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Natural Induction:
An Objective Bayesian Approach

James O. Berger, Jos é M. Bernardo and Dongchu Sun

Abstract. The statistical analysis of a sample taken from a finite population is a classic problem for
which no generally accepted objective Bayesian results seem to exist. Bayesian solutions to this problem
may be very sensitive to the choice of the prior, and there is no consensus as to the appropriate prior to
use.

This paper uses new developments in reference prior theory to justify and generalize Perks (1947)
([15]) ‘rule of succession’ — determining the probability that anew element from a population will have
a property, given thatall n previous elements from a random sample possessed the property — and to
propose a new objective Bayesian solution to the ‘law of natural induction’ problem — determining the
probability that all elements in a finite population have theproperty, given that all previous elements had
the property.

The prior used for the first problem is the reference prior foran underlying hypergeometric probability
model, a prior first suggested by Jeffreys (1946) ([10]) and recently justified on the basis of an exchange-
ability argument in Berger, Bernardo and Sun (2009) ([4]). The reference prior in the second problem
arises as a modification to this prior that results from declaring the quantity of interest to be whether or
not all the elements in the finite population have the property under scrutiny.

Inducci ón en las Ciencias de la Naturaleza:
Una Soluci ón Bayesiana Objetiva

Resumen. El análisis estadı́stico de una muestra aleatoria extraı́da de una población finita es un prob-
lema clásico para el que no parece existir una solución bayesiana generalmente aceptada. Las soluciones
bayesianas a este problema pueder ser muy sensibles a la elección de la distribución inicial, y no existe
consenso sobre la distribución inicial que deberı́a ser utilizada.

En este trabajo se hace uso de desarrollos recientes del análisis de referencia para justificar y gene-
ralizar la solución de Perks (1947) ([15]) a la ‘regla de sucesión’ — la probabilidad de que un nuevo
elemento de la población tenga una propiedad sitodoslos elementos de una muestra aleatoria la tienen
— y para proponer una nueva solución bayesiana objetiva a la‘ley de inducción natural’, — la proba-
bilidad de que todos los elementos de una población finita tengan una propiedad si todos los elementos
de la muestra la tienen. La distribución inicial utilizadapara el primer problema es la distribución de
referencia para el modelo probabilı́stico hipergeométrico subyacente, una distribución inicial sugerida
por Jeffreys (1946) ([10]) y recientemente justificada utilizando un argumento de intercambiabilidad en
Berger, Bernardo and Sun (2009) ([4]). La distribución de referencia para el segundo problemase obtiene
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como resultado de modificar la distribución anterior al declarar que el problema de interés es determinar
si es o no es cierto que todos los elementos de una población finita tienen la propiedad objeto de estudio.

1 The Problem

The “rule of succession” and “law of natural induction” (seebelow for definitions) have been discussed for
hundreds of years by scientists, philosophers, mathematicians and statisticians. Zabell (1989, 2005) ([18,
19]) gives introductions to much of the more quantitative sideof this history, as well as providing numerous
modern insights.

Our focus here is primarily technical: to produce the specific “rule” and “law” that arise from adopting
the reference priorapproach to objective Bayesian analysis, as this approach has proven itself to be quite
successful in a wide variety of contexts (see Bernardo, 1979, 2005 ([5, 7]); Berger and Bernardo, 1992 ([2]);
and Berger, Bernardo and Sun, 2009 ([3, 4]), for discussion).

Sampling from a finite population.The most common statistical framework in which these subjects are
discussed is that of a finite population of sizeN , where the interest centers onR, the unknown number of
elements from the population which share a certain property. For instance, the population may consist of
a batch ofN recently produced items,R of which satisfy the required specifications and may therefore be
safely sold, or it may consist of a population ofN individuals,R of which share some genetic characteristic.
The elements which share the property under analysis will becalled conforming, and the event that a
particular element in the population is conforming with be denoted by+. Given the information provided
by a random sample of sizen (without replacement) from the population with has yieldedr conforming
items, interest usually centers in one of these problems:

• The proportionθ = R/N of conforming items in the population.

