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Natural killer (NK) cells play an essential role in the fight against tumor development. Over
the last years, the progress made in the NK-cell biology field and in deciphering how NK-cell
function is regulated, is driving efforts to utilize NK-cell-based immunotherapy as a promis-
ing approach for the treatment of malignant diseases.Therapies involving NK cells may be
accomplished by activating and expanding endogenous NK cells by means of cytokine treat-
ment or by transferring exogenous cells by adoptive cell therapy and/or by hematopoietic
stem cell transplantation. NK cells that are suitable for adoptive cell therapy can be derived
from different sources, including ex vivo expansion of autologous NK cells, unstimulated
or expanded allogeneic NK cells from peripheral blood, derived from CD34+ hematopoi-
etic progenitors from peripheral blood and umbilical cord blood, and NK-cell lines. Besides,
genetically modified NK cells expressing chimeric antigen receptors or cytokines genes
may also have a relevant future as therapeutic tools. Recently, it has been described the
derivation of large numbers of functional and mature NK cells from pluripotent stem cells,
both embryonic stem cells and induced pluripotent stem cells, which adds another tool to
the expanding NK-cell-based cancer immunotherapy arsenal.

Keywords: NK cells, adoptive cell therapy, cancer immunotherapy, hematopoietic stem cell transplantation,
pluripotent stem cells, embryonic stem cells, induced pluripotent stem cells

INTRODUCTION
Natural killer (NK) cells are innate lymphoid cells that have
an important role in regulating the defenses to viral infections
and cancer development (1–6). The vast majority of circulat-
ing mature human NK cells in healthy donors are identified as
CD3−CD56+ lymphocytes. Approximately, 90% of peripheral
blood and spleen NK cells belong to the CD56dimCD16+ subset,
which is characterized by a potent cytotoxic activity after inter-
action with target cells. On the other hand, NK cells on lymph
nodes and tonsils are mostly CD56brightCD16dim/− and have poor
cytotoxic activity, while they produce very significant amounts of
cytokines, such as interferon (IFN)-γ, in response to IL-12, IL-15,
IL-18, and type I IFN stimulation (7, 8). NK cells are equipped
with an array of activating and inhibitory receptors that stimu-
late or dampen NK-cell activity, respectively. Inhibitory receptors
include the MHC class I ligands killer-cell immunoglobulin-like
receptors (KIRs) with two or three extracellular immunoglobu-
lin domains and long cytoplasmic tail (KIR2DL and KIR3DL),
leukocyte immunoglobulin-like receptor subfamily member 1
(LILRB1) and CD94/NKG2A, and other inhibitory receptors such
as CD300a, leukocyte-associated immunoglobulin-like receptor-
1 (LAIR-1), and others. Activating receptors include cytokine

and chemokine receptors, and those that interact with ligands
expressed on target cells. The latter include, among others, the
natural cytotoxicity receptors or NCRs (NKp30, NKp44, and
NKp46), NKG2D, KIR with short cytoplasmic tail (KIR2DS and
KIR3DS), CD94/NKG2C, CD244, and DNAM-1. In addition,
NK cells also express the death ligands FasL and TRAIL that
after interaction with death receptors Fas and DR5, respectively,
initiate a signaling cascade resulting in apoptosis of the target
cell. Finally, NK cells express FcγRIIIA or CD16, the recep-
tor that exerts antibody-dependent cell-mediated cytotoxicity
(ADCC) (4, 9–13).

Natural killer-cell effector functions are dynamically regulated,
and the killing or sparing of target cells depends on the inte-
gration of distinct signals that emanate from NK-cell receptors
after their interaction with ligands expressed on target cells. NK
cells spare healthy cells that express MHC class I molecules and
low amounts of stress-induced self-molecules, while they kill tar-
get cells that up-regulate stress-induced self-molecules and/or
down-regulate MHC class I molecules (4, 5, 11, 12). The latter
are common features of virus-infected cells and tumors (14, 15).
The investigation of NK-cell reactivity has revealed the basis of
tumor recognition, and several lines of evidence have shown that
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NK cells have a critical role in host immunity against cancer (2,
16–19). In response, tumors have evolved mechanisms to escape
control from NK cells, such as the modulation of NK-cell receptor–
ligand expression patterns and the secretion of immunoreg-
ulatory molecules or immunosuppressive modulators such as
IDO, PGE2, and TGF-β, that down-regulate NK-cell effector
functions (20–24).

