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Natural Killer Cells for 
Immunotherapy – Advantages of the 
NK-92 Cell Line over Blood NK Cells
Hans Klingemann* , Laurent Boissel and Frances Toneguzzo

NantKwest, Inc., Culver City, CA, USA

Natural killer (NK) cells are potent cytotoxic effector cells for cancer therapy and poten-

tially for severe viral infections. However, there are technical challenges to obtain suf�-

cient numbers of functionally active NK cells from a patient’s blood since they represent 

only 10% of the lymphocytes and are often dysfunctional. The alternative is to obtain 

cells from a healthy donor, which requires depletion of the allogeneic T cells to prevent 

graft-versus-host reactions. Cytotoxic cell lines have been established from patients with 

clonal NK-cell lymphoma. Those cells can be expanded in culture in the presence of 

IL-2. Except for the NK-92 cell line, though, none of the other six known NK cell lines 

has consistently and reproducibly shown high antitumor cytotoxicity. Only NK-92 cells 

can easily be genetically manipulated to recognize speci�c tumor antigens or to augment 

monoclonal antibody activity through antibody-dependent cellular cytotoxicity. NK-92 is 

also the only cell line product that has been infused into patients with advanced cancer 

with clinical bene�t and minimal side effects.

Keywords: NK-92 cells, immunotherapy, cancer therapy, ADCC, cellular cytotoxicity

�e remarkable responses recently achieved with T cells expressing chimeric antigen receptors 
(CARs) to target tumor antigens, especially in patients with lymphoid malignancies (1–3), highlight 
the ability of immune cells to become powerful therapeutic agents. However, in a signi�cant num-
ber of patients, CAR-T-cell treatment was associated with adverse events including a potentially 
fatal “cytokine release syndrome” requiring ICU admission. In addition, the logistics and costs of 
this treatment pose a signi�cant challenge for making it available for a larger number of patients. 
An increasing number of investigators believe that cellular therapy with natural killer (NK) cells 
obtained from the peripheral blood of either the patient (autologous) or a healthy donor (allogeneic) 
may represent safer e�ector cells for targeted cancer cell therapy than T cells.

However, there are biological, logistical, and �nancial challenges for the application of blood NK 
cells as a treatment modality for cancer patients (Figure 1). Autologous NK cells are typically not 
very e�ective as they are functionally silenced when they encounter self-MHC antigens, and they 
are also frequently compromised by the underlying disease and its treatment. On the other hand, 
allogeneic NK-cell infusions carry the risk of gra�-versus-host (GvH) reactions even a�er the CD3 
lymphocytes have been depleted (4). “Supply” is also limited, in part, because only about 10% of 
circulating blood lymphocytes are NK cells: to collect su�cient numbers of NK cells, patients or 
donors o�en have to undergo repeated leukaphereses that at times requires placing a central venous 
line, which is a major inconvenience for patients. �is also usually limits the number of collections 
of NK-cell products for treatment to one or two. Moreover, to reach therapeutically meaningful 
numbers, NK cells have to be expanded ex vivo. �is is most e�ectively done by culturing the cells 
(for allogeneic cells, this is a�er T-cell depletion) on a genetically engineered feeder layer of K562 
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FIGURE 1 | Biologistic challenges of obtaining blood NK cells for cell therapy.
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cells that has been modi�ed to express stimulatory molecules, 
such as IL-15 or IL-21 and 4-1BB (5–7). While expansion of NK 
cell can be achieved, some of these protocols result in NK-cell 
telomere shortening and reduction in cytotoxicity. Additionally, 
and in contrast to T-cell therapies, the ability to target blood NK 
cells through a CAR type mechanism is challenging due to the 
low transfection e�ciency of blood NK cells even when viral-
based methods are used.

Recognizing the signi�cant challenges being faced in the use 
of blood-derived NK cells for therapeutic purposes, investigators 
have been trying to generate stable cell lines from blood NK cells. 
�ese e�orts have generally been unsuccessful as those (frequently 
EBV-transformed) NK cells undergo only limited number of 
divisions before they experience apoptosis. �e derivation of 
functional NK cells from embryonic stem cells and/or iPSC cells 
may be another avenue to generate su�cient numbers of NK cells 
for infusion. However, these studies are still at a relatively early 
stage and require additional characterization of the �nal product, 
as well as standardization of protocols, before this approach can 
be considered clinically relevant (8–10).

