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Abstract

We present an approach to low-level vision that combines two main ideas: the
use of convolutional networks as an image processing architecture and an unsu-
pervised learning procedure that synthesizes training samples from specific noise
models. We demonstrate this approach on the challenging problem of natural
image denoising. Using a test set with a hundred natural images, we find that con-
volutional networks provide comparable and in some cases superior performance
to state of the art wavelet and Markov random field (MRF) methods. Moreover,
we find that a convolutional network offers similar performance in the blind de-
noising setting as compared to other techniques in the non-blind setting. We also
show how convolutional networks are mathematically related to MRF approaches
by presenting a mean field theory for an MRF specially designed for image denois-
ing. Although these approaches are related, convolutional networks avoid compu-
tational difficulties in MRF approaches that arise from probabilistic learning and
inference. This makes it possible to learn image processing architectures that have
a high degree of representational power (we train models with over 15,000 param-
eters), but whose computational expense is significantly less than that associated
with inference in MRF approaches with even hundreds of parameters.

1 Background

Low-level image processing tasks include edge detection, interpolation, and deconvolution. These
tasks are useful both in themselves, and as a front-end for high-level visual tasks like object recog-
nition. This paper focuses on the task of denoising, defined as the recovery of an underlying image
from an observation that has been subjected to Gaussian noise.

One approach to image denoising is to transform an image from pixel intensities into another rep-
resentation where statistical regularities are more easily captured. For example, the Gaussian scale
mixture (GSM) model introduced by Portilla and colleagues is based on a multiscale wavelet de-
composition that provides an effective description of local image statistics [1, 2].

Another approach is to try and capture statistical regularities of pixel intensities directly using
Markov random fields (MRFs) to define a prior over the image space. Initial work used hand-
designed settings of the parameters, but recently there has been increasing success in learning the
parameters of such models from databases of natural images [3, 4, 5, 6, 7, 8]. Prior models can be
used for tasks such as image denoising by augmenting the prior with a noise model.

Alternatively, an MRF can be used to model the probability distribution of the clean image condi-
tioned on the noisy image. This conditional random field (CRF) approach is said to be discrimi-
native, in contrast to the generative MRF approach. Several researchers have shown that the CRF
approach can outperform generative learning on various image restoration and labeling tasks [9, 10].
CRFs have recently been applied to the problem of image denoising as well [5].
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The present work is most closely related to the CRF approach. Indeed, certain special cases of con-
volutional networks can be seen as performing maximum likelihood inference on a CRF [11]. The
advantage of the convolutional network approach is that it avoids a general difficulty with applying
MRF-based methods to image analysis: the computational expense associated with both parameter
estimation and inference in probabilistic models. For example, naive methods of learning MRF-
based models involve calculation of the partition function, a normalization factor that is generally
intractable for realistic models and image dimensions. As a result, a great deal of research has
been devoted to approximate MRF learning and inference techniques that meliorate computational
difficulties, generally at the cost of either representational power or theoretical guarantees [12, 13].

Convolutional networks largely avoid these difficulties by posing the computational task within the
statistical framework of regression rather than density estimation. Regression is a more tractable
computation and therefore permits models with greater representational power than methods based
on density estimation. This claim will be argued for with empirical results on the denoising problem,
as well as mathematical connections between MRF and convolutional network approaches.

2 Convolutional Networks

Convolutional networks have been extensively applied to visual object recognition using architec-
tures that accept an image as input and, through alternating layers of convolution and subsampling,
produce one or more output values that are thresholded to yield binary predictions regarding object
identity [14, 15]. In contrast, we study networks that accept an image as input and produce an entire
image as output. Previous work has used such architectures to produce images with binary targets
in image restoration problems for specialized microscopy data [11, 16]. Here we show that similar
architectures can also be used to produce images with the analog fluctuations found in the intensity
distributions of natural images.

