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Abstract

The tumor microenvironment is highly complex, and immune escape is currently considered an important hallmark
of cancer, largely contributing to tumor progression and metastasis. Named for their capability of killing target cells
autonomously, natural killer (NK) cells serve as the main effector cells toward cancer in innate immunity and are
highly heterogeneous in the microenvironment. Most current treatment options harnessing the tumor
microenvironment focus on T cell-immunity, either by promoting activating signals or suppressing inhibitory ones.
The limited success achieved by T cell immunotherapy highlights the importance of developing new-generation
immunotherapeutics, for example utilizing previously ignored NK cells. Although tumors also evolve to resist NK
cell-induced cytotoxicity, cytokine supplement, blockade of suppressive molecules and genetic engineering of NK
cells may overcome such resistance with great promise in both solid and hematological malignancies. In this
review, we summarized the fundamental characteristics and recent advances of NK cells within tumor
immunometabolic microenvironment, and discussed potential application and limitations of emerging NK cell-
based therapeutic strategies in the era of presicion medicine.
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Background

The diversity of infiltrating stromal cells occurring in

human cancers exceeds 30 distinct subgroups, reflecting

the huge complexity of the tumor microenvironment

(TME), thereby deeply affecting the treatment option for

each patient [1]. Attempts have been made to distill this

out-of-order situation into a unifying method to better

describe actual composition of the TME using both

multi-omics and experimental technologies, shedding

light on cancer biology. This trend led to a transition in

cancer treatment from only targeting tumor cells (like

traditional chemotherapy and radiotherapy) to a new

generation of approaches emphasizing the modulation of

endogenous immune response toward cancer.

The immune system can be generally divided into the

innate and adaptive immune systems, both contributing

to the recognition and removal of foreign pathogens as

well as tumors [2]. Adaptive immunity is mainly com-

posed of cells represented by T and B lymphocytes,

which harbor an enormous repertoire of T-cell and B-

cell receptors, respectively, that can respond specifically

to different antigens in the body. Current immunothera-

peutic methods mainly focus on T lymphocytes, espe-

cially restoring exhausted CD8+ cytotoxic T cells

(CTLs). An example of such approach is immune-

checkpoint blockade, with blocking of receptors or li-

gands that inhibit the activation of CTLs, including pro-

grammed cell death protein 1 (PD-1), its main ligand

PD-L1, cytotoxic T-lymphocyte antigen 4 (CTLA-4) and

lymphocyte-activation gene-3 (LAG-3), by monoclonal

neutralizing antibodies [3, 4]. In recent years, the rapid

and potent anti-tumor function of innate immunity,
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which even occurs at a very early stage of tumor pro-

gression, has attracted increasing attention. As a subset

of whole innate lymphoid cells, natural killer (NK) cells,

defined by Herberman in 1976 [5] and often considered

a part of type 1 innate-like cells (ILC1s), are currently

defined as effector cells similar to CTLs, exerting natural

cytotoxicity against primary tumor cells and metastasis

by inhibiting proliferation, migration and colonization to

distant tissues [6]. Beside their cytotoxic role, NK cells

have been reported to produce a large number of cyto-

kines, mainly interferon-γ (IFN-γ), to modulate adaptive

immune responses and participate in other related path-

ways [7, 8]. In addition, as documented in multiple

models and experiments, NK cells could distinguish ab-

normal cells from healthy ones, leading to more specific

anti-tumor cytotoxicity and reduced off-target complica-

tions [9, 10].

Considering the pivotal role of NK cells in cancer biol-

ogy, they naturally emerged as a prospective target for

cancer therapy, and a growing number of studies and mul-

tiple therapeutic agents inhibiting cancer target NK cell-

related pathways. In this review, we will review the funda-

mental characteristics and emerging subpopulations of

NK cells. Next, we will mainly use breast cancer (BC) to

discuss the plasticity of NK cells in cancer biology and

metabolism, as well as current therapeutic regimens, in-

cluding ongoing clinical trials and FDA-approved therap-

ies targeting NK cells, and future possible approaches for

improving cancer treatment.

Development of NK cells

NK cells possess cytotoxic abilities similar to CD8+ T

cells functioning in the adaptive immunity but lack

CD3 and the T cell receptors (TCRs). Largely circu-

lating in blood and counting for about 5–10% of per-

ipheral blood mononuclear cells (PBMCs), NK cells

are found in bone marrow and lymphoid tissues such

as the spleen [11, 12]. Similar to other ILCs, NK cells

are originated from common lymphoid progenitor

(CLP) cells in bone marrow (Fig. 1) with an average

renewal cycle of about 2 weeks [12]. During develop-

ment, a process termed education, which describes

the interaction of NK cells expressing immunorecep-

tor tyrosine-based inhibitory motifs (ITIMs) with

major histocompatibility complex-I (MHC-I), helps

NK cells become licensed and avoid attacking healthy

normal cells [6, 9]. Interestingly, tumor cells always

lack or only express low levels of MHC-I to evade

CD8+ T cell-mediated cytotoxicity, whereas licensed

NK cells are fully activated. However, tumor cells also

express molecules that activate NK cells, e.g., MHC

class I polypeptide-related sequence A (MICA) and

MICB [13, 14], supporting the use of NK cells as

anti-cancer agents. In addition, unlicensed NK cells

also play important roles in the body, e.g., eliminating

murine cytomegalovirus (MCMV) infection and

MHC-I+ cells [15].

To date, NK cell survival and development is thought

to mainly rely on cytokines (especially IL-2 and IL-15)

[16–19] and transcription factors (Nfil3, Id2 and Tox for

development, and EOMES and T-bet for maturation)

[16, 20]. GRB2-associated binding protein 3 (GAB3) is

essential for IL-2 and IL-15-mediated, and its deficiency

leads to impaired NK cell expansion [21]. In addition,

targeting related signals is a potential option for promot-

ing NK cell-induced cytotoxicity toward cancer. As re-

ported previously, ablation of cytokine-inducible SH2-

containg protein (CIS), which negatively regulates IL-15

to restrict NK cell function, could prevent metastasis

and also potentiate CTLA-4 and PD-1 blockade therapy

in vivo [22].

Identification and molecular features of NK cells

Surface molecules of NK cells

Due to variable expression of surface markers on NK

cells, it is hard to use one or two simple molecules or

traditional immunohistochemistry to accurately identify

this cell type and more importantly, their functional sta-

tus. However, in humans, in both clinical and research

settings, CD3−CD56+ cells are commonly identified as

NK cells and can be further divided into the CD56bright

and CD56dim subgroups. CD56 is not only a marker but

also plays an important role in the terminal differenti-

ation of NK cells since its blockade by monoclonal anti-

bodies obviously inhibits the transition from CD56bright

to CD56dim, thus limiting the cytotoxic ability [23]. Con-

sistently, CD3−NK1.1+ and CD3−CD49b+ cells are de-

fined as NK cells in mice. In recent studies, the notion

that natural cytotoxicity receptor 46 (NKp46), belonging

to natural cytotoxicity receptors (NCRs), should also be

included in this panel has been proposed based on the

consensus of adding more functional proteins rather

than surface molecules into the classification system of

NK cells [24, 25].

Activating and inhibitory signals in NK cells

As the main effector cell type in innate immunity, NK

cells are capable of killing tumor cells and virus-infected

cells at a very early stage. Due to the lack of abundant

production of receptors for distinguishing incalculable

antigens in the body specifically, they rely on the “miss-

ing self” and “induced self” modes to identify target cells

by maintaining a precise balance between activating co-

stimulatory and inhibitory signals (mainly by functional

receptors). Those interacting signals finally decide the

activation and functional status of NK cells.

Activating signals include cytokine-binding receptors,

integrins, killing-receptors (CD16, NKp40, NKp30 and
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Fig. 1 Development and subgroups of NK cells. In bone marrow, NK cells develop from hematopoietic stem cells (HSCs) through common
lymphoid progenitors (CLPs) and NK cell precursors (NKPs), and then migrate to peripheral blood (cNK cells) or tissue (trNK cells). The
differentiation of trNK-cells occurs in distinct tissue sites, including the lung, thymus, liver, uterus, skin, subcutaneous adipose tissue, and kidney. In
these sites, NK cells have different phenotypic features and functions, which constitute the circulation of NK cells at different stages of
maturation. CLA, cutaneous lymphocyte-associated antigen; CCR8, C-C motif chemokine receptor 8; GATA3, GATA binding protein 3; CXCR6, C-X-
C motif chemokine receptor 6; KIR, killer cell immunoglobulin-like receptor; CILCP, common innate-like cell precursor
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NKp44), receptors recognizing non-self-antigens (Ly49H)

and other receptors (e.g., NKp80, SLAMs, CD18, CD2 and

TLR3/9) [26, 27]. In total, the activating receptors of NK

cells can be divided into at least three types according to

the respective ligands, including MHC-I specific, MHC-I

related and MHC-I non-related receptors (Table 1) [13,

28–43]. To emphasize, NCRs, which belong to the third

group, include three molecules (NKp30, NKp44 and

Table 1 Key mediators of NK cells

Classification Mediator Host ligand Ref.

