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Abstract

This article reviews recent advances in applying natural language processing (NLP) to Electronic 

Health Records (EHRs) for computational phenotyping. NLP-based computational phenotyping 

has numerous applications including diagnosis categorization, novel phenotype discovery, clinical 

trial screening, pharmacogenomics, drug-drug interaction (DDI) and adverse drug event (ADE) 

detection, as well as genome-wide and phenome-wide association studies. Significant progress has 

been made in algorithm development and resource construction for computational phenotyping. 

Among the surveyed methods, welldesigned keyword search and rule-based systems often achieve 

good performance. However, the construction of keyword and rule lists requires significant manual 

effort, which is difficult to scale. Supervised machine learning models have been favored because 

they are capable of acquiring both classification patterns and structures from data. Recently, deep 

learning and unsupervised learning have received growing attention, with the former favored for 

its performance and the latter for its ability to find novel phenotypes. Integrating heterogeneous 

data sources have become increasingly important and have shown promise in improving model 

performance. Often better performance is achieved by combining multiple modalities of 

information. Despite these many advances, challenges and opportunities remain for NLP-based 

computational phenotyping, including better model interpretability and generalizability, and 

proper characterization of feature relations in clinical narratives.
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1 Introduction

A phenotype is an expression of the characteristics that result from genotype variations and 

an organism’s interactions with its environment. A phenotype may consist of physical 

appearances (e.g., height, weight, BMI), biochemical processes, or behaviors [1]. In the 

medical domain, phenotypes are often summarized by experts on the basis of clinical 

observations. Nationwide adoption of Electronic Health Records (EHRs) has given rise to a 

large amount of digital health data, which can be used for secondary analysis [2]. Typical 

EHRs include structured data such as diagnosis codes, vitals and physiologic measurements, 

as well as unstructured clinical narratives such as progress notes and discharge summaries. 

Computational phenotyping aims to automatically mine or predict clinically significant, or 

scientifically meaningful, phenotypes from structured EHR data, unstructured clinical 

narratives, or their combination.

As summarized in a 2013 review by Shivade et al. [3], early computational phenotyping 

studies were often formulated as supervised learning problems wherein a predefined 

phenotype is provided, and the task is to construct a patient cohort matching the definition’s 

criteria. Many of these studies relied heavily on structured and coded patient data; for 

example, using encodings such as International Classification of Disease, 9th Revision 

(ICD-9) [4], its successor the 10th Revision (ICD-10) [5], Systematized Nomenclature of 

Medicine-Clinical Terms (SNOMED CT) [6], RxNorm [7], and Logical Observation 

Identifiers Names and Codes (LOINC) [8]. On the other hand, the use of natural language 

processing (NLP) for EHR-based computational phenotyping has been limited to term and 

keyword extraction [3].

Structured data typically capture patients’ demographic information, lab values, 

medications, diagnoses, and encounters [9]. Although readily available and easily accessible, 

studies have concluded that structured data alone are not sufficient to accurately infer 

phenotypes [10, 11]. For example, ICD-9 codes are mainly recorded for administrative 

purposes and are influenced by billing requirements and avoidance of liability [12, 13]. 

Consequently, these codes do not always accurately reflect a patient’s underlying 

physiology. Furthermore, not all patient information is well documented in structured data, 

such as clinicians’ observations and insights [14]. As a result, using structured data alone for 

phenotype identification often results in low performance [11]. The limitations associated 

with structured data for computational phenotyping have encouraged the use of clinical 

narratives, which typically include clinicians’ notes, observations, referring letters, 

specialists’ reports, discharge summaries, and a record of communications between doctors 

and patients [15]. Unstructured clinical narratives may summarize patients’ medical history, 

diagnoses, medications, immunizations, allergies, radiology images, and laboratory test 

results, in the forms of progress notes, discharge reports etc. [16].
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Structured and unstructured EHR data are often stored in vendor applications or at a 

healthcare enterprise data warehouse. Typical EHR data are usually managed by a local 

institution’s technicians and are accessible to trained personnel or researchers. Institutional 

Review Boards at local institutions typically grant access to certain patient cohorts and 

certain parts of EHRs. Database queries can then be written and executed to retrieve desired 

structured and unstructured EHR data. In addition to hospital-collected data stored in EHRs, 

research data are increasingly available, including public databases such as PubMed [17], 

Textpresso [18], Human Protein Interaction Database (HPID) [19], and MeInfoText [20]. 

With growing amount of available data, efficient identification of relevant documents is 

essential to the research community. Information retrieval systems have been developed to 

identify text corresponding to certain topics or areas from EHR data across multiple fields. 

CoPub Mapper [21] ranks co-occurrence associations between genes and biological terms 

from Pub-Med. iHOP [22] links interacting proteins to their corresponding databases and 

uses co-occurrence information to build a graphical interaction network. We refer the reader 

to the following reviews for more details: [23] is a survey for biomedical text mining in 

cancer research, [24] is a survey for biomedical text mining, and [25] is a survey for web 

mining.

