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Natural Killer (NK) cells are lymphocytes of the innate immunity that play a crucial role in the
control of viral infections in the absence of a prior antigen sensitization. Indeed, they
display rapid effector functions against target cells with the capability of direct cell killing
and antibody-dependent cell-mediated cytotoxicity. Furthermore, NK cells are endowed
with immune-modulatory functions innate and adaptive immune responses via the
secretion of chemokines/cytokines and by undertaking synergic crosstalks with other
innate immune cells, including monocyte/macrophages, dendritic cells and neutrophils.
Recently, the Coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread globally. Although the
specific role of NK cells in COVID-19 pathophysiology still need to be explored, mounting
evidence indicates that NK cell tissue distribution and effector functions could be affected
by SARS-CoV-2 infection and that a prompt NK cell response could determine a good
clinical outcome in COVID-19 patients. In this review, we give a comprehensive overview
of how SARS-CoV-2 infection interferes with NK cell antiviral effectiveness and their
crosstalk with other innate immune cells. We also provide a detailed characterization of the
specific NK cell subsets in relation to COVID-19 patient severity generated from publicly
available single cell RNA sequencing datasets. Finally, we summarize the possible NK cell-
based therapeutic approaches against SARS-CoV-2 infection and the ongoing clinical
trials updated at the time of submission of this review. We will also discuss how a deep
understanding of NK cell responses could open new possibilities for the treatment and
prevention of SARS-CoV-2 infection.

Keywords: NK cells, COVID-19, SARS-CoV-2 infection, memory-like, immunotherapy, single cell sequencing
1 INTRODUCTION

1.1 Natural Killer Cells: General Features
Natural Killer (NK) cells are innate lymphocytes that play a critical role in the primary
immunological response to viral infections and in tumor surveillance. They display rapid effector
functions with the capability of direct target cell killing and antibody-dependent cell-mediated
cytotoxicity (ADCC) (1, 2). Furthermore, NK cells are endowed with immune-modulatory
org June 2022 | Volume 13 | Article 8882481
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functions regulating and linking innate and adaptive immune
responses via the secretion of chemokines/cytokines and by
undertaking synergic crosstalks with antigen-presenting cells
(APCs) (3).

Under homeostatic conditions, NK cells represent about 5-
15% of circulating lymphocytes and are subdivided into two
distinct subsets of CD56bright/CD16neg (CD56bright) and
CD56dim/CD16pos (CD56dim) (4, 5). The CD56bright cell subset
accounts up to 10% of the whole blood NK cell population and
mainly exerts important regulatory functions [i.e., production of
soluble mediators such as interferon (IFN)-g and tumor necrosis
factor (TNF)-a, and establishment of cellular interplays].
Conversely, CD56dim NK cells (up to 90% of the whole blood
NK cell population) were primarily reported to act as cytotoxic
effectors. Different subsets of human NK cells have been also
described in peripheral tissues. The tissue-specific human NK
cell populations often carry phenotypic hallmarks that
distinguish them from their circulating counterparts and are
present under homeostatic conditions in both secondary
lymphoid organs (6, 7) and non-lymphoid organs, including
decidua or liver (8, 9).

In addition to canonical NK cells, increasing evidence
demonstrated the existence of tissue-resident and circulating
NK cells endowed with adaptive-like features. These adaptive/
memory-like NK cells have been firstly described in response to
Cytomegalovirus (CMV) infection and re-activation and are
characterized by more vigorous functional responses, longer
life span and more resistance to immune suppression than the
other NK cell subsets (10, 11).

NK cell activation and functions are regulated by the interplay
between a large number of inhibitory and activating receptors in
combination with the presence of certain cytokines (1, 12).
Together, these stimuli determine the type and strength of NK
cell activity in terms of cytokine secretion and killing of target
cells. Major activating receptors are the natural cytotoxicity
receptors (NCRs) NKp46, NKp30, and NKp44 that are Ig-like
transmembrane proteins. NKp46 and NKp30 are expressed on
virtually all resting NK cells, whereas NKp44 expression is
acquired upon NK cell activation. These molecules are
important for inducing NK cell cytotoxic function against
target stressed-cells and in the crosstalk with other cell types,
such as dendritic cells (DCs) (13). Other important activating
NK receptors are the C-type lectin-like receptors NKG2D and
NKG2C and the activating Killer Immunoglobulin-Like
Receptors (KIRs). NK cells are also equipped with several
activating co-receptors including DNAX accessory molecule
(DNAM-1), NKp80, 2B4 and NTB-A, capable of amplifying
the NK cell triggering induced by NCRs or NKG2D. In addition,
NK cells are activated through binding to antibody-opsonized
target cells with CD16, Fc-g receptor IIIA, which induces ADCC.
Of note, CD16 is the only receptor that can activate NK cells on
its own, without any additional activation through other
receptors (14). Moreover, NK cells may express toll-like
receptors (TLRs) that, after interaction with bacterial or viral
products and in the presence of pro-inflammatory cytokines,
induce potent NK cell activation (15).
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NK cells are able to recognize and spare self cells from the
killing, thanks to the expression of major histocompatibility
complex class I (MHC-I) molecules, which interact with
inhibitory receptors present on the NK cell surface. This
inhibitory receptor-mediated signaling is essential to
counteract activating signaling in order to protect against NK
cell over-activity. This mechanism of target cell recognition via
the absence of inhibitory MHC-I engagement is known as the
“missing-self” hypothesis (16). Human NK cells express two
main classes of HLA-class I-specific inhibitory receptors:
members of the KIR superfamily and the CD94/NKG2A
heterodimer (12, 17). KIRs are type I transmembrane receptors
specific for polymorphic HLA-A, -B and -C molecules, whereas
NKG2A is a type II transmembrane receptor of the C-type lectin-
like receptor family that recognizes HLA-E, a non-classical HLA
molecule characterized by limited polymorphism. Importantly,
KIRs are characterized by high levels of polymorphism, which
may affect KIR/HLA interactions. In fact, certain KIR/HLA
combinations have been shown to correlate with protection or
susceptibility to several human disorders (18).

1.2 NK Cell-Mediated Antiviral
Mechanisms
In humans, NK cells are important mediators of the responses
against viruses, including members of the herpesvirus,
retroviruses, poxvirus and papilloma virus families. In fact,
patients with identified NK cell deficiencies are predisposed to
particularly severe, recurrent viral infections (19).

