
Natural Language Assistant – A Dialog System

for Online Product Recommendation

Joyce Chai, Veronika Horvath, Nicolas Nicolov,

Margo Stys, Nanda Kambhatla, Wlodek Zadrozny and Prem Melville

Abstract

With the emergence of e-commerce systems, successful information access on e-commerce websites becomes essential.
Menu-driven navigation and keyword search currently provided by most commercial sites have considerable limitations,
as they tend to overwhelm and frustrate users with lengthy, rigid and not very effective interactions. To provide an
efficient solution for information access, we have built the Natural Language Assistant (NLA), a web-based natural
language dialog system to help users find relevant products on e-commerce sites. The system brings together
technologies in natural language processing and human computer interaction to create a faster and more intuitive way of
interacting with web sites. By combining statistical parsing techniques with traditional AI rule-based technology, we
have created a dialog system that accommodates both customer needs and business requirements. The system is currently
embedded in an application for recommending laptops and was deployed as a pilot on IBM’s website.

Introduction
    

For e-commerce web sites, enabling fast access to product information is crucial for generating sales. Users (customers)
need to find products matching their interests and businesses need to organize product information to permit quick access.
Menu-driven navigation provided by most commercial sites have tremendous limitations, as they tend to overwhelm and
frustrate users with lengthy and rigid interactions. User interest in a particular site decreases exponentially with the increase
in the number of mouse clicks (Huberman, Pirolli, and Pitkow 1998). Hence shortening the interaction path to provide useful
information becomes important.

Many e-commerce sites attempt to solve the problem by providing keyword search capabilities. However, keyword
search engines usually require that users know domain specific jargon so that the keywords could possibly match indexing
terms used in the product catalog or documents. Keyword search does not allow users to precisely describe their intentions or
specify relational operators (e.g. less than, cheapest, etc.) on product attributes. A search for “shirt” can reveal dozens or even
hundreds of items, which are useless for somebody who has a specific style and pattern in mind. Moreover, keyword search
systems lack an understanding of the semantic meaning of the search words and phrases. For example, keyword search
systems usually can not understand that “summer dress” should be looked up in women’s clothing under “dress”, whereas
“dress shirt” most likely in men’s under “shirt”. Finally, search engines do not accommodate business rules, e.g. a prohibition
against displaying cheap earrings with more expensive ones.

A solution to these problems lies, in our opinion, in centering electronic commerce websites on natural language (and
multimodal) dialog. Dialog allows the user and the machine to jointly arrive at the intended meaning of the query. Because it
is a joint effort, the process is fast. Moreover, it is natural for the site owner to implement business rules as part of the dialog
pragmatics. Based on these ideas, we have built the Natural Language Assistant (NLA), a web-based natural language dialog
system to help users find relevant products on e-commerce sites.

Even though natural language dialog has been used in many domains, and different architectures are designed for
supporting such systems (e.g., Allen et al. 2001), there is no general and practical theory of engineering such applications.
Natural Language Assistant (NLA), is therefore another case study, following recent applications that include call-center
routing (Chu-Carroll and Carpenter 1998), email routing (Walker, Fromer, and Narayanan 1998), information retrieval and
database access (Androutsopoulos and Ritchie 1995), and telephony banking (Zadrozny et al. 1998).

NLA allows customers to make requests in natural language and directs them towards appropriate web pages that sell
IBM laptops. The system applies natural language understanding to interpret user inputs, engages in a follow-up dialog with
users to provide explanations and to ask for additional information, and finally makes recommendations. The required tight
integration of natural language dialog with an e-commerce environment is a novel feature of our system. This involves
engineering dialog for the purpose of recommending the merchandise to the user, using user interface studies to guide both the
form and the content, and architecting the system to support business rules and business processes for updating the data (e.g.
when offerings change). Natural Language Assistant was deployed in a pilot study at an IBM external web site. The data we

 



collected, together with appropriate business requirements, will form a basis for a decision about its possible wider
deployment. The goal of the paper is to describe the behavior and the architecture of the system together with the lessons
learned.

In this paper, we start with a typical user session with NLA. Then we give a detailed description on the general
architecture and NLA components. Finally, we present the evolution of the system, showing how results from the user studies
shaped the development.

Interacting with NLA

When searching e-commerce sites, users often have target products in mind but do not know where to find information,
or how to specify a request. Sometimes, users only have vague ideas about the products of interest (Saito and Ohmura 1998).
Thus, users need to be able to formulate their requests in their own words as well as revise their request incrementally based
on additional information, which can be provided through natural language dialog. Natural Language Assistant was built with
that in mind.