While the prevalence of EHR data presents an opportunity for improved computational 

phenotyping, extracting information from clinical narratives for accurate phenotyping 

requires both semantic and syntactic structures in the narrative to be captured [26]. Scaling 

such tasks to large cohort studies is laborious, time-consuming, and typically requires 

extensive data collection and annotation.

Recently, NLP methods for EHR-based computational phenotyping have seen extensive 

development, extending beyond basic term and keyword extraction. One focus of recent 

studies is formulating computational phenotyping as an unsupervised learning problem to 

automatically discover unknown phenotypes. The construction of richer features such as 

relations between medical concepts enables greater expressive power when encoding patient 

status, compared to terms and keywords. More advanced machine learning methods, such as 

deep learning, have also been increasingly adopted to learn the underlying patient 

representation.

This article reviews the literature on NLP methods for EHR-based computational 

phenotyping, emphasizing recent developments. We first describe several applications of 

computational phenotyping. We then summarize the state-of-the-art NLP methods for 

computational phenotyping and compare their advantages and disadvantages. We also 

describe the combinations of data modalities, feature learning, and relation extraction that 

have been used to aid computational phenotyping. Finally, we discuss challenges and 

opportunities to NLP methods for computational phenotyping and highlight a few promising 

future directions.

2. Applications of EHR-based Computational Phenotyping

Computational phenotyping has facilitated biomedical and clinical research across many 

applications, including patient diagnosis categorization, novel phenotype discovery, clinical 
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trial screening, pharmacogenomics, drug-drug interaction (DDI) and adverse drug event 

(ADE) detection, and downstream genomics studies.

2.1 Diagnosis Categorization

One of the most important applications of computational phenotyping is diagnosis 

categorization, which enables the automated and efficient identification of patient cohorts for 

secondary analysis [15, 27–31]. A wide range of diseases has been investigated in the past, 

including suspected tuberculosis (TB) [32, 33], colorectal cancer [34], rheumatoid arthritis 

[35], diabetes [36], heart failure [37, 38], neuropsychiatric disorders [39], etc. These 

applications have extended from disease identification to disease subtyping such as lung 

cancer stage evaluation [40], or subsequent event detection such as breast cancer recurrence 

detection [41] and cancer metastases detection [42].

2.2 Novel Phenotype Discovery

Computational phenotyping has been applied to discover novel phenotypes and sub-

phenotypes. Traditionally, a clinical phenotype is classified into a particular category if it 

meets a set of criteria developed by domain experts [43]. Instead, semi-supervised or 

unsupervised methods can detect traits based on intrinsic data patterns with moderate or 

minimal expert guidance, which may promote the discovery of novel phenotypes or sub-

phenotypes. For example, in a study by Marlin et al. [44], a diagonal covariance Gaussian 

mixture model was applied on physiological time series data for patient clustering. They 

discovered distinct, recognizable physiological patterns and they concluded that 

interpretations of these patterns could offer prognostic significance. Doshi-Velez et al. [45] 

applied hierarchical clustering to define subgroups with distinct courses among autism 

spectrum disorders. They applied ICD-9 codes to construct time series features. In the study, 

they identified four subgroups among 4934 patients; one subgroup was characterized by 

seizures; one subgroup was characterized by multisystem disorders including 

gastrointestinal disorders, auditory disorders, and infections; one subgroup was 

characterized by psychiatric disorders; one subgroup could not be further resolved. In a 

study by Ho et al. [46], they applied tensor factorization [47, 48] on medication orders to 

generate phenotypes without supervision. In a case study searching for 50 phenotypes in 

heart failure, they achieved better performance than principal component analysis (PCA) 

with respect to area under curve (AUC) score and model stability. Further interpretations of 

these novel phenotypes have potential to offer us useful clinical information. Shah et al. [49] 

clustered patients with preserved ejection fraction into three novel subgroups, which offers 

meaningful insight into clinical characteristics, cardiac structures, and outcomes.

2.3 Clinical Trial Screening

Leveraging EHR data can benefit clinical trial recruitment [50]. In recent years, echoing the 

rising availability of EHR data and the increased volume of clinical trial recruitments, 

computational phenotyping for clinical trial screening has become an active area. Multiple 

systems have been designed for this purpose [51-54]. Electronic screening can improve 

efficiency in clinical trial recruitment, and automated querying over trials can support 

clinical knowledge curation [55]. A typical computational phenotyping system for clinical 

trial eligibility identifies patients whose profiles–extracted from structured data and 
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narratives – matched the trial criteria in order to reduce the pool of candidates for further 

staff screening.

