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Natural images are reliably represented by sparse
and variable populations of neurons in visual cortex
Takashi Yoshida1,2,3✉ & Kenichi Ohki1,2,3,4✉

Natural scenes sparsely activate neurons in the primary visual cortex (V1). However, how

sparsely active neurons reliably represent complex natural images and how the information is

optimally decoded from these representations have not been revealed. Using two-photon

calcium imaging, we recorded visual responses to natural images from several hundred V1

neurons and reconstructed the images from neural activity in anesthetized and awake mice. A

single natural image is linearly decodable from a surprisingly small number of highly

responsive neurons, and the remaining neurons even degrade the decoding. Furthermore,

these neurons reliably represent the image across trials, regardless of trial-to-trial response

variability. Based on our results, diverse, partially overlapping receptive fields ensure sparse

and reliable representation. We suggest that information is reliably represented while the

corresponding neuronal patterns change across trials and collecting only the activity of highly

responsive neurons is an optimal decoding strategy for the downstream neurons.
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S
ensory inputs sparsely activate neurons in the sensory
cortex1–9, which is postulated to be an efficient information
coding4,10. However, how sparsely active neurons represent

information and how the information is optimally decoded from
the sparse representation have not been determined.

In the primary visual cortex (V1), simple cells each have a
receptive field (RF) structure that is modeled by a two-
dimensional (2D) Gabor function11. Theoretically, a single nat-
ural scene is represented by a relatively small number of neurons
using Gabor-like RFs, whereas information about multiple scenes
is distributed among the neuronal population10,12,13. Indeed, V1
neurons sparsely respond to natural scenes2,3,5–9,14. Population
activity with higher sparseness exhibits greater discriminability
between natural scenes5.

What types of information from natural scenes are represented
in the sparsely active neurons in the brain? The visual contents of
natural scenes are reconstructed from single-unit activity within
the lateral geniculate nucleus collected from several experiments15

and functional magnetic resonance imaging data from the visual
cortices16–19. However, whether the visual contents of natural
images could be represented by simultaneously recorded, sparsely
active neurons has not been addressed experimentally. It also
remains to be revealed which decoding strategy is the most
optimal for sparse representation. Whether only the small num-
ber of strongly active neurons represent information, or whether
the remaining neurons contribute additional information remains
to be determined. Furthermore, do the sparsely active neurons
reliably represent the natural image contents, regardless of trial-
to-trial response variability? Although a computational model20

has suggested that sparse and overcomplete representation is
optimal for natural image representation with unreliable neurons,
this model has not been examined experimentally.

We also address how visual information is distributed in a
neuronal population. Some neurons are “unresponsive” to simple
visual stimuli, such as moving gratings (e.g., the response rate of
the mouse V1 is 26–68%)21–27. However, this may be partly
because visual stimuli are not complex enough to completely
cover the RF properties of all neurons. The proportion of neurons
involved in the information processing is a matter of debate28,29.

Here, we examined how sparsely active neurons represent
natural image contents and how the information was optimally
decoded from this sparse representation. Using two-photon cal-
cium (Ca2+) imaging, we recorded visual responses to natural
images from the V1 of anesthetized and passively viewing awake
mice. A small percentage of neurons responded to each image,
which was sparser than that predicted by a linear encoding
model. On the other hand, most neurons were involved in pro-
cessing of natural images. The visual contents of a natural image
were linearly decodable from a small number of highly responsive
neurons, and the additional use of the remaining neurons even
degraded the reconstruction performance. The responsive neu-
rons reliably represent the image, regardless of trial-to-trial
response variability, which was supported by multiple neurons
with partially overlapping representation. These results revealed a
new representation of a natural image by a small number of
neurons in which information is reliably represented, while the
corresponding neuronal patterns change across trials and implies
that collecting only the activity of highly responsive neurons is an
optimal decoding strategy for sparse representation. The pre-
liminary results of this study have been published in abstract
form30 and on a preprint server31.

Results
Sparse visual responses to natural images. We presented flashes
of natural images as visual stimuli (200 images for main dataset,

dataset 1; 1000–2000 images for another dataset, dataset 2). Each
image was consecutively flashed three times in a trial (three 200
ms presentations interleaved with 200 ms of a gray screen) and
presented at least 12 times for dataset 1 and three to eight times
for dataset 2 in a recording session (Fig. 1a, Methods section).
Using two-photon Ca2+ imaging, we recorded single neurons’
activity from anesthetized mouse V1 (560 (284–712) cells/plane,
median (25–75th percentiles); n= 24 planes from 14 mice for
dataset 1, n= 4 planes from three mice for dataset 2, 260–450
microns in depth; see Fig. 1b for representative response traces).
Results described below were obtained from dataset 1 unless
otherwise stated.

Most neurons in a local population were visually responsive.
Responsive neurons were determined by one-way analysis of
variance (ANOVA, p < 0.01; data with responses to 200 images
and one baseline in each trial, see Methods section). Across
planes, 85% (77–90%) of neurons were responsive (Fig. 1f). Using
label-shuffled data, we found a 1.0% (0.9–1.0%) false positive rate.
Thus, most neurons were involved in visual processing of natural
images.

We next examined the percentage of neurons that responded to
each image. For each responsive neuron determined by ANOVA,
a significant response to each image was defined by a t-test and
amplitude threshold (p < 0.01, using a t-test and >10% trial-
averaged visual response; see Methods section and Supplementary
Fig. 1). Figure 1c presents plots of significant visual response
events for all images (x-axis) across all neurons (y-axis) in an
example plane (n= 726 cells, depth: 360 microns from the brain
surface). Across planes, 2.5% (1.8–3.0%) of neurons were
responsive for each image (Fig. 1g, Supplementary Fig. 1; Fig. 1c
bottom for the example case). This low response rate was not due
to poor recording conditions. The same neurons responded well
to moving gratings (49% (45–56%) of cells were responsive for at
least one grating direction, and 12.5% (11–14.8%) responded to
each direction of grating, Fig. 1h, i).

The responsive neurons only slightly overlapped between
images. In examples for three natural images (Fig. 1d), each image
activated different subsets of neurons that exhibited small
overlaps between images (Fig. 1d, right column). Of the
responsive cells, 5.4% (4.8–6.0%) exhibited overlap between two
images (Fig. 1j). Furthermore, only a small number of neurons
exhibited visual responses with large amplitudes, which is a
property of sparse representations (Fig. 1e). The population
sparseness2,3 was comparable to that from a previous report on
mouse V1 (ref. 5; 0.36 (0.30–0.42), Fig. 1k, see Methods section).
Together, each natural image activated a small number of
neurons, whereas most neurons were visually responsive. The
latter result represents the first report of the visual responsiveness
of most neurons in mouse V1 to natural image stimuli28,29.

Partially overlapping representations of visual features. We
constructed an encoding model for the visual responses of an
individual neuron to examine the visual features represented by
each neuron. To extract the visual features from the natural
images, we used a set of Gabor wavelet filters with self-inverting
properties (1248 filters, Fig. 2a, b, see Methods section). Natural
images (I) were subjected to Gabor filters (Gfwd) and transformed
into sets of Gabor feature values (F, see Methods section).

F ¼ Gfwd I ð1Þ

For each neuron, we first selected the Gabor features that
exhibited strong correlations with the visual response. The
correlation threshold for the selected feature was adjusted to
maximize the visual response prediction in each neuron (Fig. 2c,
Supplementary Fig. 2a, b). Then, the visual responses of a single
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cell (Rk, the kth cell’s responses) were represented by a linear
regression of the selected feature values (Fselect) followed by
nonlinear scaling (NL), Fig. 2c, see Methods section).

Rk ¼ NLðWk Fselect þ bkÞ ð2Þ

Parameters of the regression model (weights, Wk and a bias,
bk) were estimated with 90% of the dataset, and the prediction
performance was estimated with the remaining 10% of the dataset
(ten-fold cross-validation (CV)), whereWk and bk were estimated
in each CV. A model was obtained independently for each cell
(i.e., for each k).
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Fig. 1 Sparse visual responses to natural images. a Experimental schematic. Natural images are presented, and the activity of V1 neurons was recorded

using two-photon Ca2+ imaging. b Examples of trial-averaged visual responses. The three lines for each response indicate the mean and the mean ± S.E.M.

Black: significant responses, gray: non-significant responses, and red: stimulus periods. c Significant response events in an example plane (upper left).

Bottom: the percentage of responsive cells for each image. Right: the percentage of images to which each cell responded. Red lines (bottom and right)

indicate median values. d Examples of population response patterns to three images. Left: stimulus images and the spatial distributions of cells in an

imaging area (side length: 507 microns). The red-filled and gray open circles indicate the responsive and remaining cells, respectively. Right: histograms of

the visual responses to images presented in the left panels. Cells are divided into responsive (red) and the remaining groups (black), and are sorted in each

group by the response amplitude to the image presented in the top row. The cell number order is fixed among the three histograms. e Distribution of the

amplitude of responses to single images. The cell # is sorted by the amplitude of the response to each image and averaged across images in a plane. After

normalizing the cell # (x-axis), data were collected across planes. The median (thick line) and 25–75th percentiles (thin lines) are shown. f Percentages of

visually responsive cells. g Percentages of responsive cells per image. h Percentages of responsive cells for the moving grating. i Percentages of responsive

cells for each direction of the moving grating. j Percentages of overlap of responsive cells between the natural images. k Population sparseness. f–k Each

dot indicates data obtained from one plane, and the medians across planes are shown as bars. e–g, j, k N= 24 planes. h, i N= 23 planes (one plane data

were discarded because of FOV drift during imaging). The stimulus images in a and d are adapted from the databases in refs. 56,57 with permission. Source

data are provided as a Source Data file.
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In example neurons (Fig. 2d, e), the response prediction
performances (the correlation coefficients between the observed
and the predicted responses) were 0.82 and 0.88. These neurons
were represented by 12 (out of 1248) Gabor features (Fig. 2d, e,
right panels). We defined a forward filter as a weighted sum of the
Gabor filters; the forward filters of the example neurons were
spatially localized (Fig. 2d, e, insets in the right panels).

