
Research and Applications

Natural language processing and recurrent network

models for identifying genomic mutation-associated

cancer treatment change from patient progress notes

Meijian Guan,1,2 Samuel Cho,1,3 Robin Petro,2 Wei Zhang,2,4 Boris Pasche2,4 and

Umit Topaloglu2,4

1Department of Computer Science, Wake Forest University, Winston-Salem, North Carolina, USA, 2Wake Forest Baptist

Comprehensive Cancer Center, Winston Salem, North Carolina, USA, 3Department of Physics, Wake Forest University,

Winston-Salem, North Carolina, USA and 4Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem,

North Carolina, USA

Corresponding Author: Umit Topaloglu, PhD, Department of Cancer Biology, Wake Forest School of Medicine, Medical

Center Boulevard, Winston Salem, NC 27157, USA (utopalog@wakehealth.edu)

Received 19 August 2018; Revised 26 November 2018; Editorial Decision 5 December 2018; Accepted 21 December 2018

ABSTRACT

Objectives: Natural language processing (NLP) and machine learning approaches were used to build classifiers

to identify genomic-related treatment changes in the free-text visit progress notes of cancer patients.

Methods: We obtained 5889 deidentified progress reports (2439 words on average) for 755 cancer patients who

have undergone a clinical next generation sequencing (NGS) testing in Wake Forest Baptist Comprehensive

Cancer Center for our data analyses. An NLP system was implemented to process the free-text data and extract

NGS-related information. Three types of recurrent neural network (RNN) namely, gated recurrent unit, long

short-term memory (LSTM), and bidirectional LSTM (LSTM_Bi) were applied to classify documents to the

treatment-change and no-treatment-change groups. Further, we compared the performances of RNNs to 5

machine learning algorithms including Naive Bayes, K-nearest Neighbor, Support Vector Machine for classifica-

tion, Random forest, and Logistic Regression.

Results: Our results suggested that, overall, RNNs outperformed traditional machine learning algorithms, and LSTM_Bi

showed the best performance among the RNNs in terms of accuracy, precision, recall, and F1 score. In addition, pre-

trained word embedding can improve the accuracy of LSTM by 3.4% and reduce the training time by more than 60%.

Discussion and Conclusion: NLP and RNN-based text mining solutions have demonstrated advantages in

information retrieval and document classification tasks for unstructured clinical progress notes.
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INTRODUCTION

The advent of next generation sequencing (NGS) technologies and

their continually declining costs have resulted in the accumulation

of very large sets of genetic data and facilitated identification of ac-

tionable genetic alterations in different tumor types. Despite the dra-

matic growth of the availability and affordability of such testing, it

has also brought challenges, including the need of evaluating the ef-

fectiveness and actionability of genetic testing that could be invalu-

able for assisting tumor diagnosis and prognosis to direct patient

treatment.1

Additionally, with the widespread use of electronic health record

(EHR) systems in clinical care, secondary use of clinically relevant

information of cancer patients are available to biomedical research
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including comparative effectiveness, patient reported outcomes, clin-

ical actionability of genomic profiling, and precision medicine.2

However, in contrast to structured available data, a sizable percent-

age of the patient data are unstructured (or semistructured), which

makes them not easily parsable by the machines and software.3,4

Therefore, harnessing the potential of clinical narratives in the EHR

requires strategies for efficient and automated information extrac-

tion and understanding.