Another way of generating larger numbers of cytotoxic NK cells 
for treatment is via a clonal cell line immortalized from a patient 
who has developed a NK-cell lymphoma. However, NK-cell 
lymphoma is a relatively rare disease, and importantly, the clonal 
outgrowth of a cell line is a rare event. Over the past 20 years, 
only a handful of clonal NK-cell lines have been established 
(11–17) (Table  1). �ose cell lines generally consist of “pure” 
NK cells, which proliferate and expand easily in culture, with a 
doubling time of 2–4  days and hence can be given to patients 
repeatedly on a �exible schedule. Most of those NK-cell lines do 
not display a robust and more universal cytotoxicity that would 
warrant their further development with the exception of NK-92, 
which is the only cell line that is consistently and highly cytotoxic 
to cancer targets (13). NK-92 cells have undergone extensive 
preclinical development (18–21) and have completed phase I 
trials in cancer patients [(22, 23), clinical trials NCT00900809 
and NCT00990717]. Importantly, NK-92 cells  –  in stark con-
trast to blood NK cells – can be easily engineered by non-viral 

transfection methods to express speci�c receptors or ligands that 
can retarget them toward malignant cells.

Infusing cells of malignant origin may be counterintuitive, 
but a large body of evidence suggests that it is indeed safe as the 
cells are irradiated before infusion. Irradiation prevents in vivo 
proliferation while maintaining their ability to kill target cells 
and produce immune active cytokines. For NK-92, functional 
cytotoxicity is maintained a�er irradiation with 1000 cGy, a dose 
that completely abrogates proliferation (24). A large dataset in 
immunocompromised SCID mice has demonstrated that NK-92 
cells are not tumorigenic (20, 21, 25, 26). �is is supplemented 
with data from close to 50 patients who have now been treated 
with repeated infusions of irradiated NK-92 cells without any 
short- or long-term complications, especially tumor formation. 
�ose phase I studies also con�rmed that even with cell numbers 
as high as 10 billion cells/m2, infusions are safe with no severe 
unexpected side e�ects (22, 23). At higher doses, responses were 
observed even for unselected end-stage patients.

Relatively few cell lines comply with the commonly accepted 
de�nition of NK cells as summarized in Table  2. YT cells, for 
example, do not express CD56 but are generally considered 
“NK-like” because they kill the MHC negative cell line K562. On 
the other hand, NKL and NKG cell lines are more closely related 
to NK-92. In fact, the NKG cell line was established by using 
identical culture conditions, as described for NK-92, i.e., the 
combination of fetal calf and horse serum, β-mercaptoethanol, 
and hydrocortisone as base constituents for the medium. Both the 
NKG and NKL cell lines have demonstrated in vitro cytotoxicity 
against a variety of malignant target cells, but these cells have 
never been administered to patients (12, 15).

�e remainder of the NK-cell lines listed in Table 1 has variable 
cytotoxicity toward cancer cell lines or primary malignant cells. 
One explanation may be that these cell lines express inhibitory 
KIR receptors, which are missing on NK-92 (less well charac-
terized for NKL and NKG). For NK cells to engage and release 
their cytotoxic granules, adhesion molecules and the expression 
of activating receptors (such as NKp30, NKp44, and NKp46) 
are also essential. �e combination of expression of activating 
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TABLE 2 | Operational de�nition of NK-cell lines.

Parameter Characteristics

Derivation From NK-cell malignancy

Immortalization +++

Monoclonality +++

TCR genes In germline

Morphology Azurophilic granules, large cells

Immunophenotype CD1−, CD2+, sCD3−, cyCD3ϵ+, CD4−, CD5−, CD7+, 

CD8−, CD16−, CD56+, CD57−, TCRαβ−, and TCRγδ−

Karyotype Numerical and structural alterations

NK activity +++

EBV ±

TABLE 1 | NK-cell lines derived from patients with NK-cell leukemia/lymphoma.

Designation Origin CD16 Cytokine dependence Cytotoxicity Reference

NK-92 LGL – lymphoma neg IL-2 +++ (13)

NK-YS NK – nasal lymphoma neg IL-2 (+) (16)

KHYG-1 LGL – leukemia neg IL-2 ++ (17)

NKL LGL – leukemia pos IL-2 + (15)

NKG LGL – lymphoma neg IL-2 ++ (12)

SNK-6 NK – nasal lymphoma neg IL-2 Not tested (14)

IMC-1 LGL – leukemia pos IL-2 + (11)
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receptors and adhesion molecules, together with the lack of most 
of the currently known KIRs, accounts for the broad cytotoxicity 
of NK-92 (27).

