries, a smaller j corresponds

to a finer and more localized (in the primal graph domain) basis vector in V
⋆( j)

k .

Let us now demonstrate that our algorithm actually generates the classical Shannon

wavelet packets dictionary [34, Sect. 8.1.2] when an input graph is the simple path PN .

Note that the varimax rotation algorithm does not necessarily sort the vectors as shown

in Fig. 5 because the minimization in Eq. (7) is the same modulo to any permutation

of the columns and any sign flip of each column. In other words, to produce Fig. 5,

we carefully applied sign flip to some of the columns, and sorted the whole columns

so that each subfigure simply shows translations of the corresponding wavelet packet

vectors.

Let us also demonstrate how some VM-NGWP basis vectors of the 2D lattice graph

P7 × P3 look like. Figure 6 shows such VM-NGWP basis vectors with J = 2. Those

basis vectors are placed at the same locations as the graph Laplacian eigenvectors in

the dual domain shown in Fig. 4 for the demonstration purpose. It is quite clear that

those VM-NGWP basis vectors are more localized in the primal graph domain than

those graph Laplacian eigenvectors shown in Fig. 4. We note that we determined the

index l in ψk,l for each k in such a way that the main features of the VM-NGWP basis

vectors translates nicely in the horizontal and vertical directions, and some sign flips

were applied as in the case of the 1D Shannon wavelet packets shown in Fig. 5. As one

can see, like the classical wavelet packet vectors on a rectangle, {ψ0,l}l=0:2, are the

father wavelets and clearly function as local averaging operators along the horizontal

direction while {ψ1,l}l=0:3, work as localized first order differential operators along the

horizontal direction. On the other hand, {ψ2,l}l=0:2 work as localized first order differ-
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Fig. 5 Some of the Shannon wavelet packet vectors on P512

ential operators along the vertical direction; {ψ2,l}l=3:6 work as localized second order

differential operators along the vertical direction; {ψ3,l}l=0:3 work as localized mixed

differential operators; and finally, {ψ3,l}l=4:6 work as localized Laplacian operators.

3.3 Computational Complexity

The varimax rotation algorithm of Appendix A is of iterative nature and is an example

of the BSV algorithms [23]: for each iteration at the dual node set V
⋆( j)
k , it requires

computing the full Singular Value Decomposition (SVD) of a matrix of size N
j

k ×
N

j
k representing a gradient of the objective function, which itself is computed by

multiplying matrices of sizes N
j

k × N and N × N
j

k . The convergence is checked

with respect to the relative error between the current and previous gradient estimates

measured in the nuclear norm (i.e., the sum of the singular values). For our numerical

experiments in Sect. 5, we set the maximum iteration as 1000 and the error tolerance

as 10−12. Therefore, to generate �
( j)
k for each ( j, k), the computational cost in the

worst case scenario is O
(

c · (N
j

k )3 + N · (N
j

k )2
)

where c = 1000 and the first term

accounts for the SVD computation and the second does for the matrix multiplication.

For a perfectly balanced and fully developed bipartition tree with N = 2 jmax , we have

N
j

k = 2 jmax− j , j = 0 : jmax, k = 0 : 2 j − 1. Hence we have:
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Fig. 6 The VM-NGWP basis vectors of the 2D lattice graph P7 × P3 computed by the varimax rotations in

the hierarchically partitioned dual domain shown in Fig. 4. Note that the column vectors of the basis matrix

�
(2)
k

are denoted as ψk,l , l = 0, 1, . . ., in this figure instead of ψ
(2)
k,l

for simplicity (Color figure online)

2 j −1
∑

k=0

(N
j

k )2 =
2 j −1
∑

k=0

22( jmax− j) = 22 jmax−2 j · 2 j = N 2 · 2− j , (8)

and

2 j −1
∑

k=0

(N
j

k )3 =
2 j −1
∑

k=0

23( jmax− j) = 23 jmax−3 j · 2 j = N 3 · 2−2 j .

Note that at the bottom level j = jmax, each node is a leaf containing only one

eigenvector, and there is no need to do any rotation estimation and computation. Note

also that at the root level j = 0, the columns of �
(0)
0 span the whole RN , and we know

that the varimax rotation turns �
(0)
0 into the identity matrix (or its permuted version).

