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Abstract. This paper proposes a method for stitching multiple images
together so that the stitched image looks as natural as possible. Our
method adopts the local warp model and guides the warping of each
image with a grid mesh. An objective function is designed for specify-
ing the desired characteristics of the warps. In addition to good align-
ment and minimal local distortion, we add a global similarity prior in
the objective function. This prior constrains the warp of each image
so that it resembles a similarity transformation as a whole. The selec-
tion of the similarity transformation is crucial to the naturalness of the
results. We propose methods for selecting the proper scale and rotation
for each image. The warps of all images are solved together for mini-
mizing the distortion globally. A comprehensive evaluation shows that
the proposed method consistently outperforms several state-of-the-art
methods, including AutoStitch, APAP, SPHP and ANNAP.
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1 Introduction

Image stitching is a process of combining multiple images into a larger image
with a wider field of view [17]. Early methods focus on improving alignment
accuracy for seamless stitching, such as finding global parametric warps to bring
images into alignment. Global warps are robust but often not flexible enough.
For addressing the model inadequacy of global warps and improving alignment
quality, several local warp models have been proposed, such as the smoothly vary-
ing affine (SVA) warp [12] and the as-projective-as-possible (APAP) warp [20].
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These methods adopt multiple local parametric warps for better alignment accu-
racy. Projective (affine) regularization is used for smoothly extrapolating warps
beyond the image overlap and resembling a global transformation as a whole.
The stitched images are essentially single-perspective. Thus, they suffer from
the problem of shape/area distortion and parts of the stitched image could be
stretched severely and non-uniformly. The problem is even aggravated when
stitching multiple images into a very wide angle of view. In such a case, the
distortion accumulates and the images further away from the based image are
often significantly stretched. Therefore, the field of view for the stitched image
often has a limit. Cylindrical and spherical warps address the problem with a
fairly narrow view of the perspective warp by projecting images onto a cylinder
or a sphere. Unfortunately, these warps often curve straight lines and are only
valid if all images are captured at the same camera center.

Recently, several methods attempt to address the issues with distortion and
limited field of view in the stitched image while keeping good alignment quality.
Since a single-perspective image with a wide field of view inevitably introduces
severe shape/size distortion, these methods provide a multi-perspective stitched
image. Chang et al. proposed the shape-preserving half-projective (SPHP) warp
which is a spatial combination of a projective transformation and a similarity
transformation [4]. SPHP smoothly extrapolates the projective transformation of
the overlapping region into the similarity transformation of the non-overlapping
region. The projective transformation maintains good alignment in the overlap-
ping region while the similarity transformation of the non-overlapping region
keeps the original perspective of the image and reduces distortion. In addition
to projective transformations, SPHP can also be combined with APAP for bet-
ter alignment quality. However, the SPHP warp has several problems. (1) The
SPHP warp is formed by analyzing the homography between two images. It
inherits the limitations of homography and suffers from the problem of a lim-
ited field of view. Thus, it often fails when stitching many images. (2) SPHP
handles distortion better if the spatial relations among images are 1D. When
the spatial relations are 2D, SPHP could still suffer from distortions (Fig. 5 as
an example). (3) As pointed out by Lin et al. [11], SPHP derives the similar-
ity transformation from the homography. If using the global homography, the
derived similarity transformation could exhibit unnatural rotation (Fig. 4(e) as
an example). They proposed the adaptive as-natural-as-possible (AANAP) warp
for addressing the problem with the unnatural rotation. The AANAP warp lin-
earizes the homography and slowly changes it to the estimated global similarity
transformation that represents the camera motion. AANAP still suffers from a
couple of problems. First, there are still distortions locally when stitching mul-
tiple images (Figs. 4(f), 5 and 6). Second, the estimation of the global similarity
transformation is not robust and there could still exist unnatural rotation and
scaling (Figs. 1(b), 3 and 5).