• The probabilityPr(+ | r, n, N) that an element randomly selected among the remaining unobserved
N − n elements turns out to be conforming. The particular casePr(+ | r = n, n, N), that the next
observed item is conforming, given that the firstn observed elements are conforming, is commonly
referred to as therule of succession.

• The probabilityPr(All + |n, N) that all the elements in the population are conforming given that
the firstn observed elements are conforming. This is commonly referred to as thelaw of natural
induction.

The probability model for the relevant sampling mechanism is clearly hypergeometric, so that

Pr(r |n, R, N) = Hy(r |n, R, N) =

(

R
r

)(

N−R
n−r

)

(

N
n

)

, (1)

wherer ∈ {0, . . . , min(R, n)}, 0 ≤ n ≤ N , and0 ≤ R ≤ N .
Bayesian solutions to the problems described above requirespecification of a prior distributionPr(R|N)

over the unknown numberR of conforming elements in the population. As will later become evident,
these solutions are quite sensitive to the particular choice of the priorPr(R |N). Note, however, that
non-Bayesian solutions to these problems are very problematical, in part because of the discreteness of
the problem and the fact that the interesting data outcome — all n observed elements are conforming — is
extreme and, in part, because of structural difficulties with non-Bayesian approaches inconfirminga precise
hypothesis such as “all the elements in a population are conforming.”

Predictive and posterior distributions.If Pr(R |N), R = 0, . . . , N , defines a prior distribution forR,
the posterior probability ofR conforming elements in the population having observedr conforming ele-
ments within a random sample of sizen is, by Bayes theorem,

Pr(R | r, n, N) =
Hy(r |n, R, N) Pr(R |N)

Pr(r |n, N)
, (2)
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for R ∈ {r, . . . , N − n + r}, and zero otherwise, where

Pr(r |n, N) =
N−n+r

∑

R=r

Hy(r |n, R, N) Pr(R |N) (3)

is the predictive distribution for the numberr of conforming elements in a random sample of sizen. Since,
givenN , the discrete parameterθ = R/N , for θ ∈ {0, 1/N, . . . , 1}, is a one-to-one transformation ofR,
the corresponding posterior ofθ is justπ(θ | r, N, n) = Pr(Nθ | r, N, n).

Rule of succession.By the total probability theorem, the probability that an element randomly selected
among the remaining unobservedN − n elements is conforming is

Pr(+ | r, n, N) =

N−n+r
∑

R=r

R − r

N − n
Pr(R | r, n, N). (4)

In particular, the probability of the eventEn that something which has occurredn times and has not hitherto
failed to occur (so thatr = n) will occur again is

Pr(En |N) = Pr(+ | r = n, n, N) (5)

which, for many commonly used priors, turns out to be independent of the population sizeN . This is
commonly referred to as the rule of succession. Asn increases,Pr(En |N) converges quickly to one for
all N for commonly used priors. This agrees with the usual perception that, if an event has been observed
for a relatively large uninterrupted number of times, it is very likely that it will be observed again in the
next occasion.

Law of natural induction.The posterior probability that all theN elements in the population are con-
forming given that all then elements in the sample are, is

Pr(All + |n, N) = Pr(R = N | r = n, n, N). (6)

In typical applications,n will be moderate andN will be much larger thann. For many conventional
priors,Pr(All + |n, N) would then be very small, and this clearly conflicts with the common perception
from scientists that, asn increases,Pr(All + |n, N) should converge to one, whatever the (often very large)
value ofN might be. A formal objective Bayesian solution to this problem, typically known as the law of
natural induction, is the main objective of this paper, and will require following a suggestion of Jeffreys.