The median prediction performance of the encoding model
was 0.32 (0.15–0.50) in the example plane presented in Fig. 1
(median (25–75th percentiles); n= 726 cells) and 0.21

(0.06–0.42) in all cells across planes (n= 12,755 cells, Supple-
mentary Fig. 2d). The nonlinear scaling suppressed weak
predicted responses and enhanced strong predicted responses
(Fig. 2f, g), suggesting that this nonlinear step enhanced the
sparseness of the predicted response obtained from the linear
step. The nonlinear step also slightly enhanced the performance
(Supplementary Fig. 2c).

Individual neuron encoded a small number of Gabor features.
On average, each neuron encoded 21 (8–51) features in all
recorded neurons (n= 12,755 cells, Fig. 2h, i, Supplementary
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Fig. 2e). The Gabor features encoded by each neuron were
spatially localized and had similar orientations (Supplementary
Fig. 3a–d). The regression weights of the Gabor features in the
encoding model were positively correlated with the similarity
between the corresponding Gabor filter and the RF structure
estimated using the regularized inverse method (see Methods
section, Supplementary Fig. 3e–h)32–34.

The Gabor features only slightly overlapped between neurons
(Fig. 2j). In the example neurons (Fig. 2d, e), none of the features
overlapped. For all neuron pairs, the median overlap was 1.0%
(0.0–5.6%) (relative to the features represented by each cell;
Fig. 2j, Supplementary Fig. 2f). The feature overlap between
neurons was positively correlated with the similarity of the
forward filter (pixel-to-pixel correlation between forward filters;
Supplementary Fig. 3i, j). Furthermore, the features encoded by
neuronal population were diverse, which was reflected in the
distribution of forward filter similarity between cells (correlation
coefficient between forward filters: 0.0 (−0.03–0.04); Supplemen-
tary Fig. 3k). Thus, the Gabor features encoded by individual
neurons were highly diverse and only slightly overlapped.

This analysis also revealed how the individual Gabor features
were encoded across neurons (Fig. 2h). As the spatial frequency
(SF) of the Gabor filter increased (i.e., the scale decreased), the
corresponding feature contributed to the visual responses of fewer
neurons (Fig. 2h bottom), reflecting that Gabor filters with a low
SF covered more of the neuron’s RF, whereas Gabor filters with a
high SF affected the responses of fewer neurons. Furthermore,
almost all features contributed to the responses of at least one cell
(Supplementary Fig. 2g).

Image reconstruction from the population activity. We next
examined whether the features encoded in a neural population
represent the visual contents of the natural images. To examine
this, we reconstructed stimulus images from neuronal activity15–19.
In the image reconstruction model, each Gabor feature value (F j,
the jth Gabor feature value) was subjected to a linear regression of
the activity of multiple neurons (R) with model parameters of
weights (H j) and a bias term (c j; Fig. 3a, b).

F j ¼ Hj Rþ c j ð3Þ

Each Gabor feature value was independently reconstructed
(i.e., H j and c j were estimated for each feature, j). Then, the sets

of reconstructed feature values (F̂ ¼ ½F̂
1
; ¼ ; F̂

1248
�, F̂

j
: recon-

structed jth feature values) were transformed into images (I)
based on almost self-inverting property of the Gabor filters
(Gabor filter matrix for image reconstruction: Grev; Figs. 2a and

3b, see Methods section).

Î ¼ GrevF̂ ð4Þ

The reconstruction performance was estimated with a different
test dataset from the training dataset used in the regression
analysis (ten-fold CV with the same data split as in the encoding
model. H j and c j were estimated in each CV).

We first used a model in which each feature value was
reconstructed from all neurons (all-cell model, Fig. 3a). In the
example plane (n= 726 neurons, presented in Figs. 1 and 2), the
rough structures of the stimulus images were reconstructed from
the population activity (Fig. 3c). The pixel-to-pixel correlation
between stimulus and reconstructed images (similarity of image
patterns) was 0.43 (0.35–0.55) (median (25–75th percentiles) of
200 images (dataset 1) in the example plane (Fig. 3e upper panel)
and 0.33 (0.30–0.37) across all planes (n= 24 planes, Fig. 3f). The
coefficient of determination (CD, goodness of model prediction,
see Methods section) was 0.14 (0.02–0.26) in the example plane
and 0.08 (0.07–0.1) across planes (Fig. 3e, bottom, and 3g). We
applied the same method for another dataset (dataset 2,
1000–2000 images that did not include original 200 images).
The performances of dataset 2 were similar to those of the
original dataset (R: 0.45 (0.34–0.52), CD: 0.19 (0.11–0.25), n= 4
planes from three mice (Fig. 3d, green lines in Fig. 3f, g). Thus,
the visual contents of natural images were extracted linearly from
the population activity.

We next used another reconstruction model, in which each
feature was reconstructed from a subset of neurons that showed
strong correlations between the feature values and responses (cell-
selection model, Fig. 3a). In the cell-selection model, each neuron
participated in the reconstructions of subsets of features that the
neuron encoded in the response prediction model (Fig. 3b, see
Methods section). The reconstruction performances of the cell-
selection model were almost comparable or even slightly higher
than those of the all-cell model (dataset 1, R: 0.33 (0.3–0.38), p=
0.006 by signed-rank test compared to all-cell model. CD: 0.10
(0.08–0.14), p= 1.8 × 10−5 by signed-rank test. Dataset 2, R: 0.45
(0.33–0.53), p= 0.9 by signed-rank test compared to all-cell
model. CD: 0.19 (0.11–0.25), p= 0.9 by signed-rank test,
Fig. 3c–g). We confirmed that the performances were not
substantially affected by whether the test data were used for the
cell-selection step or not (Supplementary Fig. 4, see Methods
section).

In the cell-selection model, we changed the number of features
for which each neuron participated in the reconstruction by
manipulating the feature-selection threshold (Figs. 2c and 3a,
Supplementary Fig. 5a) and examined how the reconstruction
performance was affected by the number of features. The number
of features of the original cell-selection model led to nearly

Fig. 2 Small overlap in visual features among neurons. a Schematic of the transformation between a natural image and Gabor feature values. Each natural

image was subjected to Gabor filters to obtain the feature values. Conversely, a set of feature values was transformed into an image. b Schematics of the

Gabor filters. c Schematic of the encoding model. Ii, stimulus image in the ith trial. Gj: the jth Gabor filter. Fji: the jth feature value obtained from Ii. Wj, the

weight for the jth Gabor feature; Ri, the predicted visual response to Ii. d, e Response prediction in two neurons. Left: comparison between the observed and

predicted responses. Right: weight parameters. The weights of one of ten models (each model corresponds to one of the ten-fold CVs) are shown. Insets:

Forward filters (weighted sums of Gabor filters; red: positive values; blue: negative values). f The observed responses against the responses predicted by

the linear step without nonlinear (NL) scaling in the neuron shown in (e). Red: NL scaling function curve. g NL scaling curves across planes. Gray: the

averaged NL scaling curve across cells in each plane. Red: the averaged curve across planes (n= 24 planes). f, g The black line indicates y= x. h Upper left:

Raster plot of the weights in the plane illustrated in Fig. 1c (red: positive weights, blue: negative weights). The median values for the models of the 10-fold

CVs are shown. Right: the number of features used for each cell. Bottom: the percentage of cells for which each feature was used in the response

prediction. Colored bar: the SF of the features. Red lines: median values. Half of the Gabor features are shown for visibility, but the remaining features were

included in the data shown in the right panel. i Distribution of the number of features in each cell (n= 12,755 cells). j Distribution of the percentages of

features that overlapped between cells (n= 3,993,653 cell pairs). d–f Each dot indicates a response to one image. The stimulus images in a and c are

adapted from the database in ref. 56 with permission. Source data are provided as a Source Data file.
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optimal performances (Supplementary Fig. 5a–c). Thus, the cell-
selection model captures nearly optimal feature-cell assignment
for the reconstruction.

V1 neurons mainly represented low SF components of natural
images. Reconstructions of lower SF components (0.02 and 0.04

cycle/degree, cpd) were better than those of higher spatial
frequencies (0.09 and 0.18 cpd; R: 0.65, 0.53, 0.18, and 0.04, and
CD: 0.24, 0.23, 0.02, and −0.03 for 0.02, 0.04, 0.09, and 0.18 cpd,
respectively; Supplementary Fig. 5d–f). This may reflect the SF
preferences of mouse V1 neurons35.
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A small number of neurons represents a natural image. We
next examined whether a small number of responsive neurons
mainly represented an image or whether the remaining neurons
also contained information. For this purpose, we changed the
number of neurons used in the reconstruction of each image and
examined how the reconstruction performance was affected. In
the image reconstruction from a subset of cells, the weights of the
image reconstruction model were based on the weights of the cell-
selection model. Because a different set of cells was used for each
image, the weights were separately computed for each image (see
Eq. (9) in Methods section).

A small number of responsive neurons primarily represented a
natural image. In each example image, neurons were sorted by
visual response amplitude (descending order) first among the
responsive neurons (red dots in Fig. 4a–c) and then among the
remaining neurons (black dots in Fig. 4a–c). The image was
reconstructed by the top N neurons (N= 1–726 cells), and the
reconstruction performances were plotted against the number of
neurons used (Fig. 4a–e). On average, ~20 neurons reconstructed
the images with a level of peak performance (Fig. 4d, e). The
reconstruction performances of the responsive neurons were
greater than those of all cells (left panels in Fig. 4g, h).
Furthermore, among the responsive neurons for each image,
the peak performances were obtained with highly responsive
neurons that was fewer than the number of responsive neurons
(right panels in Fig. 4g, h). Therefore, highly responsive neurons
mainly represent the image, and the additional use of the
remaining neurons even decreases the performance.

