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Abstract
Natural head motion is important to realistic

facial animation and engaging human-computer

interactions. In this paper, we present a novel

data-driven approach to synthesize appropriate

head motion by sampling from trained Hidden

Markov Models (HMMs). First, while an

actress recited a corpus specifically designed

to elicit various emotions, her 3D head motion

was captured and further processed to con-

struct a head motion database that included

synchronized speech information. Then, an

HMM for each discrete head motion repre-

sentation (derived directly from data using

vector quantization) was created by using

acoustic prosodic features derived from speech.

Finally, first order Markov models and in-

terpolation techniques were used to smooth

the synthesized sequence. Our comparison

experiments and novel synthesis results show

that synthesized head motions follow the tem-

poral dynamic behavior of real human subjects.

Keywords: Head motion synthesis, prosody,

HMM, facial animation, data-driven, spherical

cubic interpolation
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1 Introduction

The development of new human-computer in-

terfaces and exciting applications such as video

games and animated feature films has motivated

the computer graphics community to generate

realistic avatars with the ability to replicate and

mirror natural human behavior. Since the use of

large motion capture datasets is expensive, and

can be only applied to delicately planned sce-

narios, new automatic systems need to be used

to generate natural human facial animation. One

useful and practical approach is to synthesize

animated human faces driven by speech.

The straightforward use of speech in facial

animation is in lip motion synthesis, in which

the acoustic phonemes are used to generate vi-

sual visemes that match the spoken sentences.

Examples of these approaches include [1, 2, 3,

4, 5, 6, 7]. Also, speech has been used to drive

human facial expression, under the assumption

that the articulation of the mouth and jaw modify

facial muscles, producing different faces poses.

Examples of these approaches are [8, 9]. Sur-

prisingly, few efforts have focused on natural

generation of rigid head motion, which is an im-

portant ingredient for realistic facial animations.

In fact, Munhall et al. [10] reported that head

motion is important for auditory speech percep-

tion, which suggests that appropriate head mo-

tion can significantly enhance human-computer

interfaces.



Although human head motion is associated

with many factors, such as speaker style, id-

iosyncrasies and affective states, linguistic as-

pects of speech play a crucial role. Kuratate et

al. [9] presented preliminary results about the

relationship between head motions and acous-

tic prosodic features. They concluded based on

the strong correlation (r=0.8) that these two are

somehow correlated, but perhaps under indepen-

dent control. This suggests that the tone and the

intonation of the speech provide important cues

about head motion and vice versa [10]. Notice

that, here, it is more important how the speech

is uttered rather than just what is said. There-

fore, prosodic features (e.g. pitch and energy)

are more suitable than vocal tract-based features

(e.g. LPC and MFCC). The work of [11] even

reports that about 80% of the variance observed

in the pitch can be determined from head mo-

tion.

In this paper, an innovative technique is pre-

sented to generate natural head motion directly

from acoustic prosodic features. First, vec-

tor quantization is used to produce a discrete

representation of head poses. Then, a Hidden

Markov Model (HMM) is trained for each clus-

ter, which models the temporal relation between

the prosodic features and the head motion se-

quence. Given that the mapping is not one to

one, the observation probability density is mod-

eled with a mixture of Gaussians. The smooth-

ness constraint is imposed by defining a bi-gram

model (first order Markov model) on head poses

learned from the database. Then, given new

speech material, the HMM, working as a se-

quence generator, produces the most likely head

motion sequences. Finally, a smoothing oper-

ation based on spherical cubic interpolation is

applied to generate the final head motion se-

quences.

2 Related Work

Researchers have presented various techniques

to model head motion. Pelachaud et al. [12]

generated head motions from labeled text by

predefined rules, based on Facial Action Cod-

ing System (FACS) representations [13]. Cas-

sell et al. [14] automatically generated appro-

priate non-verbal gestures, including head mo-

Figure 1: Audio Visual Database

tion, for conversational agents, but their focus

was only the “nod” head motion. Graf et al.

[15] estimated the conditional probability dis-

tribution of major head movements (e.g. nod)

given the occurrences of pitch accents, based

on their collected head motion data. Costa et

al. [8] used Gaussian Mixture Model (GMM)

to model the connections between audio fea-

tures and visual prosody. The connection be-

tween eyebrow movements and audio features

was specifically studied in their work. Chuang

and Bregler [16] presented a data-driven ap-

proach to synthesize novel head motion corre-

sponding to input speech. They first acquired

a head motion database indexed by pitch val-

ues, then a new head motion sequence was

synthesized by choosing and combining best-

matched recorded head motion segments in the

constructed database. Deng et al. [17] presented

a new audio-driven head motion synthesis tech-

nique that synthesized appropriate head motion

with keyframing control. After a audio-head

motion database was constructed, given novel

speech input and user controls (e.g. specified

key head poses), a guided dynamic program-

ming technique was used to generate an optimal

head motion sequence that maximally satisfies

both speech and key frames specifications.