2.4 Pharmacogenomics

Pharmacogenomics aims to investigate the interaction between genes, gene products, and 

therapeutic substances. Much of this knowledge exists in scientific literature and curated 

databases. Computational phenotyping applications have been developed to mine 

pharmacogenomics knowledge [56-59]. These phenotyping tools automatically scan, 

retrieve, and summarize the literature for meaningful phenotypes. Recent studies have 

adopted semantic and syntactic analyses as well as statistical machine learning tools to mine 

targeted pharmacogenomics relations from scientific literature and clinical records [58].

2.5 DDIs and ADEs

Drug-drug interactions (DDIs) happen when one drug affects the activity of another drug 

that has been simultaneously administered. Adverse drug events (ADEs) refer to unexpected 

injuries caused by administering medication. Detecting DDIs and ADEs can guide the 

process of drug development and drug administration. The impact of these negative 

outcomes has triggered huge efforts from industry and the scientific community to develop 

models exploring the relationships between drugs and biochemical pathways in order to 

enable the discovery of DDIs [60, 61] and ADEs [26, 62-64].

2.6 GWAS and PheWAS

Cohorts obtained by computational phenotyping have benefited downstream genomic 

studies [65], using techniques such as Genome-wide association studies (GWAS) and 

phenome-wide association studies (PheWAS). In GWAS, researchers link genomic 

information from DNA biorepositories to EHR data to detect associations between 

phenotypes and genes. In such studies, case-control cohorts can be generated without labor 

intensive annotation, which is especially important for rare variant studies where a large 

number of patients need to be screened. Much research [66-69] has explored EHR 

phenotyping algorithms to facilitate GWAS. We refer the reader to reviews by Bush et al. 

[70] and Wei et al. [65] for more details. PheWAS studies analyze a wide range of 

phenotypes affected by a specific genetic variant. Denny et al. [71] applied computational 

phenotyping on EHR to automatically detect 776 different disease populations and their 

matched controls. Statistical tests were then carried out to determine associations between 

single nucleotide polymorphisms and multiple disease phenotypes. Additional studies have 

established the efficiency of EHR-based PheWAS to detect genetic association [72-74]. 

Compared to traditional genomic research, computational phenotyping has driven discovery 

of variant-disease associations and has facilitated the completion of genomic research in a 

timely and lower cost manner [66].

3 Methods For NLP-based computational Phenotyping

NLP methods for computational phenotyping algorithms exhibit a wide range of 

complexities. Early stage systems were often based on keyword search or customized rules. 

Later, supervised statistical machine learning algorithms were applied extensively to 
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computational phenotyping. More recently, unsupervised learning has resulted in effective 

patient representation learning and discovery of novel phenotypes. This section reviews NLP 

methods for EHR-based computational phenotyping, starting with three major categories: 1) 

keyword search or rule-based systems, 2) supervised learning systems, and 3) unsupervised 

systems. We then identify current trends and active directions of development. For 

convenience, we summarize the characteristics of studies reviewed in this section in Table 1. 

The studies are characterized regarding the methods used to generate features, the methods 

or tools used for classifying the assertions (e.g., negations) of the features, the named entity 

recognition methods used to identify the concepts in the narratives, and the data sources 

used for modeling training.

3.1 Keyword Search and Rule-based System

Keyword search is one of the algorithms with the least model complexity for computational 

phenotyping. It looks for keywords, derivations of those keywords, or a combination of 

keywords to extract phenotypes [75]. For example, “pneumonia in the right lower lobe” is a 

derivation of the key phrase “consolidation in the left lower lobe” in Fiszman et al. [75]. 

These keywords correspond to medications, diseases, or symptoms; and, in practice, they are 

often identified using regular expressions. In early work, large tables of keywords were 

generated. Meystre et al. [76] manually built a keyword table using 80 selected concepts 

with related sub-concepts. They retrieved 6,928 phrases corresponding to the 80 concepts 

from the Unified Medical Language System (UMLS) Metathesaurus MRCONSO table [77]. 

After filtering, they still had 4,570 keywords remaining. Based on these keywords for 

classification, they achieved a precision of 75% and a recall of 89%. Wagholikar et al. [78] 

developed a keyword search system for limb abnormality identification using free-text 

radiology reports. Even though the reports have an average length of only 52 words, they 

achieved an F-measure of 80% and an accuracy of 80%. Despite their success, problems 

caused by the unstructured, noisy nature of the narrative text (e.g., grammatical ambiguity, 

synonyms, term abbreviation, misspelling, or negation of concepts) remain bottlenecks in 

keyword search. In general, keyword search is more susceptible to low accuracy due to 

simplicity of features. To improve model performance, supplementary rules (or other more 

sophisticated criteria) have been added to keyword search.