Hence, we do not need to run the varimax rotation algorithm on the root node. Finally,

summing the cost O
(

c · (N
j

k )3 + N · (N
j

k )2
)

from j = 1 to jmax − 1, the total worst

case computational cost becomes O((1 + c/3)N 3 − 2N 2 − 4c/3N ). So after all, it

is an O(N 3) algorithm. In practice, the convergence is often achieved with less than

1000 iterations at each node except possibly for the nodes with small j where N
j

k is

large. For example, when computing the VM-NGWP dictionary for the path graph
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P512 ( jmax = 9) shown in Fig. 5, the average number of iterations over all the dual

graph nodes
{

V
⋆( j)
k

}

j=0:9; k=0:2 j −1
was 68.42 with the standard deviation 98.09.

4 Natural GraphWavelet Packets Using Pair-Clustering

Another way to construct a natural graph wavelet packet dictionary is to mimic

the convolution and subsampling strategy of the classical wavelet packet dictio-

nary construction: form a binary tree of spectral filters in the dual domain via
{

V
⋆( j)
k

}

j=0:J ;k=0:2 j −1
and then perform the filtering/downsampling process based

on the relations between the sampling points (primal nodes) and the eigenvectors of

L(G). In order to fully utilize such relations, we look for a coordinated pair of parti-

tions on G and G⋆, which is realized by our pair-clustering algorithm described below.

We will first describe the one-level pair-clustering algorithm and then proceed to the

hierarchical version.

4.1 One-Level Pair-Clustering

Suppose we partition the dual graph G⋆ into K ≥ 2 clusters using any method includ-

ing the spectral clustering [61] as we used in the previous section. Let V ⋆
1 , . . . , V ⋆

K

be those mutually disjoint K clusters of the nodes V ⋆, i.e., V ⋆ =
K

⊔

k=1

V ⋆
k , which is

also often written as

K
⊕

k=1

V ⋆
k . Denote the cardinality of each cluster as Nk := |V ⋆

k |,

k = 1 : K , and we clearly have

K
∑

k=1

Nk = N . Then, we also partition the primal

graph nodes V into mutually disjoint K clusters, V1, . . . , VK with the constraint that

|Vk | = |V ⋆
k | = Nk , k = 1 : K , and the members of Vk and V ⋆

k are as “closely related”

as possible. The purpose of partitioning V is to select appropriate primal graph nodes as

sampling points around which the graph wavelet packet vectors using the information

on V ⋆
k are localized. With a slight abuse of notation, let V also represent a collection

of the standard basis vectors in RN , i.e., V := {δ1, . . . , δN }, where δk(k) = 1 and 0

otherwise. In order to formalize this constrained clustering of V , we define the affinity

measure α between Vk and V ⋆
k as follows:

α(Vk, V ⋆
k ) :=

∑

δ∈Vk ,φ∈V ⋆
k

| 〈δ,φ〉 |2, (9)

where 〈·, ·〉 is the standard inner product in RN . Note that α(V , V ⋆)

=
∑

δ∈V ,φ∈V ⋆

| 〈δ,φ〉 |2 =
∑

φ∈V ⋆

‖φ‖2 = N . Denote the feasible partition set as
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U (V ; N1, . . . , NK ) :=
{

(V1, . . . , VK )

∣
∣
∣
∣

K
⊔

k=1

Vk = V ; |Vk | = Nk, k = 1 : K

}

.

Now we need to solve the following optimization problem for a given partition of

V ⋆ =
K

⊔

k=1

V ⋆
k :

(V1, . . . , VK ) = arg max
(V1,...,VK )∈U (V ;N1,...,NK )

K
∑

k=1

α(Vk, V ⋆
k ) (10)

This is a discrete optimization problem. In general, it is not easy to find the global opti-

mal solution except for the case K = 2. For K = 2, we can find the desired partition of

V by the following greedy algorithm: 1) compute score(δ) := α({δ}, V ⋆
1 )−α({δ}, V ⋆

2 )

for each δ ∈ V ; 2) select N1 δ’s in V that give the largest N1 values of score(·), set

them as V1, and set V2 = V \ V1.

When K > 2, we can find a local optimum by the similar strategy as above: 1)

compute the values α({δ}, V ⋆
1 ) for each δ ∈ V ; 2) select N1 δ’s giving the largest N1

values, and set them as V1; 3) compute the values α({δ}, V ⋆
2 ) for each δ ∈ V \ V1,

select N2 δ’s giving the largest N2 values, and set them as V2; 4) repeat the above

process to produce V3, . . . , VK . While this greedy strategy does not reach the global

optimum of Eq. (10), we find that empirically the algorithm attains a reasonably large

value of the objective function. We note that our one-level pair-clustering problem is a

particular example of the so-called submodular welfare problem [62] with cardinality

constraints; however, we will not pursue this direction for a general K > 2 with the

one-level pair clustering. Rather, we will apply it with K = 2 in a hierarchical manner,

which will be discussed next.