NK cell activator

MHC-I specific receptor KIR2DS1, 2DS3, 3DS5 MHC I [28]

Ly49c, Ly49i MHC I [29]

NKp80 MHC I [30]

NKG2C, NKG2E MHC I [31]

MHC-I related receptor NKG2D MICA, MICB, ULBPs [13]

MHC-I non-related receptor DNAM1 Nectin-2, CD155 [32]

NKp46 (NCR1) HS GAGs, CFP [33]

NKp44 (NCR2) HS GAGs, MLL5, NKp44L, PCNA, BAT3, PDGF-DD, Nidogen-1 [34]

NKp30 (NCR3) HS GAGs, B7-H6, Galectin-3 [35]

Nkp65 Keratinocyte-associated C-type lectin [36]

LFA-1 (αLβ2 integrin) Intercellular cell adhesion molecule 1 [37, 38]

α4 integrin Vascular cell adhesion molecule 1 [39]

CD16 Fc-γ [40, 41]

CD2 CD581 [41]

TLR3 Microbial constituents, adjuvant [42]

TLR9 CpG [43]

NK cell inhibitor

MHC-I specific receptor KIR3DL1 MHC I [44]

KIR2DL3, 2DL1 MHC I [45]

NKG2A MHC I [46]

KLRB1, LLT1 MHC I [47]

LILRB1, LILRB2 MHC I [48]

MHC-I non-related receptor KLRG1 E-, N-, and R- cadherins [49]

siglec-3, siglec-7, siglec-9 Sialic acid [50, 51]

CEACAM1 CEACAM1, CEACAM5 [52]

2B4 (CD244) CD48 [53]

IRp60 Phosphatidylserine [54]

LAIR1 Ep-CAM [55]

CD96 CD155 [56]

CD73 Antibodies [57]

PD-1 PD-L1 [58]

TIGIT CD155 [20]

NKR-P1B Clr-b [59]

LAG3 MHC-II [60]

Abbreviations: MHC major histocompatibility complex, KIR killer cell immunoglobulin-like receptor, MIC MHC class I chain-related, ULBP UL16-binding protein 1,

DNAM1 DNAX accessory molecule 1, NCR natural cytotoxicity receptor, HS GAGs heparan sulfate glycosaminoglycans, CFP complement factor P, MLL5 mixed-

lineage leukemia protein-5, PCNA proliferating cell nuclear antigen, BAT3 HLA-B-associated transcript 3, PDGF-DD platelet-derived growth factor-DD, LFA-1

lymphocyte function-associated antigen-1, TLR toll-like receptor, KLR killer cell lectin-like receptor, LLT1 lectin-like transcript 1, LILR leukocyte immunoglobulin-like

receptor, Siglec sialic acid-binding immunoglobulin-like lectin, CEACAM carcinoembryonic antigen-related cell-adhesion molecule, IRp60 inhibitory receptor protein

60, LAIR1 leukocyte-associated immunoglobulin-like receptor 1, Ep-CAM epithelial cellular adhesion molecule, PD-1 programmed cell death protein 1, TIGIT T-cell

immunoreceptor with Ig and ITIM domains, LAG3 lymphocyte activation gene 3
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NKp46), and NKp30 was shown to be capable of recogniz-

ing B7-H6 expressed on tumor cells, and could be used as

a novel treatment option in the future [35].

Inhibitory signals mainly comprise receptors recogniz-

ing MHC-I, such as Ly49s, NKG2A and LLT1, as well as

some MHC-I non-related receptors (Table 1) [20, 44–

60]. Moreover, MHC-I specific inhibitory receptors can

be generally divided into three types according to struc-

ture and function: killer cell immunoglobulin-like recep-

tors (KIRs), killer lectin-like receptors (KLRs) and

leukocyte immunoglobulin-like receptors (LILRs).

NK cell subpopulations according to site of maturation

Conventional NK (cNK) cells are mainly found in per-

ipheral blood and migrate to a specific location to exert

their effects. NK cells also include tissue-resident NK

(trNK) cells. The complex process of NK-cell differenti-

ation occurs in several distinct tissues, including bone

marrow, liver, thymus, spleen and lymph nodes, and

may involve cell circulation at different stages of matur-

ation among these tissues [61]. In bone marrow, blood,

spleen and lungs, NK cells are fully differentiated, while

that in lymph nodes and intestines are immature and

precursory [62]. Single-cell transcriptome ananlysis of

bone marrow and blood NK cells helps to illustrate the

changes of their characteristics during development. For

example, high expreesion of TIM-3, CX3CR1 and ZEB2

represents a more mature status [63]. Many hypotheses

have been proposed to describe the motivation of their

migration and different biological behaviors of identi-

cally originated NK cells in different tissues. The first

question could be partly explained by the multi-

direction differentiation induced by heterogeneous mi-

croenvironments in different tissues, or more straight-

forward, different phenotypes originated from similar

chemokine-recruited peripheral cNK cells.

To conclude, NK cells in various tissues have diverse

features, possessing different functions and forming a

close relationship with other stromal cells (Fig. 1). In the

lung, trNK cells show a different phenotype from that of

circulating NK cells (mainly CD56dim) and are consid-

ered to express different levels of CD16, CD49a and

CD69, with CD56dimCD16+ cells representing the major-

ity of the whole NK family there [64, 65]. Of note,

CD69+ cells are the main type of CD56brightCD16− NK

cells. However, in the thymus, most NK cells are

CD56highCD16−CD127+, highly relying on GATA3 com-

pared with the CD56+CD16+ subgroup [66]. Besides,

they produce more effector molecules, including TNF-α

and IFN-γ [66, 67]. Similar to the phenotypic features in

humans, skin NK cells in the mouse can be generally di-

vided into two types: CD49a+DX5− and CD49a−DX5+

[68, 69]. Similarly, hepatic trNK cells can be classified

into two groups, including CD56brightCD16+/− and

CD56dimCD16+, both lacking CD3 and CD19 [8]. In

addition, CD49a+CD56+CD3−CD19− NK cells have been

identified in liver biopsies [70]. Besides, hepatic NK cells

can develop memory for structurally diverse antigens,

dependent on the surface molecule CXCR6 [71]. In the

uterus, most NK cells are CD56brightCD16−, expressing

high levels of KIRs [72]. Decidual NK cells are also

CD49a+. For skin NK cells, it is intriguing that only few

CD56+CD16+ can be detected, which are common in

peripheral blood [73]. Interestingly, trNK cells are dis-

tinct between subcutaneous (CD56dim) and visceral

(CD56bright) adipose tissues, and can be generally divided

into three groups according to CD49b and Eomes, show-

ing different expression levels of CD49a (CD49b+Eomes−

subgroup) and CD69 (CD49b−Eomes+ subgroup) [74,

75].

Besides different tissue types, NK cells are also highly

heterogeneous even in the same organ and the same tis-

sue [61]. Through high-dimensional single-cell RNA-

seq, Crinier et al. revealed the heterogeneity of human

and mouse NK cells in spleen and blood and identified

several subpopulations of NK cells, respectively [76]. As

mentioned above, NK cells are considered a subgroup of

ILC1s [6]. Although ILC1s are not detectable in many

tissues, intra-epithelial ILC1 (ieILC1)-like cells, which

highly express IFN-γ, integrins and other cytotoxic mol-

ecules similar to the ieILC1s previously described by

Fuchs except for different NKp44 expression, could rep-

resent the majority of NK cells in the mucosal tissue [61,

77]. Due to their unique features, this cell type repre-

sents a subgroup of NK cells other than conventional

ILCs. Unlike other trNK cells, DX5−CD11chi liver-

resident NK cells participate in autoimmune cholangitis,

negatively regulating immune responses, especially by

inhibiting the proliferation and function of CD4+ T cells

in vivo, which was validated by severer biliary disease in

NK-depleted mice resulting from Nfil3 knockdown or

treatment with neutralizing antibodies [78].

NK cell subpopulations according to functional molecules

According to surface CD56 expression, NK cells can be

divided into CD56bright and CD56dim. CD56dim NK cells

are mainly found in peripheral blood, and are always

also CD16-positive, expressing high levels of KIR and

LFA-1 and showing cell killing ability. CD16 is a key re-

ceptor mediating antibody-dependent cell cytotoxicity

(ADCC), inducing the phosphorylation of immunorecep-

tor tyrosine-based activation motif (ITAM) [40, 79, 80].

According to a time-resolved single-cell assay, the cyto-

toxicity of NK cells is repressed through both necrosis

and apoptosis. As a result, FasL/FasR interaction, per-

forin/granzyme release and Ca2+ influx are all important

for NK cell function [81]. However, CD56bright NK cells

are similar to helper cells, which mainly secrete
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cytokines such as IFN-γ, TNF-β and GM-CSF [23]. Re-

searchers even further subgroup these cells into the NK1

and NK2 categories, consistent with Th1 and Th2,

mainly secreting IFN-γ and IL-5, respectively [82].