Natural language processing (NLP) and machine learning techni-

ques could map unstructured text into structured (semistructured)

form as well as could enable automatic identification and extraction

of relevant information. Additionally, such automated system would

significantly reduce delays in EHR processing and allow more accu-

rately extraction of embedded information.3 Many clinical NLP sys-

tems have been in development and widely adopted in biomedical

settings, for example, the Mayo Clinical Text Analysis and Knowl-

edge Extraction System (cTAKES),5 MetaMap,6 and Noble Tools.7

However, these approaches mainly focus on utilizing medical vocab-

ularies such as unified medical language system (UMLS)8 to perform

concepts recognition and information extraction.7

There are many conventional machine learning algorithms have

been used in clinical text mining, however, these models require hu-

man experts to encode domain knowledge through feature engineer-

ing, and have so far had mixed results modeling sequential events or

time dependencies.9 More recently, multilayer neural networks, or

deep learning, have been applied to gain actionable insights from

heterogeneous clinical data.9,10 The major differences between deep

learning and conventional neural network (NN) are the number of

hidden layers, as well as their capability to learn meaningful abstrac-

tions of the input.11 Deep learning has been applied to process ag-

gregated EHR documents, including both structured (eg diagnosis,

laboratory tests) and unstructured data (eg medical notes, images).9

Several studies used deep learning to predict diseases from the pa-

tient clinical notes, for example, Cheng et al12 used a 4-layer convo-

lutional neural network (CNN) to predict congestive heart failure

and chronic obstructive pulmonary disease and showed promising

performance.

Word embedding, learned in an unsupervised manner, has seen a

successful word representation method in numerous NLP tasks in re-

cent years. Unlike traditional word representation methods, such as

bag-of-words and one-hot encoding, word embedding can capture

the semantic meanings of the words within numeric vectors.13

Words that are semantically similar are closer to each other in dis-

tance, while words that are semantically different are farther apart

in distance. Word embedding has been utilized extensively in bio-

medical named entity recognition (NER) tasks14,15 such as medical

synonym extraction,16 relation extraction including chemical-

disease relations,17 drug-drug interactions,18,19 protein-protein

interactions,20 biomedical IR,21,22 and medical abbreviation disam-

biguation.23

In this project, we explored how word embedding and deep

learning techniques can help to efficiently extract information from

free-text EHR documents (eg progress notes) and evaluate the effec-

tiveness and actionability of genetic testing in assisting cancer pa-

tient treatment adjustment. A total of 5889 deidentified progress

reports for 755 cancer patients who have undergone a clinical NGS

testing in Wake Forest Baptist Comprehensive Cancer Center have

been included in our data analyses. The primary goal of this project

is to (1) identify the section of the progress report that discusses ge-

nomic testing results and treatment information, (2) predict if there

is a treatment change (or not) based on the extracted information us-

ing deep learning and word embedding, and (3) compare the perfor-

mance of 4 recurrent neural network (RNN)-based approaches and

5 conventional machine learning algorithms for text classification

task using clinical progress reports.

METHODS

Progress reports and preprocessing
The progress reports for cancer patients were obtained from the

Translational Data Warehouse at the Wake Forest Baptist Health

upon the institutional review board approval for the study. The

study corpus contains 5889 progress reports (2439 words on aver-

age) that were charted for the 755 NGS patients after their NGS

tests. We excluded 28 patients who have NGS testing completed

twice. A text preprocessing pipeline was implemented to perform

cleaning and reformatting. All the English letters were converted to

lowercase. We removed English stop words, special characters and

punctuations, empty spaces, and strings with length <2. Numbers

were also excluded since they usually do not carry relevant informa-

tion in this type of analysis. Abbreviations were replaced with the

full terms, for example, “‘ve” was replaced with “have,” “‘re” was

replaced with “are,” and “‘ll” was replaced with “will.” We also

performed word stemming for non-NN machine learning models.

We identified the section for each report that discusses genomic

testing results based on keyword searches. A list of keywords includ-

ing genes, mutations, and treatment names were populated from the

information provided by the NGS vendors, namely Foundation

Medicine (https://www.foundationmedicine.com/), Caris (https://

www.carislifesciences.com/), Guardant (http://www.guardan-

thealth.com/), as well as our local database. A 400-word text win-

dow was extracted for each report surrounding the location of the

first keyword. By extracting the target section, we reduced the size

of the reports from an average of �5000 words to 289, which

greatly eliminated the redundant content, as well as improved the ef-

ficiency of our training.