Figure 1 shows a high level view of NLA. Users specify their needs to NLA in their own words over the Internet. NLA
interprets the input, retrieves products, and gives its response to the user. For example, when the user specifies “the fastest
computer under 1400 dollars”, based on the understanding of this input, NLA retrieves the laptop (a ThinkPad R30 model)
that has the fastest CPU speed among all laptops with price less than 1400 dollars. This example demonstrates the tremendous

Figure 2: A screenshot of NLA user interface for requesting more information.
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advantage of natural language search, since the user is able to obtain the desired product in one interaction, as opposed to
navigating up and down several layers of menus (menu driven navigation) or browsing among several irrelevant pages
(keyword search). A keyword search system may result in no hit or too many hits since the relational operators specified by
“fastest” and “under 1400 dollars” are typically neither identified nor computed by search engines. Furthermore, in a menu
driven navigation, the user may not be able to choose the product which has fastest CPU speed within the price range if she
has no knowledge that it is the CPU speed that determines whether a computer is fast or not.

In addition to the capability of finding products in one click, NLA also engages users in a dialog to elicit their needs and
provide guidance. Table 1 shows a typical user session with NLA. Note that the user can describe her requirements using
either specifications on product attributes (Memory in utterance User[1], Operating System and Battery life in User[2]) or general
concepts (User[4]). Furthermore, the user can express multiple constraints in one input (User[2], User[3]). In this example, NLA
explains to the user why a certain requirement cannot be satisfied (NLA[2]), and helps the user narrow down the search space
(NLA[3], NLA[4]). NLA does not force the user to only answer the specific questions put to them. For example, NLA asks the
user about the price constraints (NLA[2] , NLA[4]), however, the user bypasses this question and provides additional criteria.
This type of “mixed initiative” interaction provides flexibility to the user in specifying her needs and to NLA in guiding the
user.

Figure 3: A screenshot of NLA interface for final recommendation

NLA [1] What type of ThinkPad are you looking for?
User [1]: "something with at least 256 mb ram".

NLA [2]: ThinkPads ship with memory between 64 and 128 MB. I could not find any ThinkPads. Here are some popular
modules. What are your price constraints? (Figure 23)

User [2]: [presses Start Over button ] "a windows 2000 computer with a battery life at least 3 hours"
NLA [3]: I found 18 ThinkPads for you. What are your speed and RAM requirements?
User [3]: "at least 128 mb ram with multimedia features"
NLA [4]: I found 2 ThinkPads for you. What are your price constraints?
User [4]: "the lightest one"
NLA [5]: I recommend the ThinkPad model T23 for you. (Figure 34)

Table 1: Example Scenario



System Overview

Our architecture (Figure 4) is designed to support mixed initiative dialog with multiple modalities including typed-in text
and speech. In NLA, we use a hub-and-spokes architecture with a central hub responsible for shuttling messages between all
other components.

The user interface module is responsible for receiving user inputs and presenting system outputs. Once the input is
received by the hub, the shallow parser parses it, and captures important expressions that are used to describe certain features
of ThinkPads (e.g., hard disk size, CPU speed) or the usage patterns (e.g., for travel use). Based on these expressions and the
session context maintained by the dialog manager, the interpreter constructs a set of constraints on attributes of ThinkPads.
Those constraints are then translated to an SQL query by the action manager. The action manager executes the SQL query
against a relational product database and retrieves a set of products matching user constraints. Based on the identified
constraints and the retrieved products, the dialog manager constructs different responses such as requesting clarification, and
soliciting more information to narrow down the recommendation list. Finally, the user interface module renders a screen
presenting these responses and the retrieved products to the user. From this interface, the user can start another interaction
with NLA. We now describe each of these components in details.

User Interface Module

The user interface module is responsible for receiving user inputs and displaying system outputs. In our architecture, we
have a separate user interface for each modality of interaction. The dialog manager determines the content of what is to be
presented and the specific user interface renders it using the unique capabilities of the channel and/or modality of interaction.

For the web-based interaction, we designed NLA interface to have a consistent look and feel in every screen. For
example, the dialog box is positioned at exactly the same place on every screen. Furthermore, in every screen, NLA re-iterates
the user input and provides feedback on what constraints have been understood so far. Such feedback is also reflected in the
table of products, where NLA dynamically highlights the attributes in the column that correspond to the identified constraints.