NK cells have multiple mechanisms to kill virus-infected cells.
The most important one is represented by the ability of some

viruses to downregulate surface expression of MHC class I on the
host cell surface to interfere with the presentation of viral
antigens to T cells (20). According to the ‘missing self’
hypothesis, this decreased MHC-I expression promotes the
recognition and clearance of virus-infected target cells by
NK cells.

Accumulating evidence has revealed the importance of NK
cell-activating receptors in antiviral defense (21). For instance,
NCRs are known to bind viral glycoproteins, allowing NK cell
activation upon detection of infected cells. NKG2D binds ligands
on virally infected cells, including MHC class I polypeptide-
related sequence A (MICA), MICB and the RAET1/ULBP family
of proteins. Also, NKG2C receptor is renowned as the receptor
that recognizes polymorphic CMV peptides. Furthermore,
NKp80 and co-activating receptors DNAM1 and CD2 increase
antiviral NK response. In addition, NK cells express multiple
extracellular ligands, including Fas ligand (FasL) and the tumor
necrosis factor-related apoptosis-inducing ligand (TRAIL) which
engagement mediate cytolysis of target cells (22). As is known,
viruses such human CMV or encephalomyocarditis virus
(EMCV) induce the expression of death receptors on infected
cells, which can subsequently interact with FasL and TRAIL on
NK cells, resulting in apoptosis of the target cell (23).

In addition to cytotoxicity, NK cells contribute to the antiviral
response through the release of a wide range of proinflammatory
cytokines with antiviral activity. In particular, INFs and IFN-
June 2022 | Volume 13 | Article 888248
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induced cytokines program immune cells to mount responses
that promote viral control (24, 25). Distinct genetic associations
between KIRs expressed on NK cells and their specific HLA
haplotypes also affect viral infections. For example, the presence
of KIR3DS1 combined with HLA-Bw4-I80 allele in patients with
human immunodeficiency (HIV) infection has a protective effect
and is associated with lower viral load and delayed progression to
Acquired Immunodeficiency Syndrome (AIDS) (26).

Finally, NK cells can eliminate virus-infected cells via CD16-
mediated ADCC. In fact, NK cell-mediated ADCC prevents HIV
infection via the engagement of Fcg receptors after the
administration of the anti-HIV neutralizing Ab (NAbs) (27).

Although NK cells are essential in the early response against
viral infections, through the killing of virus-infected cells, several
viruses have evolved multiple mechanisms to evade NK cell-
mediated viral clearance that affect NK cell phenotype and
effector functions.

1.3 NK Cells in Coronavirus Infections
Coronaviruses are a group of enveloped single-stranded RNA
viruses having an extensive range of natural hosts, including a
variety of economically important vertebrates and humans.
Indeed, seven coronaviruses have been known to infect human
hosts causing respiratory diseases. Among them, Severe Acute
Respiratory Syndrome Coronavirus (SARS-CoV) and Middle
East respiratory syndrome coronavirus (MERS-CoV) are
zoonotic and highly pathogenic coronaviruses that have
resulted in regional and global outbreaks in the last decades. In
2019, a third zoonotic coronavirus, named Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), causing
the Coronavirus disease 2019 (COVID-19) has spread
globally (28).

The specific role of NK cells in Coronavirus disease
pathophysiology still needs to be explored, however, several
studies in both SARS-CoV-1 and SARS-CoV-2 suggest that
NK cells could be affected by these infections (29, 30).

Seminal studies in SARS-CoV-1 infected subjects
demonstrated that the number of circulating NK cells and the
expression of the inhibitory KIR CD158b is reduced with respect
to those in healthy individuals and patients affected by
Mycoplasma pneumoniae infection. This correlated with
disease severity and the presence of anti-SARS coronavirus-
specific antibodies (31). Moreover, the reduction of circulating
NK cells in SARS-CoV-1 infected subjects persisted for the first 4
weeks after the appearance of symptoms (32). In this context, in
a murine model mimicking the human SARS-CoV-1 infection, it
has been hypothesized that the reduction of circulating NK cells
could be due to their migration to the lung in response to several
chemokines and cytokines, including CXCL10, CCL2, CCL3, and
CCL5, TNF-a and interleukin (IL)-6 (29).

In this review, we provide a comprehensive overview of how
SARS-CoV-2 infection interferes with the antiviral effector
functions of NK cells and with the interactions between NK
cells and other innate immune cells. Moreover, we will
summarize the current ongoing clinical trials aiming at “fine
tuning” NK cell activity in the context of COVID-19.
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2 NK CELLS IN SARS-COV-2 INFECTION

2.1 NK Cell Redistribution During
SARS-CoV-2 Infection
Patients affected by SARS-CoV-2 infection are lymphopenic.
This lymphopenia is often associated with neutrophilia and
monocytopenia, especially in severely infected individuals (33).
Specifically, the severe clinical presentation of COVID-19 is
characterized by reduced T cell (CD4pos Th1, Tregs, and
CD8pos T cells) counts with respect to non-infected subjects
and to mild cases. Similarly, several independent reports
indicated that the number of NK cells in the bloodstream is
also affected by SARS-CoV-2 infection, without differences in
NK cell subset distribution (Figure 1) (34, 35). This decrease in
circulating NK cells seems to be directly correlated with the acute
phase of the disease and with disease severity (36, 37). Indeed, it
has been demonstrated that NK cell counts, as well as the T cell
counts, are restored in late stages of the disease, while patients
with a fatal course of the disease show a gradual loss of NK cells
after the onset of symptoms (34, 35, 38). In agreement, recent
findings demonstrated that NK cell counts in hospitalized
patients is directly related to the speed of viral load decline. In
particular, patients with “normal” (> 40 cell/ml) NK cell numbers
show a faster decline of viral load compared to those with “low”
(≤ 40 cell/ml) NK cell numbers, independently from the clinical
status (39); thus, suggesting that circulating NK cell counts could
represent a prognostic clinical parameter to predict the outcome
of COVID-19.

Latest works also investigated the impact of SARS-CoV-2
infection in convalescent patients. Several studies observed a
significant increase in circulating NK cells after the resolution of
the infection (40, 41), while others showed normal NK cell
counts in convalescent individuals (34, 42). These contrasting
results could be due to the timing of analysis, to the COVID-19
severity of the selected patient cohort as well as to the presence of
subjects with Long-COVID, a post-acute COVID syndrome with
physical and neuropsychiatric symptoms lasting longer than 12
weeks after the resolution of the infection. Indeed, patients
affected by Long-COVID have high levels of circulating NK
cells with respect to recovered subjects (43).

