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Natural Inflation in Supergravity and Beyond
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kallosh@stanford.edu, alinde@stanford.edu, bert.vercnocke@uva.nl

Supergravity models of natural inflation and its generalizations are presented. These models are
special examples of the class of supergravity models proposed in [1], which have a shift symmetric
Kähler potential, superpotential linear in goldstino, and stable Minkowski vacua. We present a class
of supergravity models with arbitrary potentials modulated by sinusoidal oscillations, similar to the
potentials associated with axion monodromy models. We show that one can implement natural
inflation in supergravity even in the models of a single axion field with axion parameters O(1). We
also discuss the irrational axion landscape in supergravity, which describes a potential with infinite
number of stable Minkowski and metastable dS minima.

I. INTRODUCTION

It appears that one of the popular models of inflation,
called natural inflation [2], which was proposed 24 years
ago, has not yet been generalized to supergravity with
stabilization of all moduli. The goal is to find a super-
gravity model that would lead to the natural inflation
potential of the axion field φ

V = Λ4

(

1− cos
φ

f

)

(1)

with Minkowski minimum at φ = 0. The supergravity
axion valley models proposed and studied in [3, 4], and
used more recently in [5], almost did the job. They have
the following Kähler potential and superpotential

K =
(T + T̄ )2

2
, W = W0 +Ae−aT +Be−bT . (2)

The real part of the modulus is stabilized in this model
and the imaginary part plays the role of the light ax-
ion φ. The resulting potential is almost of the form (1).
However, in this class of models the minimum of the po-
tential is in AdS space. Therefore one has to specify an
uplifting procedure, which uplifts the AdS minimum to
a Minkowski one, or even better, to a de Sitter mini-
mum with a tiny cosmological constant. Various uplift-
ing procedures have been proposed over the years, but
some of them cannot be described at the supergravity
level, whereas some others may lead to modification of
the functional form of the potential upon uplifting. As a
result, to the best of our knowledge, explicit supergrav-
ity models realizing such an uplifting in a way consistent
with moduli stabilization and leading to natural infla-
tion (1) are still unavailable. For a recent discussion of
the axion inflation models see for instance [6] and [7].

The purpose of this note is to present a very simple
supergravity model with non-negative potential which
upon stabilization of the non-inflaton moduli produces
the natural inflation potential (1). It will be achieved in
the context of the general class of models [1] describing
chaotic inflation in supergravity. This class of models

generalized the supergravity realization of the simplest

chaotic inflation scenario m2

2
φ2 proposed in [8].

The class of models developed in [1] has a built-in fea-
ture which makes the potential non-negative. The super-
potential in these models is linear in the goldstino super-
field S, whereas the Kähler potential is some function of
either Φ + Φ̄ or Φ + Φ̄, and of SS̄:

W = Sf(Φ) , K = K((Φ± Φ̄)2, SS̄) . (3)

The Kähler potential K((Φ± Φ̄)2, SS̄) does not depend
on one of the combinations (Φ∓ Φ̄), which plays the role
of the inflaton field in this scenario. If one can stabilize
the field S at S = 0, then W = 0, and the potential
becomes manifestly non-negative:

V = eK(|DW |2 − 3W 2)|S=0 = eK∂SW∂S̄W̄ ≥ 0 . (4)

If, in addition, one can ensure that one of the combina-
tions of the fields (Φ ± Φ̄), which is orthogonal to the
inflaton field, vanishes during inflation, then the inflaton
potential becomes

V = |f(Φ)|2 . (5)

The required stabilization conditions are rather mild,
which allows to have a functional freedom in the choice
of the inflaton potential in supergravity [1].

As we will see, this class of models can easily incorpo-
rate natural inflation. Moreover, by a simple extension
of the supergravity versions of natural inflation, one can
find a family of positive definite inflationary potentials
of arbitrary shape modulated by sinusoidal oscillations.
These potentials are similar to the string theory inflaton
potentials associated with axion monodromy [9, 10].