So far, all the amassed knowledge has driven efforts to
harness NK cells with the purpose to improve the therapeu-
tic options for patients living with cancer. Indeed, NK-cell-
based adoptive cell immunotherapy is emerging as a promising
approach for treatment of many cancers (25–27). Therapeutic
NK cells can be derived from different sources, including periph-
eral blood or cord blood cells, adult hematopoietic stem cells
(HSCs), embryonic stem cells (ESCs), or induced pluripotent stem
cells (iPSCs).

NK-CELL-BASED IMMUNOTHERAPY
Given the role that NK cells have in the defense against tumor
development, the therapeutic use of NK cells to treat malignan-
cies is currently being exploited. It is very well established that
NK cells have a very important role in the anti-tumor effect of
therapeutic antibodies that use ADCC as a mechanism of action
(28–31). In addition, in the clinical context, several approaches
have been proposed for NK-cell-based immunotherapy, includ-
ing in vivo cytokine-mediated expansion of endogenous NK cells,
as well as the adoptive transfer of unmodified or ex vivo acti-
vated and expanded autologous and allogeneic NK cells, and some
NK-cell lines, such as NK-92 (26, 32–41). Furthermore, genet-
ically modified NK cells expressing cytokine genes or chimeric
antigen receptor (CAR), are being studied for potential use in the
clinic (26, 42–44). In clinical trials, NK-cell infusions alone or in
the course of allogeneic hematopoietic stem cell transplantation
(HSCT), are being tested as therapy for refractory tumors. In addi-
tion, they are also tested as consolidation immunotherapy, which
could be an important therapeutic tool in high risk hematological
malignancies during the remission phase after chemotherapy, and
when allogeneic HSCT is not indicated due to its high degree of
toxicity (45, 46).

Early studies were aimed to in vivo expand endogenous NK
cells and to improve their anti-tumor activity by administering
systemic cytokines, such as IL-2, into patients (47–49). Other
strategies included the ex vivo activation and expansion of autol-
ogous NK cells, following their adoptive transfer into the patients
in combination with IL-2 (32, 50–53). These approaches offered
poor clinical outcomes due to high toxicity of IL-2 (54). More-
over, this cytokine promoted the expansion not only of NK cells
but also of regulatory T (Treg) cells, therefore dampening NK
cells effector functions (55). Others have assessed the effects of
low-dose IL-2 administration and IL-2 boluses on NK-cell activa-
tion after autologous HSCT (39, 56). Whereas IL-2 significantly
expanded the number of circulating NK cells in vivo, these NK
cells did not exhibit maximal cytotoxic potential as determined
by in vitro assays (39). In addition, although the infusion of
IL-2-activated NK-cell-enriched populations or intravenous IL-
2 infusions combined with subcutaneous IL-2 augmented in vivo

the NK-cell function, there was a lack of consistent clinical effi-
cacy of autologous NK-cell-based therapy in patients with lym-
phoma and breast cancer when compared with cohorts of matched
controls (56).

Although relatively safe, the lack of significant efficacy of ther-
apy with autologous NK cells could be due to the interaction
of MHC class I molecules expressed on cancer cells that, after
their interaction with MHC class I-specific inhibitory receptors
on NK cells, suppress their activation (4, 10–12). Specifically,
since human NK cells are regulated by KIRs that interact with
specific HLA class I molecules, it is expected that in HLA-non-
identical transplantation where the recipients lack the class I
epitope specific for the donor’s inhibitory KIRs (i.e., receptor–
ligand mismatch), donor NK cells will be not inhibited, leading to
a better prognosis due to a decreased risk of relapse. In fact, clin-
ical data have shown that haploidentical KIR ligand-mismatched
NK cells play a very important role as anti-leukemia effector
cells in the haploidentical T cell-depleted transplantation set-
tings (57, 58). Several publications have revealed that patients
with acute myeloid leukemia (AML) are significantly more pro-
tected against leukemia relapse when they receive a transplant
from NK alloreactive donors (38, 57–62). Furthermore, several
strategies using adoptively transferred allogeneic NK cells have
been shown to be successful for cancer immunotherapy, includ-
ing those against leukemia and solid tumors (36, 63–66). Table 1
depicts a summary of completed clinical trials that have used
infusion of allogeneic NK cells. Importantly, the infusion of allo-
geneic NK cells has also been demonstrated to be a safe therapy
with low toxicity (38). Prominently, there are also clinical studies
that have confirmed that infusion of donor–recipient inhibitory
KIR-HLA-mismatched NK cells, following mild conditioning, is
well tolerated by pediatric patients, which indicates that this is a
promising novel therapy for reducing the risk of relapse in children
with tumors (45, 67).