We propose an image stitching method for addressing these problems and
robustly synthesizing natural stitched images. Our method adopts the local
warp model. The warping of each image is guided by a grid mesh. An objective
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(a) APAP+BA

(b) AANAP

(c) Ours (3D method)

(d) Ours with a specified
horizon line

Fig. 1. Image stitching of 18 images.

function is designed for specifying the desired characteristics of the warps. The
warps of all images are solved together for an optimal solution. The optimization
leads to a sparse linear system and can be solved efficiently. The key idea is to
add a global similarity term for requiring that the warp of each image resem-
bles a similarity transformation as a whole. Previous methods have shown that
similarity transformations are effective for reducing distortions [4,11], but they
are often imposed locally. In contrast, we propose a global similarity prior for
each image, in which proper selection of the scale and the rotation is crucial to
the naturalness of the stitched image. From our observation, rotation selection
is essential to the naturalness. Few paid attention to the rotation selection prob-
lem for image stitching. AutoStitch assumes that users rarely twist the camera
relative to the horizon and can straighten wavy panoramas by computing the
up vector [2]. AANAP uses feature matches for determining the best similarity
transformation [11]. These heuristics are however not robust enough. We propose
robust methods for selecting the proper scale and rotation for each image.
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Our method has the following advantages. First, it does not have the prob-
lem with a limited field of view, a problem shared by APAP and SPHP. Second,
by solving warps for all images together, our approach minimizes the distortion
globally. Finally, it assigns the proper scale and rotation to each image so that the
stitched image looks more natural than previous methods. In brief, our method
achieves the following goals: accurate alignment, reduced shape distortion, nat-
uralness and without a limit on the field of view. We evaluated the proposed
method on 42 sets of images and the proposed method outperforms AutoStitch,
APAP, SPHP and AANAP consistently. Figure 1 showcases common problems
of previous methods. In Fig. 1(a), APAP+BA (Bundle Adjustment) [21] over-
comes the problem with limited field of view by projecting images onto a cylinder.
It however uses the wrong scale and rotation and the result exhibits non-uniform
distortions over the image. AANAP does not select the rotations and scales
properly. The errors accumulate and curve the stitching result significantly in
Fig. 1(b). Our result (Fig. 1(c)) looks more natural as it selects the scales and
the rotations properly. Our method can also incorporate horizon detection and
the result can be further improved (Fig. 1(d)).

2 Related Work

Szeliski has a comprehensive survey on image stitching [17]. Image stitching tech-
niques often utilize parametric transformations to align images either globally
or locally. Early methods used global parametric warps, such as similarity, affine
and projective transformations. Some assumed that camera motion contains only
3D rotations. A projection is performed to map the viewing sphere to an image
plane for obtaining a 2D composite image. A noted example is the AutoStitch
method proposed by Brown et al. [1]. Gao et al. proposed the dual-homography
warping to specifically deal with scenes containing two dominant planes [5]. The
warping function is defined by a linear combination of two homographies with
spatially varying weights. Since their warp is based on projective transforma-
tions, the resulting image suffers from projective distortion (which stretches and
enlarges regions).

Local warp models adopt multiple local parametric warps for better align-
ment accuracy. Lin et al. prioneered the local warp model for image stitching by
using a smoothly varying affine stitching field [12]. Their warp is globally affine
while allowing local deformations. Zaragoza et al. proposed the as-projective-
as-possible warp which is globally projective while allowing local deviations for
better alignment [20].

Instead of focusing on alignment quality, several methods address the prob-
lem with distortion in the stitched images. Chang et al. proposed the shape-
preserving half-projective warp which is a spatial combination of a projective
transformation and a similarity transformation [4]. The projective transforma-
tion maintains good alignment in the overlapping region while the similarity
transformation of the non-overlapping region keeps the original perspective of
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the image and reduces distortion. This approach could lead to unnatural rota-
tions at times. Lin et al. proposed the adaptive as-natural-as-possible (AANAP)
warp for addressing the problem with the unnatural rotation [11].

A few projection models have been proposed for reducing the induced visual
distortion due to projection. Zelnik-Manor et al. used a multi-plane projection as
an alternative to the cylindrical projection [22]. Kopf et al. proposed the locally
adapted projection which is globally cylindrical while locally perspective [9].
Carroll et al. proposed the content-preserving projection for reducing distortions
of wide-angle images [3]. When the underlying assumptions of these models are
not met, misalignment occurs and post processing methods (e.g., deghosting and
blending) can be used to hide it.

3 Method

Our method adopts the local warp model and consists of the following steps:

1. Feature detection and matching
2. Image match graph verification [2]
3. Matching point generation by APAP [20]
4. Focal length and 3D rotation estimation
5. Scale and rotation selection
6. Mesh optimization
7. Result synthesis by texture mapping

The input is a set of N images, I1, I2, . . . , IN . Without loss of generality,
we use I0 as the reference image. We first detect features and their matches
in each image by SIFT [13]. Step 2 determines the adjacency between images.
In terms of the quality of pairwise alignment, APAP performs the best. Thus,
step 3 applies APAP for each pair of adjacent images and uses the alignment
results for generating matching points. Details will be given in Sect. 3.1. Our
method stitches images by mesh deformation. Section 3.2 describes our design
of the energy function. To make the stitching as natural as possible, we add a
global similarity term which requires each deformed image undergo a similarity
transform. To determine the similarity transform for each image, our method
estimates the focal length and 3D rotation for each image (step 4) and then
selects the best scale and rotation (step 5). Section 4 describes the details of
these two steps. Finally, the result is synthesize by steps 6 and 7.