Rule-based systems are among the most frequently used computational phenotyping 

methods. In a review by Shivade et al. [3], 24 out of 97 computational phenotyping related 

articles have described rule-based systems. In a typical rule-based system, criteria need to be 

pre-defined by domain experts. For example, Wiley et al. [79] developed a rule-based system 

for stain-induced myotoxicity detection. They manually annotated 300 individuals’ allergy 

listings and pre-defined a set of keywords. Then they developed a set of rules to detect 

contextual mentions around the keywords. In this study, they achieved a positive predictive 

value (PPV) score of 86% and a negative predictive value (NPV) score of 91%. Ware et al. 

[80] developed a list of concepts together with a list of secondary concepts that appear in the 

same sentence. The secondary concepts were mainly medications. After defining the 

concepts, they developed a set of rules for phenotype identification. This framework 

achieved an overall kappa score of 92% with the original annotations. Nguyen et al. [40] 

implemented an NLP tool, called the General Architecture for Text Engineering (GATE), to 
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extract UMLS concepts and mapped them to SNOMED CT concepts. These SNOMED CT 

concepts were utilized to predict the stage of lung cancer using defined rules based on 

staging guidance. They achieved accuracies of 72%, 78%, and 94% for T, N, and M staging, 

respectively.

Xu et al. [34] implemented a heuristic rule-based approach for colorectal cancer assertion. 

The system used MedLEE [81] to detect colorectal cancer-related concepts. It then applied 

defined rules to search for concept contexts. The system achieved an F-measure of 99.6% for 

document level concept identification. Li et al. [82] developed a rule-based system to detect 

adverse drug events and medical errors using patients’ clinical narratives, medications, and 

lab results. They compared the model’s performance to a trigger tool [83], and they achieved 

100% agreement. The triggers in the trigger tool are a combination of keywords that signal 

an underlying event of interest. Haerian et al. [84] defined rules to extract concepts from 

discharge summaries on top of the ICD-9 code. The use of concepts increased the model’s 

PPV score from 55% to 97%. Sauer et al. [85] developed a set of rules to identify 

bronchodilator responsiveness from pulmonary function test reports, and they achieved an F-

measure of 98%.

Rule-based systems often need many complex attribute-specific rules, which may be too 

rigid to account for the diversity of the language expression. As a result, rule-based systems 

may exhibit have high precision, but low recall. In fact, as will be detailed in the next 

subsections, more recent systems opted to use statistical machine learning algorithms to 

replace or complement rules.

Developing rules is laborious, time-consuming and requires expert knowledge. Despite these 

disadvantages, rule-based systems remain one of the most popular computational 

phenotyping methods in the field due to their straightforward construction, easy 

implementation, and high accuracy [30].

3.2 Supervised Statistical Machine Learning Algorithms

To improve upon accuracy and scalability while decreasing domain expert involvement, 

statistical machine learning methods have been adopted for computational phenotyping. 

These methods usually have the advantage that in addition to classifying phenotypes, they 

often provide the probability or confidence of that classification. In general, statistical 

machine learning methods are categorized as supervised, semi-supervised, or unsupervised. 

Common to all methods, each subject is represented as a vector consisting of features. In 

supervised learning, each sample in a training dataset is labeled. Algorithms predict the 

labels for an unknown or test dataset after learning from the training dataset. In contrast, 

unsupervised learning identifies patterns without labeling. It automatically clusters samples 

with similar patterns into groups. Semi-supervised algorithms reflect a middle ground and 

are used when we have both labeled and unlabeled samples. Among the most widely used 

supervised learning algorithms for computational phenotyping are logistic regression, 

Bayesian networks, support vector machines (SVMs), decision trees, and random forests. 

More introductory and detailed description of supervised and unsupervised methods can be 

found in review papers such as Kotsiantis et al. [86] and Love et al. [87].
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Regression methods have a long history of application for computational phenotyping [15, 

28, 29]. Regression models adjust their parameters to maximize the conditional likelihood of 

the data. Further, regression models do not require a lot of effort in building or tuning, and 

the feature statistics derived from these regression models can be easily interpreted for 

meaningful insights.

In a study of identification of methotrexate-induced liver toxicity in patients with rheumatoid 

arthritis, Lin et al. [29] collected Concept Unique Identifiers (CUIs), Methotrexate (MTX) 

signatures, nearby words, and part-of-speech (POS) tags as features for an L2-regularized 

logistic regression. They obtained an F-measure of 83% in a performance evaluation. Liao et 

al. [88] implemented adaptive least absolute shrinkage and selection operator (LASSO) 

penalized logistic regression as classification algorithm to predict patients’ probabilities of 

having Crohn’s disease and achieved a PPV score of 98%. Both Lin’s and Liao’s methods 

experimented with a combination of features from structured EHR and NLP-processed 

features from clinical narratives. Their studies showed that the inclusion of NLP methods 

resulted in significantly improved performance for regression models. Due to the high 

dimensionality of features extracted from narratives, both methods applied regularized 

regressions.

