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Abstract

In this paper, we propose the TBCNN-

pair model to recognize entailment and

contradiction between two sentences. In

our model, a tree-based convolutional neu-

ral network (TBCNN) captures sentence-

level semantics; then heuristic matching

layers like concatenation, element-wise

product/difference combine the informa-

tion in individual sentences. Experimen-

tal results show that our model outper-

forms existing sentence encoding-based

approaches by a large margin.

1 Introduction

Recognizing entailment and contradiction be-

tween two sentences (called a premise and a hy-

pothesis) is known as natural language inference

(NLI) in MacCartney (2009). Provided with a

premise sentence, the task is to judge whether the

hypothesis can be inferred (entailment), or the

hypothesis cannot be true (contradiction).

Several examples are illustrated in Table 1.

NLI is in the core of natural language under-

standing and has wide applications in NLP, e.g.,

question answering (Harabagiu and Hickl, 2006)

and automatic summarization (Lacatusu et al.,

2006; Yan et al., 2011a; Yan et al., 2011b). More-

over, NLI is also related to other tasks of sen-

tence pair modeling, including paraphrase detec-

tion (Hu et al., 2014), relation recognition of dis-

course units (Liu et al., 2016), etc.

Traditional approaches to NLI mainly fall into

two groups: feature-rich models and formal rea-

soning methods. Feature-based approaches typ-

ically leverage machine learning models, but re-

quire intensive human engineering to represent

lexical and syntactic information in two sentences

∗Equal contribution. †Corresponding authors.

Premise Two men on bicycles competing in a race.

People are riding bikes. E

Hypothesis Men are riding bicycles on the streets. C

A few people are catching fish. N

Table 1: Examples of relations between a premise

and a hypothesis: Entailment, Contradiction, and

Neutral (irrelevant).

(MacCartney et al., 2006; Harabagiu et al., 2006).

Formal reasoning, on the other hand, converts a

sentence into a formal logical representation and

uses interpreters to search for a proof. However,

such approaches are limited in terms of scope and

accuracy (Bos and Markert, 2005).

The renewed prosperity of neural networks has

made significant achievements in various NLP ap-

plications, including individual sentence modeling

(Kalchbrenner et al., 2014; Mou et al., 2015) as

well as sentence matching (Hu et al., 2014; Yin

and Schütze, 2015). A typical neural architecture

to model sentence pairs is the “Siamese” structure

(Bromley et al., 1993), which involves an underly-

ing sentence model and a matching layer to de-

termine the relationship between two sentences.

Prevailing sentence models include convolutional

networks (Kalchbrenner et al., 2014) and recur-

rent/recursive networks (Socher et al., 2011b). Al-

though they have achieved high performance, they

may either fail to fully make use of the syntacti-

cal information in sentences or be difficult to train

due to the long propagation path. Recently, we

propose a novel tree-based convolutional neural

network (TBCNN) to alleviate the aforementioned

problems and have achieved higher performance

in two sentence classification tasks (Mou et al.,

2015). However, it is less clear whether TBCNN

can be harnessed to model sentence pairs for im-

plicit logical inference, as is in the NLI task.

In this paper, we propose the TBCNN-pair

neural model to recognize entailment and con-

tradiction between two sentences. We lever-
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age our newly proposed TBCNN model to cap-

ture structural information in sentences, which

is important to NLI. For example, the phrase

“riding bicycles on the streets” in Table 1 can

be well recognized by TBCNN via the depen-

dency relations dobj(riding,bicycles)

and prep on(riding,street). As we can

see, TBCNN is more robust than sequential con-

volution in terms of word order distortion, which

may be introduced by determinators, modifiers,

etc. A pooling layer then aggregates information

along the tree, serving as a way of semantic com-

positonality. Finally, two sentences’ information

is combined by several heuristic matching lay-

ers, including concatenation, element-wise prod-

uct and difference; they are effective in capturing

relationships between two sentences, but remain

low complexity.

To sum up, the main contributions of this pa-

per are two-fold: (1) We are the first to introduce

tree-based convolution to sentence pair modeling

tasks like NLI; (2) Leveraging additional heuris-

tics further improves the accuracy while remaining

low complexity, outperforming existing sentence

encoding-based approaches to a large extent, in-

cluding feature-rich methods and long short term

memory (LSTM)-based recurrent networks.1

2 Related Work

Entailment recognition can be viewed as a task of

sentence pair modeling. Most neural networks in

this field involve a sentence-level model, followed

by one or a few matching layers. They are some-

times called “Siamese” architectures (Bromley et

al., 1993).