In this paper, we propose to use HMMs

to capture the close temporal relation be-

tween head motions and acoustic prosodic fea-

tures. Also, we propose an innovative two-step

smoothing technique based on bi-gram models,

learned from data, and spherical cubic interpo-

lation.



Figure 2: Head poses using Euler angles

3 Data Capture and Processing

3.1 Database

The audiovisual database used in this work was

recorded from an actress, with 102 markers on

her face (left of Figure 1). She was asked to read

a custom, phoneme-balanced corpus four times,

expressing different emotions (happiness, sad-

ness, anger and neutral state). A VICON motion

capture system with three cameras (right of Fig-

ure 1) was used to capture her facial expressions

and head motions. The sampling frequency was

set to 120Hz. The recording was made in a quiet

room using a close talking SHURE microphone

at the sampling rate of 48 kHz. The markers’

motions and the aligned audio were captured by

the system simultaneously. In total, 633 sen-

tences were used in this work. Note that the ac-

tress did not receive any instruction about how

to move her head.

After the motion data were captured, all the

markers were translated to make a nose marker

at the local coordinate center of each frame. A

neutral pose was chosen as a reference frame,

which was used to create a 102× 3 matrix, y.

For each frame, a matrix xi was created, using

the same marker order as the reference. After

that, the Singular Value Decomposition(SVD),

UDV T , of matrix yT xi was calculated. Finally,

the product of VUT gave the rotation matrix, R,

which defines the three Euler angles of the head

motion of this frame [18] (Figure 2).

yT xi = UDV T (1)

R = VUT (2)

To extract the prosodic features, the acoustic

signals were processed by the Entropic Signal

Processing System (ESPS), which computes the

pitch (F0) and the RMS energy of the audio. The

window was set to 25-ms with an overlap of 8.3-

ms. Notice that the pitch takes values only in

voiced region of the speech. Therefore, to avoid

zeros in unvoiced regions, a cubic spline inter-

polation was applied in those regions. Finally,

the first and second derivatives of the pitch and

the energy were added to incorporate their tem-

poral dynamics.

3.2 Canonical Correlation analysis

To validate the close relation between head mo-

tion and acoustic prosodic features, as suggested

by Kuratate et al. in [9], Canonical Correlation

Analysis (CCA) [19] was applied to our audio-

visual database. CCA provides a scale-invariant

optimum linear framework to measure the cor-

relation between two streams of data with dif-

ferent dimensions. The basic idea is to project

both feature vectors into a common dimensional

space, in which Pearson’s correlation can be

computed.

Using pitch, energy and their first and second

derivatives (6D feature vector), and the angles

that define the head motions (3D feature vector),

the average correlation computed from the au-

diovisual database is r=0.7. This result indicates

that useful and meaningful information can be

extracted from the prosodic features of speech

to synthesize the head motion.

4 Modeling Head Motion

In this paper, we use HMMs, because they pro-

vide a suitable and natural framework to model

the temporal relation between acoustic prosodic

features and head motions. HMMs are used to

generate the most likely head motion sequences

based on the given observation (prosodic fea-

tures). The HTK toolkit is used to build the

HMMs [20].

The output sequences of the HMMs cannot be

continuous, so a discrete representation of head

motion is needed. For this purpose, the Linde-

Buzo-Gray vector Quantization (LBG-VQ) al-

gorithm [21] is used to define K discrete head

poses, Vi. The 3D-space defined by the Euler

angles is split into K Voronoi regions (Figure

3). For each region, the mean vector Ui and

the covariance matrices Σi are estimated. The



Figure 3: 2D projection of Voronoi regions us-

ing 32-size vector quantization

pairs (U,Σ) define the finite and discrete set of

code vectors called codebook. In the quantiza-

tion step, the continuous Euler angles of each

frame are approximated with the closest code

vector in the codebook.

For each of the clusters, Vi, an HMM model

will be created. Consequently, the size of the

codebook will determine the number of HMM

models.