Network Dynamics and Architecture

A convolutional network is an alternating sequence of linear filtering and nonlinear transformation
operations. The input and output layers include one or more images, while intermediate layers
contain “hidden" units with images called feature maps that are the internal computations of the
algorithm. The activity of feature map a in layer k is given by

Ik,a = f

(∑
b

wk,ab ⊗ Ik−1,b − θk,a

)
(1)

where Ik−1,b are feature maps that provide input to Ik,a, and ⊗ denotes the convolution operation.
The function f is the sigmoid f(x) = 1/ (1 + e−x) and θk,a is a bias parameter.

We restrict our experiments to monochrome images and hence the networks contain a single image
in the input layer. It is straightforward to extend this approach to color images by assuming an input
layer with multiple images (e.g., RGB color channels). For numerical reasons, it is preferable to
use input and target values in the range of 0 to 1, and hence the 8-bit integer intensity values of the
dataset (values from 0 to 255) were normalized to lie between 0 and 1. We also explicitly encode
the border of the image by padding an area surrounding the image with values of −1.

Learning to Denoise

Parameter learning can be performed with a modification of the backpropagation algorithm for feed-
foward neural networks that takes into account the weight-sharing structure of convolutional net-
works [14]. However, several issues have to be addressed in order to learn the architecture in Figure
1 for the task of natural image denoising.

Firstly, the image denoising task must be formulated as a learning problem in order to train the
convolutional network. Since we assume access to a database of only clean, noiseless images, we
implicitly specify the desired image processing task by integrating a noise process into the training
procedure. In particular, we assume a noise process n(x) that operates on an image xi drawn from a
distribution of natural imagesX . If we consider the entire convolutional network to be some function

2



input
image

I1,24

I1,2

I1,1

.

.

.

I2,24

I2,2

I2,1

.

.

.

I3,24

I3,2

I3,1

.

.

.

I4,24

I4,2

I4,1

.

.

.

output
image

Architecture of CN1 and CN2

Figure 1: Architecture of convolutional network used for denoising. The network has 4 hidden layers and 24
feature maps in each hidden layer. In layers 2, 3, and 4, each feature map is connected to 8 randomly chosen
feature maps in the previous layer. Each arrow represents a single convolution associated with a 5 × 5 filter,
and hence this network has 15,697 free parameters and requires 624 convolutions to process its forward pass.

Fφ with free parameters φ, then the parameter estimation problem is to minimize the reconstruction
error of the images subject to the noise process: minφ

∑
i(xi − Fφ(n(xi)))2).

Secondly, it is inefficient to use batch learning in this context. The training sets used in the ex-
periments have millions of pixels, and it is not practical to perform both a forward and backward
pass on the entire training set when gradient learning requires many tens of thousands of updates to
converge to a reasonable solution. Stochastic online gradient learning is a more efficient learning
procedure that can be adapted to this problem. Typically, this procedure selects a small number of
independent examples from the training set and averages together their gradients to perform a single
update. We compute a gradient update from 6 × 6 patches randomly sampled from six different
images in the training set. Using a localized image patch violates the independence assumption in
stochastic online learning, but combining the gradient from six separate images yields a 6 × 6 × 6
cube that in practice is a sufficient approximation of the gradient to be effective. Larger patches (we
tried 8×8 and 10×10) reduce correlations in the training sample but do not improve accuracy. This
scheme is especially efficient because most of the computation for a local patch is shared.

We found that training time is minimized and generalization accuracy is maximized by incrementally
learning each layer of weights. Greedy, layer-wise training strategies have recently been explored
in the context of unsupervised initialization of multi-layer networks, which are usually fine tuned
for some discriminative task with a different cost function [17, 18, 19]. We maintain the same cost
function throughout. This procedure starts by training a network with a single hidden layer. After
thirty epochs, the weights from the first hidden layer are copied to a new network with two hidden
layers; the weights connecting the hidden layer to the output layer are discarded. The two hidden
layer network is optimized for another thirty epochs, and the procedure is repeated for N layers.

Finally, when learning networks with two or more hidden layers it was important to use a very small
learning rate for the final layer (0.001) and a larger learning rate (0.1) in all other layers.

Implementation

Convolutional network inference and learning can be implemented in just a few lines of MATLAB
code using multi-dimensional convolution and cross-correlation routines. This also makes the ap-
proach especially easy to optimize using parallel computing or GPU computing strategies.