Establish true labels
A subset (44) of 755 cancer patients (452 reports) were manually

classified as genomic-related treatment change and nontreatment-

change groups by our precision medicine nurse. These annotations

served as “true” labels to evaluate the performance of our classifica-

tion task. Additionally, a “rule-based” annotation method was

also implemented to label the group of the reports based on her ex-

perience, vendors’ name, cancer gene, mutation, as well as

therapeutic-related keywords (Supplementary Material). We further

evaluated the performance of the generated labels using a clustering

algorithm to compare the natural separation and the labeled groups.

The 452 manually annotated labels, as well as the generated labels

using the “rule-based” method were used as “ground truth” to eval-

uate the machine learning algorithms.

Word representations
Two types of word representation techniques were used to convert

word tokens in each report into numerical vectors, term frequency-

inverse document frequency (TF-IDF) and word embedding

(Word2vec), for conventional machine learning models and RNNs,

respectively. TF-IDF weight is a statistical measure used to evaluate

how important a word is to a document in a collection or corpus.24

Word2vec takes a large corpus of text as its input and produces a

high-dimension vector space through which each unique word in the
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corpus being assigned a corresponding vector in the space. Word2-

vec can utilize a continuous bag-of-words (CBOW) architecture to

predict the current word from a window of surrounding context

words, therefore, the order of context words is not important.24

In this study, we applied 2 methods to generate word embeddings:

(1) using Word2Vec with CBOW architecture to pretrain word

embeddings on our entire corpus,25 (2) including an embedding

layer in the network and train the word embeddings on the fly. We

then compared the performance of the NNs with and without

pretrained word embeddings.

Recurrent neural networks
RNNs are neural networks that add additional weights to the

network to create cycles in the network, in an effort to model time

dependencies and sequential events.15 Variations of RNN, long

short-term memory (LSTM) networks and gated recurrent unit

(GRU), have been invented to better handle gradient vanishing prob-

lems.26 LSTM was used to create DeepCare,18 which is an end-to-

end deep dynamic network that infers current illness states and pre-

dicts future medical outcomes using EHR. Another variation of

RNN, GRU,19 was used to develop Doctor AI, which is another

model to use patient history to predict diagnoses and medications

for subsequent encounters.20 A modified version of LSTM, bidirec-

tional LSTM (LSTM_Bi), which allows analyzing sequential data

from both directions, has been used to process medical text data and

achieved elevated performances over nondeep learning tools in NER

tasks.21,22 Since RNN architecture is designed to model the sequen-

tial events, such as word sequences, this architecture is specifically

suitable for capturing meaningful linguistic patterns across long

sequences of words within a document.27 We implemented 4 varia-

tions of RNN in this study: (1) LSTM with word embedding trained

on the fly (LSTM_onFly); (2) LSTM with pretrained word embed-

ding on the entire corpus (LSTM_Pre); (3) LSTM_Bi with pretrained

word embedding (LSTM_Bi); and (4) a simplified version of LSTM,

GRU with pretrained word embedding. We also evaluated the per-

formance of these 4 RNN models for information extraction and

text classification in this study.

Convolutional layer
CNN has been successfully applied in image processing and

NLP.28,29 We incorporated a 1D-convolution layer with 32 filters, a

kernel size of 3, and stride of 1 word, followed by a max-pooling

layer, in our RNNs. The convolutional layer, as well as the max-

pooling layer, can help to learn useful word representations and re-

duce the dimensions of the input corpus.

Non-neural network models
We compared the performance of the RNNs against the perfor-

mance of several conventional predictive models that can also be

used for text classification. These include Naive Bayes (NB),30 K-

nearest Neighbor (KNN),31 Support Vector Machine for classifica-

tion (SVC),32 Random forest (RF),33 and logistic regression (LR).34

We generated TF-IDF vectors on the processed text using unigrams

with a minimum document frequency of 5, and a maximum docu-

ment frequency of 80%. Singular-value decomposition (SVD) was

applied to reduce the dimension of the input matrix.