The features represented by individual neurons should be
diverse in order to represent a natural image using a small
number of neurons. Figure 4f illustrates how individual
responsive neurons contribute to image reconstruction in the
case presented in Fig. 4a. Each neuron had a specific pattern of
contributions (reverse filter: sum of Gabor filters × weights), and
the reverse filters varied across neurons (Fig. 4f, top panels) while
partially overlapping in the visual field. For neuron pairs that
were responsive to the same image, the number of overlapping
Gabor features slightly increased compared to all pairs, but the
percentage of overlapping features was still <5% (responsive cell
pairs: 3.2% (0–13%) for all pairs and 4.3% (3.4–5.5%) across
planes; all-cell pairs: 1.0% (0–5.6%) for all pairs and 1.0%
(0.9–1.2%) across planes; Fig. 4i–k, cf. Fig. 2j, Supplementary
Fig. 2f). These slightly overlapping and diverse features among
neurons should be useful for image representation by a small
number of neurons.

Robust image representation by overlapping representation.
We next examined whether a single image was robustly repre-
sented by a small number of responsive neurons. We computed

the reconstruction performance after dropping individual
responsive neurons (Fig. 5a, b; the cell # on the x-axis is the same
as in Fig. 4d). Dropping a single cell reduced the reconstruction
performance by ~5% for the best-responding neurons and did not
change the performance for most neurons (middle panels in
Fig. 5a, b). Thus, an image was robustly represented by responsive
neurons against dropping a single cell.

This robustness against cell drop was due to the spatial overlap
of reverse filters among responsive neurons (Fig. 5c). To analyze
this, we selected a set of overlapping cells for each responsive
neuron; the overlapping cells consisted of one responsive neuron
as a reference (cell 1) and the responsive neurons whose
representation areas partially overlapped with that of the
reference cell (top panels in Fig. 5c and Supplementary Fig. 6a–
d, see Methods section). The maximal reverse filter similarity
between a responsive cell and other overlapping cells was 0.57
(0.41–0.70) (Supplementary Fig. 6d), indicating that each
responsive neuron often had at least one neuron with a similar
reverse filter. Then, we examined the effects of cell drop on the
reconstruction of a local part of the image from the overlapping
cells. Although dropping a single cell had almost no effect on the
reconstructed local image (bottom panels in Fig. 5c), a sequential
dropping of these cells gradually degraded the part of the image
(Fig. 5d). The pixel-to-pixel correlation between the stimulus and
the reconstructed image in the overlapping area gradually
decreased as the number of dropped cells increased (Fig. 5e, f).
Thus, the robust image representation was due to neurons with
spatially overlapping representations.

Reliable image representation across trials. We further analyzed
whether the overlapping representation was useful in reducing
the trial-to-trial variability in the image representation. Cortical
neurons often show trial-to-trial response variability. However,
the integration of activity among neurons with spatially over-
lapping or similar representations should reduce the variability in
image representations across trials36–38.

The pattern of the reconstructed image was reliably repre-
sented across trials regardless of the trial-to-trial response
variability. In the example case (shown in Fig. 5), single-trial
reconstructed images from all responsive neurons (55 cells) were
generally stable across trials and blurred in only a few trials (e.g.,
trial 10, Fig. 6a, top). In contrast, the activity patterns of
responsive neurons seemed variable across trials, although a few
cells were reliably active (Fig. 6a, bottom, b). To evaluate the trial-
to-trial reliability of the reconstructed images (or population
responses), we used two measures, across-trial similarity and
across-trial variability. Across-trial similarity was defined as the
Pearson’s correlation between single-trial reconstructed images
(or response patterns) and their trial average (Fig. 6c). Across-

Fig. 3 Image reconstruction from population activity. a, b Schematic of the image reconstruction models. a In the all-cell model, each feature value was

reconstructed by all cells. In the cell-selection model, the feature value was reconstructed by selected cells for each feature. The cell selection was based on

the response prediction model for each cell; each cell participates in the reconstruction of features that the cell encodes in the response prediction model.

b Details of the image reconstruction model. For each Gabor feature, j, feature values (Fji, i: trial number across stimuli and trials, j: Gabor feature number)

were independently regressed (weights: Hjk, k: cell number) by multiple cell responses (Rki) to the image (Ii) in the ith trial. Then, a set of reconstructed

features (F1i, F2i, …, F1248i) was transformed into an image ð̂IiÞ. The flow of the reconstruction model is represented by black arrows from the bottom to the

top. c Examples of reconstructed images from the main datasets (dataset 1; 200 images). Stimulus images presented during imaging (top), images that

were reconstructed using the all-cell model (all cell, middle) and using the cell-selection model (cell selection, bottom) are shown. Each reconstructed

image was averaged across trials. The reconstruction performances (R and CD) were computed for each trial, and trial-averaged performances are

presented below each reconstructed image. d Examples of reconstructed images from other datasets (dataset 2; 1000–2000 images). e Distributions of R

(top) and CD values (bottom) for the all-cell model (black lines) and the cell-selection model (red lines) in the example plane shown in Figs. 1 and 2 (n=

200 images reconstructed using 726 cells from a plane). Vertical lines indicate median values. f, g R f and CD g of dataset 1 (black lines and bars) and of

dataset 2 (green lines) across planes. *p= 0.006 in f and p= 1.8 × 10−5 in g using the signed-rank test (n= 24 planes for dataset 1). Some of the stimulus

images in b–d are adapted from the databases in refs. 56–58 with permission. Source data are provided as a Source Data file.
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trial variability was the normalized squared error between single-
trial reconstructed images (or response patterns) and their trial
average (Fig. 6d, see Methods section). For all planes, the across-
trial similarity of the reconstructed images was high (0.85
(0.81–0.89), Fig. 6c, left), whereas the across-trial similarity of
the response was relatively low (0.40 (0.36–0.44), Fig. 6c, right).
The across-trial variability of the image was relatively low (Fig. 6d,

left), and that of the response pattern was relatively high (Fig. 6d,
right).

We next examined how the images were reliably represented
across trials. Neurons with partially overlapping or similar reverse
filters will provide reliable representations across trials (for at
least part of the image), if these neurons are active on different
trials. In the example case, among the nine overlapping cells, the
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three example neurons (cell 1–3 in Fig. 6e) represented a partially
similar pattern of the image (the correlations of reverse filters
among the three neurons were 0.31–0.68), while they were active
on different trials. Combining the nine overlapping cells reliably
represent a local part of the image in most trials (Fig. 6e, bottom).
In the example case, the across-trial variability of the local part of
the reconstructed image gradually decreased as the number
of cells used for the reconstruction increased (Fig. 6f). This was
also observed in data from all planes (Fig. 6g, black lines),
suggesting that multiple overlapping cells support reliable image
representation.

We further examined the relationship between reverse filter
overlap or similarity and noise correlations (see Methods section
for the calculation, Supplementary Fig. 7a–c). Noise correlations
were positively correlated with reverse filter correlations (correla-
tion: 0.25, Supplementary Fig. 7d) and with signal correlations
(correlation: 0.44, Supplementary Fig. 7e)37,39. However, the
noise correlations were mainly distributed near 0 even in cell
pairs with high overlap or reverse filter similarity (e.g., in pairs
where the correlation of the reverse filter >0.5, the median noise
correlation was 0.03; Supplementary Fig. 7b, c). Together,
neurons with overlapping or similar reverse filters were almost
independently active across trials, which was useful for reliable
representation.

We also analyzed the effect of noise correlations on the reliable
image representation. Removing the noise correlations (see
Methods section) increased the reconstruction performances and
decreased the across-trial variability (Supplementary Fig. 7g–i),
suggesting that the noise correlations are rather detrimental to
both reconstruction performance and the reliable image repre-
sentation. In the relationship between the across-trial variability
and the number of cells used for the reconstruction, the reduction
in variability by removing noise correlations was much smaller
than that by increasing the number of cells used for the
reconstruction (Fig. 6g), suggesting that noise correlations have
a relatively small impact on the reliable representation.

Representation of multiple images in a population. We next
examined how multiple natural images were represented in a
population of responsive neurons (Fig. 7a–d). In the example
plane (n= 726 cells), natural images were sorted by reconstruc-
tion performance (y-axis in Fig. 7a, b), and the cells responding to
each image are plotted in each row. First, as the number of images
increased, new responsive cells were added, and the total number
of responsive cells used for the reconstructions quickly increased
(right end of the plot on each row, Fig. 7b). At ~50 images, the
number of newly added responsive cells quickly decreased, and
the increase in the total number of responsive cells slowed,
indicating that the newly added image was represented by a

combination of the already plotted responsive cells (i.e., neurons
that responded to other images), due to the small overlap in
responsive cells between images (Fig. 1j). In summary, the
number of newly added cells quickly decreased to zero as the
number of images increased (red lines in Fig. 7c, d). Therefore,
although only ~5% of responsive neurons overlapped between
images (Fig. 1j), this small overlap is useful for the representation
of many natural images by a limited number of responsive
neurons.

We also analyzed whether reverse filters encoded by the
responsive neurons can represent any natural image as basis
functions. If so, a set of features of the natural image will be
accurately represented by a linear regression of the weights (i.e.,
feature sets) of responsive neurons in the cell-selection model
independent of actual responses (see Methods section, Fig. 7e).
Fitting errors were computed in the image space. The median
error was <10% for all images and all planes (3.3% (2.3–4.6%) for
the example plane and 9.3% (5.4–18%) for all planes; Fig. 7f, g).
Thus, the Gabor features encoded by responsive neurons in a
local population can accurately represent the visual contents of
natural images.