Besides established cytotoxic cNK cells, it has been

demonstrated that NK cells could differentiate into

antigen-presenting NK (AP-NK) cells [83], helper NK

(NKh) cells [84] and regulatory NK (NKreg) cells, each

defined by surface molecules and individual functions. A

new CD8αα+MHC-II+ phenotype with professional APC

capacity was considered to represent unusual AP-NK

cells, recognizing and eliminating autoreactive T cells

and finally killing them like cNK cells [85]. Human plas-

macytoid dendritic cells (DCs) activated by the prevent-

ive vaccine FSME upregulate CD56 expression on their

surface [86]; in mice, B220+CD11cintNK1.1+ cells have

antigen-presenting capacity like DC, hence their name

interferon-producing killer DC [87, 88].

Invariant natural killer T cells (iNKT) constitute a sub-

group of T cells expressing NK cell-markers. Activated

by CD1d-presenting antigens, NKT could secrete not

only Th1-type but also Th2-type cytokines to participate

in immunity [89, 90]. Th1-polarized iNKT cells exhibit a

tumor-depletion phenotype, and Th2-polarized iNKT

cells contribute to tumor progression, similar to polar-

ized T cells [91, 92]. Recent studies also highlighted new

functional subtypes of iNKT cells. However, in recent

years, due to their close relationship with innate immun-

ity, iNKT cells are potentially defined as a special sub-

group of ILCs.

NK cells in the tumor microenvironment

Conventional roles of NK cells in immunity

Detection of aberrant cells by NK cells is determined by

the intergradation of complex signals such as IL-12, IL-

15 and IL-18 [93, 94], and the balance between activat-

ing and inhibitory signals interacting with MHC-I on the

surface of target cells (Fig. 2). During infection and in-

flammation, NK cells are recruited and activated in a

short period of time, proliferate quickly and contribute

largely to both innate and adaptive immune responses

[8, 95]. Except for their newly proven regulatory effects,

NK cells were first found to directly target infected cells

or foreign pathogens; therefore, deficiency in NK cells in

both mice and humans results in susceptibility to many

viral infections and adverse clinical outcomes, validated

by clinicians and researchers.

Similar to other innate immune cells that are unable

to accurately recognize target cells, NK cells rely on

other stromal cells, including DC, which trans-presents

IL-15 for NK cell activation [96], and MICA-expressing

monocytes, which bind to Fc receptor to enhance antitu-

mor function [97], to fully differentiate and induce ef-

fector responses, but surprisingly possess the ability to

form immunological memory, termed “trained immun-

ity”. Once considered as a hallmark of adaptive immun-

ity, in recent years, the phenomenon of immunological

memory has also been found in innate immune cells, es-

pecially in the myeloid lineage, e.g., monocytes and mac-

rophages. In addition, mounting evidence indicates that

in humans, NK cells can remember previous exposure to

inflammatory microenvironment, and occurrence of

similar cytokines could induce trans-differentiation from

normal NK cells to memory NK (NKm) cells [98–101].

This was evidently observed in response to viral infec-

tion in humans, prompting the development of NK cell-

based vaccines to generate potent effects toward diseases

[102, 103]. A large number of NKm cells are observed in

the tumor microenvironment, producing high levels of

IFN-γ, perforin and granzyme family molecules after re-

stimulation [104]. However, concerning to tumors, dys-

function of NK and NKm cells is emerging as an indis-

pensable and undeniable event, leading to not only

proliferation of tumor cells but also the formation of dis-

tant metastases [101]. It was observed that repeated ex-

posure of NK cells to NK receptor ligand-expressing

tumor cells (e.g. NKG2D) finally results in NK cell dys-

function, and effector responses cannot be stimulated

in vivo [105, 106]. These results indicate that the forma-

tion of NKm cells may not just depend on target cell

recognition through surface receptors, and certain cyto-

kines (including IL-12, IL-15 and IL-18) could be key to

this process.

Though the half-life of normal NK cells is only for 1–

2 weeks, NKm cells can live for 3–4 weeks [107]. This

long-term effect truly helps researchers better modulate

the function of NK cells in protecting against tumors,

and emerging results suggest that NK cells not only rely

on MHC-I recognition but also depend on many other

signals, shedding light on the use of NK cells and related

signaling pathways as future treatment options.

Infiltration of NK cells with cancer genotypes and

phenotypes

In 2000, an 11-year follow-up study of the Japanese general

population, with rigorous use of various related biochemical

and immunological markers, indicated that elevated cyto-

toxic activity of peripheral NK cells is positively associated

with reduced cancer risk and vice versa, suggesting the cer-

tain importance of natural immune response toward tu-

mors [108]. However, the specific role of NK cells remains

controversial and largely depends on distinct cancer types

[109]. Even in the same type of cancer, NK cells are highly

heterogeneous, characterized by the abundance of surface

receptors and the complexity of tumor intrinsic signaling

pathways [95, 110]. In the CIBERSORT analysis, NK cells

were thoroughly divided into resting and activated sub-

types, each contributing to the formation of the tumor
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microenvironment [111]. In preclinical studies, NK cells

were shown to indicate survival and thus therapeutic re-

sponse in different types of cancer, as detected by immu-

nohistochemistry, immunofluorescence or flow cytometry

using different surface and functional markers (Table 2)

[46, 56, 112–129]. Although CD3−CD16+CD56+ cells re-

flect different clinical outcomes in different cancers, func-

tional molecule-positive NK cells, including NKp30+ and

Fig. 2 The complex interaction between NK cells and the extracellular matrix. Exposure of NK cells to the adjacent cells, molecules and metabolites in the
extracellular matrix affects their development, maturation, activation and functions. CXCR3, C-X-C motif chemokine receptor 3; NKG2D, nature-killer group 2, member
D; IFN-γ, interferon γ; TNF-α, tumor necrosis factor α; IDO, indoleamine 2,3-dioxygenase; MICA, MHC class I polypeptide-related sequence A; PGE2, prostaglandin E2;
HCC, hepatocellular carcinoma; CIS, cytokine-inducible SH2-containg protein; TGF-β, transforming growth factor-β; HMGB1, high-mobility group box 1; HIF-1α,
hypoxia inducible factor-1α; 27HC, 27-hydroxycholesterol; iNKT, invariant natural killer T; GM2, β-N-acetylhexosaminidase; TCR, T cell receptor
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NKp46+, indicate favorable survival, pointing out the fact

that full activation but not only infiltration density finally

determines NK cell-associated immune response.

In BC, besides the ability of total NK cells to reflect fa-

vorable survival, peritumoral abundance of NK cells also

correlates with elevated pCR rate of neoadjuvant chemo-

therapy in large and locally advanced breast cancer

[130], and vice versa. To address this, it is currently well

accepted that tumors are highly heterogeneous, and even

one histologic type can be separated into several mo-

lecular subtypes. BC can be thoroughly clustered into lu-

minal, HER2-enriched and triple-negative types

according to the expression of surface molecules, and

both infiltration and activation status of NK cells vary by

cluster, e.g., obviously elevated NKG2D in luminal tu-

mors [131]. However, due to the complex and variable

functional status of NK cells, their actual role in the

TME still awaits further elucidation.

Underlying mechanisms of immune escape and metastasis

of cancer

As noted above, NK cells rely on the balance between

activating and inhibitory receptors to exert their killing

effects, and perforin and the granzyme family of proteins

are the main effector molecules. Consistent with cNK

cells, as a newly-found subgroup of NK cells, activated

NKT cells directly detect and kill CD1d+ tumor cells in

several types of cancer [132, 133]. In addition, by ex-

pressing high levels of CD40, NKT cells induce DC mat-

uration, thus activating CTL and cNK cells to enhance

their anti-tumor effects [134, 135].

Apart from primary tumor proliferation, metastasis re-

mains lethal, accounting for the majority of cancer-

associated deaths, and invasion-metastasis cascade is

largely attributable to the immune escape [136]. With

such rapid and effective ability to target tumor cells dir-

ectly and indirectly, NK cells are suppressed by tumor-

derived molecules, tumor-educated stromal cells (Fig. 2)

and tumor cells (Fig. 3), eventually contributing to the

progression and multi-step metastatic process of cancer.

For example, single-cell analyses found that in lung

adenocarcinoma, CD16+ NK cells are hardly infiltrated

and present lower granzyme B and CD57 expression

compared with normal lung tissue, appearing to form

NK cell-excluded TME [137].

Class IA phosphatidylinositol 3 kinases (PI3Ks) are in-

volved in growth and survival of normal cells, and muta-

tion of the PI3KCA isoform is commonly found in the

genomic landscape of many cancers. Inhibiting abnor-

mally activating signals of PI3KCB with a tested inhibitor

Table 2 Infiltration of NK cells in different cancer types and its influence on clinical outcome

Cancer type Sample Detection method Marker Clinical outcome Ref.