Using NK-cell lines as source for the treatment of cancer may
also be beneficial. Specifically, the use of NK-92 cell line has been
demonstrated to be a safe therapy with anti-tumor effects (41, 68,
69). In fact, the FDA has approved the testing of NK-92 infusions
in patients with advanced solid tumors (68).

The successful use in the clinic of CAR-expressing T cells in the
treatment of hematological malignancies has prompted the devel-
opment of other CAR-expressing cytotoxic cells. In this context,
preclinical studies are being carried out investigating the targeting
of tumors using CAR-redirected NK cells (43, 70–79). Although
the majority of these studies have been performed against targets
of hematological origin, it has also been described as promising
results with NK cells transduced with CARs specific for antigens
expressed on solid tumors (75, 78, 79). Mostly, all these stud-
ies have been done with the NK-92 cell line transduced with
the specific CAR, although in vitro stimulated NK cells from
healthy donors and pediatric leukemia patients have also been
used (70).

In order to successfully use NK-cell infusions in the clinical
setting, a sufficient number of highly enriched NK cells must
be obtained. Allogeneic unmodified NK cells can be adoptively
transferred after leukapheresis products are T cell-depleted, in
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Table 1 | Selected completed clinical trials that have used infusion of allogeneic NK cells in https://clinicaltrials.gov.

Indication Cell product Combined Center (country) Clinicaltrials.

gov identifier

Advanced cancer NK cells Allogeneic HSCT Asan Medical Center (Korea) NCT00823524

AML IL-2 activated NK cells Chemotherapy, IL-2, and

denileukin diftitox

Masonic Cancer Center,

University of Minnesota (USA)

NCT01106950

AML NK cells Chemotherapy and IL-2 St. Jude Children’s Research

Hospital (USA)

NCT00187096

AML IL-2 activated NK cells Chemotherapy and IL-2 Masonic Cancer Center,

University of Minnesota (USA)

NCT00274846

AML UCB NK cells Chemotherapy, IL-2, TBI,

and UCB transplant

Masonic Cancer Center,

University of Minnesota (USA)

NCT00871689

AML and MDS IL-2 activated NK cells Chemotherapy, IL-2, and

allogeneic HSCT

M.D. Anderson Cancer Center

(USA)

NCT00402558

Breast cancer IL-2 activated NK cells Chemotherapy, IL-2,

and TBI

Masonic Cancer Center,

University of Minnesota (USA)

NCT00376805

Hematological malignancies UCB NK cells IL-2, TBI, UCB

transplantation

Masonic Cancer Center,

University of Minnesota (USA)

NCT00354172

Hematological malignancies NK cells Autologous HSCT Tufts Medical Center (USA) NCT00660166

Hematological malignancies NK cells Rituximab, Rhu-GMCSF,

and allogeneic HSCT

M.D. Anderson Cancer Center

(USA)

NCT00383994

Hematological malignancies NK cells Haploidentical HSCT Asan Medical Center (Korea) NCT00569283

Hematological malignancies NK cells Allogeneic-matched

HSCT

Duke University Medical Center

(USA)

NCT00586690

Hematological malignancies NK cells Allogeneic-mismatched

HSCT

Duke University Medical Center

(USA)

NCT00586703

Lymphoma and solid tumors IL-2 expanded with irradiated

autologous feeder cells

Seoul National University

Hospital (Korea)

NCT01212341

Melanoma NK cells Chemotherapy and IL-2 Seoul National University

Hospital (Korea)

NCT00846833

Multiple myeloma NK cells Chemotherapy, IL-2, and

autologous HSCT

University of Arkansas (USA) NCT00089453

NHL or CLL IL-2 activated NK cells Rituximab, IL-2, and

chemotherapy

Masonic Cancer Center,

University of Minnesota (USA)

NCT00625729

Non-B lineage hematologic

malignancies and solid tumors

Expanded NK cells Chemotherapy and IL-2 St. Jude Children’s Research

Hospital (USA)

NCT00640796

Ovarian, fallopian tube, and

primary peritoneal cancer

IL-2 activated NK cells Chemotherapy, IL-2, and

TBI

Masonic Cancer Center,

University of Minnesota (USA)