Figure 2 shows a screenshot of the user interface for NLA[3] in Table 1. Note the follow-up question is shown to the user
to solicit more information for the purpose of narrowing down the retrieved product list. Furthermore, both Battery Life and
OS are highlighted in the product table to reflect the user specific requests. Figure 3 shows a screenshot of the user interface
for the final turn (NLA[5]) of the dialog session in Table 1. Note the merged constraints from previous turns are shown at the
top of the page as a feedback.

Parser

NLA uses a shallow, statistical parser to identify expressions in a user input referring to product specifications (e.g., CPU

speed, hard disk capacity) or usage categories (e.g., use for multimedia applications). Using a statistical approach allows us to
scale to multiple languages and geographies with minimal re-configuration. Thus, in order to create a French language version
of NLA, we would only need to collect a corpus of French sentences and annotate them with the existing schemes, instead of
recruiting French speaking linguists to create rules for French expressions.

Specifically, the statistical parser learns decision tree models using a corpus of sentences annotated with parse trees. Then
the parser applies the learned models on user inputs to create semantic parse trees in a Bottom Up Left Most order
(Magerman et al. 1994, Magerman 1995). The parse trees are relatively shallow in our domain given the brevity of user
inputs. For example, given the input “at least 128mb with multimedia features’, the parser will generate the most probable

User
I nterface

Dialog 
Manager

Act ion 
Manager

Databases

Shallow
Parser

I nterpreter

HUBUsers
User

I nterface

Dialog 
Manager

Act ion 
Manager

Databases

Shallow
Parser

I nterpreter

HUBUsers

Figure 4: General architecture



parse tree as shown in Figure 5, together with the probability for this tree. In this parse tree, the non-terminals (e.g., RAM,
MULTIMIDIA) are labels that capture the semantic categories of the user input, and the terminals (e.g., at least 128 mb) are the
actual user expressions. This resulting parse tree is used by the interpreter to extract constraints. The parser is robust, fast and
is not memory intensive. It is packaged as a separate module and receives parse requests via socket communication.

During the development, we collected 10069 user queries about ThinkPads to build the statistical parser model. We used
6804 queries as a training set for the parser, 2253 as a validation set and 1012 as a test set. The queries were collected from
user interactions with a previous version of the system using a finite-state parser (Chai et al. 2001b). We use 32 labels to
categorize different attributes of ThinkPads (e.g., PRICE, WEIGHT) and 6 labels to categorize usage patterns (e.g., TRAVEL-

USE, MULTIMEDIA). We have gone through several cycles of revising the initial annotation, fine tuning the parser features and
re-training the model.

Currently, the parser parses the test set with an average precision of 92% and an average recall of 94% for identifying the
labels. In general, the parser works best for labels associated with well-defined crisp semantic meanings (e.g. PRICE,
CPUSPEED, etc.). If we only consider the labels corresponding to product attributes, we obtain an average precision of 94%
and an average recall of 98% for the test set. For labels corresponding to usage categories that tend to be more subjective in
nature (e.g. CUTTING_EDGE), we obtain an average precision of 84% and an average recall of 80% for the test set. Thus,
our parser is very good at identifying common product attributes, but works less well for identifying all possible
interpretations of subjective usage categories. We believe that training with more data and modifying our label selection and
annotation schemes will help with the latter.

Interpreter

The interpreter extracts a semantic representation (e.g. propositional formula of constraints over product attributes) from
the parse tree returned by the parser. Specifically, from all the labeled chunks of text identified by the parser, the interpreter
extracts constraints that specify relations and values for product attributes (e.g., PRICE < 2500, WEIGHT = min, CPUTYPE =

‘Pentium’, etc.). Furthermore, to keep the context of a dialog, the interpreter also integrates the constraints identified from the
current input with the constraints captured previously in the session.

The interpreter first extracts constraints from the labeled chunks of text describing product specification. Depending on
the (abstract data) types of the attributes, we distinguish between numerical constraints (PRICE < 2500), string constraints
(CPUTYPE = ‘Pentium’) and constraints over pairs (RESOLUTION = 1600x1200). The values of numerical constraints are
normalized to canonical units of measure (dollars for PRICE, MHz for CPUSPEED, etc.) using finite-state transducers. For
example, given a user expression “faster than 1.3 GHz” which is categorized as CPUSPEED, the interpreter converts “1.3
GHz” into “1300 MHz”.