Image representation in awake mice. We finally examined
whether the results obtained from anesthetized mice could be
generalized to awake mice. We performed an additional experi-
ment with awake, passively viewing mice that expressed
GCaMP6s in the cortical cells (see Methods section)40,41. We
recorded eye positions and locomotion states (running and
resting) during imaging and used data only when the eye was still
(<3.5 degrees, Fig. 8a–c, see Methods section).

The main results obtained from the anesthetized mice were
also observed in the awake mice (Fig. 8d–h, Supplementary
Figs. 8 and 9). Most cells were visually responsive for at least one
image (82% (79–94%), n= 7 planes from three mice), whereas
only a small percentage of cells were responsive for each image
(1.5% (1.4–2.7%); Supplementary Fig. 8a–c). A single image was
linearly decodable from a small number of responsive cells
(Fig. 8d–h, Supplementary Fig. 8d–i). Furthermore, reconstructed
images were robust to dropping a cell (Supplementary Fig. 8j, k)
and reliable across trials (Supplementary Fig. 9). Therefore, the
results in anesthetized mice could be generalized to those in
awake, passively viewing mice.

We also separately analyzed the reconstruction performance
from excitatory and inhibitory cells. In some experiments, we
used the mice that expressed tdTomato in inhibitory cells (gad2-
cre × Ai14)42,43 and identified excitatory and inhibitory cells
based on the tdTomato (n= 5 planes from two mice). Excitatory
cells were more visually responsive than inhibitory cells
(Supplementary Fig. 10a–c). Furthermore, reconstruction

Fig. 4 Image reconstruction by a small number of responsive neurons. a–c Top: examples of reconstructed images from a subset of responsive cells and

from all cells. First panel: stimulus images. second–forth panels: reconstructed images from a subset of or all cells. Middle and bottom: reconstruction

performances (middle, R; bottom, CD) plotted against the number of cells used for the reconstructions. The cells were first collected from the responsive

cells (red dots) and then from the remaining cells (black dots). Horizontal lines: the performance from all cells. Vertical lines: the number of cells required

for peak performance among all responsive cells. d, e Average performance curve (d R; e CD) plotted against the number of cells. Thick and thin lines

indicate the means and the means ± S.E.M, respectively. f The contributions of the top 16 responsive cells to the image reconstruction shown in a. Top:

reverse filters multiplied by the visual responses. Bottom: reconstructed images. g, h Left: median performances (g R; h CD) obtained from all cells (All),

responsive cells (Resp.) and cells with peak performance (Max.). Right: the number of cells used for the reconstruction. (g left) p= 5.4 × 10−5 for Max. vs.

Resp.; p= 1.2 × 10−4 for Resp. vs. All; p= 6.2 × 10−5 for Max. vs. All. (g right) p= 5.4 × 10−5. (h left) p= 5.4 × 10−5 for Max. vs. Resp.; p= 3.3 × 10−4 for

Resp. vs. All; p= 1.3 × 10−4 for Max. vs. All. (h right) p= 1.7 × 10−5 using the signed-rank test. Each line indicates data for each plane, and bars indicate

medians. Data for images that had at least ten responsive cells were used. i–k Weight overlap (i.e., features) between the cells that responded to the same

image. i Schematic of the analysis. j Percentages of overlapping features for all-cell pairs responding to the same image. k The median percentages of

overlapping features for all planes. Each dot indicates the median in each plane. d, e, g, h, k N= 24 planes. The stimulus images in a–c are adapted from the

databases in ref. 56 and with permission. Source data are provided as a Source Data file.
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performances by inhibitory cells were low compared to those only
by excitatory cells and by all cells, whereas performances by
excitatory cells were comparable to those by all cells (Supple-
mentary Fig. 10d, e). Therefore, the images are mainly
represented by excitatory cells at least under our experimental
conditions.

We further examined how image reconstruction was affected
by the locomotion state, which modulates V1 activity44,45.
Although visual responses during running were greater than
during resting (Supplementary Fig. 11a, b), the response patterns
of a population of responsive cells were not largely different
during running and resting (Supplementary Fig. 11c). Conse-
quently, the reconstructed image patterns were not substantially
affected by the locomotion state (Supplementary Fig. 11d, e).

Discussion
Visual responses to natural images are sparse in V1 (refs. 2,3,5–9,14,46).
We confirmed that a single natural image activated only a small
percentage of neurons. According to the encoding model analysis, the
visual responses of individual neurons were sparser than predicted
from a linear model (Fig. 2f, g). Information has been proposed to be
easily decoded from sparse representations4. Indeed, sparse activity
increases the discriminability of two natural scenes by rendering
the representations of the two scenes separable5. Our results extend
this finding by showing that information about visual contents
represented by sparsely active neurons are linearly accessible, sug-
gesting that downstream areas easily and optimally decode images
by collecting the activity of highly responsive neurons in the sparse
representation.
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The visual features encoded by individual neurons should be
diverse, in order to ensure that a small number of active neurons
represent the complex visual features of the image. Although the
RF structures of mouse V1 have already been reported21,22,33,34,
their diversity has not been analyzed with respect to natural
image representation. In the present study, the visual features
represented by sparsely active neurons were sufficiently diverse to
represent the visual contents of natural images (Fig. 7e–g).
Computational models for natural image representation suggest
that sparse activity and the number of available neurons affect the
diversity of RF structure20,47–49.

We also revealed how multiple natural images were repre-
sented in a local population. A single natural image activated
specific subsets of neurons, whereas most neurons responded to
at least one of the images, supporting the sparse, distributed code
proposed in a previous study10. Thus, most V1 neurons are
involved in visual processing. Due to the small overlap of
responsive neurons between images (Fig. 1i), many natural ima-
ges were represented by a limited number of responsive neurons
(Fig. 7a–d). Furthermore, the RFs of all responsive neurons were
sufficient to represent all the natural images used in the present
study (Fig. 7e–g). Together, any natural image could be repre-
sented by a combination of responsive neurons. These findings
also suggest that the representation of multiple natural images is
high dimensional, consistent with a report about high-
dimensional representation in mouse V150. Thus, a single nat-
ural image can be low dimensionally represented in a high-
dimensional representation space for a large number of natural
scenes.

Sparsely active neurons reliably represented an image across
trials, regardless of trial-to-trial response variability. Although a
computational model proposed sparse and overcomplete repre-
sentation as the optimal representation of natural images by
unreliable neurons20, this model has never been investigated
experimentally. The reliable representation was mainly achieved
by diverse, partially overlapping representations, consistent with
overcomplete representation. The RF subregions of some V1
neurons partially overlap21, which may be useful for reliable image
representation. The reliable representation was also likely to be
helped by almost independent activity across trials among neurons
with similar RFs. Our results suggest a new representation scheme
in which information is reliably represented, while the corre-
sponding neuronal patterns change across trials. This model seems
to be similar to “drop-out” in deep learning51 and may be useful
for avoiding overfitting and local minimum problems in learning.

Methods
Preparation for two-photon imaging in anesthetized mice. All experimental
procedures were approved by the local Animal Use and Care Committee of Kyushu

University and the University of Tokyo. C57BL/6 mice (male and female) were
used (Japan SLC Inc., Shizuoka, Japan). Mice were anesthetized with isoflurane (5%
for induction, 1.5% for maintenance during surgery, ~0.5% during imaging with a
sedation of <0.5 mg/kg chlorprothixene, Sigma-Aldrich, St. Louis, MO, USA). The
skin was removed from the head, and the skull over the cortex was exposed. A
custom-made metal plate for head fixation was attached with dental cement (Super
Bond, Sun Medical, Shiga, Japan), and a craniotomy (~3 mm in diameter) was
performed over left V1 (center position: 0–1 mm anterior to lambda, +2.5–3 mm
lateral to the midline). A mixture of 0.8 mM Oregon Green BAPTA1-AM (OGB1,
Life Technologies, Grand Island, NY, USA) dissolved in 10% Pluronic (Life
Technologies) and 0.025 mM sulforhodamine 101 (ref. 52; SR101, Sigma-Aldrich)
was pressure-injected with a Picospritzer III (Parker Hannifin, Cleveland, OH,
USA) at a depth of 300–500 µm from the brain surface. The cranial window was
sealed with a coverslip and dental cement. The imaging experiment began at least 1
h after the OGB1 injection.

Preparation for two-photon imaging in awake mice. In awake mouse experi-
ments, we used two lines of transgenic mice: Thy1-GCaMP6s (GP4.3) transgenic
mouse41 (JAX #024275, n= 1 mouse, two imaging planes) and the mice obtained
by crossing gad2-ires-cre mice43 (JAX #010802) with Ai14 mice42 (JAX #007914;
Gad2-Ai14, n= 2 mice, five imaging planes). Thy1-GCaMP6s mice express
GCaMP6s40 in cortical neurons. Gad2-Ai14 mice express tdTomato in almost all
inhibitory neurons43.

GCaMP6s was introduced into Gad2-Ai14 mice via an adeno-associated virus
(AAV). The Gad2-Ai14 mice were anesthetized with isoflurane as described above.
A small incision was made on a sculp, and a small hole (<0.3 mm diameter) was
made in the skull over left V1. AAV2/1-syn-GCaMP6s40 (vector core; University of
Pennsylvania, Philadelphia, PA, USA) was injected into V1 through the hole (titer:
3.0–5.0 × 1012 genomes/ml, volume: 500 nl, depth: 250-300 micron from a brain
surface). After suturing the incision, the Gad2-Ai14 mice were recovered at least
3 days after the injection. The mice were anesthetized with isoflurane to attach a
metal plate for head fixation and to make a cranial window as described above. The
mice were recovered after the surgery.