Pancreatic cancer Blood Flow cytometry CD3−CD16+CD56+ Adverse OS [112]

Colorectal cancer Tumor IHC CD57+ Favorable OF and DFS [113]

Lymph node IHC CD56+ Favorable RFS [114]

Blood Flow cytometry CD3−CD16+CD56+ Favorable OS [115]

Chronic myeloid leukemia Blood Flow cytometry CD3−CD16+CD56dim Favorable molecular RFS after
imatinib discontinuation

[116]

Chronic lymphocytic leukemia Blood Flow cytometry CD3−CD16+ and/or CD56+ Favorable OS [117]

Follicular lymphoma Blood Flow cytometry CD3−CD56+ and/or CD16+ Favorable OS [118]

Mantle cell lymphoma Blood Flow cytometry CD3−CD16+ and/or CD56+ Adverse OS and PFS [119]

Liver cancer Tumor IF CD56+PD1+ Adverse survival [120]

Tumor IHC NKG2A+ Adverse OS and DFS [46]

Tumor Flow cytometry CD3−CD56+CD49a+ Adverse OS and DFS [121]

Tumor Flow cytometry CD3−CD56+CD96+ Adverse DFS [56]

Prostate cancer Blood Flow cytometry CD3−CD56+ NKp30+ or NKp46+ Favorable OS [122]

Lung cancer Blood Flow cytometry CD56dimCD16+NKp46+ Favorable OS [123]

Blood qRT-PCR NKp30 Adverse OS and PFS [124]

Tumor IF CD56+ and/or CD16+ Favorable OS [125]

Breast cancer Tumor IHC CD3−CD56+ Favorable DFS [126]

Tumor IHC CD56+ Adverse OS [127]

Gastric cancer Tumor IHC NKG2D+ Favorable OS [128]

Bladder cancer Tumor Flow cytometry CD45+CD14−CD19−CD3−ILT3−cKIT−CD56bright Favorable OS and CSS [129]

Abbreviations: IHC immunohistochemistry, IF immunofluorescence, qRT-PCR quantitative real time polymerase chain reaction, OS overall survival, RFS recurrence-

free survival, PFS progression-free survival, DFS disease-free survival, CSS cancer-specific survival
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Fig. 3 Interplay between cancer cells and NK cells during tumorigenesis. The interaction between tumor cells and NK cells changes continuously
with NK cell development, tumor progression and metastasis. During the stage of tumorigenesis (a), NK cells recognize tumor cells through
various surface molecules and switch to the active status. In the immune control stage (b), NK cells exert killing effects by ADCC, secreting
cytokines and generating memory NK cells. Meanwhile, changes in the surface molecules of tumor cells also promote anti-tumor metabolic
responses. However, long-term exposure of NK cells to tumor cells, tumor- derived molecules and tumor-educated stromal cells, including
fibroblast, monocyte and macrophage, causes NK cells to be in an immunosuppressive state, thereby promoting tumor immune escape and
metastasis (c). MHC- I, major histocompatibility complex-I; MICA, MHC class I polypeptide-related sequence A; MICB, MHC class I polypeptide-
related sequence B; NCR, natural cytotoxicity receptor; Nfil3, nuclear factor interleukin-3-regulated protein; Id2, inhibitor of DNA binding 2; Tox,
thymocyte selection associated high mobility group box; EOMES, eomesodermin; T-bet, T-box transcription factor 21; ADCC, antibody-dependent
cell-mediated cytotoxicity; GM-CSF, granulocyte-macrophage colony stimulating factor; PRF1, perforin 1; GZMB, granzyme B; PD-L1, programmed
cell death ligand 1; PGE-2, prostaglandin E2; HCC, Hepatocellular Carcinoma; IFN, interfron; TNFα, Tumor Necrosis Factor α;PI3K, Class IA
phosphatidylinositol 3 kinase
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called P110β in hematologic malignancies obviously en-

hances susceptibility of tumors to NK cell activity in vitro,

probably through the regulation of MHC-I [138]. Tumor-

derived prostaglandin E2 [139], extracellular adenosine

[140], fragmented mitochondria in the cytoplasm of

tumor-infiltrating NK cells [141] and actin cytoskeleton

remodeling [142] also lead to immunosuppression and

help potentially metastatic cancer cells to avoid NK cell

elimination. Interestingly, in a breast cancer cell line,

CDC42 or WASP knockdown does not change the activa-

tion status of NK cells but obviously increases the expres-

sion of effective granzyme B and overcomes resistance to

NK cell-mediated attack [142]. Further investigation in

this field might help identify a new signaling pathway or a

new marker of NK cell-activation and provide new in-

sights into NK cell-therapy. Similar to the inhibitory role

of CD73 in T cell-immunity, tumors can train normal NK

cells into CD73+ NK cells which express high levels of

checkpoint molecules, including LAG-3, PD-1, and PD-

L1, finally resulting in immune escape [57]. As mentioned

above, Th2-polarized iNKT cells in the TME contribute to

tumor progression through immunosuppressive effects

[91], and continuous exposure to ligands expressed on the

surface of tumor cells induces the dysfunction of NKm

cells that are engaged in long-term anti-tumor immunity

[106]. Moreover, absence of NKG2D is a common feature

of functionally suppressed NK cells, which is achieved

through many different pathways [105, 143], thus could be

used as a marker to guide NK cell-related therapies [144].

In addition, NK cell-associated cytotoxicity can also be

impaired by stromal cells, for example cancer-associated

fibroblasts, monocytes, macrophages and other immune

cells. Fibroblasts in TME suppress function of NK cells

through downregulating ligands of NK cell activating re-

ceptors [145], enhancing tumor-associated macrophages

enrichment [146], and producing extracelluar matrix

components such as IDO and PGE2 [147]. In human

gastric cancer, tumor infiltrating monoctyes/macro-

phages can reduce IFNγ, TNFα, and Ki-67 expression of

NK cells via TGFβ1, thus impairing NK cell function

[148]. Meanwhile, the interaction of PD-1+ NK cells and

PD-L1+ monoctyes/macrophages in Hodgkin lymphoma

results in immune evasion, which can be reversed by

PD-1 blockade [149]. The monocytes from hepatocellu-

lar carcinoma express CD48, which could block 2B4 on

NK cells and induce NK cell dysfunction [150].

Consistent with CD8+ T cells, activated PD-1+ NK

cells are inhibited by elevated PD-L1 expression in the

TME [58]. Dysfunction of NK cell following surgery has

been regarded as a risk factor of metastasis and can be

partly explained by disturbing the balance between acti-

vating and inhibitory signals. NK cell-mediated metasta-

sis control was found dependent on dectin-1-mediated

activation of macrophages, especially the plasma

membrane tetraspan molecule MS4A4A [151]. In colo-

rectal cancer, lipid accumulation is common for postop-

erative patients and facilitates the formation of

metastasis by impairing NK cell function, by elevating

CD36 expression [152]. Hence, NK cells can be rarely

seen in metastatic melanoma and are mainly TIGI

T−CD226− which are deprived of cytotoxicity toward

MHC-I-defient malignant cells [153]. Interestingly,

proved by convincing genetically engineered models, it is

the absence of NK cells but not CD8+ T cells that evi-

dently leads to the metastatic dissemination of small cell

lung cancer, pushing us to better define the pivotal role

of NK cells in both initial progression and later metasta-

sis of cancer [154].

Relationship between NK cell-based and CD8+ T cell-based

immunity

NK cells, though belonging to innate immunity, have

characteristics similar to cytotoxic CD8+ T cells [95].

Originally proven important in the two-signal activation

model of T cells, CD28 is also necessary for optimal

cytokine secretion and proliferation of NK cells both

in vitro and in vivo [155]. It was shown that IL-21 is im-

portant for the maturation and activation of NK cells

[156–158]. However, data also uncovered the double-

sided function of IL-21 in the development of NK cells

and surprisingly, its positive role in T-cell-based immune

response [159, 160], for example inducing KLRG1+CD8+

T cells during acute intracellular infection [161]. Besides

IL-21, NK cells produce multiple other cytokines during

their proliferation, maturation and function similar to T

cells, including IL-2 [162], IL-7 [163] and IL-15 [164],

validating the close relationship between these two types

of effector cells in the body’s immune system.

Although sharing many similarities, compared with ef-

fector T cells, NK cells are more cytotoxic to tumors

and possess lower immunogenicity [10]. As mentioned

above, NK cells respond to target cells more quickly and

do not need extra ligation of activating receptors [95].

On the contrary, NK cells have the ability of suppressing

the function of CD8+ T cells via NKG2D in severe aplas-

tic anemia [165]. It has been underlined that during in-

fection with chronic lymphocytic choriomeningitis virus,

NK cell-intrinsic FcRγ signaling could inhibit the expan-

sion of CD8+ T cells [166]. Interestingly, tumor cells that

develop checkpoint blockade resistance to CTLs, espe-

cially through suppressed MHC-I expression, are more

vulnerable to NK cell-based immunity; thus, combin-

ation immunotherapy utilizing both NK cells and CD8+

T cells can constitute a future strategy in terms of tumor

immune escape [167]. Besides, in tumors that lack

MHC-I-related molecules, elevated amounts of HLA-E

and HLA-G were observed, indicating the possibility for

NK cells to harness this unclassical pathway [168]. More

Wu et al. Molecular Cancer          (2020) 19:120 Page 10 of 26



basic researches are urgently needed for better under-

standing of the complex relationship between these two

major effector cells, as NK cells-based treatment is cur-

rently highly underestimated.