3 Experiments

We derive training and test sets for our experiments from natural images in the Berkeley segmenta-
tion database, which has been previously used to study denoising [20, 4]. We restrict our experiments
to the case of monochrome images; color images in the Berkeley dataset are converted to grayscale
by averaging the color channels. The test set consists of 100 images, 77 with dimensions 321× 481
and 23 with dimensions 481× 321. Quantitative comparisons are performed using the Peak Signal
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Figure 2: Denoising results as measured by peak signal to noise ratio (PSNR) for 3 different noise levels. In
each case, results are the average denoised PSNR of the hundred images in the test set. CN1 and CNBlind are
learned using the same forty image training set as the Field of Experts model (FoE). CN2 is learned using a
training set with an additional sixty images. BLS-GSM1 and BLS-GSM2 are two different parameter settings
of the algorithm in [1]. All methods except CNBlind assume a known noise distribution.

to Noise Ratio (PSNR): 20 log10(255/σe), where σe is the standard deviation of the error. PSNR
has been widely used to evaluate denoising performance [1, 4, 2, 5, 6, 7].

Denoising with known noise conditions

In this task it is assumed that images have been subjected to Gaussian noise of known variance.
We use this noise model during the training process and learn a five-layer network for each noise
level. Both the Bayes Least Squares-Gaussian Scale Mixture (BLS-GSM) and Field of Experts
(FoE) method also optimize the denoising process based on a specified noise level.

We learn two sets of networks for this task that differ in their training set. In one set of networks,
which we refer to as CN1, the training set is the same subset of the Berkeley database used to learn
the FoE model [4]. In another set of networks, called CN2, this training set is augmented by an
additional sixty images from the Berkeley database. The architecture of these networks is shown in
Fig. 1. Quantitative results from both networks under three different noise levels are shown in Fig.
2, along with results from the FoE and BLS-GSM method (BLS-GSM 1 is the same settings used
in [1] while BLS-GSM 2 is the default settings in the code provided by the authors). For the FoE
results, the number of iterations and magnitude of the step size are optimized for each noise level
using a grid search on the training set. A visual comparison of these results is shown in Fig. 3.

We find that the convolutional network has the highest average PSNR using either training set,
although by a margin that is within statistical insignificance when standard error is computed from
the distribution of PSNR values of the entire image. However, we believe this is a conservative
estimate of the standard error, which is much smaller when measured on a pixel or patch-wise basis.

Blind denoising

In this task it is assumed that images have been subjected to Gaussian noise of unknown variance.
Denoising in this context is a more difficult problem than in the non-blind situation. We train a single
six-layer network network we refer to as CNBlind by randomly varying the amount of noise added to
each example in the training process, in the range of σ = [0, 100] . During inference, the noise level
is unknown and only the image is provided as input. We use the same training set as the FoE model
and CN1. The architecture is the same as that shown in Fig. 1 except with 5 hidden layers instead
of 4. Results for 3 noise levels are shown in Fig. 2. We find that a convolutional network trained for
blind denoising performs well even compared to the other methods under non-blind conditions. In
Fig. 4, we show filters that were learned for this network.
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Figure 3: Denoising results on an image from the test set. The noisy image was generated by adding Gaussian
noise with σ = 50 to the clean image. Non-blind denoising results for the BLS-GSM, FoE, and convolutional
network methods are shown. The lower left panel shows results for the outlined region in the upper left panel.
The zoomed in region shows that in some areas CN2 output has less severe artifacts than the wavelet-based
results and is sharper than the FoE results. CN1 results (PSNR=24.12) are visually similar to those of CN2.

4 Relationship between MRF and Convolutional Network Approaches

In the introduction, we claim that convolutional networks have similar or even greater representa-
tional power compared to MRFs. To support this claim, we will show that special cases of convolu-
tional networks correspond to mean field inference for an MRF. This does not rigorously prove that
convolutional networks have representational power greater than or equal to MRFs, since mean field
inference is an approximation. However, it is plausible that this is the case.