NCT00652899

Ovarian, fallopian tube,

peritoneal, and breast cancer

IL-2 activated NK cells Chemotherapy and IL-2 Masonic Cancer Center,

University of Minnesota (USA)

NCT01105650

Poor prognosis non-AML

hematologic malignancies

NK cells Chemotherapy and IL-2 St. Jude Children’s Research

Hospital (USA)

NCT00697671

Solid tumors IL-15 activated NK cells Haploidentical HSCT Hospital Infantil Universitario

Niño Jesús (Spain)

NCT01337544

AML, acute myeloid leukemia; CLL, chronic lymphocytic leukemia; HSCT, hematopoietic stem cell transplantation; MDS, myelodysplastic syndrome; NHL, non-Hodgkin

lymphoma; TBI, total body irradiation; UCB, umbilical cord blood.
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combination with B cell depletion and/or NK-cell enrichment (67,
80, 81). In the context of allogeneic HSCT, the transfer of unmod-
ified NK cells or CD3/CD19-depleted grafts results in recovery of
elevated NK-cell numbers, which can also expand in vivo (67, 81,
82). In the absence of HSCT, successful NK-cell expansion in vivo
is achieved by the administration of IL-2 in combination with
products that deplete Treg cells (80).

Various methods for large-scale and clinical-grade ex vivo NK-
cell expansion have been reported with this aim (83–92). Due to
the advantage of aseptic conditions in a closed system, periph-
eral blood mononuclear cells (PBMCs) collected by leukapheresis
are frequently used as source for goods manufacturing practice
(GMP)-compliant expansion of NK cells (84, 85, 87). In general,
the expansion of allogeneic NK cells involves two sequential steps.
The first consists in the magnetic depletion of CD3+ T lympho-
cytes, followed by a second step of enrichment of CD56+NK cells
(83, 85, 87, 90). To expand the purified NK cells, they are cultured
with cytokines, such as IL-2, IL-12, IL-15, and IL-21 (84, 85, 87,
93, 94). In order to further encourage NK-cell proliferation, sev-
eral authors have used irradiated feeder cells in the culture, such as
PBMCs, Epstein–Barr virus-transformed lymphoblastoid cell lines
or engineered leukemic cell lines (83, 86, 90, 95). Irradiated feeder
cells stimulate NK cells through both humoral factors and direct
cell-to-cell contact. However, there are technical disadvantages by
using supportive feeder cell lines that could lead to problems with
the regulatory agencies.

CD34+ hematopoietic progenitors from umbilical cord blood
(UCB) are also being considered as a source for the production of
a large number of allogeneic NK cells (89, 91, 92, 96, 97). Some
groups have described different protocols for the generation of
NK cells from CD34+ cells using coculture systems with stromal
cell lines and a combination of cytokines that promote the devel-
opment of NK cells (88, 97, 98). Very importantly, other authors
have been able to generate large numbers of UCB CD34+ cells-
derived NK-cell products for adoptive immunotherapy in closed,
large-scale bioreactors, and stromal cell lines free, for the use in
future clinical trials (91, 92). These NK cells have been shown
to efficiently target bone marrow-residing human leukemia cells
in preclinical studies (96). It is important to investigate, which
cytokines added to these cultures favors the generation of higher
numbers of mature NK cells with enhanced effector functions.
For example, it has been shown that IL-12 directs human NK-cell
differentiation ex vivo from CD34+ cord blood precursors toward
more mature NK cells with improved properties (93).

Obtaining a significant number of pure and functional NK
cells is a critical factor for NK-cell-based immunotherapy. Several
authors have shown the efficient generation of a large number
of functional and mature NK cells from human embryonic stem
cells (hESCs) and iPSCs, suggesting that the clinical use of these
NK cells may be a reasonable expectation for the future of cancer
immunotherapy (99–104).

PLURIPOTENT STEM CELLS: ESCs AND iPSCs
Since the derivation of hESCs, more than 20 years ago by Thomson
et al., numerous groups have successfully differentiated these cells
into fully mature and functional cells from each germ layer (105).
Shortly, after the original derivation of hESCs, various groups

demonstrated the hematopoietic development using an in vitro
model and defined conditions (103, 104, 106–111).