The mice were daily habituated with a head fixation on a disc-type treadmill.
Duration of the head fixation started with a few minutes and gradually prolonged
up to ~2 h over several days. If mice were calmly head-fixed for 2 h without any
stressful sign, imaging experiments started on the next day. The imaging started at
least 1 week after the cranial window surgery, and 3 weeks after the virus injection
for the gad2-Ai14 mice.

Two-photon Ca2+ imaging. Imaging was performed with a two-photon micro-
scope (A1R MP, Nikon, Tokyo, Japan) equipped with a 25× objective (NA 1.10,
PlanApo, Nikon) and Ti:sapphire mode-locked laser (MaiTai Deep See, Spectra
Physics, Santa Clara, CA, USA)53,54. OGB1, SR101, GCaMP6s, and tdTomato were
excited at a wavelength of 920 nm. Emission filters with a passband of 525/50 nm
were used for the OGB1 and GCaMP6s signals, and filters with a passband of 629/
56 nm for the SR101 and tdTomato signals. The fields of view (FOVs) were 338 ×
338 µm (10 planes from seven anesthetized mice) and 507 × 507 µm (14 planes
from seven anesthetized mice and seven planes from 3 awake mice) at 512 × 512
pixels. The sampling frame rate was 30 Hz using a resonant scanner.

Monitoring of eye and treadmill motion in awake mice. In awake mice experi-
ments, right eye images and rotation of the disc-type treadmill were recorded during
the imaging. The right eye was monitored with a USB camera (NET New Electronic
Technology GmbH, Germany). The treadmill rotation was monitored with a rotary
encoder (OMRON, Japan). The eye images, the encoder signals and time stamps of
frame acquisition of the two-photon imaging were simultaneously recorded using a
custom-written program in LabView (National Instruments, Austin, TX, USA).

Fig. 5 Robustness of image representation against cell drop. a Representative reconstructed images after dropping a single cell. Top panels: stimulus and

reconstructed image obtained from all responsive neurons (55 cells). Middle panels: reconstructed images obtained after dropping a single cell. Bottom

panels: representation patterns (reverse filters) of the dropped cells. The cell number (cell #) is the same as shown in Fig. 4f. b Reduction in reconstruction

performance after removing a single cell. The cell #s on the x-axis are ordered from largest to smallest response amplitudes. The cell #s are in the same

order as shown in Fig. 4d, e. Thick line: median. Thin lines: 25th and 75th percentiles; N= 24 planes. c Top panels: reverse filters of overlapping cells (nine

example cells). The representation area of each neuron is contoured by the red line and overlaid on the right panel. Middle panel: reconstructed image

obtained from the nine overlapping cells. Bottom panels: reconstructed images obtained from single cells (upper panels) and reconstructed images after

dropping a single cell (lower panels). Dropping a single cell exerted only a small effect on the reconstructed images. d Representative reconstructed images

obtained during the sequential dropping of the nine overlapping neurons. Cyan dotted lines indicate the overlapping area of the nine cells. The quality of the

reconstructed image around the overlapping areas gradually degrades after each cell is dropped. e, f Plot of the R (or normalized R) for a local part of the

reconstructed image (overlapping area) against the number (or percentage) of dropped cells for the representative case shown in c, e and for the summary

of all data f. Data were collected and averaged across cells and across stimuli in each plane and then collected across planes. Thick lines: medians. Thin

lines: 25th and 75th percentiles obtained across repetitions of random drops (n= 120 repetitions, e) or across planes (n= 24 planes, f). The stimulus

images in a and d are adapted from the database in ref. 56 with permission. Source data are provided as a Source Data file.
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Visual stimulation. Before beginning the recording session, the retinotopic posi-
tion of the recorded FOV was determined using moving grating patches (lateral or
upper directions, 99.9% contrast, 0.04 cycle/degrees, 2 Hz temporal frequency, 20
and 50 degrees in diameter), while monitoring the changes in signals over the
entire FOV. The lateral or upper motion directions of the grating were used to
activate many cells because the preferred directions of mouse V1 neurons are
slightly biased toward the cardinal directions54,55. First, the grating patch of 50
degrees in diameter was presented in 1 of 15 (5 × 3) positions that covered the
entire monitor to roughly determine the retinotopic position. Then, the patch of 20
degrees in diameter was presented on the 16 (4 × 4) positions covering an 80 × 80-
degree space to finely identify the retinotopic position. The stimulus position that

induced the maximum visual response of the entire FOV was set as the center of
the retinotopic position of the FOV.

A set of circular patches of greyscale, contrast-enhanced natural images (200
image types in main datasets, dataset 1) was used as the visual stimuli for
predicting the response and reconstructing the natural image (256 intensity level,
60 degrees in diameter, 512 × 512 pixels, with a circular edge (5 degrees) that was
gradually mixed to a gray background). Contrasts of natural images were enhanced
(>90%). Original natural images were obtained from the van Hateren Natural
Image Dataset (http://pirsquared.org/research/#van-hateren-database)56 and the
McGill Calibrated Color Image Database (http://tabby.vision.mcgill.ca/html/
welcome.html)57. Square image patches (512 × 512 pixels) were obtained from

Trial # 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16

Single-trial representation patterns of individual cells (3 out of 9 overlapping cells)

e

Cell 1

Cell 2

Cell 3

Single-trial reconstructed images (16 trials, 55 responsive cells)a

Trial # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Avg.

b c

Single-trial reconstructed images by a set of overlapping cells (9 cells)

Single-trial responses of responsive cells (55 cells)

NC: noise correlation

NC:0.06

OI:0.82

Rrev: 0.38

NC:–0.01

OI:0.46

Rrev: 0.68

NC:0.02

OI:0.40

Rrev: 0.31

Representation pattern of a set of overlapping cells (9 cells)

OI: overlap index

Rrev: Corr. of reverse filter

E
v
o

k
e

d
 r

e
s
p

o
n

s
e

 (
z
 s

c
o

re
)

Cell #: 1 2 3 4 5 6 7 8 9

V
a

ri
a

b
ili

ty
a

c
ro

s
s
 t

ri
a

ls

(N
o

rm
. 

e
rr

o
r 

fr
o

m
 t

ri
a

l-
a

v
e

ra
g

e
) 

...
9 overlapping cells 

S
im

ila
ri
ty

 a
c
ro

s
s

tr
ia

ls

(c
o

rr
e

la
ti
o

n
 w

it
h

 t
ri
a

l-
a

v
e

ra
g

e
) 

Image
0

0.2

0.4

0.6

0.8

1

Resp.

pattern

0

0.2

0.4

0.6

0.8

1
d

# of cells used for reconstruction

(random order)

R
e

c
o

n
s
tr

u
c
ti
o

n
 v

a
ri
a

b
ili

ty

a
c
ro

s
s
 t

ri
a

ls
 (

o
v
e

rl
a

p
p

in
g

 a
re

a
) 

Cell1–9

f

Raw 

Trial-shuffle

Cell #

5

15

T
ri
a

 l
#

–5

0

5

10 20 30 40 50

Avg.

Image Resp.

pattern

10

Single-trial response patterns of a set of overlapping cells (9 cells) in a FOV

R
e

c
o

n
s
tr

u
c
ti
o

n
 v

a
ri
a

b
ili

ty

a
c
ro

s
s
 t

ri
a

ls
 (

o
v
e

rl
a

p
p

in
g

 a
re

a
) 

% overlap cells used for

reconstruction (random order)

g N = 24 planes

Single-trial response patterns in a FOV (16 trials, 55 responsive cells)

0

5

R
e
s
p
o
n
s
e

0

5

R
e
s
p
o
n
s
e

0.05

0 50 100
0

0.1

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0 5 10
0

0.05

0.1

13

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14645-x

12 NATURE COMMUNICATIONS |          (2020) 11:872 | https://doi.org/10.1038/s41467-020-14645-x | www.nature.com/naturecommunications

http://pirsquared.org/research/#van-hateren-database
http://tabby.vision.mcgill.ca/html/welcome.html
http://tabby.vision.mcgill.ca/html/welcome.html
www.nature.com/naturecommunications


around centers of the original images. Some original images were downsampled
before the extraction of the center parts. We selected 200 images that had spatial
structure for the final stimulus set and did not include images that had less spatial
structure (e.g., almost flat image) and very high SF components throughout the
image (e.g., fine texture) by visual inspection. The pixel-to-pixel correlation
between images was 0.003 (−0.12–0.11) (median (25th–75th percentile), n= 200
images).