4.1 Learning Natural Head Motion

The posterior probability of being in cluster Vi,

given the observation O, is modeled according

to Bayes rule as

P(Vi/O) = c ·P(O/Vi) ·P(Vi) (3)

where c is a normalization constant. The like-

lihood distribution, P(O/Vi), is modeled as a

Markov process, which is a finite state machine

that changes state at every time unit accord-

ing to the transition probabilities. A first or-

der Markov model is assumed, in which the

probabilistic description includes only the cur-

rent and previous state. The probability den-

sity function of the observation is modeled by

a mixture of M Gaussian densities which han-

dle, up to some extent, the many-to-many map-

ping between head motion and prosodic fea-

tures. Standard algorithms (Forward-backward,

Baum-Welch re-estimation) are used to train the

parameters of the HMMs, using the training data

[22, 20]. Notice that the segmentation of the

speech according to the head poses clusters is

known. Therefore, the HMMs were initialized

Figure 4: Head motion synthesis framework

with this known alignment (force alignment was

not needed).

The prior distribution, P(Vi), is used to im-

pose a first smoothing constraint to avoid sud-

den changes in the synthesized head motion se-

quence. In this paper, P(Vi) is built using bi-

gram models, which are learned from data (sim-

ilar to standard bi-gram language models used

to model word sequence probabilities [20, 23]).

The bi-gram model is also a first order state ma-

chine, in which each state models the proba-

bility of observing a given output sequence (in

this case, a specific head pose cluster, Vi). The

transition probabilities are computed using the

frequency of their occurrences. In our train-

ing database, the inter-cluster transitions are

counted and stored, and the statistic learned is

used to reward transitions according to their ap-

pearances. Therefore, in the decoding step, this

prior distribution will penalize transitions that

did not appear in the training data.

4.2 Synthesis of Head Motion

Figure 4 describes the procedure to synthe-

size head motion. For each testing sample,

the acoustic prosodic features are extracted and

used as input of the HMMs. The model

will generate the most likely sequence, V̂ =
(V̂ t

i ,V̂
t+1
j . . .), where V̂ t

i is defined by (Ui,Σi).

The mean vector Ui will be used to synthesize

the head motion sequences.

The transitions between clusters will intro-

duce breaks in the synthesized signal, even if

their cluster means are close (see Figure 5).

Therefore, a second smoothing step needs to be

implemented, to guarantee continuity of the syn-

thesized head pose sequences. A simple solu-

tion is to interpolate each Euler angle separately.

However, it has been shown that this technique



is not optimal, because it introduces jerky move-

ments and other undesired effects such as Gim-

bal lock [24]. As suggested by Shoemake, a

better approach is to interpolate in the quater-

nion unit sphere [24]. The basic idea is to trans-

form the Euler angles into quaternions, which

are an alternative rotation matrix representation,

and then interpolate the frames in this space.

In this paper, we used spherical cubic interpo-

lation [25], squad, which is based on spherical

linear interpolation, slerp. For two quaternions

q1 and q2, the slerp function is defined as:

slerp(q1,q2,µ) =
sin(1−µ)θ

sinθ
q1 +

sin µθ

sinθ
q2 (4)

where cosθ = q1 · q2 and µ are variables that

range from 0 to 1 and determine the frame po-

sition of the interpolated quaternion. Given four

quaternions, the squad function is defined as:

squad(q1,q2,q3,q4,µ) = (5)

slerp(slerp(q1,q4,µ),slerp(q2,q3,µ),2µ(1−µ))

After the Euler angles are transformed into

quaternions, key-points are selected by down-

sampling the quaternions at a rate of 6 frames

per second (this value was empirically chosen).

Then, spherical cubic interpolation is used in

those key-points by using the squad function.

After interpolation, the frame rate of the quater-

nions is 120 frames per second, as the original

data. The last step in this smoothing technique

is to transform the interpolated quaternions into

Euler angles. Figure 5 shows the interporlation

result for one of the sentences. The resulting

vectors are denoted Ûi. The readers are referred

to [25] for further details about spherical cubic

interpolation.

Finally, the synthesized head pose, x̂t , at time

t will be estimated as:

x̂t = (α,β ,γ)T = Ûi +Wi (6)

where Wi is a zero-mean uniformly distributed

random white noise. Notice that x̂t is a blurred

version of Vi’s mean.

If the size of the codebook is large enough, the

quantization error will be insignificant. How-

ever, the number of HMMs needed will increase

Figure 5: Spherical cubic interpolation

and the discrimination between classes will de-

crease. Also, more data will be needed to train

the models. Therefore, there is a tradeoff be-

tween the quantization error and the inter-cluster

discrimination.

4.3 From Euler Angles to Talking Avatars

A blend shape face model composed of 46 blend

shapes is used in this work (eye ball is controlled

separately). To create a realistic avatar, lip and

eye motion techniques are also included. For

novel text/audio input, the speech animation ap-

proach presented in [6, 26] was used to generate

synchronized visual speech. Then, eye motion is

automatically synthesized by a texture-synthesis

based approach [27]. Hence, appropriate blend

shape weights are calculated for each frame. Af-

ter that, the same audio is used to generate cor-

responding natural head motion using the pro-

posed approach. The generated head motion Eu-

ler angles, x̂t , are directly applied to the angle

control parameters of the face model. This ani-

mation procedure is applied to each frame. Be-

sides the animation, the face modeling and ren-

dering are also done in Maya.