Previous work has pointed out that the Field of Experts MRF can be interpreted as a convolutional
network (see [21]) and that MRFs with an Ising-like prior can be related to convolutional networks
(see [11]). Here, we analyze a different MRF that is specially designed for image denoising and
show that it is closely related to the convolutional network in Figure 1. In particular, we consider an
MRF that defines a distribution over analog “visible” variables v and binary “hidden” variables h:

P (v, h) =
1
Z

exp

(
− 1

2σ2

∑
i

v2
i +

1
σ2

∑
ia

hai (w
a ⊗ v)i +

1
2

∑
iab

hai (w
ab ⊗ hb)i

)
(2)

where vi and hi correspond to the ith pixel location in the image, Z is the partition function, and σ is
the known standard deviation of the Gaussian noise. Note that by symmetry we have wabi−j = wbaj−i,
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Layer 1 Layer 2

Figure 4: Filters learned for the first 2 hidden layers of network CNBlind. The second hidden layer has 192
filters (24 feature maps × 8 filters per map). The first layer has recognizable structure in the filters, including
both derivative filters as well as high frequency filters similar to those learned by the FoE model [4, 6].

and we assume waa0 = 0 so there is no self interaction in the model (if this were not the case, one
could always transfer this to a term that is linear in hai , which would lead to an additional bias term
in the mean field approximation). Hence, P (v, h) constitutes an undirected graphical model which
can be conceptualized as having separate layers for the visible and hidden variables. There are no
intralayer interactions in the visible layer and convolutional structure (instead of full connectivity) in
the intralayer interactions between hidden variables and interlayer interactions between the visible
and hidden layer.

From the definition of P (v, h) it follows that the conditional distribution,

P (v|h) ∝ exp

− 1
2σ2

∑
i

(
vi −

∑
a

(wa ⊗ ha)i

)2
 (3)

is Gaussian with mean vi =
∑
a(w

a⊗ha)i. This is also equal to the conditional expectationE [v|h].
We can use this model for denoising by fixing the visible variables to the noisy image, computing
the most likely hidden variables h∗ by MAP inference, and regarding the conditional expectation of
P (v|h∗) as the denoised image. To do inference we would like to calculate maxh P (h|v), but this is
difficult because of the partition function. However, we can consider the mean field approximation,

hai = f

(
1
σ2

(wa ⊗ v)i +
∑
b

(wab ⊗ hb)i

)
(4)

which can be solved by regarding the equation as a dynamics and iterating it. If we compare this to
Eq. 1, we find that this is equivalent to a convolutional network in which each hidden layer has the
same weights and each feature map directly receives input from the image.

These results suggest that certain convolutional networks can be interpreted as performing approx-
imate inference on MRF models designed for denoising. In practice, the convolutional network ar-
chitectures we train are not exactly related to such MRF models because the weights of each hidden
layer are not constrained to be the same, nor is the image an input to any feature map except those
in the first layer. An interesting question for future research is how these additional architectural
constraints would affect performance of the convolutional network approach.

Finally, although the special case of non-blind Gaussian denoising allows for direct integration of the
noise model into the MRF equations, our empirical results on blind denoising suggest that the con-
volutional network approach is adaptable to more general and complex noise models when specified
implicitly through the learning cost function.

5 Discussion

Prior versus learned structure

Before learning, the convolutional network has little structure specialized to natural images. In
contrast, the GSM model uses a multi-scale wavelet representation that is known for its suitability in
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representing natural image statistics. Moreover, inference in the FoE model uses a procedure similar
to non-linear diffusion methods, which have been previously used for natural image processing
without learning. The architecture of the FoE MRF is so well chosen that even random settings of
the free parameters can provide impressive performance [21].