Consistently with previous findings in SARS-CoV infection
(29, 31, 32), it has been hypothesized that the depletion of
circulating NK cells could be due to a redistribution of these
lymphocytes from the blood and to their sequestration to the
lung. Accordingly, single-cell RNA sequencing (scRNA-seq)
analysis of bronchoalveolar lavage fluids (BALFs) from
COVID-19 patients confirmed higher amounts of NK cells in
the lung during the acute phase compared to controls; thus,
suggesting that NK cells could potentially contribute to
exacerbate lung tissue damage and epithelial cell death (44). In
agreement with this hypothesis, serum analysis of SARS-CoV-2
positive subjects revealed a generalized inflammatory state with
increased levels of several pro-inflammatory cytokines. Among
them, the levels of CXCL16, involved in the migration of NK cells
from the blood towards the infected airways, appears to be
elevated early in the acute phase in both mild and severe
June 2022 | Volume 13 | Article 888248
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SARS-CoV-2 infected patients (45, 46). Furthermore, the levels
of CXCL10, a key chemokine produced by activated bronchial
and alveolar epithelial cells in response to infections and involved
in the etiology of various pulmonary conditions (such as
pulmonary fibrosis), have been found to be increased early in
COVID-19 patients. Like CXCL16, CXCL10 attracts NK cells, as
well as Th1 and CD8pos T cells, into the lungs via CXCR3
engagement and it is implicated in T cell apoptosis (46). Of note,
it has been suggested that this chemokine in both the periphery
and alveolar compartments could be involved in determining the
clinical outcome of COVID-19 patients. Indeed, CXCL10
concentration is higher in COVID-19 deceased patients, and it
is directly correlated with the duration of mechanical ventilation
in subjects with acute respiratory distress syndrome (ARDS) due
to SARS-CoV-2 infections (47, 48). In addition, BALF from
COVID-19 patients contains elevated levels of other chemokines
that potentially could attract NK cells, including CCL3, CCL3L1,
CCL4, CXCL9, and CXCL11 (44). As a matter of fact, the
characterization of NK cells within BALF and blood revealed
the enrichment in transcripts for CXCR3, CXCR6, and CCR5 in
the lung and the loss of these lung-homing potential markers
within circulating NK cells in COVID-19 patients; thus further
corroborating the hypothesis of the NK cell redistribution in the
infected lung tissue (49).

2.2 Impact of SARS-CoV-2 Infection on NK
Cell Phenotype
2.2.1 NK Cell Receptor Expression
Like other viruses, including influenza virus, CMV, and HIV,
SARS-CoV-2 can exhibit a variety of evasion strategies to
interfere with NK cell functions and to overcome their
antiviral cell responses, by modulating NK cell receptor
expression, signaling and cytokine secretion.

In this regard, HLA-E is overexpressed in immune and
stromal cells in BALF of COVID-19 patients and SARS-CoV-2
spike protein seems to be involved in this upregulation (36, 50).

Of note, several findings reported that the inhibitory receptor
NKG2A is highly expressed by circulating NK cells in COVID-19
Frontiers in Immunology | www.frontiersin.org 4
patients during the acute phase (Figure 1) (34, 36, 51). The
expression of NKG2A also correlated with an NK cell
inflammatory signature in patients with COVID-19, suggesting
that NKG2Apos NK cells could mediate anti-viral activity in the
lung microenvironment (52). Furthermore, while mild and
moderate patients show a recovery of basal levels of NKG2A
expression on NK cells after the resolution of the infection, in
severe convalescent subjects this inhibitory receptor is still
upregulated (53).

On the other hand, other experimental evidence
demonstrated that NKG2A is downregulated in COVID-19
patients and that this downregulation is counterbalanced by
the upregulation of NKG2C, the activating counterpart of
NKG2A, especially in severe ones. However, whether the
timing of analysis, the COVID-19 severity as well as the
presence of different SARS-CoV-2 variants are involved in
determining these opposite results remains to be determined.

The experimental findings focusing on NKG2Cpos NK cells in
SARS-CoV-2-infected individuals demonstrates that these cells
are also characterized by a higher expression of CD57 and KIRs
(36, 54, 55). Accordingly, Varchetta and coworkers have
observed the expansion of CD57pos FcϵRIgneg NK cells in
COVID-19 patients with a poor outcome compared to
survivors (54). Moreover, this signature identifies adaptive-like
NK cells in humans and have been mainly characterized in CMV
infection/reactivation (5, 56–59). In a first attempt, to disclose
the possible contribution of CMV in driving the expansion of
adaptive-like NK cells in SARS-CoV-2 infected subjects,
Maucourant et al. observed that most of the severe COVID-19
patients analyzed had no detectable circulating CMV DNA,
despite the expansion of NKG2Cpos NK cells was confined to
seropositive individuals (36). These data thus suggest that the
expansion of adaptive-like NK cells in severe patients is
independent on CMV reactivation secondary to COVID-19.
Despite these findings, is still to be determined whether
adaptive-like NK cells accumulate in the blood during SARS-
CoV-2 infection due to a higher resistance to cytokine-induced
apoptosis (57) or if SARS-CoV-2 could drive the expansion of
FIGURE 1 | Schematic representation of COVID-19 effects on NK cells. Acute SARS-CoV-2 infection affects the number of circulating NK cells and their phenotype.
Indeed, due to the local and systemic inflammation, NK cells in COVID-19 patients are characterized by a signature attributable to cell activation and inflammation as
well as to cell exhaustion and hyporesponsiveness. These alterations in NK cell phenotype determine an impairment of NK cell effector functions in terms of IFN-g
and TNF-a production, degranulation cytolytic potential and ability to control virus replication.
June 2022 | Volume 13 | Article 888248
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adaptive-like NK cells directly or indirectly through the hyper-
production of pro-inflammatory cytokines (60, 61).