5 Results and Discussion

5.1 HMM configuration

The topology of the HMM is defined by the

number and the interconnection of the states.

The most popular configurations are the Left-to-

Right topology (LR), in which only transitions

in forward direction between adjacent states



are allowed, and the ergodic topology (EG), in

which transitions between all the states are al-

lowed. The LR topology is simple and needs

less data to train its parameters. The EG topol-

ogy is less restricted, so it can learn a larger set

of state transitions from the data. In this par-

ticular problem, it is not clear which topology

gives better description of the head motion dy-

namics. Therefore, eight HMM configurations,

described in table 1, with different topologies,

number of models, K, number of states, S, and

number of mixtures, M, were trained. Notice

that the size of the database is not big enough

to train more complex HMMs with more states,

mixtures or models than those described in table

1.

As mentioned before, the pitch, the energy

and their first and second derivatives are used

as acoustic prosodic features to train each of the

proposed HMM configuration. Eighty percent

of the database was used for training and twenty

percent for testing.

5.2 Objetives evaluation

To evaluate the performance of our approach,

the prosodic features from the test data were

used to generate head motion sequences, as de-

scribed in previous section. For those samples,

the Euclidian distance, deuc, between the Euler

angles of the original frames and the Euler an-

gles of the synthesized data, x̂t , was calculated.

The average and the standard deviation of all the

frames of the testing data, is shown in table 1

(D). Notice that the synthesized head motions

are directly compared with the original data (not

its quantized version), so the quantization error

is included in the values of the table. As men-

tioned in the introduction, head motion does not

depend only on prosodic features, so this level

of mismatch is expected.

Table 1 also shows the canonical correlation

analysis between the synthesized and original

data. As can be observed the correlation was

around r=0.85 for all the topologies. This re-

sult strongly suggests that the synthesized data

follow the behavior of the real data, which vali-

dates our approach.

As can be seen from table 1, the perfor-

mance of the different HMM topologies are sim-

ilar. The Left-to-Right HMM, with a 16-size

HMM config. D CCA
Mean Std Mean Std

K=16 S=5 M=2 LR 10.2 3.4 0.88 0.11
K=16 S=5 M=4 LR 9.3 3.4 0.87 0.11
K=16 S=3 M=2 LR 9.1 3.6 0.87 0.12
K=16 S=3 M=2 EG 9.1 3.4 0.87 0.10
K=16 S=3 M=4 EG 9.5 3.4 0.83 0.12
K=32 S=5 M=1 LR 12.8 4.0 0.83 0.14
K=32 S=3 M=2 LR 10.7 3.3 0.86 0.12
K=32 S=3 M=1 EG 10.4 3.1 0.86 0.11

Table 1: Results for different configurations

Figure 6: Synthesized data, side view

codebook, 3 states and 2 mixtures achieves the

best result. However, if the database were big

enough, an ergodic topology with more states

and mixture could perhaps give better results.

The next experiments were implemented using

this topology (K=16 S=3 M=2 LR).

5.3 Head motion animation results

We also recorded sentences, not included in the

corpus mentioned before, to synthesize novel

head motion using our approach. For each

recorded audio, the procedure described in this

paper was applied. Figures 6 and 7 show frames

of the synthesized data. For animation results,

please refer to the accompanying video.

Figure 7: Synthesized data, front view



6 Conclusions

This paper presents a novel approach to syn-

thesize natural human head motions driven by

speech prosody. HMMs are used to capture the

temporal relation between the acoustic prosodic

features and head motions. The use of bi-

gram models in the sequence generation step

guarantees smooth transitions from the discrete

representations of head movement configura-

tions. Furthermore, spherical cubic interpola-

tion is used to avoid breaks in the synthesized

signal.

The results show that the synthesized se-

quences follow the temporal dynamic behavior

of real data. This proves that the HMMs are

able to capture the close relation between speech

and head motion. The results also show that the

smoothing techniques used in this work can pro-

duce continuous head motion sequences, even

when only a 16 word sized codebook is used to

represent head motion poses.

In this paper we show that natural head mo-

tion animation can be synthesized by using just

speech. In future work, we will add more com-

ponents to our system. For example, if the emo-

tion of the subject is known, as is usually the

case in most of the applications, suitable models

that capture the emotional head motion pattern

can be used, instead of a general model.
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