Crosstalk of NK cells and metabolic signaling in cancer

Immunometabolic disorder as a hallmark of cancer

Similar to high blood pressure and diabetes, cancer is

currently regarded as not only a process of pathogenesis

but also a social issue. Lipid accumulation in the liver,

abnormal glucose metabolism and irregular lifestyle all

contribute to tumorigenesis and cancer progression,

which eventually prompt research about the underlying

mechanisms of this phenomenon. It is admitted that the

metabolic competition between tumor and stromal cells

largely affects the process of tumorigenesis and cancer

progression. In the TME, NK cell function is impaired

not only by suppressive cytokines but is also attributable

to inappropriate metabolic conditions, including hyp-

oxia, lack of nutrition and abnormal concentrations of

tumor-derived products such as lactate, which induces

unfavorable acidic condition, hindering the proliferation

and cytokine production of CTLs as well (Fig. 2) [169].

As metabolic disorder is currently considered a hallmark

of cancer, which shares a close relationship with the

microenvironment, the idea of harnessing immunometa-

bolism attracts increasing attention to improve the effi-

cacy of NK cell-dependent anti-tumor therapy.

The normal breast tissue is surrounded by adipose tis-

sue, and obesity is considered a potential risk factor for

breast cancer, which is supported by population-based

studies, together with high mental pressure, evidently af-

fecting lipid and glucose metabolic pathways. Obesity-

induced inflammation in adipose tissue could result in

the recruitment of M1-polarized macrophages, neutro-

phils, NK cells and CD8+ T cells, and higher expression

levels of pro-inflammatory cytokines, as well as obvious

exclusion of Treg and invariant NKT (iNKT) cells [170].

In 2011, aware of the importance of tumor-promoting

inflammation in the TME, Weinberg et al. included this

phenomenon into the hallmarks of cancer and particu-

larly highlighted inflammation induced by the innate im-

mune response [1]. Thus, improved understanding of

the mechanism by which metabolic activity affects the

function of tumor-infiltrating stromal cells, finally result-

ing in cancer progression and immune escape, would

provide clues for developing novel therapeutics for

immunometabolic targets.

Metabolic disorder of conventional NK cells in the TME

NK cell function can be altered by different components

in the TME. Breast cancer metabolomics data overtly

show that lipid and glucose metabolic pathways are highly

activated, especially the fatty acid synthase glycolysis path-

way, compared with paired peritumoral tissue.

Similar to other lymphocytes, NK cells require energy

to survive, and glucose consumption is evidently in-

creased after full activation, while the competition be-

tween NK cells and tumor cells could disturb such need.

It has been shown that surface transporters, especially

glucotransporter 1 (GLUT1), help NK cells utilize glu-

cose to generate ATP and pyruvate, contributing to gly-

colysis and oxidative phosphorylation [171, 172]. Several

studies have pointed out the importance of sufficient

glucose supply for NK cell activities, including prolifera-

tive capacity, activation status, cytokine production and

direct cytotoxicity [173, 174]. Glycolysis and oxidative

phosphorylation contribute to maintain the cytotoxic

ability of NK cells, as their inhibition highly decreases

the expression levels of IFN-γ and Fas ligand [175].

NKG2D is essential for the activation of NK cells, which

relies on glycolysis. Researchers have identified several

pathways pertaining to the interlinked metabolic activity

and NK cell function. Obesity-related inflammation is

dependent on the IL-6/Stat-dependent pathway, thereby

resulting in a distinct functional status of NK cells [176].

In addition, Assmann et al. highlighted that sterol regu-

latory element-binding proteins (SREBP) transcription

factor-controlled glucose metabolism is essential for

metabolic reprogramming in activated NK cells, provid-

ing new insights into this process [177]. Accordingly,

SREBP inhibitors such as 27-hydroxycholesterol (27HC)

are accumulated in the TME, partly affecting SREBP-

related glycolysis in ER-positive BC [178]. However, as

most studies only focus on GLUT1, other transporters

and unclassical pathways should also be paid attention

to, paving the way for deeper understanding of the com-

plex relationship between glucose metabolism and NK

cell function.

Hypercholesterolemia remains a risk factor for ER-

positive BC. In 2013, 27HC, which negatively regulates

SREBP, was also found by Nelson et al. to be a bridge

linking hypercholesterolemia and BC [179]. It was also

found that treating mice submitted to high-cholesterol

feed with an inhibitor of CYP27A1, an enzyme import-

ant in 27HC biosynthesis, obviously decreases the num-

ber of metastases in mice, which reverses immune

suppressive environment [180]. Therefore, using drugs

designed to decrease blood cholesterol or directly inhi-

biting the formation of 27HC could be a potential strat-

egy for patients with ER-positive BC. Surprisingly, a

recent study suggested that high serum cholesterol and

cholesterol accumulation in NK cells increase their anti-

tumor ability by facilitating the formation of lipid rafts

in the liver-tumor-bearing murine model [181],

highlighting the heterogeneous functions of lipid metab-

olism in cancer.
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Hypoxia is also a common feature of cancer, and

often mentioned concurrently with low pH in the

TME. Previous findings indicated that besides pro-

moting tumorigenesis and cancer progression, hypoxia

also stimulates NK cell formation via HIF-1α, initiat-

ing a conflict between suppressing and activating this

signal [182]. Studies have also shown that low O2 in

TME harms the function of NK cells by downregulat-

ing activating signals such as NKG2D, NKp30 and

CD16, thereby limiting cytokine production and cyto-

toxicity and resulting in metastasis [183, 184]. In

addition to regulating intracellular signals directly, the

hypoxic microenvironment could degrade NK cell-

secreted functional molecules such as granzyme B

[185], together with CTL-based immunity, which is

partly rescued by IL-2 [186, 187]. Considering the

pivotal roles of interleukin family members in the

maintenance of NK cells, we paid more attention to

these cytokine-primed metabolic pathways and found

more clues under hypoxic conditions.

Besides, tumor cells can directly alter the metabolic

status of NK cells. This can be positive as CD25 ex-

pression on NK cells is overexpressed after interaction

with tumor cells, inducing long-term anti-tumor

metabolic responses by promoting glycolysis and NK

cell survival, supported by mTORC1/cMYC signaling

activation. However, worsening occurs later as the

harmful effects overcome the positive impact. For in-

stance, glutamine addiction and high consumption of

nutrients remain common in BC. In vitro studies

showed arginine deficiency inhibits IFN-γ production

by primary human NK cells [188]. Additionally,

mTOR signaling within NK cells can be largely sup-

pressed under low-arginine or glutamine conditions,

which also affect IL-2-related stimulation process via

cMYC [189]. Upon direct contact with tumor cells to

form an immune synapse in response to local energy

consumption, mitochondria of NK cells are depolar-

ized and lose metabolic energy [190]. Inhibiting

PPARα/δ or blocking the transport of lipids into

mitochondria reverses NK cell metabolic incapability

and restores cytotoxicity [191].

Indeed, previous studies have reported that anti-PD-L1

therapy could reshape metabolic pathways in the tumor

microenvironment and re-stimulate exhausted CD8+ T

cells for cytotoxicity [192]. Interestingly, NK cells also

express the ligands of these checkpoints. Glycoengineer-

ing of NK cells enhances their killing ability toward

CD22+ lymphoma in a CD22-dependent manner [193].

Blockade of monocarboxylate transporter 1, which regu-

lates cell metabolism, using AZD3965 also potentiates

NK cell activity [194]. Studies that focus on translating

mature theories into the practical use of NK cells are

promising.

Aberrant metabolic features of iNKT cells

As mentioned above, iNKT cells can be polarized into

different properties, each possessing distinct functions.

The normal breast tissue is surrounded by adipose tis-

sue. Different from conventional T cells, iNKT cells

comprise large amounts of stromal cells in adipose tis-

sue, whose infiltration decreases apparently in high-BMI

individuals [195, 196].