Both Naive Bayes and Bayesian network classifiers are probabilistic classifiers [89] and 

work well with high-dimensional features. Unlike Bayesian networks, Naive Bayes doesn’t 

require the inference of a dependency network and is more convenient in application when 

feature dimension is large. This is because Naive Bayes models assume that features are 

independent of one another whereas Bayesian networks allow for dependency among 

features. Besides their simplicity, Naive Bayes models are particularly useful for large 

datasets and are less prone to overfitting – sometimes outperforming highly sophisticated 

classification methods when sufficient data are available [90]. For example, Pakhomov et al. 

applied Naive Bayes to predict heart failure [91], using coded data (e.g., ICD-9, SNOMED) 

and a “bag of words” representation from clinical narratives as features. They chose Naive 

Bayes for their predictive algorithm due to its ability to process high-dimensional data. Their 

model achieved a sensitivity of 82% and a specificity of 98%. Similarly, Chase et al. [92] 

applied Naive Bayes for multiple sclerosis classifications and obtained an AUC score of 

90%. Some studies have suggested that results obtained from logistic regression and Naive 

Bayes are comparable [93]. Copmared to logistic regression, the Naive Bayes classifier is 

capable of learning even in the presence of some missing values and relies less on missing 

data imputation [94, 95].

A Bayesian network consists of a directed acyclic graph whose node set contains random 

variables and whose edges represent relationships among the variables, and a conditional 

probability distribution of each node given each combination of values of its parents [120]. 

Bayesian networks have been used for reasoning in the presence of uncertainty and machine 

learning in many domains including biomedical informatics [121]. Chapman et al. [98] 

applied a Bayesian network inference model to predict pancreatic cancer using X-ray 

reports. In their experiments, a Bayesian network demonstrated high sensitivity 90% and 

specificity of 78%. Zhao et al. [119] applied a similar approach to identify pancreatic cancer. 

They developed a weighted Bayesian network with weights assigned to each node (feature). 
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They also incorporated external knowledge from PubMed for scaling weights. Associations 

between each risk factor and pancreatic cancer were established using the output of NLP 

tools run on PubMed. Finally, they selected 20 risk factors as variables and fit them into a 

weighted Bayesian network model for pancreatic cancer prediction. Their results showed 

that this weighted Bayesian network achieved an AUC score of 91%, which had better 

performance than a traditional Bayesian network (81%). Compared to logistic regression or 

Naive Bayes methods, as a probabilistic formalism, Bayesian networks offer a better 

capacity to integrate heterogeneous knowledge in a single representation, which is 

particularly important in computational phenotyping because it complements the increasing 

availability of heterogeneous data sources [119]. A priori estimations can be taken into 

account in Bayesian network; this advantage allows one to incorporate known domain 

knowledge to increase model performances.

Clinical narratives are known to have high-dimensional feature spaces, few irrelevant 

features, and sparse instance vectors [122]. These problems were found to be well-addressed 

by SVMs [122]. In addition, SVMs have been recognized for their generalizability and are 

widely used for computational phenotyping [27, 89, 97, 103, 109, 123, 124]. In SVM 

models, a classifier is created by maximizing the margin between positive and negative 

examples [125]. Wei et al. [118] applied Mayo clinical Text Analysis and Knowledge 

Extraction System (cTAKES) to extract SNOMED CT concepts from clinical documents. 

The concepts were used to train a SVM for Type 2 Diabetes identification. Their algorithm 

achieved an F-measure of 95%. They concluded that concepts from the semantic type of 

disease or syndrome contain most important information for accurate phenotyping. Carroll 

et al. [27] implemented a SVM model for rheumatoid arthritis identification using a set of 

features from clinical narratives using the Knowledge Map Concept Identifier (KMCI) 

[126]. They demonstrated that a SVM algorithm trained on these features outperformed a 

deterministic algorithm. Zeng et al. [89] trained a SVM model for principal diagnosis, co-

morbidity, and smoking status identification. The features for the model were concepts 

extracted from discharge summaries and ICD-9 codes. The model achieved accuracies of 

90% for smoking status, 87% for co-morbidity, and 82% for principal diagnoses. Chen et al. 

[99] applied active learning to a SVM classification algorithm to identify rheumatoid, 

colorectal cancer, and venous thromboembolism. Their results showed that active learning 

with a SVM could reduce annotated sample size while remaining relatively high 

performance. In the reviewed papers, SVMs constantly outperform other learning algorithms 

for computational phenotyping [27, 89, 99, 118, 127].