3.1 Matching Point Generation by APAP

Let J denote the set of adjacent image pairs detected by step 2. For a pair of
adjacent images Ii and Ij in J, we apply APAP to align them using features and
matches from step 1. Note that APAP is a mesh-based method and each image
has a mesh for alignment. We collect Ii’s mesh vertices in the overlap of Ii and
Ij as the set of matching points, Mij . For each matching point in Mij , we know
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(a) feature points (b) matching points (left to right)

Fig. 2. Feature points versus matching points. (a) feature points and their matches.
(b) matching points and their matches.

its correspondence in Ij since Ii and Ij have been aligned by APAP. Similarly,
we have a set of matching points Mji for Ij .

Figure 2 gives an example of matching points. Given the features and matches
in Fig. 2(a), we use APAP to align two images. After alignment, for the left
image, we have a set of matching points which are simply the grid points in the
overlap regions after APAP alignment. For these matching points, we have their
correspondences in the right image. In further steps, we use matching points in
place of feature points because matching points are distributed more uniformly.

3.2 Stitching by Mesh Deformation

Our stitching method is based on mesh-based image warping. For each image,
we use a grid mesh to guide the image deformation. Let Vi and Ei denote the
set of vertices and edges in the grid mesh for the image Ii. V denotes the set of
all vertices. Our stitching algorithm attempts to find a set of deformed vertex
positions Ṽ such that the energy function Ψ(V) is minimized. The criteria for
good stitching could be different from applications to applications. In our case,
we stitch multiple images onto a global plane and would like to have the stitched
image look as natural as the original images. About the definition of natural-
ness, we assume that the original images are natural to users. Thus, locally, our
method preserves the original perspective of each image as much as possible.
At the same time, globally, it attempts to maintain a good structure by finding
proper scales and rotations for images. Both contributes to the naturalness of
the stitching. Thus, our energy function consists of three terms: the alignment
term Ψa, the local similarity term Ψl and the global similarity term Ψg.

Alignment term Ψa. This term ensures the alignment quality after deformation
by keeping matching points aligned with their correspondences. It is defined as

Ψa(V) =

N
∑

i=1

∑

(i,j)∈J

∑

p
ij

k
∈Mij

‖ṽ(pij
k ) − ṽ(Φ(pij

k ))‖2, (1)
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where Φ(p) returns the correspondence for a given matching point p. The func-
tion ṽ(p) expresses p’s position as a linear combination of four vertex positions,
∑4

i=1 αiṽi where ṽi denote the four corners of the quad that p sits in and αi are
the corresponding bilinear weights.

Local similarity term Ψl. This term serves for regularization and propagates
alignment constraints from the overlap regions to the non-overlap ones. Our
choice for this term is to ensure that each quad undergoes a similarity transform
so that the shape will not be distorted too much.

Ψl(V) =
N

∑

i=1

∑

(j,k)∈Ei

‖(ṽi
k − ṽi

j) − Si
jk(vi

k − vi
j)‖

2, (2)

where vi
j is the position for an original vertex and ṽi

j represents the position

of the vertex after deformation. Si
jk is a similarity transformation for the edge

(j, k) which can be represented as

Si
jk =

[

c(ei
jk) s(ei

jk)

−s(ei
jk) c(ei

jk)

]

. (3)

The coefficients c(ei
jk) and s(ei

jk) can be expressed as linear combinations of
vertex variables. Details can be found in [8].

