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Abstract— In this paper we present our ongoing work in
building technologies for natural multimodal human-robot
interaction. We present our systems for spontaneous speech
recognition, multimodal dialogue processing and visual per-
ception of a user, which includes the recognition of pointing
gestures as well as the recognition of a person’s head orienta-
tion. Each of the components are described in the paper and
experimental results are presented. In order to demonstrate
and measure the usefulness of such technologies for human-
robot interaction, all components have been integrated on
a mobile robot platform and have been used for real-time
human-robot interaction in a kitchen scenario.

I. I NTRODUCTION

In the upcoming field of humanoid and human-friendly
robots, the ability of the robot for simple, unconstrained
and natural interaction with its users is of central impor-
tance [1], [2]. The basis for appropriate action of the robot
must be a comprehensive model of the current surrounding
and in particular of the humans involved in interaction.

To facilitate natural interaction, robots should be able
to perceive and understand all the modalities used by
humans during face-to-face interaction. Besides speech, as
the probably most prominent modality used by humans,
these modalities also include pointing gestures, facial ex-
pressions, head pose, gaze, eye-contact and body language
for example.

In our research labs at the Universität Karlsruhe (TH)
and at Carnegie Mellon University, we are developing tech-
nologies for the understanding of these human interaction
modalities. In particular in the framework of a German
research project on humanoid robots (Sonderforschungs-
bereich Humanoide Roboter, SFB 588) we have been
working using and improving such technologies to provide
for natural interaction between a humanoid robot and its
users.

In this paper we present our work in this area. We
have developed components for speech recognition, multi-
modal dialogue processing, visual detection and modeling
of users, including head pose estimation and pointing
gesture recognition. All components have been integrated
on a mobile robot platform and can be used for real-time
multimodal interaction with a robot.

The target scenario we addressed is a household situa-
tion, in which a human can ask the robot questions related
to the kitchen (such as “What’s in the fridge ?”), ask the
robot to set the table, to switch certain lights on or off, to

bring certain objects or to obtain suggested recipes from
the robot.

The current components of our system include
• a speech recognizer,
• 3D face- and hand-tracking,
• pointing gesture recognition,
• recognition of head pose,
• a dialogue component,
• speech synthesis,
• a mobile platfom,
• a stereo camera system, including pan-tilt, unit

mounted on the platform.
Figure 1.a) shows a picture of our system and a person
interacting with it. Part of the visual tracking components
have already been integrated in ARMAR [3], a humanoid
robot with two arms and 23 degrees of freedom. This robot
is depicted in Figure 1b).
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FIG.1 A) INTERACTION WITH OUR DEVELOPMENT SYSTEM.

SOFTWARE COMPONENTS INCLUDE: SPEECH RECOGNITION, SPEECH

SYNTHESIS, PERSON AND GESTURE TRACKING, DIALOGUE

MANAGEMENT AND MULTIMODAL FUSION OF SPEECH AND

GESTURES. FIG 1B): PART OF THE COMPONENTS HAVE ALREADY

BEEN INTEGRATED IN A HUMANOID ROBOT WITH TWO ARMS.

The remainder of this paper is organized as follows:
In Section II we describe our JANUS speech recognition
system which we use for human-robot interaction and
present some experimental results. In Section III, visual
perception of the user is discussed. Here we present our
approach to visually detect and track a user, his head, hands



and head orientation, as well as our approach for detecting
pointing gestures and pointing direction. In Section IV, the
dialoge component of the robot is described. In Section V,
the integration of all the components on a mobile robot is
explained and a typical interaction scenario is described.
We conclude the paper in Section VI, where we also give
an outlook to future work.

II. SPEECHRECOGNITION

The probably most prominent interaction modality of
humans is their speech. In order to provide for natural hu-
man computer interaction, recognition and understanding
of spontaneous speech is of utmost importance.