4.2 Hierarchical Pair-Clustering

In order to build a multiscale graph wavelet packet dictionary, we develop a hierarchical

(i.e., multilevel) version of the pair-clustering algorithm. First, let us assume that

the hierarchical bipartition tree of V ⋆ is already computed using the same algorithm

discussed in Sect. 3.1. We now begin with level j = 0 where V
(0)
0 is simply V =

{δ1, δ2, · · · , δN } and V
⋆(0)
0 is V ⋆ = {φ0,φ1, · · · ,φN−1}. Then, we perform one-

level pair-clustering algorithm (K = 2) to get
(

V
⋆(1)
0 , V

(1)
0

)

and then
(

V
⋆(1)
1 , V

(1)
1

)

.

We iterate the above process to generate paired clusters
(

V
⋆( j)
k , V

( j)
k

)

, j = 0 : J ,

k = 0 : 2 j −1. Note that the hierarchical pair-clustering algorithm ensures nestedness

in both the primal node domain V and the dual/eigenvector domain V ⋆.
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4.3 Generating the NGWP Dictionary

Once we generate two hierarchical bipartition trees
{

V
( j)
k

}

and
{

V
⋆( j)
k

}

, we can

proceed to generate the NGWP vectors
{

�
( j)
k

}

that are necessary to form an NGWP

dictionary. For each δl ∈ V
( j)

k , we first compute the orthogonal projection of δl onto the

span of V
⋆( j)
k , i.e., span

(

�
( j)
k

)

where �
( j)
k are those eigenvectors of L(G) belonging

to V
⋆( j)
k . Unfortunately, �

( j)
k

(

�
( j)
k

)
T

δl and �
( j)
k

(

�
( j)
k

)
T

δl ′ are not mutually orthog-

onal for δl , δl ′ ∈ V
( j)
k in general. Hence, we need to perform orthogonalization of the

vectors

{

�
( j)
k

(

�
( j)
k

)
T

δl

}

l

. We use the modified Gram-Schmidt with ℓp(0 < p < 2)

pivoting orthogonalization (MGSLp) [7] to generate the orthonormal graph wavelet

packet vectors associated with V
⋆( j)
k (and hence also V

( j)
k ). This MGSLp algorithm

listed in Appendix B tends to generate localized orthonormal vectors because the

ℓp-norm2 pivoting promotes sparsity. We refer to the graph wavelet packet dictio-

nary
{

�
( j)
k

}

j=0:J ; k=0:2 j −1
generated by this algorithm as the Pair-Clustering Natural

Graph Wavelet Packet (PC-NGWP) dictionary.

Let us now briefly discuss the performance of the PC-NGWP dictionary on the

same examples in Sect. 3, i.e., P512 and P7 × P3, without displaying figures to save

pages. We essentially obtained the similar wavelet packet vectors in both cases as those

shown in Figs. 5 and 6 using the VM-NGWP dictionaries; yet they are not exactly

the same: the localization of those PC-NGWP vectors in the primal node domain is

worse (e.g., with larger sidelobes) than that of the VM-NGWP vectors mainly due to

the MGSLp orthogonalization procedure (even if it promoted sparsity).

4.4 Computational Complexity

At each V
⋆( j)
k of the hierarchical bipartition tree of the dual graph G⋆, the orthogonal

projection of the standard basis vectors in V
( j)

k onto span
(

�
( j)

k

)

and the MGSLp

procedure are the two main computational burden for our PC-NGWP dictionary

construction. The orthogonal projection costs O
(

N · (N
j

k )2 + N · N
j

k

)

while the

MGSLp costs O
(

2N · (N
j

k )2
)

. Hence, the dominating cost for this procedure is

O
(

3N · (N
j

k )2
)

for each ( j, k). And we need to sum up this cost on all the tree

nodes. Let us analyze the special case of the perfectly balanced and fully developed

bipartition tree with N = 2 jmax as we did for the VM-NGWP in Sect. 3.3. In this

case, the bipartition tree has 1 + jmax levels, and N
j

k = 2 jmax− j , k = 0 : 2 j − 1.

So, for the j th level, using Eq. (8), we have O(3N 3 · 2− j ). Finally, by summing this

from j = 1 to jmax − 1 (again, no computation is needed at the root and the bot-

2 We typically set p = 1 here, and in fact, that setting was used in all the numerical experiments with the

PC-NGWP dictionary in this article.
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tom levels), the total cost for PC-NGWP dictionary construction in this ideal case is:

O(3N 3 · (1−2/N )) ≈ O(3N 3). So, it still requires O(N 3) operations; the difference

from that of the VM-NGWP is the constants, i.e., 3 (PC-NGWP) vs 1+1000/3 ≈ 334

(the worst case VM-NGWP).