Global similarity term Ψg. This term requires each deformed image undergo
a similarity transform as much as possible. It is essential to the naturalness of
the stitched image. In brief, without this term, the results could be oblique and
non-uniformly deformed as exhibited by AANAP and SPHP (Figs. 4 and 5).
In addition, it eliminates the trivial solution, vi

j = 0. The procedure for deter-
mining the proper scale and rotation is described in Sect. 4. Assume that we
have determined the desired scale si and rotation angle θi for the image Ii. The
global similarity term is defined as

Ψg(V) =
N

∑

i=1

∑

ei
j
∈Ei

w(ei
j)

2 [

(c(ei
j) − si cos θi)

2 + (s(ei
j) − si sin θi)

2
]

, (4)

which requires the similarity transform for each edge ei
j in Ii resembles the sim-

ilarity transform we have determined for Ii. The functions c(e) and s(e) return
the expressions for the coefficients of the input edge e’s similarity transform as
described in Eq. 3. The weight function w(ei

j) assigns more weight to the edges
further away from the overlapped region. For quads in the overlap region, align-
ment plays a more important role. On the other hand, for edges away from the
overlap region, the similarity prior is more important as there is no alignment
constraint. Specifically, it is defined as

w(ei
j) = β +

γ

|Q(ei
j)|

∑

qk∈Q(ei
j
)

d(qk,Mi)
√

R2
i + C2

i

, (5)
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where β and γ are constants controlling the importance of the term; Q(ei
j) is the

set of guads which share the edge ei
j (1 or 2 quads depending on whether the

edge is on the border of the mesh); Mi denotes the set of quads in the overlap
region of Ii; the function d(qk,Mi) returns the distance of the quad qk to the
quads in the overlap regions in the grid space; Ri and Ci denote the numbers
of rows and columns in the grid mesh for Ii. At a high level, an edge’s weight
is proportional to the normalized distance of the edge to the overlap regions in
the grid space.

The optimal deformation of meshes is determined by the following:

Ṽ = arg min
Ṽ

Ψa(V) + λlΨl(V) + Ψg(V). (6)

Note that there are two parameters, β and γ, in Ψg, controlling the relative
importance of the global similarity term. In all of our experiments, we set λl =
0.56, β = 6 and γ = 20. Empirically, we found the parameters are quite stable
because there is not severe conflict between terms. The optimization can be
efficiently solved by a sparse linear solver.

4 Scale and Rotation Selection

This section describes how to determine the best scale si and rotation θi for each
image Ii, which is the key to the naturalness of the stitched result.

4.1 Estimation of the Focal Length and 3D Rotation

We estimate the focal length and 3D rotation for each image by improving the
bundle adjustment method proposed by AutoStitch [2]. We improve their method
in two ways: better initialization and better point matches. Better initialization
improves convergence of the method.

From a homography between two images, we can estimate the focal lengths
of the two images [16–18]. After performing APAP, we have a homography for
each quad of a mesh. Thus, each quad gives us an estimation of the focal length
of the image. We take the median of these estimations as the initialization of the
focal length and form the initial intrinsic matrix Ki for Ii. Once we have Ki,
we obtain the initial guess for 3D rotation Rij between Ii and Ij by minimizing
the following projection error:

Rij = arg min
R

∑

p
ij

k
∈Mij

‖KjRK−1
i pij

k − Φ(pij
k )‖2. (7)

It can be solved by SVD. Note that AutoStich uses features and their matches
for estimating the 3D rotation between two images. The problem with features
is that they are not uniformly distributed in the image space and it could have
adverse influence. We use matching points instead of feature points for estimating
3D rotation.
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With the better initialization of Ki and Rij , bundle adjustment is performed
for obtaining the focal length fi and the 3D rotation Ri for each image Ii. The
scale si for Ii in Eq. 4 can be set as

si = f0/fi. (8)

4.2 Rotation Selection

As mentioned in Sect. 1, although the selection of rotation is crucial to the nat-
uralness, few paid attention to it. AutoStitch assumes that users rarely twist
the camera relative to the horizon and can straighten wavy panoramas by com-
puting the up vector [2]. AANAP uses feature matches for determining the best
similarity transformation [11]. The heuristic is not robust enough as illustrated
in Fig. 3.

(a) AANAP (b) Ours (3D method)

Fig. 3. AANAP does not select the right rotation (a). Our method does a better job
and generates a more natural result.

The goal of rotation selection is to assign a rotation angle θi for each image Ii.
We propose a couple of methods for determining the rotation, a 2D method and
a 3D method. Before describing these methods, we define several terms first.

Relative rotation range. Given a pair of adjacent images Ii and Ij , each pair
of their matching points uniquely determines a relative rotation. Assume that
the k-th pair of matching points gives us the relative rotation angle θij

k . We
define the relative rotation range Θij between Ii and Ij as

Θij = [θij
min, θij

max], (9)

where θij
min = mink θij

k and θij
max = maxk θij

k .