For speech recognition we are using the Ibis decoder
[4], which was developed at the University of Karlsruhe
as part of our Janus Recognition Toolkit (JRTk) [5]. Using
this toolkit we have developed a user-independent speech
recognizer for spontaneous human robot interaction.

A. Context Free Grammar Decoding

The Ibis decoder allows us to decode along context
free grammars in addition to the classical statistical n-
gram language models. Using grammars instead of n-
gram language models is especially an advantage in small
domains, like in our household scenario. In such domains
there is normally less domain dependent data available for
the training of robust statistical n-gram language models.

The context free grammar implementation in Ibis has
also several other advantages. Rather than compiling one
finite state graph out of all the terminals given by the
grammars, we use a more dynamic approach, where several
rule based finite state graphs consisting of terminals and
non-terminals, are linked together by their non-terminal
symbols.

Another feature is that the grammars can be expanded
on the fly by new rules or terminals without restarting the
recognizer. Even new words can be added to the grammar
and the search network on the fly. In most cases we work
with non-statistical semantic grammars, i.e. each transition
to the next word has the same language model score,
whereby terminals are grouped by their semantical meaning
to non-terminal symbols.

1) Handling of Spontaneous Speech:A major problem
when using context free grammars in speech recognition
is the modeling of spontaneous speech together with its
ungrammaticalities like hesitations or word repetitions. Due
to the fact, that these effects can occur at any time in a
speech query, it is impossible to model them manually in
the grammar. The same applies also to non-human noises.

We are using so-called filler words to cope with such
spontaneous speech events. These words consists of special
acoustic models trained only on e.g. non-human noises or
hesitations and they can potentially occur between any two
terminals of the grammar. Instead of asking the grammar
for their probability, a predefined filler penalty is applied.

2) Dialogue-Context Dependent Search Space Control:
When using speech recognition together with dialogue
systems, the dialogue context is always known. This in-
formation can be used to improve the speech recognition
performance, because less probable answers to a clar-
ification question of the robot can be penalized. Also
at the beginning of a dialogue the search space of the
recognizer can be restricted by disabling all answers to
system questions like “yes” or “no”. This is done by
activating/deactivating or penalizing specific semantic top-
level rules in the grammars given by the dialogue manager
during runtime. Penalizing of rules should be preferred,
because it still allows user queries in different contexts.

3) Experimental Results:For our experiments we col-
lected a set of nearly 360 user queries of 9 different
speakers, which result in around 15min of speech. We
measured the word error rate (WER), the sentence error
rate (SER), the real-time factor (RTF) and the memory
requirements of our recognizer. A low SER is important
for a good language understanding. The RTF is measured
on a 800MHz PIII.

Our recognition system for the robot interaction con-
sists of about 34,000 gaussian models and was trained
on nearly 300 hours of conversational telephone speech
(Switchboard). This size of the acoustic model allows
us to decode in less than real-time as can be seen in
table I, which gives us the ability to run also other
components of the human-machine interface on the same
computer. Incremental adaptation techniques like vocal-
tract length normalisation (VTLN) and constrained MLLR
is used to compensate for different speakers, channels and
background noises.

Table I also shows, that when adding the filler-words to
the dictionary the grammar based system reaches nearly
the same WER as the n-gram based system. But the
advantage of the grammar based system is besides its
higher recognition speed the much lower SER.

TABLE I

COMPARISON BETWEEN GRAMMAR BASED AND N-GRAM BASED

SPEECH RECOGNITION.

WER SER RTF Memory
grammar based 25.55% 48.21% -.— 37 MB
+ filler words 23.05% 45.18% 0.759 37 MB
n-gram based 22.95% 51.79% 0.801 37 MB

B. Distant Microphones

A well-known problem in the speech recognition com-
munity is the difficulty of automatic speech recogntion with
remote microphones or even worse, with microphones at
variant distances. Therefore, in many cases, head-mounted
close-talking microphones are used for speech recognition.