One of the scientific breakthroughs of the last years has been
to determine that pluripotency can be recovered by several differ-
entiated somatic cell types through the overexpression of just four
transcription factors (OCT4, SOX2, cMYC, and KLF4) (112–114).
These cells are named iPSCs. Depending on the donor’s somatic
cell type, the reprograming process is accomplished with different
efficiency. Just 7–12 days are required to reprogram mouse embry-
onic fibroblasts (MEFs) (115), whereas human foreskin fibroblasts
take 20–25 days, using retrovirus technology in both cases (116).
Compared with fibroblasts, human keratinocytes can be repro-
gramed 100 times more efficiently and twofold faster (116). After
choosing the target donor somatic cell type, it is necessary to select
a cocktail of reprograming factors that usually are the four above
mentioned. In few situations less than four factors are needed,
such as in the case of cord blood CD133+ cells and keratinocytes
(117). Through the reprograming process, the chromatin remod-
eling plays an essential role in the procurement of pluripotency. So
far, it has been described that the use of some chemical compounds
is able to alter the DNA methylation and induce chromatin remod-
eling that results in an improvement of the reprograming process.
For example, treatment with DNA methytransferase inhibitor (5′-
azacytidine) and histone deacetylase inhibitors (SAHA, TSA, and
VPA) improves reprograming efficiency in MEFs. Also, during the
reprograming process, it is important to maintain the pluripo-
tency state. This can be achieved by using compounds that inhibit
glycogen synthase kinase 3, lysine-specific demethylase 1, or G9a
(118–122). Once iPSCs are generated, they have the capability to
differentiate toward ectodermal, mesodermal, endodermal, and
germ cells. This is achieved by the addition to the culture media of
some growth factors and several compounds that provide spe-
cific signals allowing iPSCs to differentiate in the cell type of
interest (123).

Another important issue during the reprograming process is
the method for the delivery of the transcription factors into the
somatic cells. Currently, there are integrative delivery systems
(retrovirus, lentivirus, linear DNA, and piggyBac transposon) and
non-integrative systems (adenovirus, Sendai viral vectors, episo-
mal vectors, synthetic mRNA, and proteins) (123, 124). The choice
of one or another system will depend on the final use of the human-
induced pluripotent stem cells (hiPSCs). For research purposes,
the usual methods are the integrative systems, whereas if hiPSCs
are intended for future clinical use, the non-integrative methods
should be more appropriated.

GENERATION OF NK CELLS FROM hESCs AND hiPSCs
Pluripotent stem cells (PSCs) are an important advance in stem
cell research, as they allow researchers to obtain stem cells, which,
in addition to be very useful tools for research, they may have ther-
apeutic uses. Because hiPSCs are developed from a patient’s own
somatic cells, it is believed that hiPSCs-based therapy would be
very poorly or non-immunogenic, whereas hESCs are not (125–
128). The use of these cells provides an accessible, genetically
tractable, and homogenous starting cell population to efficiently
study human blood cell development among others (100, 103,
108, 111, 129). hESCs and hiPSCs can provide important starting
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cell populations to develop new cell-based therapies that have
the potential to treat both malignant and non-malignant dis-
eases. The clinical applications of this type of cell-based therapy
depend on the thoroughly understanding of the normal develop-
ment and physiology of the PSCs and of the desired “final” cell
population. Several groups have already demonstrated the abil-
ity of hESC and hiPSC-derived hematopoietic progenitor cells to
produce functional NK cells that, hypothetically at least, could
serve as a “universal” source of anti-tumor lymphocytes for can-
cer immunotherapy (99–104, 130, 131) (Figure 1). In addition,
hiPSCs, which can be reliably engineered in vitro, provide an
important new model system to study human NK-cell develop-
ment, as well as a model for NK-cell deficiency and diseases with
significant defects on NK-cell functions (108).

Generating CD34+ hematopoietic precursors is the first
important step in the specific hematopoietic lineage differenti-
ating protocols from hESCs and hiPSCs. The initial protocols
achieved to obtain up to 20% of CD34+ cells by coculturing the
hESCs with the OP9 mouse bone marrow stromal cells (111).
Other groups obtained similar results using the S17 or M210-
B4 mouse bone marrow stromal cell lines, and they were able

to in vitro generate CD34+CD45− and CD34+CD45+ precur-
sors (104, 131, 132). It has been described that hESCs-derived
CD34+CD45+ cells contain more hematopoietic progenitors, and
consequently are more suitable for the NK-cell differentiation
when compared with the CD34+CD45− population (104). Usu-
ally, after the generation of hESCs- and hiPSCs-derived CD34+
hematopoietic precursors, these are sorted and subsequently cul-
tured under conditions that favor the development of NK cells. For
example, sorted hESCs-derived CD34+ cells were placed in cul-
ture with the murine fetal liver-derived AFT024 stromal cell line as
feeder cells in medium supplemented with IL-15, IL-3, IL-7, SCF,
and fms-like tyrosine kinase receptor-3 ligand (Flt3L) (104). At the
end of the culture process, after 30 days, NK cells expressed matu-
ration markers including KIRs, CD94/NKG2A, NCRs, and CD16
(104). In addition, these cells could lyse malignant cells by both
direct cell-mediated cytotoxicity and ADCC. On the other hand,
Knorr et al. have also proved the trafficking of hESC-derived NK
cells to K562 tumor cells engrafted in sublethally irradiated mice
for 4 days before NK-cell injection (130).