During image presentation, one image type was consecutively flashed three
times (three 200 ms presentations interleaved with 200 ms of a gray screen), and
the presentation of the next image was initiated after the presentation of the gray
screen for 200 ms. Images were presented in a pseudorandom sequence, in which
each image was presented once every 200 image types. Each image was presented at
least 12 times (i.e., 12 trials) for anesthetized and ~40 times for awake mice in the
entire recording session for one plane. We did not set a long interval between

Fig. 6 Reliable image representation across trials. a Examples of single-trial reconstructed images (top) and response patterns in a FOV (bottom). The

first panel is a stimulus image, and the last panel is a trial-averaged image. FOV size: 507 micron each side. The color code for each dot indicates the

response amplitude of each cell. b Single-trial evoked responses to the image in a. c Across-trial similarity of the reconstructed images (left) and the

response patterns of responsive cells (right). The across-trial similarity was the Pearson’s correlation coefficient between a single-trial reconstructed image

(or response pattern) and their trial average. d Across-trial variability of the reconstructed images (left) and the response patterns of responsive cells

(right). The normalized squared error between a single-trial image (or response pattern) and their trial average was computed for the across-trial

variability. e Reconstructed image from a set of overlapping cells (cell #1–9 in b). Upper left: stimulus image and trial-averaged reconstructed images from

the nine overlapping cells. Cyan dotted line: the overlapping area. Upper right: representation (reverse filters) of the overlapping cells. Red line: the

representation area. Cell #1 was the reference cell. Lower: single-trial representation patterns of three example cells (cell #1, 2, and 3) selected from the

overlapping cells. Bottom: single-trial reconstructed images (upper) and single-trial response patterns in an FOV (lower) obtained from the nine

overlapping cells. The brightness of each color dot in the lower panels indicates response amplitude of each cell. f Across-trial variability of a local part of

reconstructed image (cyan dotted line in e) against the number of overlapping cells used for the reconstruction in the example case in e. Thick and thin

lines are the median and 25th or 75th percentile, respectively (n= 200 random sequences of cell adding). g Across-trial variability against the percentage

of overlapping cells used for the reconstruction. Black lines: raw data. Orange lines: trial-shuffled data. Thick and thin lines are median and 25th or 75th

percentile, respectively. c, d, g N= 24 planes. The stimulus images in a and e are adapted from the database in ref. 56 with permission. Source data are

provided as a Source Data file.
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image flashes to reduce the total recording time and maximize the number of
repetitions. In this design, the tail of the Ca2+ response to one image invaded the
time window of the next image presentation (Fig. 1b). Although this overlap may
have affected the visual responses to two adjacent images, the use of many trial
repetitions with the pseudorandom image sequences and the sparse responses to
natural images (Fig. 1) minimized the effects of response contamination between
two consecutive images.

In another set of experiments with anesthetized mice, we used different image
sets (1000–2000 images that did not contain the 200 images described above, n= 4
planes from three mice). The original images for these sets were derived from the
image datasets described above, the Caltech 101 dataset (http://www.vision.caltech.

edu/Image_Datasets/Caltech101/)58, a free image website (https://www.pakutaso.
com/), and images that we photographed. In experiments using these image sets,
each image was presented three to eight times.

Moving square gratings (eight directions, 0.04 cycles/degree, 2 Hz temporal
frequency, 60-degree patch diameter) were presented at the same position as the
natural image on the screen. Each direction was presented for 4 s interleaved by 4 s
of the gray screen. The sequence of directions was pseudo-randomized, and each
direction was presented ten times for anesthetized mice.

All stimuli were presented with PsychoPy59 on a 32-inch, gamma-corrected
liquid crystal display monitor (Samsung, Hwaseong, South Korea) with a 60-Hz
refresh rate, and the timing of the stimulus presentation was synchronized with the
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with permission. Source data are provided as a Source Data file.
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timing of image acquisition using a transistor–transistor logic pulse counter (USB-
6501, National Instruments).

The entire recording session for one plane was divided into several sub-sessions
(4–6 trials/sub-session and 15–25 min for each sub-session). Each sub-session was
interleaved by ~5–10 min of rest time, during which the slight drift of the FOV was
manually corrected. In anesthetized mice, the retinotopic position of the FOV was
confirmed with the grating patch stimuli during the rest time every two or three
sub-sessions, and the recording was terminated if the retinotopic position had
shifted (probably due to eye movement). The recordings were performed in one to
three planes of different depths and/or positions in each anesthetized mouse (1.7 ±
0.8 planes, mean ± standard deviation). In awake mice, the recording continued
independent of the eye position and terminated if the mouse showed any stressful
sign. The recording was performed in one plane per day, and one or two planes
were obtained from each awake mouse.

For the analyses described below, the natural images were scaled such that the
maximum (255) and minimum (0) intensities were 1 and −1, respectively, and the
gray intensity (127) was 0. A square (43 × 43 degrees) positioned in the center of
the natural image patch was extracted and downsampled to a 32 × 32-pixel image.
The downsampled image was used to analyze the Gabor features, response
predictions and image reconstructions.

Analysis of eye positions and treadmill rotations. Each eye image for the awake
mice was binarized based on pixel intensities. The contour of the binarized pupil
area was fitted with an ellipse whose center was used as the eye position (Fig. 8a, b).
The eye positions on the image were transformed to angular positions. In this
transformation, a previously reported value was used for the radius of the mouse
eye60. In the distribution of the eye position during the entire recording session, a
peak position was manually selected. Only the time points at which the eye was
within 3.5 degrees (or ~70 microns on the image) of the peak position were used
for all analyses described below (except for the time course extraction of the Ca2+

signal from the two-photon imaging data).
In the analysis of the treadmill rotation, position signals from the rotary

encoder on the treadmill were transformed to velocity and smoothed with a
Savitzky–Golay filter. Running periods were defined as periods during which the
velocity was >2 cm/sec.

Analysis of two-photon imaging data. All data analysis procedures were per-
formed using MATLAB (Mathworks, Natick, MA, USA). The recorded images
were phase-corrected and aligned between frames. The average image across
frames was used to determine the region of interests (ROIs) of individual cells.
After removing the slow SF component (obtained with a Gaussian filter with a
sigma of approximately five times the soma diameter), the frame-averaged image
was subjected to a template matching method in which the 2D, difference of
Gaussians (sigma1: 0.26 × soma diameter that was adjusted for zero-crossing at the
soma radius, sigma2: soma diameter) was used as a template for the cell body.
Highly correlated areas between the frame-averaged image and the template were
detected as ROIs for individual cells. ROIs were manually corrected via a visual
inspection. SR101-positive cells (putative astrocytes52) were removed from the ROI
in data of anesthetized mice. For data of awake mice, a cross-correlation image21

and a max-projection image across frames were also used for the ROI detection.
The time course of the calcium signal in each cell was computed as an average

of all pixels within an ROI. Signal contamination from an out-of-focus plane was
removed using a previously reported method54,61. Briefly, a signal from a ring-
shaped area surrounding each ROI was multiplied by a factor (contamination
ratio) and subtracted from the signal of each cell. In anesthetized mice, the
contamination ratio was determined to minimize the difference between the signals
from a blood vessel and the surrounding ring-shaped region multiplied by the
contamination ratio. The contamination ratios were computed for several blood
vessels in the FOV, and the mean value for several blood vessels was used for all
cells in the FOV. In awake mice, the contamination ratio was set to 0.7 for all cells
following a previous study40, because it was difficult to identify the blood vessels in
the GCaMP imaging.

After removing the out-of-focus signal, slow temporal frequency components
(>60 sec/cycle) were removed from the time course of each cell (a Gaussian low-cut
filter applied on the frequency domain for anesthetized data or a median low-cut
filter for awake data), followed by smoothing with the Savitzky–Golay filter (forth
order, 15 frame points length (~500 ms)). Then, the filtered time course (Ffiltered)
was transformed to ratio change (dF/F) by using the 20th percentile value across
frames (F) (dF/F = (Ffiltered− F)/F). Frame-averaged activity (dF/F) during 200 ms
baseline (six frames immediately before the stimulus) and during stimulus (average
of the last 200 ms for each stimulus period) were used for subsequent analyses. The
evoked response was obtained by subtracting the activity during baseline from that
during stimulus. In anesthetized mice, data for moving grating from one plane was
discarded because of a large drift of FOV during recording. In awake mice, only
data for images that contained at least six trials were used for subsequent analyses.

Analysis of visual responses. Visually responsive neurons were determined by
one-way ANOVA (p < 0.01) with a dataset of N stimuli and one baseline (mean
across stimuli) activity in each trial (size: N+ 1 activity × no. of trials, N: the

number of stimuli used for the analysis). To validate this criterion, ANOVA was
applied to a randomized dataset in which data labels were shuffled in each trial.
The false positive rate was only a small fraction of the percentage of the responsive
cells (anesthetized: 85% responsive cells and 1.0% false positive rate. Awake: 82%
responsive cells and 1.8% false positive rate).

For each responsive neuron identified by ANOVA, responsiveness for each
image was determined by using a t-test (p < 0.01, comparison of activity between
stimulus and baseline) and a trial-averaged evoked response (>10%). The evoked
response threshold was used to reduce the false positive rate (Supplementary
Fig. 1). The false positive rate was determined with the label-shuffled data. Without
the evoked response threshold, the false positive rate was relatively high compared
to the percentage of responsive cells per image (anesthetized: 3.2% for observed and
0.4% for shuffled data. Awake: 1.8% for observed and 0.3% for shuffled data). With
the 10% amplitude threshold, the false positive rate decreased (anesthetized: 2.5%
for observed and 0.1% for shuffled data. Awake: 1.5% for observed and 0.1% for
shuffled data, Supplementary Fig. 1). Thus, we used the 10% evoked response
threshold. For the dataset with 1000–2000 stimulus images (dataset 2), responsive
cells were not determined because of fewer trials.

The population sparseness (s) was computed using the equation described in

previous studies2,3,62 as follows: s ¼ ½1� ð
P

RiÞ2=ðNcell

P

Ri2Þ�=ð1� 1=NcellÞ,
where Ri is the evoked response of the ith cell, and Ncell is the number of cells (i=
1, …, Ncell). Z-scored evoked responses were used in the following analyses,
including response prediction and image reconstruction (z-score was computed
with responses across stimuli and trials in each cell).

Gabor features. A set of spatially overlapping Gabor filter wavelets (n= 1248
filters) with an almost self-inverting feature was prepared to extract the visual
features of the natural images10,63,64. The downsampled images were first subjected
to the set of Gabor filters to obtain Gabor feature values. A single feature value
corresponds to a single wavelet filter.