Minimum Line Distortion Rotation (MLDR). Human is more sensitive to
lines. Thus, we propose a procedure for finding the best relative rotation between
two adjacent images with respect to line alignment. We first detect lines using
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the LSD detector [6]. Through the alignment given by APAP, we can find the
correspondences of lines between two adjacent images, Ii and Ij . Each pair of
corresponding lines uniquely determines a relative rotation. We use RANSAC as
a robust voting mechanism to determine the relative rotation between Ii and Ij .
The voting power of each line depends on the product of its length and width.
The final relative rotation is taken as the average of all inliers’ rotation angles.
We denote φij as the relative rotation angle between Ii and Ij determined by
MLDR.

Given all relative rotation angles φij estimated by MLDR, we can find a set
of rotation angles {θi} to satisfy the MLDR pairwise rotation relationship as
much as possible. We represent θi as a unit 2D vector (ui, vi) and formulate the
following energy function:

EMLDR =
∑

(i,j)∈J

∥

∥

∥

∥

R(φij)

[

ui

vi

]

−

[

uj

vj

]∥

∥

∥

∥

2

, (10)

where R(φij) is the 2D rotation matrix specified by φij . By minimizing EMLDR,
we find a set of rotation angles θi to satisfy the MLDR pairwise rotation con-
straints as much as possible. To avoid the trivial solution, we need at least one
more constraint for solving Eq. 10. We propose two methods for obtaining the
additional constraints.

Rotation selection (2D method). In this method, we make a similar assump-
tion with Brown et al. [2] by assuming that users rarely twist the camera relative
to the horizon. That is, we prefer that θi = 0◦ if possible. First, we need to deter-
mine the rotation angle for one image. Without loss of generality, let the angle
of the reference image be 0◦, i.e., θ0 = 0◦. Once we have the rotation angle θi

for some image Ii, we can determine the rotation range of the image Ij adjacent
to Ii by Θj = Θij + θi. If 0◦ is within the range Θj , it means that zero rota-
tion is a reasonable one and we should set θj = 0. By propagating the rotation
ranges using BFS along the adjacency graph, we can find a set of images with 0◦

rotation. The pseudo code of the detailed process is given in the supplementary
material. Let Ω be the set of images whose rotation angles equal 0◦. We find θi

by minimizing

EMLDR + λzEZERO, where (11)

EZERO =
∑

i∈Ω

∥

∥

∥

∥

[

ui

vi

]

−

[

1
0

]∥

∥

∥

∥

2

(12)

and λz = 1000 so that the images in Ω are likely assigned zero rotation, i.e.,
keeping their original orientations.

Rotation selection (3D method). In this method, we utilize the 3D rotation
matrix Ri estimated at the beginning of this section. We first decompose the 3D
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rotation matrix Ri to obtain the rotation angle αi with respect to the z axis.
The relative rotation between two adjacent images Ii and Ij can be determined
as αij = αj − αi. If αij ∈ Θij , it means the estimation is reasonable and can
be used. Otherwise, we should use the relative rotation φij by MLDR. Let Ω be
the set of pairs which use φij and Ω̄ = J−Ω for others. The rotation angles are
determined by minimizing

∑

(i,j)∈Ω

∥

∥

∥

∥

R(φij)

[

ui

vi

]

−

[

uj

vj

]∥

∥

∥

∥

2

+ λr

∑

(i,j)∈Ω̄

∥

∥

∥

∥

R(αij)

[

ui

vi

]

−

[

uj

vj

]∥

∥

∥

∥

2

. (13)

We set λr = 10 to give 3D rotation more weights.

5 Experiments and Results

We compare our methods (2D and 3D versions) with four methods, AutoS-
titch [2], APAP [20], SPHP [4] and AANAP [11]. The experiments were per-
formed on a MacBook Pro with 2.8 GHz CPU and 16 GB RAM. SIFT features
were extracted using VLFeat [19]. The grid size is 40 × 40 for mesh-based meth-
ods. We tested the six methods on 42 sets of images (3 from [11], 6 from [4], 4
from [20], 7 from [14], 3 from [5] and 19 collected by ourselves). All comparisons
can be found in supplementary material. The numbers of images range from 2 to
35. The test sets collected by us are more challenging than existing ones. We will
release all our code and data for facilitating further comparisons.1 Not account
for feature detection and matching, for the resolution of 800 × 600, our method
takes 0.1 s for stitching two images (Fig. 4) and 8 s for 35 images (Fig. 6).