2 Conventional Objective Bayesian Inference

Both Bayes (1763) [1] and Laplace (1774, 1812) [13, 14] utilized a constant prior for unknowns. SinceR
may takeN + 1 different values, the constant prior is thus the uniform distribution

πu(R |N) =
1

N + 1
, R = 0, . . . , N. (7)

We first review the analysis for this conventional objectiveprior, as given in Broad (1918) ([9]).

Predictive and posterior distributions.The corresponding predictive distributionπu(r |n, N) for the
numberr of conforming elements in a random sample of sizen is

πu(r |n, N) =
1

N + 1

N−n+r
∑

R=r

Hy(r |n, R, N) =
1

n + 1
,
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for r = 0, . . . , n, a uniform distribution over itsn+1 possible values, which is therefore independent ofN .
Substituting into (2), the corresponding posterior distribution forR is

πu(R | r, n, N) =
n + 1

N + 1
Hy(r |n, R, N) =

(

R
r

)(

N−R
n−r

)

(

N+1
n+1

)

, (8)

for R ∈ {r, . . . , N − n + r}, and zero otherwise. In particular, the posterior probability that all theN
elements in the population are conforming, given that all then elements in the sample are conforming, is

πu(All + |n, N) = πu(R = N | r = n, n, N) =
n + 1

N + 1
, (9)

which is essentially the ratio of the sample size to the population size. Notice that, whenn is much smaller
thanN as will often be the case,πu(All + |n, N) will be close to zero even for large values of the sample
sizen.

Law of succession.From (4), the probability that an element randomly selected from among the re-
maining unobservedN − n elements is conforming given the uniform prior (7), so thatPr(R | r, n, N) is
given in (8), reduces to

πu(+ | r, n, N) =

N−n+r
∑

R=r

R − r

N − n

(

R
r

)(

N−R
n−r

)

(

N+1
n+1

) =
r + 1

n + 2
. (10)

This is usually known as Laplace’s rule of succession, although Laplace (1774) ([13]) did not consider
the case of finiteN and only derived (10) for its continuous binomial approximation without apparently
realizing that this is also an exact expression for finiteN , a result established by Broad (1918) ([9]). In
particular, with the uniform prior (7), the probability of the eventEn that something which has occurredn
times and has not hitherto failed to occur (so thatr = n) will occur again is

πu(En) = πu(+ | r = n, n, N) =
n + 1

n + 2
, (11)

which is independent of the population sizeN . As n increases,πu(En) quickly converges to one.
Notice the dramatically different behaviour of the seemingly related Equations (9) and (11). In typical

applications,n will be moderate andN will be much larger thann; if this is the case,πu(All + |n, N)
will be close to zero, butπu(En) will be close to one. Thus, if an event has been observed for a relatively
large number of uninterrupted times, and the uniform prior (7) is used for both problems, one obtains that
it is very likely that it will be observed again in the next occasion, but quite unlikely that it willalwaysbe
observed in the future.

3 Reference Analysis of the Hypergeometric Model

The conventional use of a uniform prior for discrete parameters can ignore the structure of the problem
under consideration. For the hypergeometric model, where the values ofR are actual numbers, not merely
labels, there is arguably a clear structure. Indeed, for large N it is well known that the hypergeometric
distribution is essentially equivalent to the binomial distribution with parameterθ = R/N . The objective
prior for R should thus be compatible with the appropriate objective prior for θ in a BinomialBi(r |n, θ)
model; this is commonly chosen to be the corresponding Jeffreys (and reference) prior, which is the (proper)
distribution

πr(θ) = Be(θ | 1

2
, 1

2
) =

1

π

1
√

θ (1 − θ)
, 0 < θ < 1. (12)