Furthermore, since the expansion of these NK cells showing
an adaptive-like phenotype is related to a poor prognosis in
COVID-19 patients (36, 54, 62), there is an urgent need to better
understand the real ability of NK cell subpopulations to control
SARS-CoV-2 infection and to mediate recall responses. In this
regard, preliminary evidence suggests that NKG2CposCD57pos

NK cells from convalescent subjects can mount a specific
immune response against soluble SARS-CoV-2 peptides by
secreting IFN-g (53). On the contrary, very recent findings in
Long -COVID pa t i e n t s d emon s t r a t e d th a t wh i l e
CD56posCD57posNKG2Cpos NK cell subpopulation is still
expanded, their virus-specific and aspecific effector-functions
are impaired (43).

It is plausible that the expansion of NKG2Cpos NK cells,
founded especially in CMV-seropositive individuals and in aged
patients, and the resulting contraction of NKG2Apos NK cell
pool, can lowering the HLA-E-restricted missing self-responses,
potentially resulting in a reduced anti-SARS-CoV-2 immunity.
Thus, the investigation of the balance between NKG2Apos and
NKG2Cpos NK cells could allow a better comprehension of
patient-specific NK cell effector-functions and could represent
a prognostic tool in COVID-19 patients both during the acute
phase of the disease as well as after the resolution of the infection.

In addition to the above-mentioned NK cell receptors, the
KIR haplotype is emerging as an important aspect in
determining the disease severity. Indeed, the Bx genotype has
been found more commonly associated to COVID-19 onset than
AA genotype. However, patients harboring the Bx genotype have
mainly a mild disease (63). In agreement, it has been shown that
the expression of KIR2DS5 is associated to a shorter time to
recovery, while the expression of KIR2DS2 has a protective role
against SARS-CoV-2 infection (64, 65). On the contrary, patients
harboring the KIR2DS4 and KIR2DL3 genes of the A haplotype
exhibit the highest risk for severe COVID-19 (63).

By investigating the expression of NCRs in NK cells from
SARS-CoV-2 infected subjects, several independent laboratories
reported any changes in their frequencies compared to healthy
individual. Only NKp44 was found slightly increased, especially
in severe hospitalized COVID-19 patients (39, 54, 62).

2.2.2 Inflamed and Activated Signature
In addition to the deregulation of the above-mentioned NK cell
markers, a robust NK cell activation and proliferation was
observed in peripheral blood and BALF from COVID-19
patients. Indeed, seminal studies demonstrated that COVID-19
patients show an upregulation of HLA-DR and CD69, together
with the proliferation marker Ki-67 (Figure 1) (36). In
agreement, very recent scRNA-seq data showed that in
COVID-19 patients, particularly in severe ones, proliferating
NK cells are expanded (39, 66).

To further confirm the data present in literature, we analyzed
scRNA-seq data from a publicly available dataset (67), by
characterizing in detail the circulating NK cell compartment in
5 healthy donors, 5 moderate and 4 severe COVID-19 patients.
Frontiers in Immunology | www.frontiersin.org 5
Briefly, raw reads were processed using the Cell Ranger Single-
Cell Software Suite (version 3.0.2; 10X Genomics) and aligned
against the GRCh38 human reference genome. For quality check
and downstream clustering analysis the Seurat pipeline was used
(version 3.1.1; R version 3.6.1) (68). Each individual data set was
processed separately and then integrated. By using SingleR, NK
cell clusters were identified and re-clustered (Figure 2A).
According to the expression of lineage markers, we excluded
from the analysis: clusters 2 and 3 expressing low levels of KLRF1
and CD7, clusters 4 and 5 expressing the T-cell marker CD3G,
cluster 10 expression the B-cell marker MS4A1 and cluster 12
expressing the monocyte marker CD14 (Figure 2B). In the 7
selected NK cell clusters we next studied the differentially
expressed genes (DEGs) between moderate or severe COVID-
19 patients and healthy individuals the expression of 33 NK cell
markers to define cluster identities and their distribution among
the 3 groups of subjects analyzed. (Figures 2C–E).

The data obtained showed that proliferating NK cells (cluster
7) is increased in severe patients. Moreover, in agreement with
previous findings, our data demonstrated that inflamed CD56dim

NK cells expressing CX3CR1 (cluster 9), expand in severely
infected individuals (Figure 2), probably because these cells are
not recalled to the lung given the reduced levels of CX3CL1, the
ligand of CX3CR1, in BALF from COVID-19 patients (36, 69).

Circulating NK cells in SARS-CoV-2 infected subjects also
show an effector phenotype characterized by an increased
expression of cytotoxic molecules PRF1 (Perforin) and GZMB
(Granzyme B) at transcriptional level (Figure 2C) (36, 39).

Although their expression appears to be independent from
disease severity, it has been observed that the expression of these
cytotoxic granules on CD56bright NK cells directly correlates
with: IL-6 circulating levels, sequential organ failure assessment
score, decreased PaO2/FiO2 ratio, and a general activation and
upregulation of effector molecules within all NK cells.
Furthermore, this phenotype is inversely correlated with the
expression of the T cell immunoreceptor with immunoglobulin
and ITIM domain (TIGIT) inhibitory checkpoint molecule, thus
suggesting that the disease status and circulating cytokines could
directly influence NK cell phenotype (36).

The activated and effector status of NK cells has been also
confirmed in BALF as GZMB, GZMA, PRF1, HAVCR2 (Tim-3),
and CCL4 are upregulated in COVID-19 patients compared to
controls (36).

This activated pattern is typical of IFN-controlled cell
activation programs and suggests an inflamed phenotype. In
agreement, like others, we also observed an enrichment in type I
IFN-related genes, including ISG20, IRF7, XAF1, IFI6, ISG15,
IFIT3, IFI44L, MX1, TXNIP and IFITM1 in NK cells from
COVID-19 patients (Figures 1, 2C). These data are also in line
with the increased circulating levels of virus-induced type I and
type II interferons (39, 66). The inflammatory phenotype of
COVID-19 NK cells is particularly relevant in severe patients and
especially during the first week after the disease onset
(Figures 2D–E) (39, 66). In agreement, COVID-19 severe
patients show increased plasma concentration of IFN-a, IFN-g,
IL-6 and TNF-a early after the disease onset (66). In this regard,
June 2022 | Volume 13 | Article 888248
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B
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D