II. NATURAL INFLATION IN SUPERGRAVITY

We discuss various supergravity embeddings of natu-
ral inflation and related models. They all depend on
two complex fields: T and a goldstino S. Following the
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discussion above, we will use Kähler potentials which de-
pend on either of the combinations T ± T̄ , of the form:

K± = ± (T ± T̄ )2

2
+ SS̄ − g(SS̄)2 . (6)

The term g(SS̄)2 is introduced for stabilization of the
field S at S = 0, and the inflaton is the combination
T ∓ T̄ not appearing in the Kähler potential.

Model 1

The superpotential and Kähler potential are

W =
Λ2

√
2
S(1− e−aT ) , K = K+ . (7)

For convenience we introduce the canonically normalized
real fields φ, β, s, α:

T =
β + iφ√

2
, S =

α+ is√
2

. (8)

We find that the potential has a minimum at S = 0 and
T + T̄ = 0 and at aφ/

√
2 = 2πn.

We have computed the masses of the fields β, α, s and
have found that the stability analysis of [1] applies: the
masses of the fields are of the order of the Hubble param-
eter during slow roll inflation, under the condition that
g & 1/12. Namely,

m2
β

H2
= 6 +

3

2
a2 +

3

4
a2

(

sin
aφ

2
√
2

)−2

, (9)

m2
s

H2
= 12g +

3

4
a2

(

sin
aφ

2
√
2

)−2

. (10)

Since the potential only depends on SS̄ = s2+α2, α and
s have the same mass.

Thus, during inflation the field T + T̄ is heavy and
quickly reaches its minimum at T + T̄ = 0. The field S
is also heavy, for g & 1/12, and also vanishes. However,
one may have an interesting scenario even if one discards
the stabilization term g(SS̄)2. Then the field S remains
light, and its perturbations can be generated during infla-
tion. If the field S rapidly decays at the end of inflation,
these fluctuations remain inconsequential. However, if it
is stable, or decays long after the end of inflation, one
can obtain isocurvature fluctuations, or additional adi-
abatic perturbations via the curvaton mechanism [11].
The inflaton field φ remains light and has the following
potential

V |S=0, T+T̄=0 = Λ4

(

1− cos
aφ√
2

)

, (11)

in agreement with (5).

We present the picture of the potential during inflation
in Fig. 1.

FIG. 1. Potential of the natural inflation model (7) in supergravity

at S = 0 and T = β+iφ
√

2
. During inflation β = 0 at its minimum

and φ is the inflaton field with the potential (1). This plot is made
for a = 0.1. All fields are given in Planck units, and the potential
is in units Λ4.

Model 2

The superpotential and Kähler potential are

W =
√
2Λ2S sin

aT

2
, K = K− . (12)

During inflation the bosonic stabilized model is the
same as Model 1 for the canonically normalized real fields

T =
φ+ iβ√

2
, S =

s+ iα√
2

. (13)

with the inflaton potential

V |S=0, T+T̄=0 = 2Λ4

(

sin
aφ

2
√
2

)2

= Λ4

(

1− cos
aφ√
2

)

.

(14)

However, in general, Model 2 is slightly different, and
there is a small difference in masses of the stabilized
fields:

m2
β

H2
= 6 +

3

4
a2

(

sin
aφ

2
√
2

)−2

, (15)

m2
s

H2
= 12g − 3

4
a2 +

3

4
a2

(

sin
aφ

2
√
2

)−2

. (16)

The potential is very similar to the one of model 1 shown
in Fig. 1.

Model 3

Here we show how the replacement of all scalars of the
type z → iz works when we start with Model 2 and create
this Model 3. We start with Model 2 in (12) in the form

W =
iΛ2

√
2
S(e−iaT − eiaT

)

, K = K− (17)
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and perform the following change of variables T → iT
and S → iS. We find

W =
Λ2

√
2
S(e−aT − eaT

)

, K = K+ , (18)

where the inflaton is now the imaginary part of a scalar
T . It leads to exactly the same physics as Model 2, and
very similar physics compared to Model 1. The relevant
potential is, therefore, given again (approximately) by
Fig. 1.