With invariant TCR on the surface, iNKT cells are

termed innate-like T lymphocytes and act on the

front line of the immunity battle against cancer [197,

198]. iNKT cells recognize glycolipid signals but not

peptides via semi-invariant TCR, and are restricted to

glycolipid antigens presented via CD1d-related mole-

cules, which are MHC-like and highly enriched, espe-

cially in adipocytes and hepatocytes, linking innate

and adaptive immune responses. This process can be

altered by metabolic activity. GM2 is a glycosphingoli-

pid that binds the CD1d molecule. Pereira et al.

pointed out that GM2 inhibits the activation of iNKT

cells in a dose-dependent manner, which might result

from its competition with α-GalCer for binding CD1d

[199]. Compared with T lymphocytes, iNKT cells

show much higher capacity of glycolysis but reduced

mitochondrial respiratory activity, resulting in particu-

lar molecular features. Under hypoxia, widespread

RNA editing can be induced by mitochondrial re-

spiratory inhibition via APOBEC3G, an endogenous

RNA editing enzyme [200]. Fu et al. demonstrated

that aerobic glycolysis in iNKT cells is highly in-

creased after TCR engagement, which is essential for

the production of IFN-γ [90]. This process can also

be inhibited by the lack of glucose. Hence, reduced

expression of IFN-γ in iNKT cells compared with the

normal tissue was confirmed in several tumor types,

predicting patient response to the therapy of PD-1

blockade [201–203]. In humanized mouse models

undergoing PD-1 blockade and CAR-T (with different

costimulatory molecules) combination therapy, only

those with Δ-CD28 CAR control tumor growth, and

in vitro analysis showed that these cells exhibit ele-

vated glycolysis, fatty acid oxidation and oxidative

phosphorylation [204]. Overcoming the impaired

metabolic function combined with immune check-

point blockade would be a potential strategy in future

researches and clinical practice.

However, what is currently known about iNKT cells

is just the tip of the iceberg. Compared with T

lymphocytes, it remains unclear how intracellular

metabolic signals influence the survival and function

of iNKT cells, which deserves further investigation, as

this may be the next potential target of cancer

immunometabolic therapy after CD8+T cells and NK

cells.
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NK cells in cancer therapy

As an important effector of innate immunity, though

suffering a resistance evolved by tumor cells, NK cells

show their potential to be used in clinical practice [205–

207]. In the past few years, researches about NK cell-

related immunotherapy have flourished and the latest

development mainly focused on cytokine supplement,

monoclonal antibody, modification of internal signal

pathway, adoptive transfer and genetic engineering of

NK cells. Besides, NK cell-based therapy has achieved fa-

vorable results used either alone or in combination with

other therapies, which suggests a wide and effective use

in malignancies.

Cytokine supplement

IL-15 promotes the development and cytotoxic ability of

NK cells, and several clinical trials have illustrated the

safety profile of recombinant human IL-15 (rhIL-15) in

multiple tumors [208, 209] as well as its agonist, ALT-

803, in metastatic lung cancer and post-transplantation

patients (Fig. 4) [210, 211]. In an open-label, phase Ib

trial, ALT-803 showed a fantastic potential when com-

bined with anti-PD-1 monoclonal antibody (nivolumab)

without increasing the incidence of very severe grade 4

or 5 adverse events [211], which evidently could be the

future way to enhance rhIL-15 treatment. In addition to

soluble IL-15 in the microenvironment, it has been re-

vealed that in the mouse, direct contact with membrane-

bound IL-15 on adjacent stromal cells could induce

stronger cytotoxic effects in NK cells [212]. Heterodi-

meric IL-15 can also increase intratumoral NK cell and

CD8+ T cell infiltration, elevating the effective rate of

current immunotherapy [213].

Apart from IL-15, other interleukins are also synergetic

to this process (Table 3). IL-21 enhances tumor rejection in

mice via NKG2D-dependent NK cell activity, suggesting

IL-21 to be a possible target for immune escape induced by

NKG2D elicitation [214]. However, IL-15-dependent ex-

pansion of resting NK cells can be suppressed by IL-21,

while on the other hand adaptive immune response is en-

hanced [159], providing substantial insights into this com-

plex network in clinical use. Besides, blocking CIS could

promote IL-15-type cytotoxicity and thus results in in-

creased production of IFN-γ [22]. NK cells pre-exposed to

IL-12, IL-15 and IL-18 accumulate in the tumor tissue and

retain their anti-tumor function both in vitro and in vivo.

However, IL-15 alone does not exert such effects [104]. In

addition to the inner pathway, treatment with IL-2 and IL-

15 obviously enhances glycolysis and oxidative phosphoryl-

ation of NK cells, thus promoting the killing ability. In a

first-in-human phase I multicenter study, NKTR-214, a

novel IL-2 pathway agonist, was found promoting prolifera-

tion and activation of NK cells without expansion of Treg

cells [215]. For metastatic melanoma refractory to CD8+ T

cell cytotoxicity due to the lack of MHC-I, combination of

IL-15 and TIGIT blockade shall be effective by stimulating

NK cell-mediated immunity [153].

As mentioned above, cytokines (especially IL-12, IL-15

and IL-18) are critical to the formation of NKm cells.

Memory-like NK cells supplemented with IL-12, IL-15

and IL-18 also show enhanced responses against acute

myeloid leukemia both in vitro and in vivo [107], and

are currently assessed in a first-in-human clinical trial.

However, studies also pointed out that IL-12 could in-

crease NKG2A expression and inhibit the activation of

NK cells [216].

Monoclonal antibodies

As shown previously, in parallel with CD8+ T cells, NK

cells can also be suppressed by immune checkpoint mol-

ecules. After cetuximab treatment, PD-1+ NK cells are

more enriched in the TME and are correlated with fa-

vorable clinical outcome in head and neck cancer pa-

tients, which was further demonstrated by in vivo

experiments and a stage III/IVA clinical trial assessing

neoadjuvant cetuximab (NCT01218048) [58]. With PD-1

blockade (nivolumab), cetuximab-induced NK cell acti-

vation and function are remarkably enhanced in PD-

L1high tumors.

In addition to already-well-defined PD-1 and PD-L1,

NK cells with reduced amounts of T-cell immuno-

globulins and ITIM domain (TIGIT) show higher

levels of cytokine secretion, degranulation activity and

cytotoxicity [217], and blockade of TIGIT could pre-

vent exhaustion in NK cells [20]. A recent study also

highlighted that TIGIT-depleted NK cells are highly

sensitized [218] and develop resistance to MDSC-

mediated immunosuppression [219]. Meanwhile,

CD96, which shares the same ligand CD155 with

CD226 and TIGIT, negatively controls the immune

response by NK cells [220] and predicts adverse sur-

vival in human hepatocellular carcinoma [56]. Single

use of CD96 antibody promotes NK-cell-induced anti-

metastatic ability [221], and such effect is largely in-

creased when combined with anti-CTLA-4, anti-PD-1

or doxorubicin chemotherapy [222].

Though prospective, unexpected biological events

have been observed in a single-arm phase II study

showing that intravenous infusion of 1 mg/kg

IPH2101 (a human monoclonal antibody against

KIRs) results in severe contraction and obvious inhib-

ition of NK cells in myeloma patients [223]. Lirilu-

mab, a 2nd generation antibody targeting KIR, had

encouraging results in a phase I trial, which demon-

strated its safety [224]; however, the subsequent phase

II trial in AML patients showed no clinical effects.

Combination of CIS inhibition with CTLA-4 and PD-

1 blockade exerts even greater effects in reducing
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Fig. 4 Possible targets harnessing NK cells in cancer therapy. In order to obtain better clinical efficacy and reduced severe adverse events, the
development of NK cell-based therapies that support NK cell maintenance (a), enhance NK cell function (b) and harness abnormal
immunometabolic and intracellular microenvironment (c) is essential. rhIL-12/15/18, recombinant human interleukin-12/15/18; CAR-iPS, chimeric
antigen receptor-induced pluripotent stem cell; MIC: MHC I chain related molecule; MICA, MHC class I polypeptide-related sequence A; MICB,
MHC class I polypeptide-related sequence B; PD-L1, programmed cell death-ligand 1;scFv, single-chain variable fragment; TSA, tumor specific
antigen; BiKE, bispecific killer cell engager; TriKE, trispecific killer engager; CAR-NK, chimeric antigen receptor-nature kill; PD-1, programmed cell
death protein 1; MerTK, MER proto-oncogene, tyrosine kinase; 27HC, 27-hydroxycholesterol; GLUT1, glucotransporter 1; MCT1, monocarboxylate
transporter 1
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Table 3 Clinical trials for established NK cell-related therapies

Mechanism Condition Intervention Phase Trial identifiers

IL-15 signal
pathway

Metastatic malignant melanoma,
RCC

Recombinant human interleukin-15(rIL-15) I (first-in
human)

NCT01021059

Advanced metastatic solid tumor IL-15 by continuous infusion I NCT01572493

Refractory and relapsed adult T cell
leukemia

IL-15 + alemtuzumab (anti-CD52) I NCT02689453

Refractory and relapsed chronic
lymphocytic leukemia

IL-15+ obinutuzumab (anti-CD20) I NCT03759184

Hematologic malignancies recurring
after transplantation

ALT-803 (IL-15 superagonist) I (first-in
human)

NCT01885897

Metastatic NSCLC ALT-803 + Nivolumab (anti-PD-1 antibody) Ib NCT02523469

IL-21 signal
pathway

Relapse/refractory low-grade B-cell
LPD

Recombinant human interleukin-21 (rIL-21)
+ Rituximab (anti-CD20 antibody)

I NCT00347971

Metastatic malignant melanoma,
RCC

rIL-21 I NCT00095108

Stage IV malignant melanoma
without prior treatment

rIL-21 IIa NCT00336986

IL-12 signal
pathway

Metastatic solid tumors NHS-muIL12 (two IL12 heterodimers fused
to the NHS76 antibody)