E

A

FIGURE 2 | scRNA-seq profiling of NK cells from COVID-19 patients.(A) A total of 16 678 cells were embedded by Uniform Manifold Approximation and Projection
(UMAP) plots in 13 clusters at a resolution level of 0.2. Each dot within the UMAP corresponds to one single cell colored according to cell cluster.(B) Ballon plots
showing the expression of canonical NK cell markers in the 13 clusters identified as NK cells. Balloon size corresponds to the frequency of marker-positive cells and
balloon color corresponds to the marker expression level of marker-positive cells.(C) Heatmap depicting the top 50 unique DEGs with adj. P value ≤ 0.05. Scale
represents normalized counts centered and scaled across cells.(D) Ballon plots showing the expression of 33 NK cell markers to define cluster (Cl) identities. Balloon
size corresponds to the frequency of marker-positive cells and balloon color corresponds to the marker expression level of marker-positive cells.(E) Heatmap
showing the distribution of the 7 NK cell clusters among the 3 groups of subjects analyzed.
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our analyses demonstrated that NK cells from severe patients
examined during the first week from the disease onset (P8 and
P9) show a more inflammatory phenotype, characterized by
higher gene expression of ISG20, IRF7, XAF1, IFI6, ISG15,
IFIT3, IFI44L, MX1 with respect to NK cells from severe
patients analyzed at about 15 days after the disease onset (P10
and P11), as well as from moderate patients (P1, P3, P5, P6)
(Figure 2C) (67).

The proinflammatory phenotype of NK cells in SARS-CoV-2
infection is further supported by several findings suggesting that
CD16 is downregulated in COVID-19 patients during the acute
phase as well as in convalescent subjects (Figure 1) (53, 70).
Indeed, it has been reported that the downregulation of CD16
occurs in CD56dim NK cells after their activation by target cells or
after cross-linking of CD16 with antibodies, and results in an
increased IFN-g production (71, 72). Leem and coworkers,
characterizing these CD56dimCD16neg NK cells, demonstrated
that they expand in the early phases of SARS-CoV-2 infection,
they then rapidly decrease in mild patients while in severe
patients the expansion of this subset lasts longer (73).

Moreover, the deregulation of genes involved in cellular
metabolism and oxidative phosphorylation, including
mitochondrial genes, further highlights the profound changes
in cellular activation in the context of SARS-CoV-2 infection
(Figure 2C) (39).

2.3 Impact of SARS-CoV-2 Infection on NK
Cell Effector Functions
These activated and inflamed patterns suggest the involvement of
NK cells in the early acute phase of SARS-CoV-2 infection and in
COVID-19 pathogenesis.

Wheatear NK cells are able to detect SARS-CoV-2-infected
cells remains largely unknown. Novel findings reported the
direct interaction between NK cells and SARS-CoV-2-infected
cells. Specific SARS-CoV-2 S protein peptides are capable of
binding to the NKG2D receptor and increase NK cell
cytotoxicity and IFN-g production toward lung cancer cells
(74). In addition, the non-structural protein 13 (Nsp13) of
SARS-CoV-2 encodes for a peptide that forms stable
complexes with HLA-E and prevents its binding to the
inhibitory receptor NKG2A, thereby rendering target cells
susceptible to NK cell attack. In line with these observations,
NKG2A-expressing NK cells, that are mainly lung-resident (75),
are particularly activated in patients with COVID-19 and
proficiently limit SARS-CoV-2 replication in infected lung
epithelial cells in vitro (52).

Nevertheless, several findings indicate that NK cells in SARS-
CoV-2 infection can exhibit an exhausted phenotype. Indeed,
programmed cell death protein 1 (PD-1), Lymphocyte-
Activation Gene 3 (LAG-3), and TIGIT expression is higher in
COVID-19 patients compared to healthy controls, while
DNAM-1 and NKG2D-expressing NK cells are decreased in
frequency (Figure 1) (54, 66, 70). The lower expression of
NKG2D is also maintained in convalescent patients with
asymptomatic and moderate history (53). Of note, the reduced
NK cell expression of DNAM-1, together with the coinhibitory
Frontiers in Immunology | www.frontiersin.org 7
receptor TIGIT, identifies patients with a slow viral
clearance (30).

Furthermore, it has been proposed that the increased
circulating levels of IL-6 could contribute to lowering NKG2D
expression (76).

In this regard, the local and systemic inflammation could also
determine an impairment in circulating NK cell effector
functions (77, 78).

In agreement, recent in vitro experimental findings showed
a marked dysfunction of blood NK cells from COVID-19
patients, in particular those from severe ones, in terms of IFN-
g and TNF production, degranulation and killing ability
against K562 target cells, as well as in the ability to control
virus replication (Figure 1) (39, 66). Given the high
expression of pro-inflammatory and immune-suppressive
cytokines especially in severe patients, it is plausible that
they could participate in determining the functional
impairment of circulating NK cells in COVID-19 patients.
As a proof of concept, plasma from severe COVID-19 patients
resulted in a marked functional impairment of NK cells from
healthy controls (66). New findings also demonstrated that
Transforming growth factor beta (TGF-b) could play a main
role in determining NK cell impairment in COVID-19
patients. Indeed, the early peak of TGF-b in hospitalized
SARS-CoV-2-infected subjects is closely correlated with
defective NK cell effector functions (Figure 1). Moreover,
experimental evidence demonstrated that the in vitro
administration of TGF-b or of serum from severe COVID-
19 patients inhibits the ability of NK cells from healthy
subjects to control SARS-CoV-2 replication, cell-mediated
cytotoxicity and to perform cytotoxic responses and
cytokine release. Furthermore, the presence of TGF-b-
blocking antibodies, but not of neutralizing antibodies
against IL-6, IL-10 or IL-15, can restore the NK cell effector
functions (39). Despite these findings, the real ability of NK
cells to lyse viral infected cells within the lung is still
unknown. However, NK cells certainly contribute to
determining lung pathology in COVID-19 patients. Indeed,
both circulating and pulmonary COVID-19 NK cells
expressed high levels of AREG (encoding for amphiregulin),
an epidermal growth factor receptor ligand involved in
pulmonary fibrosis. Furthermore, human lung fibroblasts
co-cultured with NK cells from COVID-19 severe patients
expressed high levels of the pro-fibrotic genes COL1A1 and
ACTA2 and have a reduced frequency of active Caspase-3
with respect to NK cells from controls as well as from mild
patients (66).
3 NK CELL CROSSTALK WITH OTHER
IMMUNE CELLS IN SARS-COV-2
INFECTION

Complex bidirectional interactions between NK cells and a
variety of other immune cells are needed to support effective
June 2022 | Volume 13 | Article 888248
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and long-lasting antiviral immune responses and to finely
regulate the ability of NK cells to prevent excessive systemic
inflammation during viral infections (79). Though these
interactions can be crucially relevant to the clinical outcome of
SARS-CoV-2 infection, they have been poorly investigated,
so far.