We have explored two approaches for the treatment of string valued attributes. The first approach uses finite state patterns
to produce a canonical string value that is directly matched (e.g. using substring matching in SQL) against string values in the
product database. This approach requires us to pre-specify a canonical list of values for each string valued product attribute.
Thus, this approach requires ongoing system maintenance costs as new products are released with either new values for
existing attributes or with new attributes.

To avoid such dependencies on external (to our dialog system) resources, we have implemented an approach using
Information Retrieval (IR) techniques. NLA matches the expression in a particular attribute category with values of that
attribute in the product database, and chooses the most similar one(s) using similarity measurement. For example, for the
query “I want a machine with win xp”, the interpreter identifies the constraint (OS = “win xp”). If the values for the OS
attribute in the database are: “Microsoft Windows XP Professional”, “Windows NT”, “Windows 2000 Professional”, “Linux”,
the best match is “Microsoft Windows XP Professional”.

For expressions in the usage category, the interpreter applies business rules to create constraints. Business rules provide a
mechanism for bridging the gap between user vocabulary and business requirements. In other words, the parser provides the
usage categories identified from the user input and the business rules specify how those categories relate to products (by
providing constraints on product specifications). For example the MULTIMEDIA usage category is defined by the following
business rule

at  least  128 m b  with m ult imedia features

RAM MULTI MEDI A

S
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Figure 5: Parse tree for the input ‘at least 128mb with multimedia features’



MULTIMEDIA ::= (DEVICE = dvd) &

(CPUSPEED: high) &

(HDSIZE: high) &

(DISPLAY ≥ 14.1) .

This rule indicates that a machine that can be used for multimedia purposes should have a DVD, high CPU speed, a large disk
drive and a display with at least 14.1 inches. This example also shows the use of qualitative constraints (e.g. HDSIZE: high)
that are “low” or “high” constraints on numerical product attributes. The qualitative constraints are further mapped to specific
constraints like (HDSIZE > 20GB) based on automatic partitioning of the current range of values. For example, among all
available values for the hard disk size, the top one fifth are considered as “high”. Using qualitative constraints in business
rules can reduce the maintenance effort. For example, the size of a hard disk that is considered to be large changes with time
as larger disk spaces are available in new products. By using qualitative constraints, when such changes occur, the business
rule can remain the same although the constraint (HDSIZE: high) will be interpreted differently through a dynamic mapping of
“high” to a new range of values.

Constraints are grouped together with the usual propositional connectives to form formulae. Most often the connectives
are conjunctions and elements in the formulae are either constraints or negated constraints. These formulae are passed on to
the action manager to retrieve products.

Furthermore, to keep the dialog context, the interpreter merges the constraints identified from the current input with those
captured previously in the session. It is possible to have multiple constraints on the same attribute. They could either have
been specified directly by the user or occur due to the expansion of business rules. We use the following heuristics in the
integration process. First, constraints directly specified by the user override other constraints. For example, if the user wants a
MULTIMEDIA machine (which implies CPUSPEED: high which in turn is expanded as CPUSPEED > 1000) and the user explicitly
requested (CPUSPEED > 900), then the resulting constraint from the CPU speed would be (CPUSPEED > 900). Second, the
most recent constraint overrides previous constraints with the same attribute and relation. For example, if the user had
previously specified (PRICE < 2000) and is now expressing a new constraint (PRICE < 1800), the most recently expressed
constraint (PRICE < 1800) will prevail. Third, constraints on the same attribute with different compatible relations are
preserved. For example, combining (PRICE < 2000) from a previous turn with (PRICE > 1500) will result in the range 1500-
2000, i.e. both constraints will be kept.

Action Manager

The action manager is responsible for the back-end operations. In particular, the action manager translates constraints
generated by the interpreter to a SQL statement. Based on this SQL, the dialog manager retrieves products from a relational
database that contains product information. For example, if in consecutive turns the user specifies “256 MB” and “fastest
under 2000 dollars”, then the generated SQL is:

SELECT * FROM table WHERE

ram = 256 AND

price < 2000 AND

cpuspeed = (SELECT max(speed) FROM table WHERE

price < 2000 AND

ram = 256).

To process the min/max constraints properly, the dialog manager considers the set of products satisfying the constraints
from previous turns, and among these the dialog manager identifies products satisfying min/max constraints. Furthermore,
when multiple min/max constraints are given, the dialog manager first applies all constraints other than the min/max
constraints, and then applies the min/max constraints in reverse order of occurrence. This is necessary to ensure the retrieved
products correspond to the most common linguistic interpretation of min/max constraints. For example, for the query “fastest,
lightest computer with 20 GBs”, the action manager first searches for “20 GB”, then the “lightest”, and finally the “fastest.”
i.e., of all machines with hard disk of 20 GB consider those with minimum weight and among those select the fastest. Any
other order of processing constraints would correspond to a different interpretation of the user constraints and might result in
unintended products being retrieved.