Since we want to develop human-friendly robots that
eventually can operate in our daily lifes, we certainly
don’t want to force people to wear such head-mounted
microphones in order to communicate with the robot.
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FEATURES FOR LOCATING HEAD AND HANDS: SKIN -COLORED3D-PIXELS ARE CLUSTERED USING A K-MEANS ALGORITHM. THE RESULTING

CLUSTERS ARE DEPICTED BY CIRCLES. IN THE SKIN COLOR MAP, DARK PIXELS REPRESENT HIGH SKIN-COLOR PROBABILITY. THE DISPARITY

MAP IS MADE UP OF PIXEL-WISE DISPARITY MEASUREMENTS, THE BRIGHTNESS OF A PIXEL CORRESPONDS TO ITS DISTANCE TO THE CAMERA.

Therefore, we need to develop technologies to improve
speech recognition under such situations, i.e. with remote
microphones at variable distances.

1) Speech Segmentation:Another issue, when using re-
mote microphones is the speech segmentation, because the
user is not able to push a button for recording. Therefore
we initially developed an energy and zero-crossing based
speech segmentation, which transmits the segmented audio
signals to the recognizer.

2) Experimental Results:We have performed some
initial adaptation experiments to evaluate the sensibility
of our real-time recognizer in combination with single
microphones at different distances. Due to the lack of
enough testing and adaptation material in the houshold
domain, we’ve collected 2hrs of read speech of 25 speakers
for adaptation and 15min of read speech of 9 speakers for
testing.

For each microphone distance we adapted the codebooks
on the adaptation data using MLLR [6], without performing
speaker adaptation. As can be seen in table II, we reach
significant WER reduction of around 10% - 15% through
adaptation for the remote conditions, but the results within
a normal action radius of about 4-8ft to the robot are even
for the adapted case inacceptable. To see how sensible the

TABLE II

WERS FOR UNADAPTED AND ADAPTED SYSTEMS AT DIFFERENT

MICROPHONE DISTANCES.

close lapel 4ft 5ft 6ft 8ft
unadapted 26.6% 29.7% 47.7% 51.9% 66.1% 69.3%
adapted 26.5% 28.4% 42.5% 44.7% 59.7% 60.1%

recognizer is to variations in the distance, we ran decoding
experiments in which we tested the codebooks adapted on
5ft data on the 4ft and 6ft condition. Therefore, no speaker
adaptation (which would also perform channel adaptation)
was performed. As can be seen in table III, the stability of
the resulting recognizer against moving speakers (changing
distance to the microphone) seems to be very good, as there

TABLE III

ANALYSIS OF THE SENSIBILITY AGAINST VARIATIONS IN THE

DISTANCE OF THE MICROPHONES FOR AN ALREADY ADAPTED

SYSTEM.

4ft 5ft 6ft
adapted on 5ft 42.4% 44.7% 60.1%

is almost no loss in recognition accuracy for a 20% change
in distance when compared to the results in table II.

We are currently working on adapting the model-
combination-based acoustic mapping (MAM) [7] devel-
oped for car navigation in our lab to the robot szenario.

III. V ISUAL PERCEPTION OF THEUSER

Knowledge about the users location, posture and focus
of attention is an important cue for the understanding
of human intention within a dialogue situation. From the
images delivered by a fixed-baseline stereo camera head,
we extract the following information in real-time: a) the
3D-positions of the users’s head and hands, b) the head
orientation and c) the direction of the pointing gestures
that are performed by the user.

A. 3D Tracking of Head and Hands

Head and hands can be identified by color as human
skin color clusters in a small region of the chromatic
color space [8]. To model the skin-color distribution, two
color histograms (S+ andS−) are built by counting pixels
belonging to skin-colored respectivelynot-skin-colored re-
gions in sample images. By means of these histograms, the
probability of a pixel being skin-color can be calculated.
The result is a gray-scale map of skin-color probability
(Fig. 2.a). To eliminate isolated pixels and to produce
closed regions, a combination of morphological operations
is applied to the skin-color map.