Hyperparameter optimization
We used a grid search technique to perform hyperparameter optimi-

zation for non-NN algorithms. Specifically, smoothing parameter al-

pha of NB, number of neighbors of KNN, penalty parameter C,

kernel types (linear or radial basis function), and kernel coefficient

gamma of SVC, the maximum depth of a tree, the minimum number

of samples required to split an internal node, the minimum number

of samples required to be at a leaf node of RF, and the L2 penalty

parameter C of LR, were optimized using the grid search method. A

3-fold cross-validation was used during hyperparameter optimiza-

tion to evaluate the performance of each version of the algorithms.

Model setup and evaluation metrics
To be consistent, we split the data into 0.66/0.33 train/test datasets,

without any overlapping patients between train and test, for each

model. In addition, we performed stratified 5-fold cross-validation

during the training to evaluate the model performance. Binary cross

entropy was used as the loss function for all the classifiers. For RNN

algorithms, we implemented early stopping mechanism—the model

stops training when the loss function does not improve for 5 epochs

on the validation dataset. After training, the performance of each

model was tested on the test set. We used 5 evaluation metrics to

compare the performance of the models, including accuracy, preci-

sion, recall, and F1 score.

Open source platforms
We used high-level NN API Keras (https://keras.io/) running on top

of Tensorflow (https://github.com/tensorflow/tensorflow) to set up

our neural network structures. Non-NN models, as well as cluster-

ing and parameter search algorithms were derived from Scikit-Learn

(http://scikit-learn.org/). Word embedding was performed using

Gensim (https://radimrehurek.com/gensim/).

EXPERIMENTAL RESULTS

Study samples
The flow chart of study design has been shown in Figure 1. Briefly,

in this study, we processed 5889 free-text clinical reports from 755

patients. Target text windows from the reports were extracted for

the subsequent classification task. We implemented a total of 9 clas-

sifiers, both RNN-based and traditional machine learning algo-

rithms, to classify the treatment-change for each document. A word

embedding matrix was pretrained based on the whole text corpus

for some of the RNN-based models. A subset (44) of the cancer

patients (452 reports) were annotated by clinical experts. These

manually generated labels, along with the labels that generated by a

rule-based keywords searching method, were used as “true” labels

to evaluate the model performance. A total of 3736 documents be-

ing labeled as treatment-change and 2153 documents being labeled

as no-treatment-change.

To explore additional insight about the progress reports and the

separability of 2 labeled groups, we performed a SVD on the TF-IDF

representation of the reports. The top 2 eigenvectors of SVD were

used to plot the similarity between the 2 target groups (Figure 2).

From the plot, we note that natural clustering occurs between prog-

ress reports corresponding to labeled groups. This technique can

also help to better understand document misclassifications in our

classification task.

Hyperparameter optimization
Key hyperparameters for each machine learning algorithm were op-

timized using a grid search method. For traditional models, smooth-

ing parameter alpha of NB was optimized to be 0; the best number
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of neighbors for KNN was 7; linear kernel and a penalty parameter

of 30 were selected for SVC; the maximum depth of a tree, the mini-

mum number of samples required to split an internal node, and the

minimum number of samples required to be at a leaf node were opti-

mized as 6, 5, and 5, respectively, for RF; and an L2 penalty parame-

ter of 10 was picked for LR (Table 1).

Figure 1. Workflow of text processing and document classification using machine learning models.