3.1 NK Cell Crosstalk With
Monocytes/Macrophages
NK cell crosstalk with monocytes/macrophages is mediated by
cell-to-cell contact and soluble mediators that reciprocally
potentiate cell recruitment and activation at the site of
inflammation (80). Upon viral infection, NK cells secrete
chemokines and cytok ines , inc luding macrophage
inflammatory protein (MIP)1a, which recruits monocytes to
the infected tissue and promotes their activation (79). In turn,
activated macrophages release chemokines, including CXCL9,
CXCL10, and CXCL11, which further recruit NK cells, and a
wide range of pro-inflammatory and inhibitory cytokines, that
finely tune the activation of NK cells (80). Evidence provided
in COVID-19 patients suggests that the interaction with
monocytes might impair NK cell recognition and killing of
SARS-CoV-2-infected cells (81). Indeed, similarly to SARS-
CoV-infected epithelial cells, inflammatory monocytes and
macrophages release high amounts of IL-6 and TNF-a within
infected tissues. In turn, both IL-6 and TNF-a can impair NK
cell cytolytic functions: IL-6 through the IL-6/JAK/STAT3
signaling axis, with hyperactivated STAT3 exerting negative
regulatory effects on NK cells (81, 82), while TNF-a by
downregulating the expression of the natural cytotoxic
receptor NKp46 (83) and upregulating the expression of the
immune checkpoint Tim-3 on NK cell surface (84).
Additional monocyte-related mechanisms contributing to
NK cell dysfunction may be represented by a reduced
secretion of IL-12 and IL-15, two cytokines that sustain NK
cell activity and that are markedly reduced in the serum of
severe COVID-19 patients (85). Notably, beyond their
cytolytic activity directed against infected cells, NK cells
play a very important role in the control of tissue
homeostasis, by exerting negative feedback mechanisms on
macrophages, aimed at preventing excessive inflammation in
response to infections. Activated macrophages upregulate the
expression of stress-inducible ligands, triggering NK cells
(through the engagement of NKG2D receptor) to kill them
and hampering the resolution of inflammation by a contra-
regulatory immune mechanism (86). In SARS-CoV-2
infection, it has been hypothesized that the reduced
cytotoxic activity of NK cells may also impair their
homeostatic role and may therefore contribute to the
hyperinflammation typically occurring in severe COVID-19
patients (76, 85).

This possibility may be supported by several mechanisms.
First, TGF-b, which is increased in COVID-19 patients, inhibits
NK cell cytotoxic activity by downregulating the expression of
NKG2D, used by NK cells for exerting their homeostatic
function (87, 88). Second, elevated IL-6, as observed in SARS-
Frontiers in Immunology | www.frontiersin.org 8
CoV-2-infected patients, has also the capacity to reduce the
expression of NKG2D (89). Third, SARS-CoV-2 infection down-
regulates activating NK cell ligands including MICA (90), and
genetic variants that lead to lower cell surface expression of
MICA and MICB are associated with more severe COVID-
19 (91).

3.2 NK Cell Crosstalk With DCs
NK cells also interact with DCs, through cell-to-cell contact
and soluble mechanisms, recently reviewed elsewhere (13).
As for NK cell-monocyte crosstalk, also in the case of NK cells
and DCs exists a bidirectional interaction, responsible on one
hand for reciprocal cell activation, on the other hand for
homeostatic control aimed at preventing excessive immune
activation. Homeostatic control is achieved through DC
killing by NK cells, this action being finely regulated by NK
cell/DC ratios and by the interaction between DNAM-1 on
NK cells and their ligands CD155 and CD112 on fully
activated DCs (79, 92, 93). Reciprocal NK cell-DC
activation is complicated by the heterogeneity of DCs that
are composed of different subsets each endowed with
functional specialization. Accordingly, the interaction of
NK cells with different DC subsets may differentially affect
adaptive immune responses. For instance, NK cells exposed
to IL-2 or IL-12 can induce the maturation of type-1
conventional DCs, which in turn sustain type 1 immune
responses through the development of T helper 1 and
cytotoxic T cells, whereas NK cells exposed to IL-4 might
favor tolerogenic or type 2 adaptive immune responses (94–
96). At present, little is known about NK cell-DC crosstalk in
COVID-19 patients. A recent study, a gene expression profile
of peripheral blood mononuclear cells in SARS-CoV-2
infected patients at single-cell level, indicated that patients
with severe disease have reduced pathways associated with
NK cell-DC crosstalk, suggesting that dysregulation of
immune crosstalk could be associated with COVID-19
severity (37). Moreover, the observation that in SARS-CoV-
2 infected individuals the count of circulating NK cells is
directly correlated with the level of anti-SARS-CoV-2 IgG
antibodies suggests that NK cell-DC crosstalk in COVID-19
patients may also affect humoral adaptive immune responses,
likely by indirectly promoting the secretion of IL-21 by T cells
(97, 98).