As N increases, the uniform prior (7) remains uniform, and this is clearly not compatible with (12).
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Similar reasoning led Jeffreys (1946, 1961) ([10, 12]) to suppose that theR conforming items arose as a
random sample from a binomial population with parameterp (which can be thought of as the limiting value
of θ = R/N asN → ∞), and then assignp the Jeffreys prior in (12). This hierarchical structure can be
justified on the basis of exchangeability, as observed in Berger, Bernardo and Sun (2009) ([4]) (which also
generalized the approach to other discrete distributions). The resulting induced reference prior forR is

πr(R |N) =
1

π

Γ(R + 1

2
) Γ(N − R + 1

2
)

Γ(R + 1)Γ(N − R + 1)
, R ∈ {0, 1, . . . , N}, (13)

which may also be written as

πr(R |N) = f(R) f(N − R), R ∈ {0, 1, . . . , N}, (14)

where

f(y) =
1√
π

Γ(y + 1/2)

Γ(y + 1)
, y ≥ 0 . (15)

As will later become evident, the positive, strictly decreasing function defined by (15) occurs very frequently
in the derivations associated to the problems analyzed in this paper. SinceΓ(1/2) =

√
π, f(0) = 1.

Moreover, using Stirling’s approximation to the Gamma functions, it is easily seen that, for largey,

f(y) ≈ 1√
π

1√
y

,

so that ifR andN − R are both large, one has

πr(R |N) ≈ 1

π

1
√

R (N − R)
.

ForN = 1, the reference prior (14) is the uniform priorπr(R |N = 1) = {1/2, 1/2}, for R ∈ {0, 1},
as one would certainly expect, but this is theonly case where the reference prior for the hypergeometric
is uniform. Indeed, using Stirling’s approximation for theGamma functions in (13) one gets, in terms of
θ = R/N ,

πr(θ |N) ≈ 1

N + 2

π

Be

(

N θ + 1

π

N + 2

π

∣

∣

∣

∣

1

2
, 1

2

)

, θ = 0, 1/N, . . . , 1, (16)

which is basically proportional toBe(θ | 1

2
, 1

2
), and hence compatible with the reference prior for the con-

tinuous limiting modelBi(r |n, p) with p = limN→∞ R/N .

Reference predictive and posterior distributions.Using (3), the reference prior predictive distribution
of the numberr of conforming items in a random sample of sizen is

Pr(r |n, N) =

N
∑

R=0

Hy(r |R, N, n)πr(R |N)

=
1

π

Γ(r + 1

2
) Γ(n − r + 1

2
)

Γ(r + 1)Γ(n − r + 1)

= f(r) f(n − r) = πr(r |n),

which is independent of the population sizeN . Notice that, as in the case of the uniform prior, the reference
prior predictive distribution ofr givenn has precisely the same mathematical form as the reference prior
of R givenN , πr(R |N).

Furthermore, using (2) and the last result, the reference posterior distributionof R turns out to be

πr(R | r, n, N) =
c(r, n, N) Γ(R + 1

2
) Γ(N − R + 1

2
)

Γ(R − r + 1)Γ(N − R − (n − r) + 1)
, (17)

c(r, n, N) =
Γ(n + 1)Γ(N − n + 1)

Γ(N + 1)Γ(r + 1

2
) Γ(n − r + 1

2
)

.
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In particular, ifN = 2 andn = 1, this yields

πr(R | r = 0, n = 1, N = 2) = {3/4, 1/4, 0}, R = 0, 1, 2,

which may be compared with the corresponding result{2/3, 1/3, 0}, obtained from a uniform prior.
SubstitutingR = N andr = n into (17) and simplifying, the reference posterior probability that all

elements in the population are conforming, given that all elements in the sample are conforming, is

πr(All + |n, N) =
Γ(N + 1/2)

Γ(N + 1)

Γ(n + 1)

Γ(n + 1/2)
=

f(N)

f(n)
≈

√

n

N
. (18)

Thus,πr(All + |n, N) is basically the square root of the ratio of the sample size tothe population size, a
considerable contrast to the result(n + 1)/(N + 1) obtained in (9) for the uniform prior.