Hu et al. (2014) and Yin and Schütze (2015) ap-

ply convolutional neural networks (CNNs) as the

individual sentence model, where a set of feature

detectors over successive words are designed to

extract local features. Wan et al. (2015) build sen-

tence pair models upon recurrent neural networks

(RNNs) to iteratively integrate information along

a sentence. Socher et al. (2011a) dynamically con-

struct tree structures (analogous to parse trees) by

recursive autoencoders to detect paraphrase be-

tween two sentences. As shown, inherent struc-

tural information in sentences is oftentimes impor-

tant to natural language understanding.

The simplest approach to match two sentences,

1Code is released on:
https://sites.google.com/site/tbcnninference/

perhaps, is to concatenate their vector representa-

tions (Zhang et al., 2015; Hu et al., 2014, Arc-I).

Concatenation is also applied in our previous work

of matching the subject and object in relation clas-

sification (Xu et al., 2015; Xu et al., 2016). He

et al. (2015) apply additional heuristics, namely

Euclidean distance, cosine measure, and element-

wise absolute difference. The above methods op-

erate on a fixed-size vector representation of a sen-

tence, categorized as sentence encoding-based ap-

proaches. Thus the matching complexity is O(1),
i.e., independent of the sentence length. Word-by-

word similarity matrices are introduced to enhance

interaction. To obtain the similarity matrix, Hu et

al. (2014) (Arc-II) concatenate two words’ vectors

(after convolution), Socher et al. (2011a) compute

Euclidean distance, and Wan et al. (2015) apply

tensor product. In this way, the complexity is of

O(n2), where n is the length of a sentence; hence

similarity matrices are difficult to scale and less

efficient for large datasets.

Recently, Rocktäschel et al. (2016) intro-

duce several context-aware methods for sentence

matching. They report that RNNs over a single

chain of two sentences are more informative than

separate RNNs; a static attention over the first sen-

tence is also useful when modeling the second one.

Such context-awareness interweaves the sentence

modeling and matching steps. In some scenarios

like sentence pair re-ranking (Yan et al., 2016), it

is not feasible to pre-calculate the vector represen-

tations of sentences, so the matching complexity is

of O(n). Rocktäschel et al. (2016) further develop

a word-by-word attention mechanism and obtain a

higher accuracy with a complexity order of O(n2).

3 Our Approach

We follow the “Siamese” architecture (like most

work in Section 2) and adopt a two-step strategy to

classify the relation between two sentences. Con-

cretely, our model comprises two parts:

• A tree-based convolutional neural network

models each individual sentence (Figure 1a).

Notice that, the two sentences, premise and hy-

pothesis, share a same TBCNN model (with

same parameters), because this part aims to

capture general semantics of sentences.

• A matching layer combines two sentences’ in-

formation by heuristics (Figure 1b). After in-

dividual sentence models, we design a sen-

tence matching layer to aggregate information.

We use simple heuristics, including concate-
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Figure 1: TBCNN-pair model. (a) Individ-

ual sentence modeling via tree-based convolution.

(b) Sentence pair modeling with heuristics, after

which a softmax layer is applied for output.

nation, element-wise product and difference,

which are effective and efficient.

Finally, we add a softmax layer for output.

The training objective is cross-entropy loss, and

we adopt mini-batch stochastic gradient descent,

computed by back-propagation.

3.1 Tree-Based Convolution

The tree-based convolutoinal neural network

(TBCNN) is first proposed in our previous work

(Mou et al., 2016)2 to classify program source

code; later, we further propose TBCNN variants

to model sentences (Mou et al., 2015). This sub-

section details the tree-based convolution process.

The basic idea of TBCNN is to design a set of

subtree feature detectors sliding over the parse tree

of a sentence; either a constituency tree or a depen-

dency tree applies. In this paper, we prefer the de-

pendency tree-based convolution for its efficiency

and compact expressiveness.

Concretely, a sentence is first converted to a

dependency parse tree.3 Each node in the de-

pendency tree corresponds to a word in the sen-

tence; an edge a→b indicates a is governed by b.

Edges are labeled with grammatical relations (e.g.,

nsubj) between the parent node and its children

(de Marneffe et al., 2006). Words are represented

by pretrained vector representations, also known

as word embeddings (Mikolov et al., 2013a).

2Preprinted on arXiv on September 2014
(http://arxiv.org/abs/1409.5718v1)

3Parsed by the Stanford parser
(http://nlp.stanford.edu/software/lex-parser.shtml)

Now, we consider a set of two-layer subtree fea-

ture detectors sliding over the dependency tree. At

a position where the parent node is p with child

nodes c1, · · · , cn, the output of the feature detec-

tor, y, is

y = f

(

Wpp +
n
∑

i=1

Wr[ci]ci + b

)

Let us assume word embeddings (p and ci) are

of ne dimensions; that the convolutional layer y is

nc-dimensional. W ∈ R
nc×ne is the weight ma-

trix; b ∈ R
nc is the bias vector. r[ci] denotes the

dependency relation between p and ci. f is the

non-linear activation function, and we apply ReLU

in our experiments.