Kernel methods provide a structured way to extend the use of a linear algorithm to data that 

are not linearly separable by transforming the underlying feature space. The nonlinear 

transformation enables it to operate on high-dimensional data without explicitly computing 

the coordinates of the data in that space. SVMs are the most wellknown learning algorithm 

using kernel based methods. Kotfila et al. [128] evaluated different SVM kernels’ 

performances in identifying five diseases from unstructured medical notes. They found that 

SVMs with Gaussian radial basis function (RBF) kernels outperformed linear kernels. Zheng 

et al. [129] found that a SVM with RBF kernel exceeded non-kernel-based SVMs, decision 

trees, and perceptron for coreference resolution identification from the clinical narrative. In a 

study by Turner et al. [130], the authors tried to identify Systemic Lupus Erythematosus 
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(SLE) from clinical notes. The authors concluded that a SVM with linear kernel 

outperformed radial basis function, polynomial, and sigmoid kernels. Good performance can 

be achieved in kernel methods with the appliance of statistical learning theory or Bayesian 

arguments. Linear methods are favored when there are many samples in a high dimensional 

input space. In contrast, for low-dimensional problems with many training instances, 

nonlinear kernel methods may be more favorable.Apart from the models mentioned above, 

researchers have explored other methods such as random forests [112], decision trees [100, 

113, 131, 132], and the Longitudinal Gamma Poisson Shrinker [133, 134] for computational 

phenotyping. DeLisle et al. [102] implemented a conditional random field probabilistic 

classifier [135] to identify acute respiratory infections. They used structured data combined 

with narrative reports and demonstrated the inclusion of free text improved the PPV score by 

20-70% while retaining sensitivities around 58-75%. Chapman et al. [98] applied decision 

trees, Bayesian networks, and an expert-crafted rule-based system to extract bacterial 

pneumonia from X-ray reports. The method using decision trees achieved an AUC score of 

94%, and it is close to the other systems. Furthermore, semi-supervised methods have also 

been investigated for computational phenotyping [136, 137], which have the potential to 

significantly reduce the amount of labeling work and simultaneously retain high accuracy. 

Aramaki et al. [96] applied K-Nearest Neighbor classifier [138] based on the Okapi-BM25 

similarity measure to extract patient smoking statuses from free text, and they achieved 89% 

accuracy in a performance evaluation. Carrero et al. [139] applied Ada-Boost with Naive 

Bayes for text classification, and they achieved an F-measure of 72% using bigrams. Ni et al. 

[54] used TF-IDF similarity scores calculated from the feature vectors to identify a cohort of 

patients for clinical trial eligibility prescreening. Hybrid methods make use of more than one 

methods have also received increasing attention [138, 139], suggesting a promising direction 

for practical performance improvement.

For many data resources and domains, various models have been investigated, and some of 

them have achieved impressive success. However, a comprehensive understanding of the 

superior performance of a particular method over another for a specific domain remains an 

open challenge.

3.3 Unsupervised Learning

The time-consuming and labor-intensive process of obtaining labels for supervised learning 

algorithms limits their applicability to computational phenotyping. Another limitation of 

supervised learning is that it only looks for known characteristic patterns by designating a 

task and its outcome [86]. Unsupervised learning, on the other hand, can automatically 

classify phenotypes without extra annotations by experts [105, 140, 141]. Moreover, 

unsupervised learning searches for intrinsic patterns of data. Luo et al. [142] introduced 

subgraph augmented non-negative tensor factorization (SANTF) to cluster patients with 

lymphomas into three subtypes. After extracting atomic features (i.e., words) from narrative 

text, they implemented SANTF to mine relation features to cluster patients automatically. 

Their study demonstrated that NLP methods for unsupervised learning were able to achieve 

a decent accuracy (75%) and at the same time to discover latent subgroups. Roque et al. 

[114] extracted concepts from free text and mapped them to ICD-10 code. The ICD-10 code 

vector was used to represent each patient’s profile and cosine similarity scores between each 
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pair of ICD-10 vectors were obtained. Then, they applied hierarchical clustering to cluster 

those patients based on cosine similarity scores. As a result, they identified 26 clusters 

within 2,584 patients. They further analyzed the clinical characteristics of each cluster and 

concluded that NLP-based unsupervised learning was able to uncover the latent pattern of 

patient cohorts. Ho et al. [143] applied sparse non-negative tensor factorization on counts of 

normal and abnormal measurements obtained from EHR data for phenotype discovery. They 

identified multiple interpretable and concise phenotypes from a diverse EHR population, 

concluding that their methods were capable of characterizing and predicting a large number 

of diseases without supervision. Quan et al. [144] applied kernel-based pattern clustering 

and sentence parsing for interaction identification from narratives. In their application of 

protein-protein interaction, the unsupervised system achieved close performance to 

supervised methods.

Unsupervised learning has mitigated the laborious labeling work, thus making studies more 

scalable, and has the capability of finding novel phenotypes. However, interpretation of these 

new phenotypes requires domain expertise and remains challenging. Additionally, model 

performance in unsupervised learning is not yet as good as supervised learning. EHR-based 

unsupervised learning has frequently been applied on structured data [44, 45], but less 

frequently on narratives [142]. Further investigations on incorporating multiple data sources 

and at the same time maintaining or improving the performance are expected.