PRECLINICAL STUDIES IN SCID MICE 
WITH NK-92

A large number of SCID mice studies with infusing either 
irradiated NK-92 (1000 cGy to mirror the clinical protocols) or 
non-irradiated NK-92 cells have been reported for a spectrum 
of human cancer xenotransplanted malignancies. In addition to 
AML (21), myeloma (28), and melanoma (20) using the parental 
NK-92 cells, CAR-modi�ed NK-92 have been shown to eliminate 
AML [CD33.CAR (29)], lymphoma [CD19.CAR (18)], myeloma 
[CS1.CAR (25)], prostate cancer [EpCAM.CAR (30)], breast 
cancer [Her-2.CAR (31)], neuroblastoma [GD2.CAR (32)], and 
glioblastoma [EGFR.CAR (33)]. In those studies, CAR-modi�ed 
NK-92 cells (now called taNK = targeted NK cells) eliminated the 
human tumor and signi�cantly improved survival without any 
side e�ects in the recipient mice (34).

An advantage of the NK-92 platform is the ability to transfect 
the cells with a gene of interest without using retrovirus or len-
tivirus, as is necessary for T cells and peripheral blood NK cells. 
NK-92 can be genetically engineered by simple electroporation. 
Since the cells are highly IL-2 dependent, this can be used as a 
selection marker: the gene/construct of interest is cloned into a 
bicistronic vector with an IL-2 variant that is restricted to the 
endoplasmic reticulum and thus avoids any safety issues associ-
ated with secreted IL-2. Only those cells that are successfully 
transfected will grow out in a medium without IL-2, a huge 
advantage of a cell line over blood cells that makes the NK-92 
cell platform an “o�-the-shelf ” engineered cellular product (35).

CLINICAL TRIALS WITH NK-92

Four phase I trials in three di�erent countries (US, Canada, and 
Germany) for di�erent malignancies have been conducted with 
NK-92. All patients had treatment-resistant advanced cancer. �e 
initial trials in Chicago and Frankfurt enrolled patients with renal 
cell and lung cancer and other solid tumors (22, 23). Two to three 
infusions of escalating dose levels of NK-92 were given 48 h apart. 
�e MTD in these trials was largely based on the number of NK-92 
cells that could be expanded over 2–3 weeks, and 1010 cells/m2 was 
considered the highest dose level. Except for some mild fever reac-
tions in the occasional patient, the infusions were well tolerated. 
Despite the advanced disease, clinically signi�cant responses were 
seen in patients with melanoma, lung cancer, and kidney cancer.

�e study at Princess Margaret in Toronto (Keating, unpub-
lished) enrolled patients with hematological malignancies, some 
of whom had relapsed a�er an autologous stem cell transplant. 
Again, those infusions were well tolerated and some clinically 
signi�cant responses were noted. A phase I study at Pittsburgh 
Cancer Center is currently enrolling the last cohort of patients 
with relapsed/treatment-resistant AML. �ose patients had a 
high leukemic blast in�ltration in the bone marrow, posing a 
potential risk for tumor lysis syndrome, which, however, was not 
observed. Some patients showed a decrease or stabilization of 
their bone marrow blast count.

Despite the allogeneic nature of NK-92 cells and repeated 
infusions, the formation of HLA antibodies only occurred in less 
than half of all patients. �is is likely related to the fact that cancer 
patients are immunocompromised, but it also mirrors earlier 
in vitro data suggesting that NK-92 cells are only mild stimulators 
in a mixed lymphocyte reaction (NantKwest, unpublished).

�e costs of preparation and administration of NK-92 are 
signi�cantly less compared to autologous or allogeneic NK cells 
and, particularly, compared to CAR.T cells, a treatment that has 
garnered signi�cant attention recently. In contrast to CAR.T cell 
protocols, which involve highly selected patients and are believed 
to cost on the order of $250,000 or more, infusion cycles with 
engineered NK-92 cells are generally less than $20,000, with the 
option of repeated treatment cycles (Table 3).

THE NEXT GENERATION OF ENGINEERED 
NK-92: haNK AND taNK

�e parental NK-92 cells do not express the FcγRIIIa receptor 
(CD16) (Figure  2). �erefore, NK-92 cells cannot mediate 
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TABLE 3 | Comparison between CAR-T cells and taNK.

CAR-T taNK

•	 Limited availability (T-cell “�tness”)

•	 Donor variability

•	 Complex collection procedure

•	 NK-92 is donor-independent,  

off-the-shelf product

•	 Requires precise logistics between 

the production facility and the 

treatment center

•	 Frozen product can be provided  

to treatment center as needed

•	 Costimulation with CD28 and/or 

4-1BB

•	 First generation CAR suf�cient

•	 Transfection with virus supernatant •	 Electroporation of plasmid or mRNA

FIGURE 2 | aNK, haNK, and taNK.
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antibody-dependent cellular cytotoxicity (ADCC). A NK-92 
variant that expresses the high-a�nity Fc receptor FcγRIIIa 
(158V) (haNK) is in clinical development to be combined with 
IgG1 monoclonal antibodies (mAbs). In vitro and in vivo studies 
have con�rmed that combination with FcγRIIIa (V/V) augments 
mAb e�cacy (36–39). �e rationale for a treatment that combines 
mAb treatment with haNK infusions is based on the number of 
retrospective studies demonstrating an improved overall survival 
bene�t in patients expressing the high-a�nity FcγRIIIa recep-
tor upon treatment with mAbs, such as Rituxan® (lymphoma), 
Herceptin® (breast cancer), and Erbitux® (colon cancer) (36, 37, 
39, 40). Since only 10% of the population is homozygous for the 
high-a�nity FcγRIIIa receptor (V/V), there is a clear rationale 