After tree-based convolution, we obtain a set of

feature maps, which are one-one corresponding to

original words in the sentence. Therefore, they

may vary in size and length. A dynamic pooling

layer is applied to aggregate information along dif-

ferent parts of the tree, serving as a way of seman-

tic compositionality (Hu et al., 2014). We use the

max pooling operation, which takes the maximum

value in each dimension.

Then we add a fully-connected hidden layer to

further mix the information in a sentence. The ob-

tained vector representation of a sentence is de-

noted as h (also called a sentence embedding).

Notice that the same tree-based convolution ap-

plies to both the premise and hypothesis.

Tree-based convolution along with pooling en-

ables structural features to reach the output layer

with short propagation paths, as opposed to the

recursive network (Socher et al., 2011b), which

is also structure-sensitive but may suffer from the

problem of long propagation path. By contrast,

TBCNN is effective and efficient in learning such

structural information (Mou et al., 2015).

3.2 Matching Heuristics

In this part, we introduce how vector represen-

tations of individual sentences are combined to

capture the relation between the premise and hy-

pothesis. As the dataset is large, we prefer O(1)
matching operations because of efficiency con-

cerns. Concretely, we have three matching heuris-

tics:

• Concatenation of the two sentence vectors,

• Element-wise product, and

• Element-wise difference.

The first heuristic follows the most standard pro-

cedure of the “Siamese” architectures, while the

latter two are certain measures of “similarity” or
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“closeness.” These matching layers are further

concatenated (Figure 1b), given by

m = [h1;h2; h1 − h2; h1 ◦ h2]

where h1 ∈ R
nc and h2 ∈ R

nc are the sentence

vectors of the premise and hypothesis, respec-

tively; “◦” denotes element-wise product; semi-

colons refer to column vector concatenation. m ∈
R

4nc is the output of the matching layer.

We would like to point out that, with subse-

quent linear transformation, element-wise differ-

ence is a special case of concatenation. If we

assume the subsequent transformation takes the

form of W [h1 h2]
⊤, where W = [W1 W2] is

the weights for concatenated sentence representa-

tions, then element-wise difference can be viewed

as such that W0(h1 −h2) = [W0 −W0][h1 h2]
⊤.

(W0 is the weights corresponding to element-wise

difference.) Thus, our third heuristic can be ab-

sorbed into the first one in terms of model ca-

pacity. However, as will be shown in the exper-

iment, explicitly specifying this heuristic signifi-

cantly improves the performance, indicating that

optimization differs, despite the same model ca-

pacity. Moreover, word embedding studies show

that linear offset of vectors can capture relation-

ships between two words (Mikolov et al., 2013b),

but it has not been exploited in sentence-pair rela-

tion recognition. Although element-wise distance

is used to detect paraphrase in He et al. (2015),

it mainly reflects “similarity” information. Our

study verifies that vector offset is useful in cap-

turing generic sentence relationships, akin to the

word analogy task.

4 Evaluation

4.1 Dataset

To evaluate our TBCNN-pair model, we used the

newly published Stanford Natural Language In-

ference (SNLI) dataset (Bowman et al., 2015).4

The dataset is constructed by crowdsourced ef-

forts, each sentence written by humans. More-

over, the SNLI dataset is magnitudes of larger

than previous resources, and hence is particularly

suitable for comparing neural models. The tar-

get labels comprise three classes: Entailment,

Contradiction, and Neutral (two irrel-

evant sentences). We applied the standard

train/validation/test split, contraining 550k, 10k,

and 10k samples, respectively. Figure 2 presents

4http://nlp.stanford.edu/projects/snli/

Statistics Mean Std

# nodes 8.59 4.14

Max depth 3.93 1.13

Avg leaf depth 3.13 0.65

Avg node depth 2.60 0.54

Table 2: Statistics of the Stanford Natural Lan-

guage Inference dataset where each sentence is

parsed into a dependency parse tree.