Dialog Manager

The dialog manager generates the system response based on the current user input, the prior dialog in the session, and the
retrieved products. In particular, the dialog manager employs a mixed initiative strategy to interact with a user. At the
beginning of each session, the dialog manager prompts users with a general question (e.g., NLA[1] in Table 1) to solicit specific
requests. Moreover, at any point in the session, the dialog manager allows users to bypass questions put to them and describe



their needs directly. While giving the initiative to users, the dialog manager also takes the initiative by asking users very
specific questions about different product attributes, thus directing the users to achieve their dialog goals.

NLA differentiates between two types of users. If the user initial query expresses requirements on any product attributes
directly, the dialog manager classifies the user as a “technology savvy” user and, for the remainder of the session, the dialog
manager only prompts her with questions concerning specific product attributes. Alternatively, if the user initial query
expresses only usage patterns, for the remainder of the session, the dialog manager only prompts the user for information on
general usages.

The dialog manager employs different strategies to deal with different situations. When no constraints are identified from
a user input, the dialog manager presents a clarification screen suggesting possible queries and explaining the capabilities of
NLA. When a user specifies an invalid constraint (e.g., User[1] in Table 1), the dialog manager presents the valid range of
constraints for the attributes in question and prompts the user to reformulate her query. If the action manager retrieves more
than one product based on constraints identified so far, the dialog manager prompts the user for constraints on product
attributes or usage categories (depending upon the first query as explained above) that best discriminate among the retrieved
products. If the action manager retrieves exactly one product based on constraints identified so far, the dialog manager
recommends the product to the user, explains the reason for the recommendation and invites the user to start another search.

In a special situation where constraints identified result in no products being retrieved, the dialog manager employs the
following strategy. The dialog manager (via the action manager) separately retrieves a pool of products for each constraint. If
any of these product pools is empty, the dialog manager prompts the user with the range of values for the corresponding
product attribute. Then the dialog manager merges (union of sets) all the non-empty product pools, and sorts them using a
distance measure that measures the closeness of a product to the set of constraints. This merged product pool is presented to
the user along with an alert about the conflicting nature of the identified constraints. For example, if the user inputs “under
1000 dollars and at least 900 MHz”, the action manager will not retrieve any products since no laptop satisfies both of these
constraints. In this case, the dialog manager instructs the action manager to separately retrieve the pool of laptops that are
priced under $1000 and the pool of laptops that have at least 900 MHz CPU speed. These two product pools are merged and
sorted with respect to closeness to both of the constraints. The sorted list is presented to the user. If all the product pools are
empty, the user is prompted to reformulate her query.

The dialog manager maintains a dialog history that records the user input, the set of identified constraints, the list of
products retrieved, and the system output at each turn of the dialog. Unlike other systems that have complex structures
capturing user intentions and the focus of attention (e.g. LINLIN (Jonsson, 1997)), our dialog history is very simple. However,
we found that this simple representation is sufficient for our application.

Data Management & Maintenance

We have developed various tools and processes to maintain the NLA system to ensure that updates to products and other
resources are seamlessly reflected in user interactions. In a business setting, various databases are often pre-designed for other
purposes and hence present problems for our system: e.g. the database might not have the right data types, multiple attributes
might be represented in a single database column, etc. To address these issues, we maintain a local database that is populated
directly from the original databases. We implemented an automated process to access the product databases to convert data
types and extract product specification on a daily basis. Our script robustly copes with missing data values, multiple attributes
merged into one attribute, etc. In addition, we have also explored the direct extraction from product web pages using a web-
based tool that applies finite-state patterns to extract product specifications.

Furthermore, when new products or features are introduced, the business rules need to be updated accordingly. When
more and more user inputs are collected, the statistical parser needs to be re-trained. Thus, we have implemented a tool for
maintaining business rules and the statistical parser. The tool automatically extracts n-grams from logs of user queries and
allows manual updates of business rules through an editing interface. A parts-of-speech tagger and a noun phrase grammar are
used to select new input patterns. The new patterns are labeled through the interface and added to the training examples for
the statistical parser. Figure 6 shows the interface where automatically identified bi-grams can be added to existing categories.