5 Applications in Graph Signal Approximation

In this section, we demonstrate the usefulness of our proposed NGWP dictionaries in

efficient approximation of graph signals on two graphs, and compare the performance

with the other previously proposed methods: the global graph Laplacian eigenbasis;

the HGLET best basis [19]; the graph Haar basis; the graph Walsh basis; the GHWT

coarse-to-fine (c2f) best basis [18]; the GHWT fine-to-coarse (f2c) best basis [18];

and the eGHWT best basis [52]. Recall that the HGLET is a graph version of the

Hierarchical Block DCT dictionary, which is based on the hierarchical bipartition tree

of a primal graph, as briefly discussed in Introduction. Although the HGLET can

choose three different types of graph Laplacian eigenvectors of L , L rw, and Lsym at

each subgraph (see Eq. (1)), we only use those of the unnormalized L at each subgraph

in order to compare its performance in a fair manner with the NGWP dictionaries

that are based on the eigenvectors of L(G). Note also that the graph Haar basis is a

particular basis choosable from the GHWT f2c dictionary and the eGHWT dictionary

while the graph Walsh basis is choosable from both versions of the GHWT dictionaries

as well as the eGHWT; see [21,52] for the details. We use the ℓ1-norm minimization

as the best-basis selection criterion for all the best bases in our experiments. The edge

weights of the dual graph G⋆ are the reciprocals of the DAG pseudometric between

the corresponding eigenvectors of L(G) as defined in Eq. (6). For a given graph G

and a graph signal f defined on it, we decompose f into those dictionaries and

select those bases first. Then, to measure the approximation performance, we sort the

expansion coefficients in the nonincreasing order of their magnitude, and use the top

k most significant terms to approximate f where k starts from 0 up to about 50% of

the total number of terms, or more precisely, ⌊0.5N⌋ + 1. All of the approximation

performance is measured by the relative ℓ2 approximation error with respect to the

fraction of coefficients retained, which we denote FC R for simplicity.

5.1 Sunflower Graph Signals Sampled on Images

We consider the so-called “sunflower” graph shown in Fig. 7a. This particu-

lar graph has 400 nodes and each edge weight is set as the reciprocal of the

Euclidean distance between the endpoints of that edge. Consistently counting the

number of spirals in such a sunflower graph gives rise to the Fibonacci numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . ; see Fig. 7a. We also note that the majority of

nodes (374 among 400) have degree 4 while there are eight nodes with degree 2, 17

nodes with degree 3, and the central node has the greatest degree 9. See, e.g., [35,60]

and our code SunFlowerGraph.jl in [30], for algorithms to construct such sun-

flower grids and graphs. We can also view such a distribution of nodes as a simple
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Fig. 7 Sunflower graph (N = 400) (a); node radii vary for visualization purpose; its Voronoi tessellation

(b) (Color figure online)

model of the distribution of photoreceptors in mammalian visual systems due to cell

generation and growth; see, e.g., [45, Chap. 9]. Such a viewpoint motivates us the

following sampling scheme: 1) overlay the sunflower graph on several parts of the

standard Barbara image; 2) construct the Voronoi tessellation of the bounding square

region with the nodes of the sunflower graph as its seeds as shown in Fig. 7b; 3) compute

the average pixel value within each Voronoi cell; and 4) assign that average pixel value

to the corresponding seed/node.3 See [63] for more about the relationship between

the Voronoi tessellation and the sunflower graph. We also note that for generating

the Voronoi tessellation, we used the following open source Julia packages developed

by the JuliaGeometry team [58]: VoronoiDelaunay.jl; VoronoiCells.jl;

and GeometricalPredicates.jl. For our numerical experiments, we sampled

two different regions: her left eye and pants, where quite different image features are

represented, i.e., a piecewise-smooth image containing oriented edges and a textured

image with directional oscillatory patterns, respectively.

First, let us discuss our approximation experiments on Barbara’s eye graph signal,

which are shown in Fig. 8. From Fig. 8c, we observe the following: 1) the VM-NGWP

best basis performed best closely followed by the PC-NGWP best basis; 2) the HGLET

best basis chose the global graph Laplacian eigenbasis, which worked relatively well

particularly up to FC R ≈ 0.27; and 3) those bases chosen from the Haar-Walsh

wavelet packet dictionaries did not perform well; among them, the eGHWT best basis

performed well in the range FC R � 0.27. Note also that the GHWT c2f best basis

turned out to be the graph Walsh basis for this graph signal. These observations can be

attributed to the fact that this Barbara’s eye graph signal is not of piecewise-constant

nature; rather, it is a locally smooth graph signal. Hence, the NGWP dictionaries con-

3 If a Voronoi cell does not contain any original image pixels (which occurs at some tiny cells around the

center), we bilinearly interpolate the pixel value at the node location using the nearest image pixel values.
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Fig. 8 Barbara’s left eye region sampled on the sunflower graph nodes (a) as a graph signal (b); the relative

ℓ2 approximation errors by various methods (c) (Color figure online)

taining smooth and localized basis vectors made a difference in performance compared

to the global graph Laplacian eigenbasis and the eGHWT best basis.