Rule of succession.From (4), the probability that an element randomly selected from among the re-
maining unobservedN − n elements is conforming, for the reference prior (13), reduces to

πr(+ | r, n, N) =

N−n+r
∑

R=r

R − r

N − n
πr(R | r, n, N) =

r + 1/2

n + 1
, (19)

which is independent ofN . Equation (19) provides the reference rule of succession, which was first ob-
tained by Perks (1947) ([15]) although, following Laplace, he only derived it for the limiting binomial
approximation (N = ∞ case), apparently not realizing that it was also an exact expression for any finite
population sizeN .

The reference rule of succession (19) may be compared with Laplace’s(r + 1)/(n + 2) of (10). In
particular, the corresponding reference probability of the eventEn — that something which has occurredn
times and has not hitherto failed to occur will occur — is, forany population sizeN ,

πr(En) = πr(+ | r = n, n, N) =
n + 1/2

n + 1
. (20)

As one would require, forn = 0 (and hence with no initial information), both (11) and (20) yield 1/2.
For n = 1, Laplace yields2/3 while the corresponding reference probability is3/4. It is easily verified
that, asn increases, the reference law of succession (20) has an appreciably faster convergence to one than
Laplace’s (11).

4 Natural Induction

In line with his early discussions on scientific enquiry (Wrinch and Jeffreys, 1921-23 ([17]), later expanded
in Jeffreys, 1931 ([11])), Jeffreys (1961, p. 128) ([12]) disagreed with the result (9) — and would also have
disagreed with (18) — arguing that, to justify natural induction, one should beable to demonstrate that a
law is probably correct for all elements of a population of size N , given that it has proven to be correct
in all of a very large numbern of randomly chosen instances, even ifn is appreciably smaller thanN . In
contrast, (9) and (18) can be quite small for largen if N is much larger thann. (Note that both (11) and (20)
are near1 for largen, but these probabilities refer to the eventEn that a further randomly chosen element
will obey the stated law, not to the event thatall elements in the population obey that law.)

To correct this problem, Jeffreys argued that the prior probability that all elements of the population have
the property,Pr(R = N), must be some fixed value independent ofN . He argued that this is reasonable,
asserting that any clearly stated natural law has a positiveprior probability of being correct, and he made
several specific proposals (Jeffreys, 1961, Sec. 3.2 ([12])) for the choice of prior probability. The simplest
choice is to letPr(R = N) = 1/2, and this is the choice arising from the reference analysis below. For a
recent review of Jeffreys’ ideas, see Robert, Chopin and Rousseau (2009) ([16]).

130



Objective Bayes Finite Population Sampling

Reference analysis.A solution to the natural induction problem that satisfies the scientific desiderata
described by Jeffreys may be obtained from a standard use of reference analysis, if the parameter of interest
is chosen to be whether or notR = N , rather than the actual value ofR. The result, described below, can
also be phrased in terms of testing the hypothesis thatR = N versus the alternativeR 6= N .

Lemma 1 Define the parameter of interest (in the reference prior analysis) to be

φ =

{

φ0 if R = N (All +),

φ1 if 0 ≤ R < N .

Then the corresponding reference prior,πφ(R |N), of the unknown parameterR is

πφ(R |N) =

{

1
2 if R = N
1
2

f(R) f(N−R)
1−f(N) if 0 ≤ R < N ,

wheref(y) is defined in(15).

PROOF. To have a representation of the unknown parameterR in terms of the quantity of interestφ and a
nuisance parameterλ, define

λ =

{

λ0 if R = N (All +),

R if 0 ≤ R < N .