Due to the robot’s motion, the lighting situation is likely
to vary strongly. Thus, it is important to initialize and to up-
date the skin-color model automatically. In order to do this,
we incorporate the lighting invariant depth information, and
search for a person’s head in the disparity map (Fig. 2.b)
of each new frame. Following an approach proposed in
[9], we first look for a human-sized connected region, and
then check its topmost part for head-like dimensions. Pixels
inside the head region contribute toS+, while all other
pixels contribute toS−. By means of this procedure, the
skin-color model is permanently kept up to date and no
manual initialization is required.

The task of tracking consists in finding the best hy-
pothesisst for the positions of head and hands at each
time t. The decision is based on the current observation
(the 3D skin-pixel clusters, Fig. 2.c) and the hypotheses
of the past frames,st−1, st−2, . . .. With each new frame,
all combinations of the clusters’ centroids are evaluated to
find the hypothesisst that exhibits the highest results with
respect the product of the following 3 scores:

• The observation scoreP (Ot|st) is a measure for
the extent to whichst matches the observationOt.
P (Ot|st) increases with each pixel that complies with
the hypothesis.

• Theposture scoreP (st) is the prior probability of the
posture. It is high if the posture represented byst is
a frequently occurring posture of a human body. For
the calculation ofP (st), a basic model of the human
body was built from training data.

• Thetransition scoreP (st|st−1, st−2, . . .) is a measure
for the probability ofst being the successor of the
past frames’ hypotheses. It is higher, the better the
positions of head and hands inst follow the path
defined by the preceding positions.

Our experiments indicate that by using the method
described, it is possible to track a person robustly, even
when the camera is moving and when the background
is cluttered. The tracking of the hands is affected by
occasional dropouts and misclassifications. We address this
problem by applying multi-hypotheses tracking, so that the
tracker is free to choose the most likely path through an
n-best set of hypotheses for each frame, instead of being
tied to a single (and maybe wrong) hypothesis.

B. Head Pose Estimation

Monitoring a person’s head orientation is an important
step towards building better human-robot interfaces. Since
head orientation is related to a person’s direction of atten-
tion, it can give us useful information about the objects or
persons with which a user is interacting. It can furthermore
be used to help a robot decide whether he was addressed
by a person or not [10]. In our experiments head pose
has also proved to be helpful to decide whether a person
has performed a pointing gesture, as will be described in
section III-C.

Our approach for estimating head-orientation is view-
based: In each frame, the head’s bounding box - as pro-
vided by the tracker - is scaled to a size of 24x32 pixels.

Two neural networks, one for pan and one for tilt angle,
process the head’s intensity and disparity image and output
the respective rotation angles. As we directly compute the
orientation from each single frame, there is no need for the
tracking system to know the user’s initial head orientation.

The networks we use have a total number of 1597
neurons, organized in 3 layers. They were trained in a
person-independent manner on sample images of rotated
heads. We collected training data from six users. Users
were standing approximately at a distance of two to three
meters away from the camera and were free to move around
within the camera’s field of view (see Fig. 3). We asked
people to freely look around and recorded their exact head
pose using a magnetic pose tracker. The recorded rotation
angles varied from−90◦ to 90◦. We evaluated the system’s

Fig. 3

SAMPLE IMAGE FROM THE DATA COLLECTION. A MAGNETIC SENSOR

PLACED ON THE SUBJECTS’ HEAD PROVIDES GROUND TRUTH FOR

HEAD POSE, WHICH WAS USED FOR TRAINING AND EVALUATION.

performance on a multi-user test set and on new users. For
the multi-user evaluation, the system was trained on images
from all users and was tested on different images from the
same users. The results for new users was obtained by
training the system on images from five users and testing
on the sixth user. Table IV shows the results for multi-user
and new user tests.