3.3 NK Cell Crosstalk With Neutrophils
Also in the case of NK cell-neutrophil crosstalk, bidirectional
interactions between NK cells and neutrophils have been
demonstrated to control reciprocal cell activation, and
protect from excessive immune activation (79). As for the
crosstalk between NK cells and other immune cell types,
interactions between NK cells and neutrophils rely on cell-
to-cell contact and soluble mediators. Neutrophils can recruit
NK cells to the infected tissue by secreting a wide range of
chemokines, including CXCL9, CXCL10, and CXCL11, and
can modulate NK cell survival, proliferation, cytotoxic activity
and IFN-g production via the generation of reactive oxygen
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intermediates, prostaglandins, and the release of granule
components (99–101). Activated NK cells in turn can
mediate the activation of neutrophils through the release of
inflammatory cytokines and contact-dependent mechanisms
(100). Notably, in order to counteract the accumulation of
pathogenic neutrophils and the related detrimental
consequences for the host, NK cells can kill neutrophils via
NKp46 and Fas-dependent mechanisms (102). To the same
aim, NK cell-derived IFN-g directly inhibits neutrophil
recruitment and survival (103). In COVID-19 patients, it
has been hypothesized that the high levels of IL-6, IL-8 and
IL-10 released by multiple cell types at the site of SARS-CoV-2
infection may alter the number and function of NK cells and
neutrophils, thus compromising their mutual equilibrium
(104). In facts, IL-8 and IL-6 are known to recruit and
activate neutrophils, but they can also impair NK cell
funct ion via STAT3-dependent mechanisms (105) .
Furthermore, high levels of IL-6 and IL-10 have also been
demonstrated to upregulate NKG2A expression on NK cells
with a subsequent increment of its inhibitory action, thus
compromising the balance between NK cells and neutrophils
(104, 106). It has also been proposed that, in the lung
microenvironment of COVID-19 patients, NK cells may
interact with immature neutrophils and myeloid-derived
suppressor cells, but details of these crosstalks still remain
elusive (107).
4 NK CELL-BASED THERAPIES IN
SARS-COV-2 INFECTION

Given the crucial role of NK cells in antiviral immunity in
general and their specific role in the immunopathogenesis of
COVID-19, NK cell-based therapeutic approaches have
been developed.

Herein, we will summarize the possible NK cell-based
therapies against SARS-CoV-2 infection and the ongoing
clinical trials updated at the time of submission of the review.
Due to the continuously evolving landscape of clinical trials for
COVID-19, the reader should be aware that in the meanwhile
some information may have changed.

A first approach is represented by the administration of
immunostimulants aimed at improving the in vivo NK cell
activity in COVID-19 patients. In this regard, several
bioactive molecules (i.e. IFN-a, IL-2, IL-12, and IL-15) have
been used for the treatment of disorders characterized by
impaired NK cell function (108). In particular, the
administration of IL-12 and IL-15 can compensate for the
NK cell dysfunction determined by the reduced secretion of
these cytokines by monocytes (85).

In addition, as previously described, IL-2 and IL-12 secreted
by NK cells play an important role in the context of NK cell-
DC crosstalk, by promoting the maturation of type-1
conventional DCs, which in turn sustain type 1 immune
responses (94–96). For these reasons, therapeutic approaches
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that aim at restoring a proper balance in the levels of these
cytokines may represent a useful tool to improve the innate
immune cell functionality and therefore to better sustain the
adaptive immune responses.

Among these cytokines, IL-2 and IL-15 are the most used in
clinical trials since they are involved in the processes of NK cell
expansion and maturation (79, 109–112). In the context of
COVID-19, a phase 2 clinical trial aimed at evaluating the
efficacy of the daily administration of low-doses of IL-2 for 10
days in improving the clinical course and oxygenation
parameters in patients with SARS-CoV-2-related ARDS was
recently completed (NCT04357444). However, to date, the
results emerging from the clinical trial are not available.

Nevertheless, the proinflammatory nature of certain
cytokines, including IL-2 and IL-15, must be taken into
account in the development of cytokine-based therapeutic
approaches. In this context, elevated levels of IL-15 have
been reported in association with chronic pulmonary
inflammatory diseases and MERS-CoV infection (79). In
addition, Sahoo and colleagues, by using an artificial
intelligence-guided big data approach, showed the relevance
of NK cell senescence induced by IL-15/IL15RA pathway in
the development of severe or fatal COVID-19 (113). In
agreement, Liu and colleagues demonstrated that IL-15
plays a role in NK cell dysfunction observed in most severe
COVID-19 patients (114). Therefore, although cytokine-
based therapeutic strategies are less expensive and less time
consuming than cell-based therapies, their use in clinics
should be fine-tuned to avoid the further exacerbation of the
inflammation in COVID-19 patients (107).

Considering that IL-6 can impair NK cell functions and that
elevated level of IL-6 is a key feature of severe SARS-CoV-2
infection (51), clinical trials aiming to disclose the efficacy of
drugs inhibiting IL-6 signaling are ongoing [review in (115)] and
promising results deriving from the use of Tocilizumab, a
humanized monoclonal antibody against IL-6 receptor, support
the hypothesis that IL-6 axis represents a possible therapeutic
target to treat severe COVID-19 patients by promoting NK cell
functionality (33, 116).

A second approach of NK cell-based therapies is represented
by the possible application of drugs that block NK cell inhibitory
receptors, such as NKG2A. Since it has been reported that
NKG2A is highly expressed by NK cells in COVID-19 patients
and its expression has been associated with NK cell functional
exhaustion, targeting NKG2A may improve NK cell immune
responses (36, 51, 53).

A third and last approach is represented by therapeutic
adoptive NK cells therapies (Table 1) (79).

NK cells used for therapeutic purpose can be obtained
starting from granulocyte-colony stimulating factor (G-CSF)-
mobilized peripheral blood mononuclear cells (G-PBMCs) or
stem cells (79, 117, 118), by optimizing the culture condition to
shift in vitro NK cell production to the highly cytolytic CD56dim

population in order to avoid the exacerbation of patient
conditions consequent to the administration of the cytokine
producer CD56bright NK cells (79).
June 2022 | Volume 13 | Article 888248

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Di Vito et al. Natural Killer Cells in COVID-19
An additional NK cell-based therapeutic approach in the
treatment of SARS-CoV-2 infection is represented by the
infusion of adaptive/memory-like NK cells, endowed with
higher functionality after appropriate activation with pro-
inflammatory cytokines (53, 108). Data reported in literature
support the hypothesis that adaptive NK cells, such as
NKG2CposCD57pos NK cells, may be generated also in
response to SARS-CoV-2 infection (36, 54, 55). Thus, their
presence should be taken into account for the selection of
convalescent donors in clinical trials for NK cell therapies (53).
In this regard, Herrera and colleagues reported that the
procedure of cell purification performed using a CliniMACS
Plus cell separation system (Miltenyi Biotec) activates NK cells,
making the NKG2CposCD57pos NK cell population more
noticeable, as well as increasing the cytotoxic CD16pos

population. This could offer an advantage when transfusing
this product to COVID-19 patients (53). Moreover, the use of
plasmalyte with 40% AB serum and 10% DMSO ensured good
results in terms of NK cell viability and functionality, allowing
“off-the-shelf” NK treatments (53).