Model 4

Finally we give a supergravity model reminiscent of a
potential with a sum of several cosines as in [4, 5]. The
superpotential and Kähler potential are

W =
√
2Λ2S

(

A sin
aT

2
+B sin

bT

2

)

, K = K− .

(19)
The inflaton potential is

V = 2Λ4

(

A sin
aφ

2
√
2
+B sin

bφ

2
√
2

)2

. (20)

III. IRRATIONAL AXION LANDSCAPE

Now we will make what could seem a minor modifica-
tion of the previous model, but we will find a dramat-
ically different potential. The Kähler potential now is
K = K+, and the superpotential slightly differs from
(18)

W = Λ2S(1−Ae−aT −Be−bT ) . (21)

The potential at S = T + T̄ = 0 is

V = Λ4

(

1 +A2 +B2 − 2A cos
aφ√
2

+ 2AB cos
(a− b)φ√

2
− 2B cos

bφ√
2

)

. (22)

This potential has an interesting behavior discussed
in [4, 5], but now we have its explicit supergravity im-
plementation without any need for an uplifting. As dis-
cussed long ago by Banks, Dine and Seiberg [18], a par-
ticularly rich behavior is possible if the ratio a

b = q is irra-
tional. This leads to a landscape-type structure of the po-
tential with infinite number of different stable Minkowski
vacua and metastable dS vacua with different values of
the cosmological constant, see Fig. 2. If one of the con-
stants a and b in this scenario is irrational, we have an
infinite number of possible dS minima, which allows to
solve the cosmological constant problem using anthropic
considerations.

Moreover, inflationary predictions in this scenario de-
pend on the behavior of the inflaton potential in the

2000 4000 6000 8000 10 000Φ

2

4

6

8

V

FIG. 2. Irrational axion potential for A = B = 1, a = 0.01
√
3,

b = 0.005
√
7. The field is shown in Planck units, from 0 to 10000.

This may create an impression that the potential is very steep, but
in fact the potential is very flat and allows chaotic inflation. Just
as in the string landscape scenario [12–17], inflation may end in any
of the infinitely many metastable dS vacua with different values of
the cosmological constant [18].

vicinity of each of these dS vacua. As a result, one can
have a broad spectrum of possibilities which allows to fit
a large variety of observational data within the context
of a single model with a small number of parameters.

IV. INFLATION FOR a, b & 1

Until now, we discussed the scenario with a, b ≪ 1.
However, string theory suggests that the parameters
a, b & 1. Can we still have natural inflation in that case?

Let us consider a model with

W = Λ2S(e−aT − e−bT ), K = K+ . (23)

We will assume that a, b & 1, a − b ≪ 1. One can show
that in this case inflation is indeed possible.

The absolute minimum of the potential in this theory
is at T = 0. However, one can show that inflation occurs
in the regime of a slow roll from the saddle point of the
potential with Re T = a/2. Re T remains very close to
a/2 during inflation, and only in the very end it starts
moving towards the global minimum with T = 0. The
inflaton potential in this theory is well approximated by

V = 2Λ4e−a2/2
(

1− cos
(a− b)φ√

2

)

. (24)

This potential allows inflation even for a, b ≫ 1 if the
difference between a and b is small, |a−b| ≪ 1. A similar
idea, in a different context, was used in the racetrack
inflation model [19], and then applied to natural inflation
in [4]. In this way, one can bring natural inflation one
step closer towards its implementation in string theory.
Note that we were able to do it in the theory of a single
axion field.
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A similar mechanism may work in the inflationary the-
ory of many axion fields [20]. Until now, the multi-axion
natural inflation scenario has not been implemented in
supergravity. The simplest way to do it is to consider
two axion fields, T = β+iφ√

2
and U = γ+iχ√

2
, with the su-

perpotential

W = Λ2S(Ae−aT +Be−bT + C−cU +De−dU ) (25)

and the Kähler potential

K =
(T + T̄ )2

2
+

(U + Ū)2

2
+ SS̄ − g(SS̄)2 . (26)

For a proper choice of parameters, the potential of the
fields has inflationary flat directions, as shown in Fig. 3.