TABLE IV

MEAN ERROR OBTAINED FOR THE MULTI-USER AND NEW USER TESTS

(PAN/TILT ANGLES)

mean error multi-user new user

gray values 4.6 / 2.4 15.5 / 6.3
depth info 8.0 / 3.3 11.0 / 5.7
depth + gray 4.3 / 2.1 9.7 / 5.6

It can be seen that the combined approach of adding
depth images to the input feature vector improves the
results significantly in both cases.

C. Pointing Gesture Recognition

In the human-robot interaction scenario, we define a
pointing gesture as the movement of the hand towards a
pointing target. We model this typical motion pattern of the
pointing hand in order to detect pointing gestures within
other natural hand movements. Therefore, we decompose
the gesture into three distinct phases (see Table V) and



model each phase with a dedicated Hidden Markov Model
(see [11] for details). The features used as the models’

TABLE V

AVERAGE LENGTHµ AND STANDARD DEVIATION σ OF 210 POINTING

GESTURES PERFORMED BY15 TEST PERSONS.

µ σ
Complete gesture 1.75 sec 0.48 sec

Begin 0.52 sec 0.17 sec
Hold 0.72 sec 0.42 sec
End 0.49 sec 0.16 sec

input are derived from the tracked position of the point-
ing hand. The hand coordinates are transformed into a
cylindrical, head-centered coordinate system in order to
become invariant against the person’s location. We have
noticed [11], that people tend to look at the pointing
target at an early stage of the gesture. We can exploit this
behavior by calculating the absolute difference between the
head’s azimuth (elevation) angle and the hand’s azimuth
(elevation) angle, and incorporate these two features to the
gesture models.

In an evaluation with 12 test persons, this system scored
at about80% recall and74% precision in recognition of
pointing gestures. When head-orientation was added to the
feature vector, the results improved significantly in the
precision value: the number of false positives could be
reduced from about26% to 13%, while the recall value
remained at a similarly high level.

In order to determine the 3D pointing direction, we
extract the line from the center of the head to the center
of the hand within the hold-phase of the gesture. In our
experiments, this turned out to be a reliable estimate for
pointing direction. With an average error below20◦, it is
possible to disambiguate the possible pointing targets in
most cases.

IV. M ULTIMODAL DIALOGUE PROCESSING

The multimodal dialogue management processes the
output of the speech recognizer and the one of the gesture
recognizer in order to understand what the user wants the
robot to do. Currently, the robot can help the user in the
kitchen: A user can ask the robot to get cups or dishes
and put them somewhere, to switch on or off the lights,
to look in the fridge, to tell some recipes, etc. Therefore,
results of the speech recognizer and the gesture recognizer
are sent to the dialogue manager which evaluates them in
the discourse context. The multimodal fusion is based on
the semantics of both input modalities [12].

A. Dialogue Management

Our dialogue manager is based on the approaches of the
language and domain independent dialogue manager ARI-
ADNE [13]. For the domain-dependent part, we developed
different kinds of resources: An ontology, a specification
of the dialogue goals, a data base, a context-free grammar
and generation templates.

Speech input is parsed by means of a context-free gram-
mar which is enhanced by information from the ontology
defining all the objects, tasks and properties about which
the user can talk. In our scenario, these objects are the
objects in the kitchen and their properties, for example the
ability to be switched on or off. The tasks are taking or
putting something somewhere, informing the user about the
content of the fridge, telling him recipes, etc. The semantic
representation created during parsing is then compared
against the dialogue goals. If all the necessary information
to accomplish a goal is available, the dialogue system calls
the corresponding service. But if some information is still
missing to accomplish a goal, the dialogue manager uses
clarification questions to get this information from the user.
This is done by means of generation templates which are
responsible for generating the spoken output.

The gesture input is resolved by means of an environ-
ment model which is stored in the database. Currently,
this environment model consists of different objects in the
kitchen, such as cups, dishes, forks, knifes, spoons and
lamps. The environment model matches a pointing gesture
with possible targets. All objects that meet the matching
constraints form an n-best list of pointing hypotheses in
semantic representation. These hypotheses are used within
the spoken context to disambiguate speech input. Disam-
biguation is performed by merging speech and gesture in
a multimodal parsing process.