The sampling distribution of the datar givenφ = φ1 is still the density

Pr(r |φ = φ1, λ 6= λ0, n, N) = Hy(r |n, R, N),

but nowR is restricted to the set{0, 1, . . . , N − 1}. The reference prior of a model with a restricted
parameter space is obtained as the restriction of the reference prior from the unrestricted model. Hence,
using the fact that

πr(N |N) =
Γ(N + 1/2)√
π Γ(N + 1)

= f(N),

the conditional reference prior ofλ givenφ = φ1 is the renormalized version of (14)

π(λ |φ = φ1, N) =
f(R) f(N − R)

1 − f(N)
. (21)

On the other hand,π(λ = λ0 |φ = φ0, N) = 1 since, givenφ = φ0, the nuisance parameterλ must be
equal toλ0. Moreover,φ has only two possible values and, therefore, its marginal reference prior is simply
π(φ = φ0) = π(φ = φ1) = 1/2. Hence, the joint reference prior of the unknown parameterR, whenφ is
the quantity of interest, isπφ(R |N) = π(λ |φ, N)π(φ), which yields the conclusion. �

Using this prior, the required reference posterior probability of the event{All +} that allN elements
in the population are conforming(R = N), given that allr elements in a random sample of sizen are
conforming(r = n), is found in the following result.

Theorem 1

πφ(All + |n, N) =

(

1 +
f(n) − f(N)

1 − f(N)

)−1

, (22)

wheref(y) is defined in(15).
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PROOF. Note that

πφ( All + |n, N) = πφ(φ = φ0 | r = n, N)

=
1

2
Pr(r = n |φ = φ0, n, N)

1

2
Pr(r = n |φ = φ0, n, N) + 1

2
Pr(r = n |φ = φ1, n, N)

=
(

1 + Pr(r = n |φ = φ1, n, N)
)−1 ,

sincePr(r = n |φ = φ0, n, N) is obviously one. By the total probability theorem,

Pr(n |φ = φ1, n, N) =

N−1
∑

R=n

Pr(n |φ = φ1, R, n, N)πφ(R |φ = φ1, N)

and, using the fact that, for allN ,

Pr(r = n |n, N) =

N
∑

R=n

Hy(n |n, R, N) πr(R |N,M) =
1√
π

Γ(n + 1

2
)

Γ(n + 1)
= f(n) ,

it is easily shown that

Pr(r = n |R < N, n, N) =
f(n) − f(N)

1 − f(N)
.

The conclusion is immediate. �

Hence, for large population sizes,f(N) ≈ 0 and, as a consequence, the reference posterior probability,
πφ(R = N | r = n, N), that allN elements in the population are conforming, given that all elements in a
sample of sizen are conforming, is then essentially independent ofN and given by

πφ(All + |n, N) ≈
(

1 + f(n)
)−1

=

(

1 +
1√
π

Γ(n + 1

2
)

Γ(n + 1)

)−1

, (23)

which, for moderately largen, may further be approximated by

πφ(All + |n, N) ≈
√

n

π−1/2 +
√

n
. (24)

For instance, withn = 100 andN = 1000 the exact value of the required probability, given by (22), is
πφ(R = N | r = n, N) = 0.9623, and the two approximations (23) and (24), respectively, yield0.9467
and0.9466.

Equation (22) may be compared with the result which one would obtain if a conventional uniform
conditional prior

π1(λ |φ = φ1, N) = π1(R |N − 1) =
1

N
,

had been used instead of the structured conditional reference prior (21). It may be shown (Bernardo,
1985 ([6]), Bernardo and Smith, 1994, p. 322 ([8])) that this yields

π1(All + |n, N) =

(

1 +
1

n + 1

(

1 − n

N

)

)−1

, (25)

which is always larger than (22). For instance, withn = 50 andN = 100, the result in Theorem1 yields
πφ(All + |n = 50, N = 100) = 0.9263, while the use of (25) yieldsπ1(All + |n = 50, N = 100) =
0.9903, a much larger value. Thus the reference probability is considerably more conservative.