In addition to coping with the evolving data from the technology aspect, it is worth pointing out that human interaction is
important in the data management process. In a business organization, different groups are responsible for different product
parameters. Thus, interacting with different groups to understand the structure and the type of the data is important. Such
interactions usually take a lot of effort and add the complexity of data management.



Implementation

NLA is implemented as a client-server system using Java servlets, WebSphere and DB2. We use HTTP to communicate
between the client and the server. The system development was done under Visual Age for Java. The user interfaces were
implemented using DHTML (HTML4.0, Cascading Style Sheets and JavaScript), JSPs and Java servlets. We have developed
versions of NLA for different geographies as well as for different product lines.

For efficiency reasons the statistical parser is implemented in C. The NLA system connects to the parser via sockets. For
training the parser, we pre-annotated data using a finite-state parser used in a previous version of the system (Chai et al.,
2001b). These raw annotations were reviewed manually using a GUI annotation tool. We have also used examples artificially
generated by using a Prolog Definite Clause Grammar (DCG) to cover more variations in user inputs.

System Evolution via Iterative Design

The present version of NLA has evolved through various cycles of iterative design. Specifically, we went through four
stages of system development: concept proof, prototyping, pilot deployment, and post-pilot enhancement. During these stages,
we incrementally designed and implemented different versions of NLA, and conducted user studies to evaluate the technology
and improve the system. In this section, we share our experience and the results from the user studies carried out at separate
stages of development.

Proof of Concept

For the proof of concept, we developed HappyAssistant, a simple rule-based system that provided limited language
processing and dialog capabilities (Chai et al. 2001a). At this initial stage of development, it was important to learn users’
reactions to this novel navigation approach as opposed to traditional approaches (e.g., menu driven navigation). Thus, we
compared HappyAssistant with a menu driven system. We were particularly interested in finding answers to the following
questions: Can natural language based navigation be more efficient (number of clicks, time spent searching, etc.) and easier to
use than menu driven navigation? By how much? What are users' responses toward natural language based navigation as
opposed to menu driven navigation? How do users with different levels of online experience react to the natural language
dialog based navigation?

Seventeen subjects were recruited for the comparative study: four had advanced computer skills, eight were deemed to be
at the intermediate level of proficiency and five had limited experience with the internet. Each participant was asked to use
both the HappyAssistant and the menu driven system, following a set of pre-defined scenarios. The scenarios were designed to
let the users experience the navigation of each web site in order to form an opinion of the tool’s concept. They were then

Figure 6: Editing interface for concept management



asked to rank the tasks on a 1 to 10 scale (where 10 is easy) with regards to the ease of navigation and the series of events
leading up to the result.

The results of this study showed that, to accomplish those tasks, HappyAssistant required less time and user movements
(mouse clicks) than the menu driven system. Specifically, HappyAssistant reduced the average number of clicks by 63% and
the average interaction time by 33% (compared with a menu-driven system). Furthermore, the less experienced users
preferred the natural language enabled navigation much more than the experienced users. Table 2 shows the rating from
different user groups in terms of the ease of use of the two systems. Overall, respondents preferred the natural language
dialog based navigation (HappyAssistant) to the menu driven navigation two to one (2:1).

In this study, we also found that users are accustomed to typing in keywords or simple phrases (e.g., “moderately priced

laptop”, “computer with internet access + games”, “a high-speed computer”). Despite the moderator’s assurance that the
user could type “anything they wanted,” complete sentences were seldom observed. The average length of a user query was
5.31 words long (with a standard deviation of 2.62). Analysis of the user queries reveals the brevity and relative linguistic
simplicity of the input; hence, shallow parsing techniques seem adequate to extract the necessary meaning from the user input.
Therefore, in such context, sophisticated dialog management is more important than the ability to handle complex natural
language sentences. We also learned that in order to improve the functionality of an e-business site, the natural language
dialog navigation and the menu-driven navigation should be combined to meet users’ needs. While the menu-driven approach
can provide choices for the user to browse around or learn some additional information, the natural language dialog provides
the efficiency, flexibility and the natural touch to the users’ online experience. Moreover, in designing natural language
dialog based navigation, one of the key issues is to show users that the system understands their requests before giving any
recommendation or relevant information.

Prototyping

Based on what we learned from the first user study, we developed the Natural Language Sales Assistant (NLSA). NLSA
applied a shallow noun phrase parser to process user inputs. To enhance the dialog capability, NLSA used a mixed initiative,
state-based dialog manager. Since the first user study highlighted a definite need for system acknowledgement and feedback,
NLSA incorporated an explanation model that explained to the user what was understood and why a particular product was
recommended. Furthermore, NLSA addressed the issue of real time data management and provided tools for managing data
and knowledge used in online interaction. A detailed description of NLSA can be found in (Chai et al. 2001b).