Therapeutic NK cells can be obtained also from immortalized
human NK cell lines which are genetically engineered (79, 119).
They represent a suitable choice for COVID-19 patients since
they produce low levels of interferon (34). The technology of
chimeric antigen receptor (CAR)-NK cells, successfully applied
in oncology, allows to design NK cell lines that specifically
express receptor(s) of interest thus increasing the ability of NK
cells to recognize specific antigens and to thus eliminate specific
targets. In the context of COVID-19 treatment, the used of
different lines such as NKG2D-ACE2 CAR-NK cells and ACE2
CAR-NK cells in combination with an IL-15 superagonist and
Granulocyte-macrophage colony-stimulating factor (GM-CSF)
Frontiers in Immunology | www.frontiersin.org 10
neutralizing single-chain variable fragments are currently under
investigation (NCT04324996) (79, 120). By targeting the S
protein of SARS-CoV-2 and NKG2DL on the surface of
infected cells with ACE2 and NKG2D, respectively, these
therapeutic strategies aim at identifying SARS-CoV-2 particles
and SARS-CoV-2 infected cells for their effective removal.
5 CONCLUSIONS

Currently available data in literature demonstrate that
COVID-19 severity depends on two elements that mutually
affect: the efficacy of anti-SARS-CoV-2 NK activity on one
side and the effects of SARS-CoV-2 on NK cell functionality
on the other one. On this basis, therapeutic approaches aimed
at “fine tuning” NK cells activity in the context of SARS-CoV-
2 infections have been proposed, to balance their beneficial
antiviral and their detrimental pathologic action in COVID-
19 patients.

To deepen the knowledge on the role of innate immunity in
SARS-CoV-2 infection, further studies should be performed to
investigate the crosstalk between NK cells and the other innate
immune cell populations during the acute phase of the infection.
This information is essential to disclose the role of this crosstalk
in COVID-19 pathogenesis. Indeed, a deeper comprehension of
the NK cell crosstalk with other immune cells will allow to better
understand how innate immune cells can modulate the adaptive
immune responses and could also allow the identification of
novel predictors of clinical outcome.

Up to now, the current knowledge regarding NK cells and
SARS-CoV-2 relies on studies focused on the acute phase of
the infection and on studies comparing COVID-19 patients
TABLE 1 | List of clinical trials proposed for COVID-19 treatment and based on primary and “off-the-shelf” NK cells.

NCT number Title Status Study description Study type

NCT04324996 Phase I/II Study of Universal Off-the-shelf NKG2D-
ACE2 CAR-NK Cells for Therapy of COVID-19

Recruiting Intervention: Biological (NK cells, IL15-NK cells,
NKG2D CAR-NK cells, ACE2 CAR-NK cells,
NKG2D-ACE2 CAR-NK cells)

Interventional;
Phase 1/2

NCT04900454 Allogeneic Natural Killer (NK) Cell Therapy in Subjects
Hospitalized for COVID-19

Recruiting Intervention: Biological (DVX201) Interventional;
Phase 1

NCT04634370 A Phase I Clinical Trial on NK Cells for COVID-19 Not yet
recruiting

Intervention: Biological (NK Cell infusion) Interventional;
Phase 1

NCT04280224 NK Cells Treatment for COVID-19 Recruiting Intervention: Biological (NK Cells) Interventional;
Phase 1

NCT04365101 Natural Killer Cell (CYNK-001) Infusions in Adults With
COVID-19

Active, not
recruiting

Intervention: Biological (CYNK-001) Interventional;
Phase 1/2

NCT04578210 Safety Infusion of Natural Killer cells or Memory T Cells
as Adoptive Therapy in COVID-19 pneumonia or
Lymphopenia

Recruiting Intervention: Biological (T memory cells and NK
cells)

Interventional;
Phase 1/2

ChiCTR2000031735 Clinical study for natural killer (NK) cells from umbilical
cord blood in the treatment of novel coronavirus
pneumonia (COVID-19)

Not yet
recruiting

Intervention: Biological (NK cells) Interventional;
Phase 0

ChiCTR2000030944 Clinical study of human NK cells and MSCs
transplantation for severe novel coronavirus
pneumonia (COVID-19)

Not yet
recruiting

Intervention: Biological (NK cells and MSC
transplantation)

Interventional;
Phase 1

IRCT20200417047113N1 Evaluating the safety and efficacy of allogeneic NK
cells on COVID-19 induced pneumonia, double blind,
randomized clinical trial

Recruitment
complete

Intervention: Biological (NK Cells) Interventional;
Phase 1/2
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stratified based on disease severity. Future studies on subjects
that are convalescent after SARS-CoV-2 infection are required
to assess the persistence of the NK cell impairment observed
in acute phase of the infection and to investigate the long-term
impact of natural infection in inducing the development of
NK cells with adaptive-like properties that could guarantee
protection from re-infection. This aspect is of particular
interest in the context of Long-COVID. Indeed, a deeper
characterization of NK cells in patients experiencing
COVID-19 sequelae could allow a better comprehension of
the molecular mechanisms driving NK cell impairment in
COVID-19 and could also allow the development of effective
NK cell-based therapeutic approaches to treat Long-
COVID patients.

Finally, the role of NK cells in determining a long-term anti-
SARS-CoV-2 protection also after vaccination is another aspect
that deserves to be investigated more in detail.

In this context, very recent evidence suggests that the
frequency of NKG2Cpos NK cells before the vaccination can
positively influence the anti-SARS-CoV-2 antibody titers
following two doses of BNT162b2 mRNA vaccine (121).
However, by comparing the NK cell responses in subjects
receiving two doses of inactivated SARS-CoV-2 vaccine
(CoronaVac) and who develop or not COVID-19 after
vaccination or subjects experienced for SARS-CoV-2 infection
and infused or not with CoronaVac, any differences in terms of
IFN- g release upon overnight stimulation with aspecific NK cell
activation stimuli have been observed (122).
Frontiers in Immunology | www.frontiersin.org 11
An extensive phenotypic and functional characterization
of NK cells by using SARS-CoV-2 specific stimuli in
vaccinated subjects will allow to assess whether anti-SARS-
CoV-2 vaccines could stimulate the development of NK cells
with higher effector functions or adaptive-like properties that
could guarantee a faster and more efficient response in
preventing SARS-CoV-2 infections and/or severe COVID-
19 forms.
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