Table 1. Best hyperparameters for the classifiers

Classifier Hyperparameters

Deep learning classifiers

LSTM_onFly Optimizer¼Adam, batch size¼64, dropout rate¼0,

word embedding¼trained on the fly, recurrent

layer¼single directional LSTM

LSTM_Pre Optimizer¼Adam, batch size¼64, dropout rate¼0,

word embedding¼pretrained on the whole corpus,

recurrent layer¼single directional LSTM

LSTM_Bi Optimizer¼Adam, batch size¼64, dropout rate¼0,

word embedding¼pretrained on the whole corpus,

recurrent layer¼bidirectional LSTM

GRU Optimizer¼Adam, batch size¼64, dropout rate¼0,

word embedding¼pretrained on the whole corpus,

recurrent layer¼single directional LSTM

Conventional classifiers

KNN Number of neighbors¼7

LR L2 penalty parameter¼10

NB Smoothing parameter alpha¼0

RF Maximum depth of a tree¼6

Minimum number of samples required to split an

internal node¼5

Minimum number of samples required to be at a leaf

node¼5

SVC Kernel¼linearL

2 penalty parameter¼30

GRU: gated recurrent unit; KNN: K-nearest Neighbor; LR: logistic regres-

sion; LSTM: long short-term memory; NB: Naive Bayes; RF: random forest;

SVC: Support Vector Machine for classification.

Figure 2. Dimensional reduction of term frequency-inverse document fre-

quency (TF-IDF) representation of the documents via singular-value decom-

position (SVD). Data points are colored by treatment-change (1) and

nontreatment-change (0) groups.
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For RNN-based models (Figure 3), we selected Adam optimiza-

tion algorithm as the default optimizer.35 Except for 1 LSTM model

(LSTM_onFly), all the models used pretrained word embedding ma-

trix as the input. Based on the parameter turning, we chose batch

size of 64 and a dropout rate of 0.

Classification performance
Four performance evaluation metrics on the task were included in Ta-

ble 2 and Figure 4, including accuracy, precision, recall, and F1 score.

Overall, RNN-based classifiers outperformed the traditional ma-

chine learning algorithms. LSTM_Bi with pretrained word embed-

ding and a 1D-convolution layer followed by max-pooling

outperformed all other models in accuracy (0.886), precision

(0.878), and the F1 score (0.909). RF had the highest recall, with a

score of 0.972, followed by LSTM_Bi (0.943). Because of the sto-

chastic nature of machine learning algorithms, we repeated each

model for 100 times and calculated the average metrics and corre-

sponding standard deviations. Again, LSTM_Bi outperformed all

the others in accuracy (0.862 6 0.019), precision (0.885 6 0.02),

and F1 score (0.892 6 0.015), while recall was leading by RF

(0.926 6 0.017) (Figure 4B).

RNN-based models training
Accuracy and model loss-based training curves of RNN-based classi-

fiers have been shown in Figure 5. As we can see, LSTM without

pretrained word embedding (LSTM_onFly) revealed the fastest

model convergence (the shorter learning curve was due to early stop-

ping), followed by GRU. LSTMs with pretrained word embeddings

had similar convergence curve. However, LSTM_onFly model

quickly overfitted after the first epoch, it also has the largest discrep-

ancy between training data and validation data, while the LSTM_Bi

had the smallest discrepancy.

Error analysis
We analyzed the confusion matrices of 9 classifiers based on their

classification performance on 1982 testing documents, with 1202

documents labeled as treatment-change, and 780 documents labeled

as no-treatment-change. LSTM_Bi, which indicated the highest ac-

curacy (0.886), had 69 false negatives and 157 false positives

(Figure 6). The other 2 LSTM variations, LSTM_onFly and

LSTM_Pre, resulted in significantly higher number misclassifica-

tions, especially for in the false negative category, where the misclas-

sifications nearly doubled. The GRU model, on the other hand, had

similar number of false negative classifications (72) comparing to

LSTM_Bi, however, it mistakenly classified 202 no-treatment-

change documents as treatment-change group (false positive).

For the conventional classifiers, KNN achieved the highest accu-

racy (0.824) as it correctly identified 1026 treatment-change docu-

ments, and 607 no-treatment-change documents, which was

the highest among the conventional models. Notably, RF correctly

classified 1168 treatment-change documents, which was the

highest among all 9 models. However, it misclassified 380

no-treatment-change documents as treatment-change, which was

also the highest. It is consistent with what we have observed from

Table 2 and Figure 4, RF has the highest recall (0.972) but the low-

est precision (0.755).