Other approach for the generation of CD34+ hematopoi-
etic precursors in vitro is to differentiate both types of PSCs by

FIGURE 1 | Schematic representation for the generation of human ESC/iPSC-derived NK cells is shown. Summary of several protocols described in Ref.
(100, 101, 104, 111, 129–132).
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embryoid body (EB) assays followed by a coculture system with
the OP9 stromal cell line and a cocktail of cytokines, such as
BMP4, VEGF, SCF, FGF, TPO, and Flt3L (129, 133). EBs are three-
dimensional aggregates of PSCs, which resembles the embryonic
development, including the differentiation toward cells of the
hematopoietic lineage. Knorr and colleagues have used a refined
method of the EBs assay, termed spin EBs, in the presence of BMP4
and VEGF and, after a period of 11 days of spin EB differentiation,
they add IL-3, IL-7, IL-15, and Flt3L, that favors the development
of NK cells (100, 130).

Other important factor for the in vitro differentiation of NK
cells from PSCs is the role of the HOXB4 homeoprotein. Larbi
et al. have described that HOXB4 delivery promotes the enrich-
ment and expansion of EB-derived hematopoietic precursors that
could differentiate into fully mature and functional NK cells (101).
HOXB4 protein, in combination with stromal cells, has an impor-
tant role in the development of NK cells from hESCs, suggesting
the potential use of this protein for NK-cell enrichment from PSCs.

A step forward is the clinical-scale production of NK cells
derived from PSCs for future cancer immunotherapy applications.
Kaufman’s group has improved the method for the clinical-scale
generation of NK cells. They used a two-stage culture system to
efficiently generate NK cells from hESCs and iPSCs in the absence
of cell sorting and without the need for xenogeneic stromal cells.
As mentioned above, the method is based on the combination
of spin EB formation using defined conditions and membrane-
bound interleukin 21-expressing artificial antigen-presenting cells
that allow the production of mature and functional NK cells
from several different hESC and iPSC lines. They are able to
generate enough cytotoxic and mature NK cells to treat a sin-
gle patient starting from fewer than 250,000 input hESCs/iPSCs
that could be maintained and continuously expanded for at least
2 months (100).

FUTURE DIRECTIONS
Adoptive immunotherapy with NK-cell infusions is currently used
in patients with high risk of relapse after HSCT (34, 38, 67). Even
though preliminary results are encouraging, still critical issues
remain unanswered, such as the characterization of standard-
ized protocols for GMP-compliant production of clinical-grade
NK cells. Apart from that, with continued advances in the stem
cell field, it is likely that hPSC-derived NK cells will relatively
soon be able to be efficiently derived on a patient-specific basis.
Actually, hESC and hiPSC-derived NK cells express activating and
inhibitory receptors similar to NK cells isolated from adult periph-
eral blood (100, 104, 108, 130). The hESC-derived NK cells are also
highly efficient at direct cell-mediated cytotoxicity and ADCC, as
well as cytokine (IFN-γ) production. And importantly, stromal
cells-free protocols have successfully been described (100, 130). It
is clear that hiPSC-derived NK cells provide a genetically manage-
able system to study human NK-cell development and function. In
addition, these NK cells could provide an important source of lym-
phocytes for cancer therapy. There are several and serious obstacles
to be overcome before PSC-derived NK cells can be considered for
cancer immunotherapy. Safe methods for hiPSC generation and
high reprograming efficacy are of the highest importance. Fur-
thermore, the irreversible nature of hPSC-based therapy requires

special precautions to be taken in any clinical trial. We have to be
realistic and accept that multiple technical, safety, and regulatory
obstacles are in the way for successful translation of hPSC-derived
NK cells into the clinic. But hopefully, in a not so far future, all
these hurdles will be surmounted and the use of hPSCs-based
cancer therapies will be a reality.
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