Gabor filters have four orientations (0, 45, 90, and 135 degrees), two phases, and
four sizes (8 × 8, 16 × 16, 32 × 32, and 64 × 64 pixels) located on 11 × 11, 5 × 5, 3 ×
3, and 1 × 1 grids (Fig. 2a, b). Therefore, the three smaller scale filters spatially
overlapped with each other. The spatial frequencies of the four scale sizes of the
Gabor wavelets were 0.02, 0.04, 0.09, and 0.18 cycle/degrees (cpd).

The Gabor filter set was almost self-inverting63, i.e., the feature values obtained
by applying an image to the wavelet set could be transformed to the image by
summing the filters after multiplying by the feature values.

F ¼ Gfwd I ð5Þ

I0 ¼ Grev F ð6Þ

In Eq. (5) (corresponding to Eq. (1) in the main text), F is the feature value
matrix (matrix size: f × s; f: the number of features, 1248, and s: the number of
images), Gfwd is the Gabor filter matrix that transforms images to feature values, in
which each row contains the reshaped 2D-Gabor filters (f × p; p: the number of the
image pixels, 1024), and I is the downsampled stimulus image matrix (p × s). In Eq.
(6) (corresponding to Eq. (4)), I′ is the reconstructed image matrix (p × s) from F,
and Grev is the Gabor filter matrix that transforms the features to images (p × f). In

an ideal situation, G�1
fwd equals GT

fwd (i.e., Grev=GT
fwd . A

−1 and AT are inverse and
transposed matrices of A, respectively.), resulting in I′ equaling I (ref. 63). However,
our Gabor transformation was not perfect; the pixel-to-pixel correlation between I
and I′ was 0.93 ± 0.026 (mean ± standard deviation, n= 200 images). To minimize
the effect of this information loss on the evaluations of image reconstruction
performance (see below), we used I′ instead of I as the target images for the

evaluation of image reconstruction. The Grev in Eq. (6) was different from GT
fwd in

Eq. (5) in terms of scaling; Grev= α GT
fwd (α: scaling factor. α was computed to

minimize the sum of the mean squared error between I′ and I). The Gabor filters
and the transformations were based on an open source program (originally written
by Dr. Daisuke Kato and Dr. Izumi Ohzawa, Osaka University, Japan, https://
visiome.neuroinf.jp/modules/xoonips/detail.php?item_id=6894).

Encoding model (response prediction model). In the encoding model, single-cell
responses (Rk = [Rki], k: cell number and i: trial number across stimuli and trials.
Size: 1 × Ntrial; Ntrial: the number of trials across stimuli and trials) were predicted
using linear regression analysis of the selected Gabor feature values (Fselect= [Fji], j:
selected Gabor feature number. Size: fselect × Ntrial; fselect: number of selected fea-
tures, Fig. 2a–c, Supplementary Fig. 2a, b).

Rk ¼ NLðWk Fselect þ bkÞ ð7Þ

where Wk (=[Wkj]; size: 1 × fselect) is the weight vector, Fselect (fselect ×Ntrial) is the
matrix of selected feature values, bk (size: 1 × 1) is bias, and NL() is the nonlinear
scaling function (Eq. (7) corresponds to Eq. (2)). The encoding model was created
independently for each cell. The features used in the regression were determined as
follows. First, Pearson’s correlation coefficients between the response and feature
values were computed for each feature. Then, using one of the preset values for the
correlation coefficient as a threshold (13 points ranging from 0.05 to 0.35, Sup-
plementary Fig. 2a, b), only the more strongly correlated features were selected
(feature selection) and used in the regression analysis. Wk and bk were estimated to
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minimize the loss function:
P

Rk � WkFselect þ bk
� �� �2

þ λ
P

Wk2 (λ: regulariza-

tion parameter). This was solved by using Bayesian linear regression with an
expectation-maximization algorithm that is approximately equivalent to linear
regression with L2 regularization65. After the regression analysis, the nonlinearity
of the predicted response was adjusted with a rectification step using the following
function34: NL(x)= A/[1+ exp(Bx+ C)]+D, where A, B, C, and D are parameters
estimated using a built-in Matalb function (lsqnonlin). This step merely scaled the
regression output without changing the regression parameters (Wk and bk).

The response prediction performance of the model was estimated by ten-fold
CVs, in which the response data for 90% images were used to estimate the
parameters, and the remaining data for 10% images were used to evaluate the
prediction, (thus, Wk and bk were estimated and fixed in each CV). In the ten-fold
CVs, all images were used once as test data. The prediction performances were
estimated using Pearson’s correlation coefficients between the observed (trial
average) and predicted responses. Encoding models were created for all preset
threshold values for feature selection, and the model that exhibited the best
prediction performance was selected as the final model.

In the analysis of overlapping weights (i.e., feature) between two cells, the
percentage of overlapping weights relative to the number of non-zero weights was
computed for each cell and averaged between the two cells in the pair.

Using the same dataset as used in the encoding model, the RF structure was
estimated for each cell using a regularized inverse method32–34 that employs one
hyper parameter (regularized parameter). In the ten-fold CVs, the RF structure was
estimated with the training dataset using one of the preset regularized parameters
(13 logarithmically spaced points between 10−3 and 103). The visual response was
predicted using the estimated RF and test dataset. The prediction performance of
visual response was estimated by determining Pearson’s correlation coefficients
between the observed and the predicted responses. RFs were estimated for all
values of the preset regularized parameters, and the value that resulted in the best
predicted response was selected for the final RF model.

Image reconstruction. For image reconstruction, the feature values obtained from
each Gabor filter were linearly regressed by the single-trial activity of multiple cells.
For each Gabor feature,

Fj ¼ HjRþ cj ð8Þ

where F j (= [Fji]) is the feature value from the jth Gabor filter (j: Gabor feature
number, i: trial number across stimuli and trials. Size: 1 × Ntrial; Ntrial: the number
of trials across stimuli and trials), H j (=[Hjk]. Size: 1 × Ncell. Ncell: the number of
cells) represents the weights, and R (=[Rki]. k: cell number. Size: Ncell × Ntrial). is
the response matrix. In the ten-fold CVs, the weights, H j, and a bias, c j, were

estimated to minimize the loss function:
P

ðF j � ðHj Rþ c jÞÞ2 þ λ
P

H j2 , which
was solved by using Bayesian linear regression with an expectation-maximization

algorithm with the training dataset. Then, each Gabor feature value ðF̂
j
Þ was

reconstructed from the visual responses in the test dataset (ten-fold CV with the
same data split as that in the encoding model. H j and c j were estimated and fixed
in each CV). After each Gabor feature was independently reconstructed, sets of

reconstructed feature values (F̂ ¼ ½F̂
1
; ¼ ; F̂

1248
�. Size: f ×Ntrial) were transformed

into images using Eq. (6).
In the all-cell model, each feature was reconstructed using all cells (Fig. 3a, left

panel). In the cell-selection model, each feature was reconstructed using a subset of
cells. For each feature reconstruction, cells were selected using the encoding model;
if a cell was represented by jth feature in the encoding model (i.e., non-zero weight
in jth feature in the Eq. (7)), the cell was selected for the jth feature reconstruction
(Fig. 3a, right). In other words, each cell participated in the reconstruction of
features that the cell encoded. When none of the cells were selected for feature
reconstruction, the feature value was set to 0.

Reconstruction performance was evaluated using pixel-to-pixel Pearson’s
correlation coefficients (R) and coefficients of determination (CD) between the
stimulus and reconstructed images. CD was computed using the following

equation: CD ¼ 1�
P

ðI0 � ÎÞ2=
P

ðI0 � I0meanÞ
2 (̂I: image reconstructed by the

model, I′: stimulus image obtained by the transformation and reconstruction of the
Gabor filters (Eq. (6)), and I0mean : mean pixel intensity of I′). R indicates the

similarity of the image patterns between Î and I′, and CD indicates the goodness of

model prediction reflecting differences in pixel intensities between Î and I′.
The cell-selection described above (i.e., feature selection in the encoding model)

should overestimate the reconstruction performance because the test dataset was
used for both the cell-selection and the performance evaluation of the
reconstruction model. To precisely evaluate the performance of the cell-selection
model, we used nested CV for the cell selection; a dataset was separated into 10%
test, 9% validation, and 81% training sets, and the cell selection was performed with
the validation and training sets. Then, the performance of the reconstruction model
that was trained with both the validation and training sets was evaluated using the
test dataset. The performance of the reconstruction model with nested CV was
similar to that of the model without nested CV (Supplementary Fig. 4).

In the analysis of the overlapping weights (i.e., feature) between cells, the
percentage of overlapping weights relative to the number of non-zero weights was
computed for each cell and averaged between the two cells in the pair.

We independently obtained the weights of the image reconstruction model (H
= [H1;…; H1248], size: f × Ncell), the weights of encoding model (W = [W1; …;
WNcell]T, size: f × Ncell) and RF by the pseudoinverse method. We chose the scheme
of the image reconstruction model to optimally reconstruct the image by a
population of neurons. In the image reconstruction model, H was estimated to
directly optimize the image reconstruction considering the responses of multiple
cells. By contrast, in the encoding model (or RF estimation), weights were
estimated independently in each cell without considering the other cells’ responses.
Because H was likely to be more optimized to represent images with multiple cells
than W or RF, we chose the model scheme for the image reconstruction.

Reconstruction performance against the number of features. In the analysis in
Supplementary Fig. 5a–c, the cell-selection model was used for the image recon-
struction. In the cell-selection model, each neuron participated in the recon-
structions of a small number of features that were strongly correlated with the
neuron’s responses. In the cell-selection model shown in Fig. 3 (the original
model), the threshold for the correlation coefficient was selected based on the
encoding model for each neuron (Fig. 3a, right panel). For each neuron, the
threshold of the correlation coefficient was adjusted to increase (or decrease) the
number of features for which each neuron participated in their reconstruction
(0.1–20-fold change in the number of features per neuron relative to the original
model, Supplementary Fig. 5a–c). For each fold change, the reconstruction model
was trained with training data (i.e., weights and bias parameters were estimated in
each fold change of the number of features), and the performance was estimated
with test data using ten-fold CV as described above.