Random parameter settings of the convolutional networks do not produce any clearly useful com-
putation. If the parameters of CN2 are randomized in just the last layer, denoising performance for
the image in Fig. 3 drops from PSNR=24.25 to 14.87. Random parameters in all layers yields even
worse results. This is consistent with the idea that nothing in CN2’s representation is specialized to
natural images before training, other than the localized receptive field structure of convolutions. Our
approach instead relies on a gradient learning algorithm to tune thousands of parameters using ex-
amples of natural images. One might assume this approach would require vastly more training data
than other methods with more prior structure. However, we obtain good generalization performance
using the same training set as that used to learn the Field of Experts model, which has many fewer
degrees of freedom. The disadvantage of this approach is that it produces an architecture whose
performance is more difficult to understand due to its numerous free parameters. The advantage of
this approach is that it may lead to more accurate performance, and can be applied to novel forms of
imagery that have very different statistics than natural images or any previously studied dataset (an
example of this is the specialized image restoration problem studied in [11]).

Network architecture and using more image context

The amount of image context the convolutional network uses to produce an output value for a spe-
cific image location is determined by the number of layers in the network and size of filter in each
layer. For example, the 5 and 6-layer networks explored here respectively use a 20×20 and 24×24
image patch. This is a relatively small amount of context compared to that used by the FoE and BLS-
GSM models, both of which permit correlations to extend over the entire image. It is surprising that
despite this major difference, the convolutional network approach still provides good performance.
One explanation could be that the scale of objects in the chosen image dataset may allow for most
relevant information to be captured in a relatively small field of view.

Nonetheless, it is of interest for denoising as well as other applications to increase the amount of
context used by the network. A simple strategy is to further increase the number of layers; however,
this becomes computationally intensive and may be an inefficient way to exploit the multi-scale
properties of natural images. Adding additional machinery in the network architecture may work
better. Integrating the operations of sub-sampling and super-sampling would allow a network to
process the image at multiple scales, while still being entirely amenable to gradient learning.

Computational efficiency

With many free parameters, convolutional networks may seem like a computationally expensive
image processing architecture. On the contrary, the 5-layer CN1 and CN2 architecture (Fig. 1)
requires only 624 image convolutions to process an image. In comparison, the FoE model performs
inference by means of a dynamic process that can require several thousand iterations. One-thousand
iterations of these dynamics requires 48,000 convolutions (for an FoE model with 24 filters).

We also report wall-clock speed by denoising a 512 × 512 pixel image on a 2.16Ghz Intel Core
2 processor. Averaged over 10 trials, CN1/CN2 requires 38.86 ± 0.1 sec., 1,000 iterations of the
FoE requires 1664.35± 30.23 sec. (using code from the authors of [4]), the BLS-GSM model with
parameter settings “1” requires 51.86 ± 0.12 sec., and parameter setting “2” requires 26.51 ± 0.15
sec. (using code from the authors of [1]). All implementations are in MATLAB.

It is true, however, that training the convolutional network architecture requires substantial computa-
tion. As gradient learning can require many thousands of updates to converge, training the denoising
networks required a parallel implementation that utilized a dozen processors for a week. While this
is a significant amount of computation, it can be performed off-line.

Learning more complex image transformations and generalized image attractors models

In this work we have explored an image processing task which can be easily formulated as a learning
problem by synthesizing training examples from abundantly available noiseless natural images. Can
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this approach be extended to tasks in which the noise model has a more variable or complex form?
Our results on blind denoising, in which the amount of noise may vary from little to severe, provides
some evidence that it can. Preliminary experiments on image inpainting are also encouraging.

That said, a major virtue of the image prior approach is the ability to easily reuse a single image
model in novel situations by simply augmenting the prior with the appropriate observation model.
This is possible because the image prior and the observation model are decoupled. Yet explicit prob-
abilistic modeling is computationally difficult and makes learning even simple models challenging.
Convolutional networks forgo probabilistic modeling and, as developed here, focus on specific im-
age to image transformations as a regression problem. It will be interesting to combine the two
approaches to learn models that are “unnormalized priors” in the sense of energy-based image at-
tractors; regression can then be used as a tool for unsupervised learning by capturing dependencies
between variables within the same distribution [22].

Acknowledgements: we are grateful to Ted Adelson, Ce Liu, Srinivas Turaga, and Yair Weiss for
helpful discussions. We also thank the authors of [1] and [4] for making code available.
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