In order to examine what kind of basis vectors were chosen as the best basis to

approximate this Barbara’s eye signal, we display the 16 most significant VM-NGWP

best basis vectors in Fig. 9. The corresponding PC-NGWP best basis vectors are

relatively similar; hence they are not shown here. We note that many of these top basis

vectors essentially work as oriented edge detectors for Barbara’s eye. For example,

ψ
(7)
5,2 (Fig. 9g) and ψ

(6)
5,1 (Fig. 9k) try to capture her eyelid while ψ

(3)
2,18 (Fig. 9j), ψ

(6)
11,1

(Fig. 9l), and ψ
(6)
15,3 (Fig. 9n) do the same for her iris and sclera. The other basis vectors

take care of shading and peripheral features of her eye region. We also note that seven

among these top 16 best basis vectors are the global graph Laplacian eigenvectors; see

Fig. 9a, b, e, h, i, m, o.

Now, let us discuss our second approximation experiments: Barbara’s pants region

as an input graph signal as shown in Fig. 10. The nature of this graph signal is com-

pletely different from the eye region: it is dominated by directional oscillatory patterns

of her pants. From Fig. 10c, we observe the following: 1) the NGWP best bases and

the eGHWT best basis performed very well and competitively; the NGWP best bases

performed better than the eGHWT best basis up to FC R ≈ 0.2 while the latter out-
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Fig. 9 Sixteen most significant VM-NGWP best basis vectors (the DC vector not shown) for Barbara’s eye.

The basis vector amplitudes within (−0.15, 0.15) are mapped to the grayscale colormap

performed all the others for FC R � 0.2; 2) the GHWT f2c best basis performed

relatively well behind those three bases; 3) there is a substantial gap in performance

between those four bases and the rest: the graph Haar basis; the GHWT c2f best basis;

and the HGLET best basis. Note that similarly to the case of Barbara’s eye, the latter

two best bases coincide with the graph Walsh basis and the global graph Laplacian

eigenbasis, respectively. We knew that the eGHWT is known to be quite efficient in

capturing oscillating patterns as shown by Shao and Saito for the graph setting [52]

and by Lindberg and Villemoes for the classical non-graph setting [32]. Hence, it is a

good thing to observe that our NGWPs are competitive with the eGHWT for this type

of textured signal.

Figure 11 shows the 16 most significant VM-NGWP best basis vectors for approx-

imating Barbara’s pants signal. We note that the majority of these basis vectors are
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Fig. 10 Barbara’s pants region sampled on the sunflower graph nodes (a) as a graph signal (b); the relative

ℓ2 approximation errors by various methods (c) (Color figure online)

of high-frequency nature than those for the eye signal shown in Fig. 9, which reflect

the oscillating anisotropic patterns of her pants. The basis vectors ψ
(6)
3,1 (Fig. 11a),

ψ
(11)
9,0 (Fig. 11j), and ψ

(11)
1,0 (Fig. 11p) take care of shading in this region while the

other basis vectors extract oscillatory patterns of various scales. We also note that four

among these top 16 best basis vectors are the global graph Laplacian eigenvectors; see

Fig. 11h, j, k, p.

5.2 Toronto Street Network

We obtained the street network data of the City of Toronto from its open data por-

tal.4 Using the street names and intersection coordinates included in the dataset, we

construct the graph representing the street network there with N = 2275 nodes and

M = 3381 edges. Figure 12 displays this graph. As before, each edge weight was set

as the reciprocal of the Euclidean distance between the endpoints of that edge.