Table 2. Performance of classifiers on the document classification repeated for 100 times

Classifier Accuracy (mean6SD) Precision (mean6SD) Recall (mean6SD) F1 score (mean6SD)

Deep learning classifiers

LSTM_onFly 0.82160.026 0.85060.029 0.87260.040 0.86060.023

LSTM_Pre 0.84960.015 0.87460.023 0.89060.022 0.88260.013

LSTM_Bi 0.86260.019 0.88560.020 0.90060.026 0.89260.015

GRU 0.85960.014 0.88260.021 0.89960.022 0.89060.012

Conventional classifiers

KNN 0.80660.016 0.83460.022 0.91360.024 0.82960.015

LR 0.82960.015 0.83660.022 0.90460.023 0.82660.014

NB 0.77260.016 0.87560.016 0.81160.023 0.80660.016

RF 0.80960.015 0.80460.023 0.92660.017 0.80960.015

SVC 0.82660.014 0.81460.024 0.83060.019 0.77260.016

GRU: gated recurrent unit; KNN: K-nearest Neighbor; LR: logistic regression; LSTM: long short-term memory; NB: Naive Bayes; RF: random forest; SD: stan-

dard deviation; SVC: Support Vector Machine for classification.

Figure 3. Architecture of RNN models. GRU: gated recurrent unit; LSTM: long

short-term memory; LSTM_Bi: bidirectional LSTM; RNN: recurrent neural net-

work.
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Figure 4. Performance comparisons of 9 Machine Learning algorithms based on (A) a single run, and (B) models repeated for 100 times. Mean metrics (dots) and

their standard deviations (bars) were included.
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Figure 5. Training curves of the first 15 epochs for RNN-based models, where the upper panel is the model accuracy for training and validation datasets, and

lower panel is the model loss for training and validation dataset. RNN: recurrent neural network.
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Figure 6. Confusion matrix of (A) RNN-based models, and (B) conventional machine learning models. GRU: gated recurrent unit; LSTM: long short-term memory;

NB: Naive Bayes; RF: random forest; RNN: recurrent neural network; SVC: Support Vector Machine for classification.
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DISCUSSION

We have successfully applied NLP and machine learning methods to

extract information from clinical progress reports and classify them

into treatment-change and no-treatment-change groups. RNN-

based algorithms with pretrained word embedding, especially

LSTM_Bi, demonstrated significantly better performance on the

classification task than conventional machine learning algorithms

with TF-IDF features. It is most like because of the RNN structure

that can capture linguistic patterns across long sequences of words

and the pretrained word embeddings on the entire text corpus. In

addition, we noticed that KNN and NB outperformed SVC in this

study, possibly because the decision planes of SVC were not able to

sufficiently separate classes due to the data structure.

We first compared the performance of LSTM with and without

pretrained word embedding. Based on the results in Table 2 and Fig-

ure 4, LSTM_Pre outperformed LSTM_onFly in 3 of 4 evaluation

metrics, except recall, where these 2 models had comparable results.

This may be because of LSTM_onFly only trains word embedding

based on a smaller extracted text window, which is not able to

model linguistic patterns accurately. We then compared 3 RNN

models with pretrained word embeddings, LSTM_Pre, LSTM_Bi,

and GRU. LSTM_Bi outperformed the other 2 models in all 4 met-

rics. LSTM_Bi allows analyzing sequential data from both direc-

tions, and has been used to process medical text data and achieved

elevated performances over nondeep learning tools in terms of

NER.15,36 Interestingly, the simplified variation of LSTM, GRU,37

showed better results than LSTM_Pre in 3 of 4 evaluations, except

precision. This observation is consistent with previous explorations,

where GRU has yield similar performance compared with LSTM,

however GRU could have better performance on smaller

dataset.38,39

TF-IDF based non-NN classifiers overall had poorer perfor-

mance in this study. One reason is that vector space word represen-

tations, such as TF-IDF and bag-of-words, cannot take the context

of each word into account, instead, they rely on the ordering of

words within a small text window. Cancer progress reports typically

including complex information and structures, which are usually

challenging to be sufficiently captured by vector space word repre-

sentations. Our results suggest that pretrained word embeddings on

a large related corpus can extract information more efficiently and

improve the subsequent classifications tasks.