FIG. 3. Inflationary potential for natural inflation in the theory
of two scalar fields, T = β+iφ

√

2
and U = γ+iχ

√

2
, as a function of

the fields φ and χ. The potential shown in units of Λ4, with all
other parameters of the superpotential O(1). Nevertheless, flat
inflationary valleys are formed for |a− b| ≪ 1 or |c− d| ≪ 1.

Thus one can have inflation in such models as well.
However, a full description of inflation in multi-axion
models in supergravity can be rather involved. In gen-
eral, all fields, including their real and imaginary parts,
may evolve simultaneously during inflation, which makes
investigation of inflation in such models more compli-
cated than in the simple single-inflaton field (23).

V. MODULATED CHAOTIC INFLATION

POTENTIALS

Here we propose supergravity models closely related
to the explicitly bosonic models in [10] for oscillations
in the CMB from axion monodromy inflation. We take
a generic function f(T ) in the superpotential comple-
mented by some sinusoidal modulation of the form

W = S
[

f(T ) +A sin(aT )
]

, K = K− . (27)

Here T = φ+iβ√
2
. If needed, one can also add to the Kähler

potential the stabilization term (T + T̄ )2SS̄ for stabiliza-
tion of β, but usually it is not required [1]. For S = β = 0,
one finds the inflaton potential

V =
[

f
( φ√

2

)

+A sin
aφ√
2

]2

. (28)

FIG. 4. Potential of the modulated chaotic inflation in supergrav-
ity (30) at S = 0 and T = β+iφ

√

2
, for a = 1, b = 1.3. It is similar

to the potentials encountered in axion monodromy models [9, 10].
Fields are shown in Planck mass units, the scale of the potential is
in units Λ4.

In the limit when f
(

φ√
2

)

≫ A sin aφ√
2
the modulation

of the inflaton potential is small and we find

V ≈ f2

( φ√
2

)

+ 2Af
( φ√

2

)

sin
aφ√
2
. (29)

It is only slightly different from potentials with modu-
lation studied in the literature, see [10] and references
therein. They assumed that the amplitude of modula-
tion is constant, whereas in our case it is proportional

to f
(

φ√
2

)

. The difference is not crucial because f
(

φ√
2

)

may not change much on scales studied by the CMB ob-
servations.

A similar scenario can be also implemented in a differ-
ent context. We can consider, for example, the following
supergravity model which produces a quadratic axion po-
tential with sinusoidal modulations:

W = Λ2S(1− e−aT + bT ), K = K+ . (30)

We plot the potential V at S = 0 in Fig. 4. The potential
as a function of the inflaton is

V = Λ4

(

b2

2
φ2 +

√
2 bφ sin

aφ√
2
+ 4 sin2

aφ√
2

)

. (31)
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In conclusion, we have presented here a supersym-
metric version of natural inflation [2] and of the models
with arbitrary potentials modulated by sinusoidal oscil-
lations, similar to the potentials associated with axion
monodromy models [9, 10]. The corresponding super-
gravity models are simple and have Minkowski vacua.
We have shown that one can implement natural infla-
tion in supergravity even in the models of a single axion
field with axion parameters O(1). Embedding of the ir-
rational axion models [18] in supergravity allows many

stable Minkowski vacua and metastable dS vacua with
different values of the cosmological constant. It would
be interesting to explore a possible relation of such su-
pergravity models to the string theory landscape.
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