Prior to the development of NLSA, we conducted a user survey to help understand specific user needs and collect user
vocabulary. Users were given three sets of questions. The first set, in turn, contained three questions: "What kind of notebook
computer are you looking for?", "What features are important to you?", and "What do you plan to use this notebook computer
for?". By applying statistical n-gram models and a shallow noun phrase grammar to the user responses, we extracted
keywords and phrases expressing users’ needs and interests. In the second set of questions, users were asked to rank 10
randomly selected terms from 90 notebook related terms in order of familiarity to them. The third set of questions asked for
demographic information about users such as their gender, years of experience with notebook computers, native language, etc.
We derived correlations between vocabulary/terms and user demographic information. This study allowed us to group
technical terms into different complexity groups and better formulate system responses to different user groups. Over a 30-day
period, we received 705 survey responses. After about 400 responses, the number of extracted keywords and phrases started to
converge. From this survey, we extracted 195 keywords and phrases. These keywords and phrases helped us jump-start the
development of NLSA. We believe this kind of market survey could be one approach to help customizing our technology to a
different domain.

We also conducted the second user study to test the usability of NLSA. In this study, we focused on evaluating the dialog
flow and the ease of use. Thirty four subjects with "beginner" or "intermediate" computer skills were interviewed for the
study. Again, they were asked to find laptops for a variety of scenarios using three different systems: the NLSA, a directed
dialog system (through pre-designed questions and answers), and a menu driven navigation system. Participants were asked to
rate each system for each task on a 1 to 10 scale (10 – easiest) with respect to the ease of navigation, clarity of terminology
and their confidence in the system responses. The focus of the second study was to compare systems of similar functionality
and to draw conclusions about the functionality of NLSA.

The results showed that the users clearly preferred dialog-based searches to non-dialog based searches (79% to 21%
users). Furthermore, they liked the narrowing down of the product list based on identified constraints as the interaction

System Novice Intermediate Experienced
HappyAssistant 9.4 8.5 8.3

Menu Driven System 6.3 8.1 8.9
Table 2: Ratings of ease- of- use of the two systems



proceeded. Our analysis reveals statistical differences in terminology ratings among the three systems for the category of
beginner users only. There were no statistical differences found in the other ratings of navigation and confidence across the
three sites for different categories of users. The results suggest that asking questions relative to the right level of end user
experience is crucial. Asking users questions about their lifestyle and how they were going to use a computer accounted for a
slight preference of the directed dialog system over the NLSA that uses questions presented on the basis of understanding
features and functions of computer terms.

Again, as in the first user study, we learned that, it is important to show users that the system understands them. Users
remarked in our study that they appreciated the recommended results because the system offered some explanation. This
feature allows the user to “trust the system.” Good navigation aids can be provided by summarizing the user’s requests by
paraphrasing them using context history, or by engaging in conversations with the user. Our studies found that robust natural
dialog had a very big influence on the user satisfaction – almost all of the respondents appreciated the additional questions
prompted by their input and the summary of their previous queries.

The studies pointed towards improvements in the area of system responsiveness including tuning up of the follow up
questions, prompts and explanations to the user’s input. To a large extent, the success of a dialog system has been shown to
depend on the kind of questions asked and the type of feedback provided. User’s confidence in the system decreases if the
system responses are not consistent with the user’s input. The system feedback and the follow up questions should manage a
delicate balance of exposing system limitations to the user but at the same time making sure the user understands the degree of
flexibility and advantages of using a dialog system.

Pilot Deployment

We made further improvements to NLSA based on the results of the user studies and deployed NLSA on an external IBM
website for a few months as a pilot. During the pilot, we collected valuable feedback from real users that greatly helped
subsequent system improvements.

For the pilot data, the average user query was 6.1 words long. This is significantly higher than the roughly 2.2 words per
query for search engines. We also found that users were open to typing in long natural language expressions to find
ThinkPads. The maximum query length was over 150 words long.