for infusing haNK to those patients who carry the low- or 
intermediate-a�nity FcγRIIIa receptor (90% of the population) 
(41) to maximize mAb e�cacy.

�e term “taNK” refers to targeted NK-92 cells (42). �ose 
cells have been transfected with a gene that expresses a CAR 
for a given tumor antigen. A large body of preclinical murine 
data supports this approach as one with superior e�cacy to the 
parental aNK cells [reviewed in Ref. (34)]. Further, the e�cient 
transfection of NK-92 with mRNA (>80%) provides a route for 
quickly assessing the e�ectiveness of any given CAR construct for 
a particular indication (43). �is approach may also ultimately 
provide a timely approach for personalized treatment based on a 
patient’s particular tumor antigen/mutation.

THE PATH TO PERSONALIZED CANCER 
THERAPY

Currently, only CARs that recognize common known tumor anti-
gens are used to transfect T cells. What is needed are CARs that 
recognize patient-speci�c tumor antigens. �is “missing link” 
can be achieved by using proteomic analysis of patient tumors to 
identify patient-speci�c neoantigens, followed by the screening of 
an antibody library for that particular antigen. Gene sequencing 
alone is not su�cient as many somatic DNA changes in tumors 
do not translate into expression of tumor antigens. Based on 
the nucleotide sequence of the antibody’s antigen binding site, a 
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FIGURE 3 | Biologistics of NK-92 as an “off-the-shelf” cellular therapeutic.
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single chain Fv (scFv) for the CAR speci�c for the patient’s cancer 
can be engineered and transfected into NK-92 cells via mRNA or 
other approaches.

�e non-viral, mRNA-based o�-the-shelf CAR technology 
allows to generate large numbers of taNK that are highly speci�c 
to the patients’ tumor (“precision medicine,” Figure  3). �ese 
cells can be frozen and shipped to the treatment site, on short 
notice. By identifying multiple patient-speci�c cancer antigens, 
the technology also enables the engineering of alternative and 
overlapping CARs in the event of a change in the tumor antigen 
pro�le (“escape”).

HOMING AND TARGET RECOGNITION

For NK cells to get to the site of tumor, they have to express certain 
“homing” molecules, such as CXCR4 for bone marrow and CCR7 
for lymphoid tissue (44, 45). �ere is also some suggestion that 
CXCR2 is responsible for targeting cytotoxic cells to solid tumors 
(46). Although the expression of a CAR probably can account 
for some homing, the migration of cells from the blood stream 
into the bone marrow, lymph nodes, or solid tumors requires 
appropriate tra�cking and homing receptors. Once the cells are 
at their “destination,” the CAR will help targeting the malignant 
cells among the healthy ones.

COMBINATION THERAPY

An o�-the-shelf cell line, such as NK-92, with all its modi�cations 
lends itself to combination therapy. A recent review summarized 

the additive and synergistic e�ect of certain drugs (bortezomib, 
IMiDs, and HDAC inhibitors) on the function of blood NK cells 
(47) and NK-92 cells (48, 49).

�e checkpoint inhibitors (Keytruda®, Opdivo®, and Yervoy®) 
have recently shown some remarkable responses in several types 
of cancers. �is bene�cial e�ect is believed to be largely due to 
blocking of inhibitory molecules on T cells, such as CTLA-4 
and PD1. Studies on the expression of checkpoint molecules on 
activated NK cells are somewhat inconclusive, but blood NK 
cells seem to express PD1 (50). By using checkpoint inhibitors in 
combination with NK-cell therapeutics, it could be expected that 
both the innate and the T-cell immune response can be further 
augmented.

�e NK-92 platform clearly provides a base for targeting 
tumors through a multiplicity of approaches. �e platform has 
been proven to be safe and e�ective even in its unmodi�ed 
(parental) form. Additional improvements through genetic 
modi�cations will provide a combination therapy approach with 
mAb therapy (haNK) and a direct targeting approach through 
CAR modi�cation (taNK). As an o�-the-shelf therapy that can 
be administered universally to patients, this platform can provide 
a cell therapy modality that is not only versatile but that can be 
tailored to speci�c patient needs.
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