N = ∞ and hypothesis testing.As mentioned earlier, asN → ∞, the hypergeometricHy(r |n, R, N)
model converges to the binomialBi(r |n, p) model, withp = limN→∞ R/N . In this infinite population
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setting, the model that all elements in the population have the specified property can be stated in the lan-
guage of hypothesis testing asH0 ≡ {p = 1}. The natural induction problem is thus formally that of
finding the posterior probability ofH0 when alln observations have the property (i.e., are successes in the
binomial model).

The reference prior assigns probability1/2 to bothH0 ≡ {p = 1} andH1 ≡ {p < 1} and, condi-
tional onH1, assignsp theBe(p | 1

2
, 1

2
) reference prior. A straightforward computation then yields that the

posterior probability ofH0, given that the firstn observations all have the specified property, is equal to

Pr(p = 1 |n) =

(

1 +
1√
π

Γ(n + 1

2
)

Γ(n + 1)

)−1

=
(

1 + f(n)
)−1

(26)

which, curiously, is the same expression as the approximation to the reference posterior probability
πφ(All + |n, N) obtained for largeN in (23).
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Figure 1. Reference posterior probabilities πφ(All + |n, N = 100) that all the elements from a finite popu-
lation of size N = 100 are conforming, given that all the elements from a random sample of size n are
conforming, for n = 0, 1, . . . , 100, (above) and its Bayes factor continuous (N = ∞) approximation (below).

Figure1 shows the exact values of (22) for N = 100 andn = 0, 1, . . ., 100, along with the binomial
limiting case. Note that it is important to take the the population size,N , into account, except for very
large population sizes. For example, ifr = 50 andN = 100, the exact value of the required reference
posterior probability that all elements in the population are conforming isπφ(All + |n, N) = 0.9617, but
the continuous approximation gives onlyPr(p = 1 |n) = 0.9263.

5 Conclusions and an Example

The proposed solutions, based on reference prior theory, tothe two originally posed problems can be sum-
marized as follows.

The Reference Rule of Succession.In a population ofN elements, from whichn have been randomly
sampled and been found to be conforming, the reference posterior probability that a new element, randomly
selected from among the remaining unobservedN − n elements, turns out to be conforming is

πr(+ | r = n, n, N) =
n + 1/2

n + 1
, (27)

which is independent ofN and may be compared with Laplace’s(n + 1)/(n + 2).
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The Reference Law of Natural Induction.If it is assumed that the parameter of interest is whether or
notall elements of a population are conforming (i.e. that the property is a law of nature), then the reference
posterior probability of this law is

πφ(All + |n, N) =



1 +

1√
π

Γ(n+1/2)
Γ(n+1) − 1√

π
Γ(N+1/2)
Γ(N+1)

1 − 1√
π

Γ(N+1/2)
Γ(N+1)





−1

. (28)

For very largeN (or infinite populations), this is essentially identical to(26).

Example.Many years ago, when visiting the Charles Darwin research station of the Galápagos islands,
one of us (Bernardo) had a question posed by a zoologist. The zoologist had observed, and marked,55
galápagos (tortoises) in one small island, all of which presented a particular shell modification, possibly
related to their adaptation to the island vegetation. The zoologist asked for the probability that all galápagos
in the island had that modification. He added that his sample was roughly random, and that he would
estimate the total galápagos population in that island to be between150 and250 individuals.

At the time, Bernardo quoted the solution (25) based on a conditional uniform prior, which yielded the
range[0.986, 0.989] (corresponding to the range ofN ). The reference probabilities (28) give the smaller
values

πφ(All + |n = 55, N ∈ [150, 250]) ∈ [0.960, 0.970].

Note that these numbers are, nevertheless, appreciably higher than the limiting binomial approximation
Pr(p = 1 |n = 55) = 0.929, showing the importance of incorporatingN into the analysis.

Finally, using (27), the zoologist could have been told that, if he went back to the island, he would have
a reference posterior probability

πr(+ | r = n, n = 55, N) = 0.991

that the first found unmarked galápago also presented a modified shell.
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