We analyze two graph signals on this street network: 1) spatial distribution of the

street intersections and 2) pedestrian volume measured at each intersection. The first

graph signal was constructed by counting the number of the nodes within the disk

4 URL: https://open.toronto.ca/dataset/traffic-signal-vehicle-and-pedestrian-volumes.

https://open.toronto.ca/dataset/traffic-signal-vehicle-and-pedestrian-volumes
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Fig. 11 Sixteen most significant VM-NGWP best basis vectors (the DC vector not shown) for Barbara’s

pants. The basis vector amplitudes within (−0.15, 0.15) are mapped to the grayscale colormap

of radius 4.7 km centered at each node. In other words, this is a smooth version

of histogram of the distribution of street intersections computed with the overlapping

circular bins of equal size. The longest edge length measured in the Euclidean distance

among all these 3381 edges was chosen as this radius of this disk, which is located

at the northeast corner of this graph as one can easily see in Fig. 12a. The second

graph signal is the most recent 8 peak-hour pedestrian volume counts collected at

intersections (i.e., nodes in this graph) where there are traffic signals. The dataset was

collected between the hours of 7:30 am and 6:00 pm, over the period of 03/22/2004–

02/28/2018. From Fig. 12b, we observe that qualitative behaviors of these error curves

are relatively similar to those of Barbara’s eye signal shown in Fig. 8c. More precisely,

1) NGWP best bases outperformed all the others and the difference between the VM-

NGWP and the PC-NGWP is negligible; 2) the HGLET best basis chose the global

graph Laplacian eigenbasis, which worked quite well following the NGWP best bases;



Journal of Fourier Analysis and Applications (2021) 27 :41 Page 25 of 33 41

Fig. 12 A graph signal representing the smooth spatial distribution of the street intersections on the Toronto

street network (a). The horizontal and vertical axes of this plot represent the longitude and latitude geo-

coordinates of this area, respectively. The results of our approximation experiments (b) (Color figure online)

3) those bases based on the Haar-Walsh wavelet packet dictionaries did not perform

well.

In order to examine what kind of basis vectors were chosen to approximate this

smooth histogram of street intersections, we display the most important 16 VM-NGWP

best basis vectors in Fig. 13. We note that these top basis vectors exhibit different

spatial scales. The basis vectors with levels j = 5 and j = 6 are relatively localized

to specific regions of Toronto. For example, ψ
(5)
4,4 (Fig. 13h) tries to differentiate the

eastern neighbor of the dense downtown region along the north-south direction while

ψ
(6)
2,0 (Fig. 13b) tries to do the same along the east-west direction. ψ

(6)
2,2 (Fig. 13j) tries

to differentiate the intersection density around the northeast region of Toronto. On the

other hand, there are coarse scale basis vectors with j = jmax = 43, which are in

fact the global Laplacian eigenvectors, i.e., Fig. 13a, e, k, n. It is not surprising that

these coarse scale basis vectors were selected as a part of the VM-NGWP best basis

considering that the global graph Laplacian eigenbasis performed quite well on this

graph signal as shown in Fig. 12b.

Now, let us analyze the pedestrian volume data measured at the street intersections as

shown in Fig. 14a, which is highly localized around the specific part of the downtown

region (the dense region in the lower middle section) of the street graph. Fig. 14b

shows the approximation errors of various methods. From Fig. 14b, we observe the

following: 1) the eGHWT best basis clearly outperformed all the other methods; 2)

the HGLET best basis and the GHWT c2f best basis followed the eGHWT best basis;

3) the graph Haar basis and the GHWT f2c best basis were next best performers; 4)

The VM-NGWP best basis followed those five while the PC-NGWP best basis was

the distant seventh performer; and 5) the global bases such as the graph Laplacian

eigenbasis and the graph Walsh based were the worst performers. Considering the

non-smooth and highly localized nature of the input signal, it is not surprising that the

global bases did not perform well and that the non-smooth local bases (the eGHWT,

the GHWT best bases, the graph Haar basis) and the basis vectors whose supports

strictly follow the partition pattern of the primal graph (the HGLET best basis) had
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Fig. 13 Sixteen most significant VM-NGWP best basis vectors (the DC vector not shown) for street inter-

section density data on the Toronto street map. The basis vector amplitudes within (−0.075, 0.075) are

mapped to the viridis colormap (Color figure online)

an edge over the NGWP best bases that contain smooth basis vectors whose supports

may spread among neighboring regions.

In order to examine the performance difference between the VM-NGWP best basis

and the PC-NGWP best basis, we display their 16 most significant basis vectors in

Figs. 15 and 16, respectively. We note that the top VM-NGWP best basis vectors

exhibit local to intermediate spatial scales. The basis vectors with j = 1 (Fig. 15d,

l, m, n, o, p) are highly localized at certain nodes within the dense downtown region

while the basis vectors with j = 2, 3, 4 (Fig. 15b, c, f, g, h, i, j, k) try to characterize

the pedestrian volume within the downtown region and its neighbors as oriented edge

detectors. The top basis vector ψ
(4)
0,2 in Fig. 15a works as a local averaging operator

around the downtown region. On the other hand, the top PC-NGWP best basis vectors

are more localized than those of the VM-NGWP best basis vectors. As one can see

from Fig. 16, there are neither medium nor coarse scale basis vectors in these top