Figure 4 compares all methods on stitching two images. Figure 4(a) shows
the result of AutoStitch. Note that there is obvious misalignment. Our method
can be used to empower other methods with APAP’s alignment capability.
Figure 4(b) shows the result in which the misalignment has been largely removed.
Although with good alignment quality, APAP suffers from the problem with per-
spective distortion (Fig. 4(c)). One could change APAP’s perspective model to
similarity model as ASAP which is similar to the method by Schaefer et al. [15].
Figure 4(d) shows the result of ASAP. Although similarity performs well on
reducing distortion, it is not effective for good alignment (closeup). In addition,
the results would exhibit artifacts with obliqueness and non-uniform deforma-
tion. SPHP has the problem with unnatural rotation (Fig. 4(e)). AANAP gives
a reasonable result in this example (Fig. 4(f)), but the lines on the floor are
slightly distorted as shown more clearly in the closeup. Our method has the best
stitching quality in this example (Fig. 4(g)).

Figure 1 presents an example for obtaining a panorama by stitching 18
images. SPHP failed on this example because of its limited field of view.
APAP+BA overcomes the problem by projecting images onto a cylinder [21].

1 The project website: http://www.cmlab.csie.ntu.edu.tw/project/stitching-wGSP/.

http://www.cmlab.csie.ntu.edu.tw/project/stitching-wGSP/
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 4. An example of stitching two images. (a) AutoStitch, (b) AutoStitch+ours,
(c) APAP, (d) ASAP, (e) SPHP+APAP, (f) AANAP, (g) Ours (3D method).
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However, due to incorrect scale and rotation estimation, the result exhibits non-
uniform distortions over the image (Fig. 1(a)). AANAP does not select the rota-
tions and scales properly. The errors accumulate and curve the stitching result
significantly as shown in Fig. 1(b). Note that the problem cannot be fixed by the
rectangling panorama method [7] because it would maintain the original orienta-
tion of the input panorama as much as possible without referring to the original
images. The panorama could become rectangular but the scene would remain
curved. Our result (Fig. 1(c)) looks more natural as it selects the scales and the
rotations properly. Our method is flexible and can be extended to comply with
some additional constraints. In this example, we use a vanishing point detection
method [10] for detecting the horizon for one image. With this additional con-
straint, the stitched image is better aligned with the horizon for a more natural
result (Fig. 1(d)).

In the example of stitching six images in Fig. 5, AutoStitch introduces obvious
distortion because of its spherical projection (top left). SPHP cannot handle 2D
topology between images and suffers from distortion (bottom left). AANAP’s
result exhibits unnatural rotation and shape distortion (top right). Our result
looks the most natural among all results (bottom right). The input of Fig. 6
contains 35 images. AutoStitch suffers from the distortion caused by the spherical
projection (top left). AANAP has distortions all over the image (top right). Both
of our methods give more natural results. The 2D method keeps the perspective

Fig. 5. An example of stitching six images. (top left) AutoStitch, (bottom left)
SPHP+APAP, (top right) AANAP, (bottom right) Ours (2D method).
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Fig. 6. An example of stitching 35 images. (top left) AutoStitch, (top right) AANAP,
(bottom left) Our 2D method, (bottom right) Our 3D method.

of each image better (bottom left) while the 3D method keeps a better 3D
perspective of the original scene (bottom right).

In sum, although ASAP, AANAP, SPHP and our method all use similarity,
our method gives much better results. The differences come from how similarity
is utilized. SPHP attempts to reduce the perspective distortion but it fails when
the field of view is wide (Fig. 1) and the spatial relations among images are
2D (Fig. 5). AANAP attempts to address the unnatural rotation but it is not
robust enough and fails frequently (Figs. 1(b), 3 and 5). In addition, AANAP
does not optimize for shape distortion and it only stitches two images at a time.
There could exist distortions locally when stitching multiple images (Figs. 4(f),
5 and 6). Our method addresses all these problems better than previous methods.
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6 Conclusions

This paper proposes an image stitching method for synthesizing natural results.
Our method adopts the local warp model. By adding the global similarity prior,
our method can reduce distortion while keeping good alignment. More impor-
tantly, with our scale and rotation selection methods, the global similarity prior
leads to a more natural stitched image.

This paper presents two main contributions. First, it presents a method for
combining APAP’s alignment accuracy and similarity’s less distortion. Although
individual components could have been explored, we utilize them in a different
way. The method also naturally handles alignment of multiple images. Second,
it presents methods for robustly estimating proper similarity transformations
for images. They serve as two purposes: further enforcing similarity locally and
imposing a good global structure. Experiments confirm the effectiveness and
robustness of the proposed method.
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