B. Multimodal Parsing

We use a constraint based approach to merge speech and
gesture. Speech is used as the main modality and gesture
events are used to disambiguate input information. This
approach has shown to be quite tolerant towards falsely
recognized gestures [14]. Parsing rules define constraints
on time, context and input information, as well as rules
for merging. The multimodal parser is part of the dialogue
system and is applied after transforming speech and gesture
input to semantic tokens.

For disambiguation of speech input, gesture events have
to be assigned to referring speech events. Disambiguation
can mean, but is not limited to

• Deixis, for example ”switch on this lamp” is ambigu-
ous when looking only at the speech information.

• Speech recognition errors, e.g. ”switch on the little
lamp” becomes ambiguous after misrecognition of the
identifying adjective of the lamp.

• n-best hypotheses from gesture recognition and re-
solving in the environment model.

• n-best hypotheses from speech recognition when be-
ing combined with gesture information.

Therefore we can tolerate gesture recognition errors in
the form of false detections, but are interested in missing
as few gestures as possible. Incorrect gestures that are not
correlated to a speech event can be sorted out by time
constraints. In our experiments, we have detected that - for
3d pointing gestures - the the referring spoken word and
the gesture are strongly correlated in time [14]. By using
a (not very restrictive) 1000 ms boundary, both before the



start and after the stop time of the whole utterance, we
can capture the relevant gestures and ignore most falsely
detected gestures.

Other constraints test the informational compatibility of
the input tokens, and the interpretation of gestures in the
spoken context. A speech event such as ”please bring me
this cup”, with the following semantic representation: act bring

OBJ
[

cup
]

DEICTIC
[

true
]


only allows (i) objects that can be carried by the robot and
(ii) are instances of the class cup or it’s subclasses, which
are defined in the ontology.

V. SYSTEM INTEGRATION

We have integrated the components described in this pa-
per to demonstrate multimodal human-computer interation
using speech, gestures and dialogue processing. Currently
all components run on two laptops. One laptop is mounted
and connected to the mobile platform; this laptop is used
for real-time image processing tasks. The other laptop is
used for speech and dialogue processing and is currently
not on board of the platform. The computers are connected
via a wireless LAN. All components of the human-machine
interface communicate through a blackboard architecture
with a socket communication over a central communication
server. Each module has to register with its ID, whereby it
is in addition also possible to subscribe to specific message
groups. Figure 4 gives an overview over all the needed
components. The scenario we addressed in our current

gesture recognition
person tracking

communication
server

segmentation
speech recognition

dialogue processing
cognition

speech synthesis

Fig. 4

COMPONENTS OF THE SYSTEM.

demonstration is a household situation, in which a user can
ask the robot questions related to a kitchen, such as “’What
is in the fridge ?”, “What recipes would you recommend
with the available items ?”. A user could also ask the robot
to set a table, to switch some lights on or off or to bring
certain objects, such as cups. In our scenario the robot can
locate and follow a user using the vision-based tracking
system described in Section III, as soon as a person appears
in the field of view of the robot’s cameras.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper we have presented our ongoing work in
building technologies to improve natural human-machine
interaction with human-friendly robots. We presented com-
ponents for spontaneous speech recognition, multimodal
dialogue processing and visual perception of a user. This

included the recognition of pointing gestures of a user
as well as the recognition of the user’s head orientation,
which is an important cue to deterime a person’s direction
of attention. We described how the components were
integrated on a mobile robot platform and have been used
for real-time human-robot interaction in a kitchen scenario.

Some of the presented components for human-computer
interaction have already been integrated in a more so-
phisticated humanoid robotic plattform with two arms [3].
Within the German Humanoid robotics project, we are
now working on improving the robustness of the presented
components as well as we plan to integrate all these
systems on a new humanoid torso with two arms. Other
ongoing work involves the integration audio-visual person
recognition and the development and integration of an
attentional mechanism for the robot.
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