Image reconstruction from a small number of cells. In the analyses shown in
Figs. 4a–h and 5a, b, cells in each image were separated into responsive and
remaining cells and sorted by their response amplitude in descending order (i.e.,
from highest to lowest response amplitude). Then, the cells were selected first from
the responsive cells and then from the remaining cells for the addition (Fig. 4a–h)
or dropping (Fig. 5a, b). The analyses only used data for images including at least
ten responsive cells in Fig. 4a–h and at least five responsive cells in Fig. 5a–d.

In the image reconstruction from a subset of cells for each image (Figs. 4–6), the
weights of the cell-selection model (H ¼ ½H1; ¼ ;H1248�, f × Ncell) were scaled
because H was estimated by more cells than the cells used during the cell addition
or removal.

F0 ¼ a0HR0 þ c ð9Þ

where F′ (f × Ntrial) is the matrix of all reconstructed feature values, H and c
([¼ ½c1; ¼ ; c1248�; f × 1) are the weight and bias matrices of the cell-selection
model in Eq. (8), respectively, R′ is a response matrix that includes a subset of cells
used for each image reconstruction (i.e., the responses of non-selected cells were set
to 0), and a′is a free parameter that is obtained to minimize the sum of squared
error between the original and reconstructed feature values across all features and

stimuli of the training dataset in each CV:
P

ðF0 � FÞ2 (F: a matrix of features of
the regression target). Because a′ is common across all features, this scaling did not
change the weight pattern of the cell-selection model. Then, images were
reconstructed from F′ using Eq. (6) as described above. In the reconstruction from
a subset of cells (Figs. 4–6), a′ (i.e., weights, a′ ×H) was estimated independently
for each subset of cells, and a different set of cells was used for each image.

Robustness of image reconstruction against cell drop. In the analysis of
robustness (Fig. 5c–f), a representation area for each cell was determined using the
z-scored reverse filter (sum of weights × Gabor filters). The representation area was
defined as a cluster of pixels whose absolute z-scores were >1.5 and whose contours
were smoothed (e.g., red contours in Fig. 5c and Supplementary Fig. 6a). If multiple
areas were obtained, the largest was used. Then, using the representation area, the
overlap index was computed between responsive cells for each stimulus; overlap
index= (A ∩ B)/(A ∪ B), where (A ∩ B) is the overlapping representation area
between cell A and cell B, and (A ∪ B) is a combined representation area between
cell A and cell B (Supplementary Fig. 6a). Using the overlap index, a set of over-
lapping cells was selected for each responsive cell; the overlapping cells consisted of
one responsive cell (the reference cell) and the responsive cells that overlapped with
the reference cell (overlap index > 0.2). This analysis did not care whether other
overlapping cells overlapped with each other or with other non-selected cells.

To evaluate the effects of cell drop, cells were randomly removed from among
the overlapping cells, and the reconstructed image was computed after each cell
was dropped. The reference cell was initially removed, and then other remaining
overlapping cells were removed in each cell drop sequence. Changes in the
reconstructed images were estimated by quantifying the pixel-to-pixel correlation
(R) of a local part of the image. The local part of the image was determined as the
representation area of the reference cell that was overlapped by the area of at least
one of the other overlapping cells (overlapping area in Fig. 5c). This random
dropping of overlapping cells was repeated 120 times, and the results were averaged
across the random orders for each reference cell. All responsive cells were used
once as the reference cell for each stimulus image. This analysis only used data for
images that included at least five responsive cells and sets of overlapping cells that
included at least five overlapping cells.
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Across-trial similarity and variability. To estimate the reliability of the recon-
structed images (or response patterns) across trials, two measures were used:
across-trial similarity and across-trial variability. For the across-trial similarity of
the reconstructed images (or response patterns; Fig. 6c), Pearson’s correlations
between single-trial reconstructed images (or response patterns) and their trial
average were computed and averaged across trials.

For the across-trial variability (Fig. 6d–g), the normalized squared error
between single-trial images (or response patterns) and trial-averaged images (or
response patterns) were computed using the following equation,

Across-trial variability ¼

P

t

P

uðAt;u � AuÞ
2=ðNuðNtrial � 1ÞÞ

Ntrial

P

uðAu � �AÞ2=ðNu � 1Þ
ð10Þ

At,u: single-trial reconstructed image or response pattern, t: trial number, u:
pixel or cell number, Au: trial-averaged reconstructed image or response pattern,
�A :mean of Au across pixels or cells, Nu: number of pixels or cells, Ntrial: number of
trials, ∑: summation across trials, and ∑: summation across pixels or cells. In this
variability measure, we first computed the squared error between At,u and Au (i.e.,

ð
P

t

P

u ðAt;u � AuÞ
2Þ=Ntrial, which reflects deviations of single-trial images or

responses from that of trial average) and averaged across trials. However, this
squared error could be larger when the pixel intensities are larger in the
reconstructed image or when the response amplitudes are larger in the cell
population. To control this problem, this squared error was normalized by another

squared error between Au and �A (i.e.,
P

u Au � �Að Þ
2
, which reflects deviations of

pixels’ intensity or cells’ responses from the mean value across pixels or cells in the
trial-averaged data). To correct differences between the number of pixels and cells
(i.e., the number of degrees of freedom), each squared error was divided by the
degree of freedom (Nu Ntrial � 1ð Þ for numerator and (Nu− 1) for denominator),
following the correction of squared error by degree of freedom in ANOVA wherein
pixels or cells correspond to groups and trials correspond to samples. This across-
trial variability equals the inverse of the F-value in the ANOVA.

In the analysis depicted in Fig. 6f, g, the overlapping cells were selected as
described above for each responsive cell (i.e., the reference cell; see the section titled
“Robustness of image reconstruction against cell drop”). The reference cell was
initially selected, and then other overlapping cells were randomly selected for a set
of cells that were used for image reconstruction (the sequences of random cell
selection were repeated 200 times.). The image was reconstructed from the subset
of overlapping cells, and across-trial variability of a local part (i.e., overlapping
area) of the reconstructed image was computed for each subset of cells. Only data
for images that contained at least five responsive cells were used in the analyses in
Fig. 6.

Noise correlation. In the analysis depicted in Supplementary Fig. 7, the noise
correlation was computed using the responses across stimuli. Evoked responses to
each stimulus image were transformed to z-scores and collected across stimuli in
each cell. Then, Pearson’s correlation coefficient was computed between the col-
lected responses in a cell pair and used as the noise correlation. To remove the
noise correlation, responses to each stimulus were shuffled across trials indepen-
dently in each cell. Using the shuffled data, an image reconstruction model was
obtained as described above for the analyses in Fig. 6g, Supplementary Fig. 7g–i, p–
r, and Supplementary Fig. 9f.

Capacity for image representation of encoded features. The analysis in
Fig. 7e–g illustrates whether the features encoded by responsive cells could
represent images as a basis function independent of actual neural responses. If the
features encoded by responsive neurons can represent any image, a set of features
of a given image (F) will be linearly regressed by the weights of the responsive cells
in the cell-selection model, H (¼ ½H1; ¼ ;H1248�, f × Ncell; Hk in Eq. (8)),

F ¼ HBþ dþ e ð11Þ

where B and d are free parameters that are calculated to minimize the sum of the

squared error,
P

ðF� ðHBþ dÞÞ2 , and e is an error term. F was selected from a
test dataset, and H was obtained from a training dataset in the ten-fold CV. The
fitting was evaluated by calculating the fitting error (Error) on the image space as
follows:

I0 ¼ Grev F ð12Þ

Î ¼ Grev F̂ ð13Þ

F̂ ¼ HBþ d ð14Þ

Error ¼
X

I0 � Î
� �2

=
X

I0 � I0mean

� �2
´ 100 ð15Þ

where Grev is the Gabor filter matrix used for reconstruction (Eq. (6)), and I0mean is
the mean pixel intensity of I′. Thus, this analysis estimates how well the features of
individual neurons in a local population could represent the image features inde-
pendent of actual neuronal activity. In other words, this analysis estimates the
upper-bound capacity of a local population to represent any image with an ideal
combination of cell features (with parameters B and d).

Effects of locomotion state on image reconstruction. Because the awake mice
were not trained to run, they often stayed calmly during imaging. In the analyses
shown in Supplementary Fig. 11, we included only data from two planes in one
mouse (Thy1-GCaMP6s mouse) that ran relatively frequently. Furthermore, we
used only data for images that contained at least five responsive cells, four running
trials, and four resting trials (80 image cases, n= 295 responsive cells). The running
modulation index (RMI) for each cell was defined as follows: RMI= (Rrun− Rrest)/
(Rrun+ Rrest), where Rrun and Rrest were the mean evoked responses during run-
ning and resting, respectively. RMI was computed in each responded image and
averaged across images in each cell. Image reconstruction was performed using
data with both conditions, and the performances were collected separately in each
condition (Supplementary Fig. 11d, e).

Statistical analyses. All data are presented as the median and 25th–75th per-
centiles unless indicated otherwise. The significant level was set to 0.05, with the
exception of the criteria of significant visual response (0.01). When more than two
groups were compared, the significant level was adjusted with the Bonferroni
correction except for the visually responsive cell analysis. Two-sided test was used
in all analyses. The experiments were not performed in a blind manner. The sample
sizes were not predetermined by any statistical methods but are comparable to the
sample size of other reports in the field.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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