I (first-in
human)

NCT01417546

Murine mammary/subcutaneous
tumors

NHS-muIL12+ Avelumab (anti-PD-L1 antibody) Preclinical
models

–

IL-2 signal pathway Locally advanced or metastatic solid
tumors

NKTR-214 (IL-2 pathway agonist) I/II NCT02869295

Advanced Solid Tumors (Japanese) NKTR-214 + Nivolumab I NCT03745807

Anti-KIR antibody AML in FCR IPH2101 (anti-KIR antibody) I EUDRACT 2005–005298-
31

Relapsed/refractory MM IPH2101 I NCT00552396

Smoldering MM IPH2101 II NCT01248455

Relapsed/Refractory MM IPH2101+ lenalidomide (immunomodulatory
agent)

I NCT01217203

AML Lirilumab (2nd generation anti-KIR antibody)) II NCT01687387

SCCHN Lirilumab + Nivolumab II NCT03341936

Cisplatin-ineligible muscle-invasive
bladder cancer

Lirilumab + Nivolumab Ib NCT03532451

Anti-NKG2A
antibody

Advanced gynecologic malignancies Monalizumab (IPH2201, anti-NKG2A antibody) I CCGT-IND221

metastatic microsatellite- stable
colorectal cancer

Monalizumab + durvalumab First-in
human

NCT02671435

recurrent or metastatic head and
neck cancer

Monalizumab + cetuximab I NCT02643550

TNF pathway Advanced solid tumors BMS-986156 (glucocorticoid-induced TNF
Receptor-Related Protein Agonist) +/− Nivolumab

I/IIa NCT02598960

Cell adoptive
therapy

Canine sarcomas Radiotherapy+ intra-tumoral autologous NK
transfer

first-in-dog –

Recurrent medulloblastoma and
ependymoma (children)

ex-vivo-expanded NK cells I NCT02271711

Metastatic gastrointestinal
carcinoma

Adoptive transferred autologous NK cells +
cetuximab

I NCT02845999

HER2-positive cancers Adoptive transferred autologous NK cells +
trastuzumab

I NCT02030561

Locally advanced colon carcinoma Adoptive transferred autologous NK cells +
chemotherapy

I –

Malignant lymphoma or advanced
solid tumors.

Adoptive transferred allogeneic NK cells I NCT01212341
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melanoma metastasis compared with either of these

treatments administered alone; thus, CIS inhibition

could offer an alternative therapeutic option for pa-

tients not responding to other immune checkpoint in-

hibitors [22].

As an essential receptor for the activation of NK cells,

NKG2D is blocked by many ligands (e.g., MICA, MICB,

and ULBP1–6) upregulated in tumor cells as a result of

abnormal cellular stress in the TME. A recent study

demonstrated that antibodies targeting MICA and MICB

can prevent NK cell recognition and tumor cell binding,

inhibiting tumor growth in fully immunocompetent

mouse models as well as humanized mouse models

[129]. Furthermore, combination treatment targeting

soluble MIC, e.g., MICA and MICB, and PD-L1 shows

better effect than monotherapy in vivo [225]. Moreover,

soluble MULT1, a high affinity mouse NKG2D ligand

stimulates NKG2D in distant NK cells and enhances NK

cell tumor immunity [106]. Hence, a clinically used anti-

body, monalizumab, has been developed targeting

NKG2A, an inhibitory checkpoint of NK cells, which not

only promotes NK cell function in various preclinical

models, as previously characrerized, but also potentiates

anti-PD-1 [226] and anti-EGFR (cetuximab) therapy

[227]. In addition to antibody, NKG2Anull NK cells, con-

structed through retroviral transduction of NKG2A

blocker which inhibits de novo NKG2A expression,

present increased anti-tumor activity in pre-clinical

model [228].

In summary, besides the targets close to T cells, in-

cluding FDA-approved anti-CTLA-4 (ipilimumab) and

anti-PD-1 (nivolumab, pembrolizumab) antibodies,

others designed specifically for NK cells are also

under clinical trials, e.g., anti-KIR (IPH2101, lirilu-

mab) and anti-NKG2A (monalizumab) (Table 3) (Fig.

4).

Cell adoptive therapy and newly arising genetic

modification of NK cells

As an applicable option for enhancing autologous im-

munity, adoptive transfer of NK cells has been imple-

mented to treat certain types of cancer in the past few

years [229]. Previous studies of NK adoptive transfer in

acute myeloid leukemia patients have presented slightly

beneficial effects in controlling disease [230, 231], and a

phase II clinical trial in patients with recurrent ovarian

or breast cancer showed that adoptive transfer of haploi-

dentical NK cells after lymphodepleting chemotherapy

leads to a temporary benefit but its clinical value re-

mains controversial, and is partly limited by recipient re-

constitution of regulatory T cells [232]. Apart from

adults, a phase I clinical trial applied autologous ex-vivo-

expanded NK cells to children with recurrent medullo-

blastoma and ependymoma and obtained good safety

and therapitic efficacy [233]. Interestingly, transfer of

NK cells along with CD34+ hematopoietic stem cells

shows no added adverse effects but potential therapy re-

sponse in older patients with acute myeloid leukemia

[234]. Combinational application of NK cell infusion

with monoclonal antibody provides a new direction of

combinational immunotherapy. In a phase I trial, acti-

vated autologous NK cell were infused into patients with

HER2-positive solid tumor undergoing trastuzmab and

showed prelimitary anti-tumor phenotype [235].

Table 3 Clinical trials for established NK cell-related therapies (Continued)

Mechanism Condition Intervention Phase Trial identifiers

Myeloid leukemia Adoptively transferred memory-like NK cells
induced by IL-12, IL-15, and IL-18

I (first-in
human)

NCT01898793

High-risk AML, MDS, CML MbIL21 ex vivo-expanded donor-derived NK cells I –

MDS, AML. Fludarabine/cyclophosphamide + total
lymphoid irradiation + adoptive transferred
IL2-activated haploidentical NK cells

I EUDRACT 2011–003181-
32

Older AML patients Transferred umbilical cord blood CD34
hematopoietic stem + progenitor-derived
NK Cells

I (first-in
human)

Dutch clinical trial
registry (NTR 2818)

Non-Hodgkin lymphoma Haploidentical donor NK cells + rituximab+
IL-2

II NCT01181258

Myeloma α-galactosylceramide-loaded monocyte-derived
dendritic cells + low-dose lenalidomide
(mediate antigen-specific co-stimulation of
human iNKT cells)

I NCT00698776

CAR-NK therapy CD19-positive lymphoid
tumors

NK cells expressing anti-CD19 CAR, IL-15 and
inducible caspase 9

I/II NCT03056339

Abbreviation: RCC renal cell cancer, NSCLC non-small cell lung cancer, LPD lymphoproliferative disorders, AML acute myeloid leukemia, FCR first complete

remission, MM multiple myeloma, SCCHN squamous cell carcinoma of the head and neck, MDS myelodysplastic syndromes, CML chronic myeloid leukemia
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In 2009, Fujisaki et al. found that overexpression of

telomerase reverse transcriptase could lead to over 100

additional doubling cycles in NK cells, revealing a poten-

tial way to overcome the limitation of NK cell amplifica-

tion in vitro [236]. However, though the adoption of NK

cells seems promising in preclinical and clinical re-

searches, many questions exist, e.g., the undeniable fact

that NK cells gain self-renewal ability following infusion.

Originally designed and considered a one-time-use

therapeutic process, a small part of NK cells surprisingly

remain alive and proliferate in the human body for

months, mediating continuous surveillance against

tumor [237]. However, in addition to beating tumor

cells, the risk of long-lived NK cells should not be ig-

nored where their “brake” is lost and they might also kill

normal cells, even worse, finally increasing the possibil-

ities of NK lymphoma [95, 238]. Hence, the ability of

transferred NK cells may be limited by inappropriate

persistence or expansion in vitro, and biology-driven

methods are commonly used to overcome this issue be-

fore adoptive transfer. A recent study indicated that NK

cells pre-activated by IL-12, IL-15 and IL-18 suppress

graft-versus-host disease but obviously inhibit the gener-

ation and function of CD8+ T cells, which could result

from mutual competition of IL-2 [239], limiting its value

in the field of cancer treatment. The use of mouse

models to unveil the detailed features of adoptive NK

cells following in vitro proliferation would actually pro-

vide deeper insights into this treatment strategy, shed-

ding light on the future implementation of NK cell-

based therapy toward cancer.