0 0.1 0.2 0.3
Dropout rate

76

78

80

82

84

Va
lid

at
io

n 
ac

c.
 (%

)

Figure 2: Validation accuracy versus dropout rate

(full TBCNN-pair model).

additional dataset statistics, especially those rele-

vant to dependency parse trees.5

4.2 Hyperparameter Settings

All our neural layers, including embeddings, were

set to 300 dimensions. The model is mostly robust

when the dimension is large, e.g., several hundred

(Collobert and Weston, 2008). Word embeddings

were pretrained ourselves by word2vec on the

English Wikipedia corpus and fined tuned during

training as a part of model parameters. We applied

ℓ2 penalty of 3×10−4; dropout was chosen by val-

idation with a granularity of 0.1 (Figure 2). We see

that a large dropout rate (≥ 0.3) hurts the perfor-

mance (and also makes training slow) for such a

large dataset as opposed to small datasets in other

tasks (Peng et al., 2015). Initial learning rate was

set to 1, and a power decay was applied. We used

stochastic gradient descent with a batch size of 50.

4.3 Performance

Table 3 compares our model with previous re-

sults. As seen, the TBCNN sentence pair

model, followed by simple concatenation alone,

outperforms existing sentence encoding-based

approaches (without pretraining), including a

feature-rich method using 6 groups of human-

engineered features, long short term memory

5We applied collapsed dependency trees, where preposi-
tions and conjunctions are annotated on the dependency rela-
tions, but these auxiliary words themselves are removed.
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Model
Test acc. Matching

(%) complexity

Unlexicalized featuresb 50.4

O(1)

Lexicalized featuresb 78.2

Vector sum + MLPb 75.3

Vanilla RNN + MLPb 72.2

LSTM RNN + MLPb 77.6

CNN + cat 77.0

GRU w/ skip-thought pretrainingv 81.4

TBCNN-pair + cat 79.3

TBCNN-pair + cat,◦,- 82.1

Single-chain LSTM RNNsr 81.4
O(n)

+ static attentionr 82.4

LSTM + word-by-word attentionr 83.5 O(n2)

Table 3: Accuracy of the TBCNN-pair model in

comparison with previous results (bBowman et al.,

2015; vVendrov et al., 2015; rRocktäschel et al.,

2015). “cat” refers to concatenation; “-” and “◦”

denote element-wise difference and product, resp.

Model Variant Valid Acc. Test Acc.

TBCNN+◦ 73.8 72.5

TBCNN+- 79.9 79.3

TBCNN+cat 80.8 79.3

TBCNN+cat,◦ 81.6 80.7

TBCNN+cat,- 81.7 81.6

TBCNN+cat,◦,- 82.4 82.1

Table 4: Validation and test accuracies of

TBCNN-pair variants (in percentage).

(LSTM)-based RNNs, and traditional CNNs. This

verifies the rationale for using tree-based convolu-

tion as the sentence-level neural model for NLI.

Table 4 compares different heuristics of match-

ing. We first analyze each heuristic separately:

using element-wise product alone is significantly

worse than concatenation or element-wise differ-

ence; the latter two are comparable to each other.

Combining different matching heuristics im-

proves the result: the TBCNN-pair model with

concatenation, element-wise product and differ-

ence yields the highest performance of 82.1%. As

analyzed in Section 3.2, the element-wise differ-

ence matching layer does not add to model com-

plexity and can be absorbed as a special case into

simple concatenation. However, explicitly using

such heuristic yields an accuracy boost of 1–2%.

Further applying element-wise product improves

the accuracy by another 0.5%.

The full TBCNN-pair model outperforms all

existing sentence encoding-based approaches, in-

cluding a 1024d gated recurrent unit (GRU)-based

RNN with “skip-thought” pretraining (Vendrov et

al., 2015). The results obtained by our model

are also comparable to several attention-based

LSTMs, which are more computationally inten-

sive than ours in terms of complexity order.

4.4 Complexity Concerns

For most sentence models including TBCNN, the

overall complexity is at least O(n). However, an

efficient matching approach is still important, es-

pecially to retrieval-and-reranking systems (Yan

et al., 2016; Li et al., 2016). For example, in

a retrieval-based question-answering or conversa-

tion system, we can largely reduce response time

by performing sentence matching based on pre-

computed candidates’ embeddings. By contrast,

context-aware matching approaches as described

in Section 2 involve processing each candidate

given a new user-issued query, which is time-

consuming in terms of most industrial products.

In our experiments, the matching part (Fig-

ure 1b) counts 1.71% of the total time during pre-

diction (single-CPU, C++ implementation), show-

ing the potential applications of our approach

in efficient retrieval of semantically related sen-

tences.

5 Conclusion

In this paper, we proposed the TBCNN-pair model

for natural language inference. Our model re-

lies on the tree-based convolutional neural net-

work (TBCNN) to capture sentence-level seman-

tics; then two sentences’ information is com-

bined by several heuristics including concatena-

tion, element-wise product and difference. Ex-

perimental results on a large dataset show a high

performance of our TBCNN-pair model while re-

maining a low complexity order.
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