3.4 Deep Learning

Deep learning algorithms are good at finding intricate structures in high-dimensional data 

and have demonstrated good performance in natural language [145]. They have been 

adapted to learn vector representations of words for NLP-based phenotyping [112, 136], 

laying a foundation for computational phenotyping. Deep learning has been applied on 

various NLP applications, including semantic representation [146], semantic analysis [147, 

148], information retrieval [149, 150], entity recognition [151, 152], relation extraction 

[153-156], and event detection [157, 158].

Beaulieu-Jones et al. [136] developed a neural network approach to construct phenotypes to 

classify patient disease status. The model obtained better performance than SVM, random 

forest, and decision tree models. They also claimed to successfully learn the structure of 

high-dimensional EHR data for phenotype stratification. Gehrmann et al. [104] compared 

convolutional neural networks (CNNs) to the traditional rule-based entity extraction systems 

using the cTAKES and logistic regression using n-gram features. They tested ten different 

phenotyping tasks using discharge summaries. The CNNs outperformed other phenotyping 

algorithms in the prediction of ten phenotypes, and they concluded that NLP-based deep 

learning methods improved the performance of patient phenotyping compared to other 

methods. Wu et al. [159] applied CNNs using a set of pre-trained embeddings on clinical 

text for named entity recognization. They found that their models outperformed the baseline 

of conditional random fields (CRF). Geraci et al. [160] applied deep neural networks to 

identify youth depression from unstructured text notes. The authors achieved a sensitivity of 

93.5% and a specificity of 68%. Jagannatha et al. [161, 162] experimented with recurrent 

neural networks (RNNs), long short-term memory (LSTM), gated recurrent units (GRUs), 
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bidirectional LSTMs, combinations of LSTMs with CRF, and CRF to extract clinical 

concepts from texts. They found that all variants of RNNs outperformed the CRF baseline. 

Lipton et al. [163] evaluated the performance of LSTM in phenotype prediction using 

multivariate time series clinical measurements. They concluded that their model 

outperformed logistic regression and multi-layer perceptron (MLP). They also concluded 

that the combination of LSTM and MLP had the best performance. Che et al. [164] also 

applied deep learning methods to study time series in ICU data. They introduced a prior-

based Laplacian regularization process on the sigmoid layer that is based on medical 

ontologies and other structured knowledge. In addition, they developed an incremental 

training procedure to iteratively add neurons to the hidden layer. Then they applied causal 

inference techniques to analyze and interpret the hidden layer representations. They 

demonstrated that their proposed methods improved the performance of phenotype 

identification and that the model trains with faster convergence and better interpretation.

It is commonly known that unsupervised pre-training can improve deep learning 

performances and generalizability [165]. A generative deep learning algorithm that uses 

unsupervised methods can be applied to large unlabeled datasets, which has the potential to 

increases model generalizability [166]. Miotto et al. [167] applied a deep learning model 

called an auto-encoder as an unsupervised model to learn the latent representations for 

patients in order to predict their outcome and achieved better performance than principal 

component analysis. Due to the excellent model performance and good generalizability 

[168], using deep learning methods in conjunction with unsupervised methods is a 

promising approach in NLP-based computational phenotyping. Miotto et al. [169] 

introduced the framework of “deep patient”. The method captures hierarchical regularities 

and dependencies in the data to create a vector for patient representation. This study showed 

that pre-processing data using a deep sequence of non-linear transformations can help better 

information embedding and information inference. Word2Vec [170] is an unsupervised 

artificial neural network (ANN) that has been developed to obtain vector representations of 

words when given large corpus and the representations are dependent on the context. For 

more details, we refer readers to a review [16] in recent advances on deep learning 

techniques for EHR analysis.

Even though deep learning methods present an opportunity to build phenotyping systems 

with good generalizability [171], a drawback of deep learning methods is their lack of 

interpretability. It can be difficult to understand how the features of the model arrive at 

predictions even though they can train a classifier with good performance [172].

4 Making NLP More Effective

With numerous NLP methods available for computational phenotyping, it is practical to 

consider how to select more effective NLP methods or improve current NLP methods based 

on problem characteristics. This section reviews existing effort in these directions including 

model comparison, multi-modality data integration, entity recognition, and feature relation 

extractions.
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4.1 Comparison of Models

Different computational phenotyping models vary in prediction accuracy and model 

generalizability. Comparison studies have been carried out to explore model performances. 

These comparison studies indicate algorithm performance differs based on specific 

conditions such as data sources, features, training data sizes, and target phenotypes.

In 1999, Wilcox et al. [173] conducted a study to investigate different algorithms’ 

performances to extract clinical conditions from narratives. These algorithms were Naive 

Bayes, decision table, instance-based inducer, decision tree inducer MC4, decision tree 

inducer C5.0, and rule-discovery inducer CN2. Outputs of NLP algorithms were used as 

model features. They found MC4 and CN2 had the best performances while decision table 

performed the worst. Chapman et al. [98] tested rule-based method, Bayesian network, and 

decision tree for pneumonia detection using X-ray reports. The study showed that rule-based 

methods had slightly better performance (AUC score: 96%) than decision tree systems 

(AUC score: 94%) and Bayesian networks (AUC score: 95%).