16 basis vectors. The reason behind these performance difference between the VM-

NGWP and the PC-NGWP is the following. The VM-NGWP best basis for this graph

signal turned out to be “almost” the graph Shannon wavelet basis with the deepest

level J = 4, i.e., the basis for the union of the following subspaces: V
⋆(4)
0 , V

⋆(7)
8 ,
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Fig. 14 The pedestrian volume graph signal on the Toronto street network (a); the results of our approxi-

mation experiments (b) (Color figure online)

V
⋆(43)
18 (= {φ18}), V

⋆(43)
19 (= {φ19}), V

⋆(6)
5 , V

⋆(5)
3 , V

⋆(3)
1 , V

⋆(2)
1 , and V

⋆(1)
1 . Note that

V
⋆(7)
8 ∪ V

⋆(43)
18 ∪ V

⋆(43)
19 ∪ V

⋆(6)
5 ∪ V

⋆(5)
3 = V

⋆(4)
1 , hence this is “almost” the graph

Shannon wavelet basis with J = 4, which is the basis for the union V
⋆(4)
0 ∪ V

⋆(4)
1 ∪

V
⋆(3)
1 ∪ V

⋆(2)
1 ∪ V

⋆(1)
1 . Hence, this VM-NGWP best basis should behave similarly to

that graph Shannon wavelet basis (except the mother wavelet vectors at level j = 4). In

particular, it does not contain oscillatory basis vectors of large scale that are not really

necessary to approximate this highly localized pedestrian volume data. On the other

hand, the PC-NGWP best basis turned out to be the graph Shannon wavelet basis

with J = 1, i.e., the basis for the subspaces V
⋆(1)
0 and V

⋆(1)
1 . Since the pedestrian

volume data is quite non-smooth and localized, δ-like basis vectors with scale j = 1

in the PC-NGWP dictionary tend to generate sparser coefficients, i.e., having a small

number of large magnitude coefficients with many negligible ones. Therefore, the best

basis algorithm with ℓ1-norm ends up favoring those fine scale basis vectors in the

PC-NGWP best basis for this graph signal.

6 Discussion

In this article, we proposed two ways to construct graph wavelet packet dictionaries

that fully utilize the natural dual domain of an input graph: the VM-NGWP and the

PC-NGWP dictionaries. Then, using two different graph signals on each of the two

different graphs, we compared their performance in approximating a given graph signal

against our previous multiscale graph basis dictionaries, such as the HGLET, GHWT,

and eGHWT dictionaries, which include the graph Haar and the graph Walsh bases. Our

proposed dictionaries outperformed the others on locally smooth graph signals, and

performed reasonably well for a graph signal sampled on an image containing oriented

anisotropic texture patterns. On the other hand, our new dictionaries were beaten by the

eGHWT on the non-smooth and localized graph signal. One of the potential reasons

for such a behavior is the fact that our dictionaries are a direct generalization of

the “Shannon” wavelet packet dictionaries, i.e., their “frequency” domain support is

localized and well-controlled while the “time” domain support is not compact. In
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Fig. 15 Sixteen most significant VM-NGWP best basis vectors for pedestrian volume data on the Toronto

street map. The basis vector amplitudes within (−0.075, 0.075) are mapped to the viridis colormap (Color

figure online)

order to improve the performance of our dictionaries for such non-smooth localized

graph signals, we need to bipartition G⋆ recursively but smoothly with overlaps, which

may lead to a graph version of the Meyer wavelet packet dictionary [34, Sect. 7.2.2,

8.4.2], whose basis vectors are more localized in the “time” domain than those of the

Shannon wavelet packet dictionary. In fact, it is interesting to investigate such smooth

partitioning with overlaps not only on G⋆ but also on G itself since it may lead to the

graph version of the local cosine basis dictionary [9], [34, Sect. 8.4.3].

We also note that the VM-NGWP dictionary performed generally better than the

PC-NGWP dictionary for the graph signals we have examined. One of the possible

reasons is the use of the explicit localization procedure, i.e., the varimax rotation, in

the former; the latter allows one to try to “pinpoint” a particular primal node where

the basis vector should concentrate, but the MGSLp procedure unfortunately shuffles

and slightly delocalizes the basis vectors after orthogonalization. On the other hand,

the difference in their computational costs is just a constant in O(N 3) operations.