Furthermore, RNN architecture is designed to model the sequen-

tial events, such as word sequences. In our study, this architecture is

able to capture meaningful linguistic patterns across long sequences

of words within a document. It provides a method to extract higher-

level information and make decisions based on the context of each

word. Therefore, the combination of RNN and pretrained word

embeddings further boosted the model performance.

Due to the stochastic nature of machine learning algorithms,

evaluating their performances based on a single model is not always

accurate. Randomness can be introduced at any stage of the study,

such as data processing, data splitting, word representation meth-

ods, weight initialization, and random seeds. To reduce the random-

ness and evaluate the models more accurately, we repeated each

model for 100 times. The ranges, means, and standard deviations of

the evaluation metrics for each model were calculated. Our results

in Table 2 and Figure 4B indicated that the performances of machine

learning models are consistent and reproducible.

One goal of this study is to implement an automated system to

reduce the time required for progress report annotation. However,

NLP and machine learning models, especially for deep learning

models, suffer from long processing and training time. We thus

implemented several methods to improve our model efficiency. The

first method was to extract a target text window from each docu-

ment instead of using the whole progress report, which is usually

very complex and redundant. Moreover, pretrained word embed-

dings significantly reduced the training time for RNN-based models,

since they avoided training word embeddings on the fly. In addition,

2-dimensional reduction methods, 1D-convolution layer with max

pooling and SVD, were used to further reduce the training time for

RNN-based and non-NN classifiers, respectively. These methods en-

sure our model can make decisions more efficiently and reduce the

burden of manually annotating the reports by medical experts.

One important limitation of our study is that most of the prog-

ress reports lack true labels. Reading progress reports and correctly

labeling them is time-consuming and challenging even for human

experts. However, we generated labels for a subset of the reports to

validate and improve our rule-based labeling method. Another limi-

tation is the small sample size of our dataset only 755 qualified can-

cer patients are available for this study. Although we included

reports at multiple visits for each patient, 5889 documents are not

likely to reach the full effectiveness of RNN models. In addition, us-

ing a dataset with a small number of samples but multiple docu-

ments for each sample would increase the risk of model overfitting.

To reduce overfitting, we split training and test dataset based on

unique samples, which prevented the classifier from seeing the

reports from 1 patient in both training and testing phases.

To our knowledge, this is the first study extracting genomics-

related information in clinical progress reports using NLP and deep

learning. Our goal is to implement an automated annotation system

for clinical progress reports that can improve the annotation accu-

racy, as well as reduce the time required. Moving forward, we will

extend this NLP and RNN analysis pipeline to perform more tasks,

for example, classify cancer stages, predict survival rate, deep phe-

notyping, and annotate unknown genomic mutations. Another im-

portant future direction is to generalize this pipeline to read data

from multiple research facilities and multiple resources, such as pa-

thology reports, radiology reports, medical images, as well as NGS

results. In addition, during genomic testing, thousands of genetic

alterations are generated with unknown pathogenic impacts on spe-

cific cancer types. Distinguishing the alterations that contribute to

cancer risk from the neutral alterations is very challenging and time-

consuming since it is mainly done manually. Thus, an automated ge-

netic alteration interpretation system based on our NLP and RNN

methods could be developed to incorporate relevant information

from text-based sources such as pathology reports and progress

notes.

CONCLUSIONS

An automated NLP and deep learning solution has demonstrated

advantages and potentials in information retrieval and document

classification tasks for unstructured clinical progress notes. It will

help to evaluate the impact of genomic testing in the clinical

practices.

SUPPLEMENTARY MATERIAL

Supplementary material is available at Journal of the American

Medical Informatics Association online.
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