Perhaps the most surprising finding of the pilot study was that a large proportion of user queries were technical in nature,
expressing very specific needs about different product attributes. Users freely (and without any coaching or guidance)
expressed relational operators (e.g. less than, at least, etc.) and conjunctions of multiple constraints. This suggests that NLSA
is very useful for power users, enabling them to quickly get to the products of interest to them. Moreover, if a user has very
specific technical requirements (e.g. “an xga computer with at least 20 gb, 128 mb ram and 15” tft display”), NLSA is often
the best mechanism of finding the relevant products quickly (compared to keyword search or menu driven navigation).

Post-pilot Enhancement

Having carried out the two user studies and learned the lessons from the pilot deployment, we are now developing the
third version of the system: the Natural Language Assistant (NLA).The system described in this paper is the result of this
effort.

In particular, as described earlier, we re-designed the questions that NLA asks users to be simpler, and to focus on usage
patterns rather than technical features. Subsequently, we added functionality that classified users into general versus technical
categories. If the technical category of users was detected, a technical pool of questions would apply. We also integrated a
statistical parser with NLA to more robustly handle varied user input. The statistical parser should enable NLA to scale to
multiple languages and multiple domains in a more robust and reliable fashion. In addition, we have designed a more
uniform, more compact and consistent UI.

While developing NLA, we iterated through various design phases as described above. This helped us learn more about
user requirements and system limitations, and enabled us to incrementally improve the system in a systematic fashion. Our
studies confirmed the hypothesis that a natural language dialog interface is a significant improvement over existing product
retrieval mechanisms. In future studies, we would like to focus more on defining quantitative and objective measures of
system’s success.

Conclusion

This paper describes a natural language dialog system that helps users find products satisfying their needs on e-commerce
sites. The system leverages technologies in natural language processing and human computer interaction to create a faster and
more intuitive way of interacting with websites. By combining techniques in robust statistical parsing with traditional AI rule-
based technology the system is able to accommodate both customer needs and business requirements.



Our studies show that dialog-based navigation is preferred over menu-driven navigation (79% to 21% users) and confirm
the efficiency of using natural language dialog in terms of the number of clicks and the amount of time required to obtain the
relevant information. Compared to a menu-driven system, the average number of clicks used in the natural language system
was reduced by 63.2% and the average time was reduced by 33.3%. In a pilot study, we found that, when presented with the
right interface, users do type long, technical queries (average of 6.10 words per turn), for example, expressing relational
constraints on multiple product attributes or usage categories. Moreover, our pilot study revealed that technical users were
able to use NLA successfully to quickly find products of interest to them. Thus, a shallow natural language layer on top of a
relational database offers a powerful alternative to traditional keyword search or menu driven systems for e-commerce sites.
Additionally, the use of a thin dialog layer makes the system accessible to all types of users and greatly enhances the user
experience.

Natural language dialog interfaces offer a more “natural” mode of interaction than traditional user interaction
mechanisms like command-driven interface, form-filling interface, question-answer sequences, menus, etc. However, natural
language dialog also faces serious challenges. For novice users, a conversational system may be overwhelming and it may be
quicker to use a menu-driven system. For experienced users, the amount of typing may be a drawback and browsing may be
the best and quickest way to navigate. Ultimately, in order to satisfy different user needs, the natural language dialog
navigation and the menu-driven navigation should be combined. While the menu-driven approach provides choices for the
user to browse around or learn some additional information, the natural language dialog provides the efficiency, flexibility and
natural touch to the user’s online experience.

Furthermore, conversational interfaces offer the ultimate kind of personalization. Personalization can be defined as the
process of presenting each user of an automated system with an interface uniquely tailored to his/her preference of content and
style of interaction. Thus, mixed initiative conversational interfaces are highly personalized since they allow users to interact
with systems using the words they want, to fetch the content they want in the style they want. Users can converse with such
systems by phrasing their initial queries at a right level of comfort to them (e.g. “I am looking for a gift for my wife” or “I am
looking for a fast computer with DVD under 1500 dollars”).

In the next few years, natural language dialog should become the preferred mode of interaction with institutional
knowledge as well. Hence our effort in building the Natural Language Assistant can be viewed as a prelude to such more
advanced systems. While the existence of a product hierarchy and a limited number of product parameters makes e-commerce
a natural domain for natural language dialog systems, our approach can be naturally expanded to industrial and enterprise
domains outside e-commerce for which well-defined ontologies are available. Similarly, we expect that the lessons learned
about engineering the interactions to be applicable there. Our work in knowledge update processes done as part of this project
might eventually be expanded to address knowledge infrastructure in other domains (we see it as an interesting open
problem). These three problems – ontology, HCI and knowledge architectures -- cover the basic pragmatics of engineering
interactive knowledge systems.
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