Genetic modification of immune cells by chimeric

antigen receptors (CARs) to target tumor cells directly is

a promising therapeutic option in cancer therapy. Kym-

riah (CTL019, a CAR-T product) by Novartis was ap-

proved by the FDA for treating recurrent and refractory

acute lymphoblastic leukemia in 2017, and remains

under investigation for other indications in several clin-

ical studies [240–242]. Two months later, Yescarta by

Kite Pharma was approved for diffuse large B cell

lymphoma [243]. Due to serious adverse effects induced

by CARs, especially cytokine releasing storm (CRS) and

neurotoxicity, Actemra (tocilizumab, anti-IL-6 monoclo-

nal antibody) was then approved for CRS, with a further

study also showing potential application of Anakinra (an

antagonist IL-1 receptor) in such case [244, 245]. In NK

cells, antibody engineering approaches optimize NK cell-

mediated ADCC to tumor cells through the bispecific

killer cell engager (BiKEs) or trispecific killer engager

(TriKEs) antibodies (Fig. 4). BiKE connects a single-

chain variable fragment (scFv) to the anti-CD16 recogni-

tion site with the scFv of a tumor specific antigen, such

as CD19/CD20 for non-Hodgkin lymphomas, CD33/

CD123 for acute myelogenous leukemia/AML and CD30

for Hodgkin lymphoma, to enhance NK cell recognition

of tumor cells [246]. TriKE consists of a BiKE and cyto-

kine IL-15, which boost NK cell function and survival. It

was shown that CD19-CD16 BiKE engineered NK-92

cells are sufficient to overcome NK cell resistance in B-

cell malignancies [247]. Meanwhile, CD16-IL15-CD3

TriKE can activate suppressed NK cells and induce NK

cell-mediated control of MDS and AML [248]. The ad-

vantages of CAR-NK therapy are obvious, including

higher possibility of recognizing tumors (including cyto-

kines and apoptosis) and lower incidence of CRS com-

pared with CAR-T (Table 3) [249, 250]. In 2018, Enli

Liu et al. transduced cord blood-derived NK cells with a

retroviral vector incorporating the genes for CAR-CD19,

inducible caspase-9-based suicide gene (iC9) and IL-15,

and demonstrated the efficacy and safety in cell lines

and the murine model. In the engineered NK cells,

CAR-CD19 redirected the specificity of NK cells against

leukemia, IL-15 promoted NK cell proliferation, and iC9

allowed NK cells to initiate suicide after killing the target

cells [251]. Since CAR-NK cells exhibit striking efficacy

and limited toxicity, clinical trials assessing these CAR-

NK cells have been launched. In recent phase I and II

trials, iC9/CAR-CD19/IL-15 NK cells were prepared

ex vivo and infused into patients with relapsed or refrac-

tory CD19-positive cancers after lymphodepleting

chemotherapy. Among the 11 treated patients, 8 had an

objective response, including 7 with complete remission,

without major toxic effects [250]. Apart from engaging

NK cell with CAR, geneic modification involves deleting

surface molecules, e.g., CD38, on NK cells, which evi-

dently elimates fratricide and enhances cytotoxic ability

[252].

However, limitations should be mentioned. Due to the

complex process of producing CAR-NK cells, the

current procedure is too expensive and the effects on

solid tumors are far from being satisfactory. CAR-iPS

might be a future direction, which can grow in vitro and

differentiate into CAR-NK cells in vivo to directly en-

hance anti-tumor immunotherapy [253]. Recently, Zhu

H et al. reprogramed NK cell metabolism by depleting

CISH in human iPSC-derived NK cells and obtained sat-

isfactory persistence and anti-tumor activity in vivo,

which could be a novel method to generate CAR-NK

from CAR-iPS [254].

Refinement of the established therapies

As an important immunosuppressive cytokine that pro-

motes tumor progression, TGF-β and its pathway repre-

sent potential opportunities for anti-tumor drug

development. The clinical modulation of TGF-β, which

is achieved through small-molecule inhibitors and anti-

bodies, is being investigated in a number of clinical trials

[255]. As the safety and efficacy of TGF-β blockade
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therapy have been demonstrated, two studies independ-

ently showed that combination treatments of TGF-β

blockade with anti-PD-1/PD-L1 therapies have synergis-

tic effects on murine EMT6 breast mammary carcinoma

and colorectal cancer [256]. It is admitted that TGF-β in-

hibits NK cell metabolism, proliferation, cytokine produc-

tion, cytotoxicity and anti-metastatic functions through

mTOR signaling in multiple cancers [257]. Activin-A, a

member of the TGF-β superfamily, increases ILC1-like tis-

sue residency features, reduces cytokine production, and

suppresses proliferative and metabolic functions in both

human and murine NK cells through an alternative

SMAD2/3-related pathway with effects similar to those of

conventional TGF-β pathway [258]. Therefore, targeting

TGF-β, TGF-β superfamily, and their downstream path-

ways in NK cells may be promising treatment options that

enhance the efficacy of current immunotherapies (Fig. 4).

Apart from blockage of immunosuppressive cytokine,

immunostimulatory agonist have been tested in clinical

trials. In a recent phase I/IIa study, BMS-986156, a human

glucocorticoid-induced TNF receptor-related protein

agonist, appears to increase NK cell proliferation no mat-

ter applied with or without nivolumab, and has an ador-

able safety and efficacy profile [259].

Rapamycin, an inhibitor of the mTOR pathway, and its

derivative everolimus are effective for treating breast

cancer in clinical trials, including BOLERO-6 and

PrE0102 studies, either alone or in combination with

endocrine and chemotherapy [260, 261]. However, NK

cells highly rely on PI3K-mTOR signaling pathway-

dependent metabolic reprogramming to exert their anti-

tumor effects. Therefore, in patients with both PI3K-

mTOR pathway activation and NK cell-based micro-

environment, such inhibitors should be cautiously

employed.

In HER2-enriched breast cancer, besides HER2-

targeted therapies, anti-GD2 also appears to be promis-

ing in preclinical studies. However, GD2-related path-

ways are essential for ADCC [262], also reducing the

effectiveness of NK cells, which provides insights into

the complex relationships among such networks to

minimize off-target effects exerted by established therap-

ies on immunotherapy.

Radiotherapy was found to kill cancer cells via indu-

cing DNA damage, but recent studies found its ability to

cause immunogenic cell death, named immunogenic

radiotherapy [263]. There is a growing interest to com-

bine immunogenic radiotherapy and immunotherapy,

plus chemotherapy or target therapy. A triple-

combination therapy which inhibits PD-1 and MER

proto-oncogene tyrosine kinase plus radiotherapy, in-

creases NK cells infiltration in abscopal TME [264].

Adding indoximod, an inhibitor of IDO pathway, to

radiotherapy and PD-1 blockade also enhances NK cell

activity and shows great clinical response [265]. Another

representative drug of triple-combination is selenium-

containing nanoparticles,which delivers doxorubicin to

the tumor site and releases high energy rays. The rays

not only kill tumor cells, promote doxorubicin release,

but also produce seleninic acid which enhances NK cell

function [266].

Conclusions and perspectives

In this review, we draw a picture about the development

and function of NK cells and emphasize their variant

roles in cancer biology. NK cells performed anti-tumor

immunity through their interplay with cancer cells, stro-

mal cells and extracellular matrix, especially the metabo-

lites. As tumor metabolism and tumor imunnity are

both recent attractive research areas, we summarized re-

lationship between NK cell and metabolism, which may

provide ideas for cross study of these areas. NK cells

often suffer resistance in TME and possible mechanisms

have been illustrated in many researches, thus develop-

ing NK cell-based therapeutic strategies. In addition,

clinical trials taking advantage of NK cells, either used

alone or in combination with other therapies, have

achieved promising results, paving the way for the future

basic and clinical researches of the previously ignored

but now prosperous NK cell-based cancer therapy and

lighting up hope for patients resistant to current T cell-

based immunotherapy.

Due to the rapid progress in understanding the

TME, new concepts of immunotherapy keep emer-

ging, which obviously helps promote the utilization of

immune response for the treatment of cancer, espe-

cially the long forgotten innate component. Although

previously considered to be characterized clearly, re-

cent evidence shows that the accurate processes of

differentiation, activation and generation of memory

NK cells remain controversial. Most clinical trials re-

lated to NK cell immunotherapy are still in phases I

and II, and mainly treat hematological malignancies.

Although the clinically-proven safety of these drugs is

helpful for the clinical transformation of NK treat-

ment methods for solid tumors, which have broader

prospect and wider application in the future, difficul-

ties to overcome still exist. A future challenge for the

implementation of NK cell-based therapy is to better

define specific NK cell populations and to identify re-

spective markers, as well as functional and regulatory

pathways in each subgroup, thereby using different

therapeutic strategies for the treatment of tumors in-

filtrated with different NK cells. Besides, to avoid off-

target effects exerted by established anti-tumor drugs

on the microenvironment to inhibit treatment effect-

iveness, more carefully selected combination therapies

should be implemented in future clinical trials.
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As most studies now take advantage of NK cells ori-

ginating from blood, trNK cells are worth further inves-

tigating for implication in adoptive cell therapy

especially for solid tumors. In the era of precision medi-

cine, defining these questions could prompt new ap-

proaches that would permit selective regulation of anti-

tumor versus pro-tumor response of NK cells. It is an

exciting moment in which attention should be paid to

this long-ignored cell population, and future possible

targets for improved treatment options may harness

tumor intrinsic pathways involving both extrinsic innate

and adaptive immunity-related microenvironment.
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