Hence, it is important to investigate how to reduce the computational complexity in

both cases. One such possibility is to use only the first N0 graph Laplacian eigenvectors

with N0 ≪ N . Clearly, one cannot represent a given graph signal precisely with N0
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Fig. 16 Sixteen most significant PC-NGWP best basis vectors for pedestrian volume data on the Toronto

street map. The basis vector amplitudes within (−0.075, 0.075) are mapped to the viridis colormap (Color

figure online)

eigenvectors, but this scenario may be acceptable for certain applications including

graph signal clustering, classification, and regression. Of course, it is of our interest

to investigate whether we can come up with faster versions of the varimax rotation

algorithm and the MGSLp algorithm, which forms one of our future research projects.

Finally, we would like to emphasize that the natural dual domain G⋆ can be used

in applications beyond dictionary construction. Such applications include: graph cuts

and spectral clustering [41,53] to move beyond noted limitations to using the first few

eigenvectors [39]; graph visualization and embeddings [1] to represent embeddings

with lower distortion [24] as was done in [26]; and anomaly detection through spectral

methods [12,36] by going beyond the first few eigenvectors [3,4]. It is interesting to

investigate going beyond the initial set of eigenvectors with small eigenvalues in a

method informed by G⋆, and the effect of G⋆ on such methods.
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A Varimax Rotation

The algorithm of varimax rotation we adopted and used in this article is the so-called

Basic Singular Value (BSV) algorithm proposed by Jennrich [23]. The algorithm in

Eq. (7) can be summarized as follows:

(0) Initialize an orthogonal rotation matrix R.

(1) Compute d f /dR, where f is the objective function defined in Eq. (7), and d f /dR

is the matrix of partial derivatives of f at R.

(2) Find the singular value decomposition U�V ∗ of d f /dR.

(3) Replace R by U V ∗ and go to (1) or stop.

Algorithm 1 below describes the details. Jennrich also showed that under certain

general conditions, this algorithm converges to a stationary point from any initial

estimate. The BSV algorithm seems to be the standard varimax rotation algorithm

available in many packages, e.g., MATLAB ®,5 R, etc.

Input: Full column rank input matrix whose columns to be rotated A ∈ RN×m (m ≤ N );

maximum number of iteration steps maxit (default value: 1000); relative tolerance tol

(default value: 1e-12)

Output: Rotated matrix B ∈ RN×m

B = A // initialize the output matrix

S = 0 // initialize the nuclear norm

for i from 1 to maxit do

S0 = S [U , �, V ] = svd(AT · (N · B◦3 − B · diag(BT · B))) // B◦3 := B ◦ B ◦ B

// where ◦ is the Hadamard (entrywise) product

T = U · V ∗ // update the orthogonal rotation matrix

S = trace(�) B = A · T // update the rotated matrix

if |S − S0|/S < tol then

break // stop when S does not change much

end

end

return B
Algorithm 1: The Varimax Rotation Algorithm

5 MATLAB is a registered trademark of The MathWorks, Inc.

http://creativecommons.org/licenses/by/4.0/
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B Modified Gram-Schmidt with ℓp Pivoting Orthogonalization

We have implemented a simplified version of the modified Gram-Schmidt with mixed

ℓ2-ℓp (0 < p < 2) pivoting algorithm described and used in [7]. Algorithm 2 below

describes the details. Our version skips the the step of computing the largest ℓ2 norm

and picking the parameter λ (a notation used in [7]) to increase the numerical stability.

Instead, we directly set up a tolerance parameter, tol, for robustness. On the other

hand, we keep the ℓp (0 < p < 2) pivoting procedure in MGS (i.e., always perform

the orthogonalization process of the vector with minimum ℓp-norm in the candidate

pool), which nicely preserves the sparsity of the obtained wavelet-like vectors after

the orthogonalization process. The MGSLp algorithm is summarized as follows.

Input: List of unit vectors v = [v1, . . . , vm ] ∈ RN×m ; norm parameter 0 < p < 2 (default value:

1); error tolerance tol (default value: 1e-12)

Output: List of orthonormal vectors q = [q1, . . . , qr ] ∈ RN×r where r = rank(v)

q = ∅ // initialize the output list

w = [‖v1‖p, . . . , ‖vm‖p]
for i from 1 to m do

k = i − 1 + findmin(w) // find the minimum ℓp-norm index

swap(vi , vk ) // pivoting

if ‖vi ‖2 < tol then

break // check linear dependency

end

ṽ = vi /‖vi ‖2

w = ∅ // re-initialize the ℓp-norm vector

for j from i + 1 to m do

v j = v j − (ṽT · v j )ṽ

w = append(w, ‖v j ‖p)

end

q = append(q, ṽ)

end

return q

Algorithm 2: Modified Gram-Schmidt Orthogonalization with ℓp pivoting
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