Teixeira et al. [116] found random forests were superior to rule-based systems with a median 

AUC score of 98% when they were trying to identify hypertension using billing codes, 

medications, vitals, and concepts extracted from narratives. Pineda et al. [112] compared a 

Bayesian network classifier, Naive Bayes, a Bayesian network with the K2 algorithm, 

logistic regression, neural network, SVM, decision tree, and random forest for influenza 

detection. They concluded that all the machine learning classifiers had good performance 

with AUC score ranging from 88% to 93% and outperformed curated Bayesian network 

classifier, which had an AUC score of 80%.

Dumais et al. [132] compared the performances of SVM, Naive Bayes, Bayesian networks, 

decision trees, and rulebased systems in text classification. They concluded SVMs showed 

the best performance and noted that the training process is fast. Chen et al. [99] applied 

active learning to SVM classification, and their results showed that active learning with a 

SVM could reduce sample size needed. They concluded that semi-supervised learning, such 

as active learning, is efficient insofar as it reduces labeling cost.

Gehrmann et al. [104] compared convolutional neural networks (CNNs) to logistic 

regression and random forest model. They found CNNs had an improved performance 

compared to others and it can automatically learn the phrases associated with each patient 

phenotype, which reduced annotation complexity for clinical domain experts.

Among the compared methods, keyword search and rule-based systems often achieve good 

performance when such systems are well-designed and well-tuned. However, the 

construction of a keyword and rule list is laborious, making these systems difficult to scale. 

Supervised machine learning models have been favored for their capabilities of acquiring 

classification patterns and structures from data. The performance of supervised methods 

varies depending on the sample size, data resource type, number of data resources. Deep 

learning has also been favored for its better performance and generalizability. It has also 

been suggested that inclusion of more data resources can improve the model performances 

[174].

Zeng et al. Page 13

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.2 Combining Multiple Data Modalities

Computational phenotyping often involves multiple heterogeneous data sources in addition 

to structured data, such as clinical narratives, public databases, social media, biomedical 

literature [15, 88, 101, 111, 115, 175, 176]. Adding heterogeneous data has the benefit of 

providing complementary perspectives for computational phenotyping models [117]. 

Teixeira et al. [116] tested different combinations of ICD-9 codes, medications, vitals, and 

narrative documents as data resources for hypertension prediction. They found that model 

performance increases with the number of data resources regardless of the method used. 

They concluded that combination of multiple categories of information result in the best 

performances. The complete list of data sources utilized in the reviewed literature appears in 

Table 1.

Liao et al. [15, 107] compared algorithms using ICD-9 codes alone to algorithms using a 

combination of structured data and NLP features. The results showed that the incorporation 

of NLP features improved algorithm performance significantly. Similarly, Nunes et al. [110] 

concluded that both structured data and clinical notes need to be considered to assess the 

occurrence of hypoglycemia among diabetes patients fully. Yu et al. [28] collected concepts 

from publicly available knowledge sources (e.g., Medscape, Wikipedia) and combined them 

with concepts extracted from narratives to predict rheumatoid arthritis (RA) and coronary 

artery (CAD) disease status. Their results showed that the combination of available public 

databases like Wikipedia and features derived from narratives could achieve high accuracy in 

RA and CAD prediction. Xu et al. [34] used ICD-9 codes, Current Procedural Terminology 

(CPT) codes, and colorectal cancer concepts to identify colorectal cancer. Zhao et al. [119] 

applied additional PubMed knowledge to weight the existing features.

The increasing trend of combining multiple data sources reflects the increased availability of 

EHR data and publicly available data [26]. Also, coupled with the increasing model 

complexities, there is a potential that more comprehensive data sources will be included for 

computational phenotyping. For example, one application developed by Gehrmann et al. 

[104] used CNNs to automatically learn the phrases associated with patients’ phenotypes 

without task-specific rules or pre-defined keywords, which reduced the annotation effort for 

domain experts. As such, various data sources can be adopted for model training without too 

much human labor. However, regarding model generalizability, models and features based 

on narratives do not appear to be as portable as the ones based on structured EHR fields 

[116].

4.3 Entity Recognition and Relation Extraction

It is important to accurately recognize entities in clinical narratives as the extracted concepts 

are often used as features for models. Methods for feature learning vary from early-on 

manual selection to, more recently, machine learning methods. State-of-the-art named entity 

recognizers can automatically annotate text with high accuracy [177]. Bejan et al. [97, 123] 

implemented statistical feature selection, such as logistic regression with backward 

elimination to reduce feature dimensions. Wilcox et al. [173] tested machine learning 

algorithms with both expert-selected variables and automatically-selected variables by 

identifying top ranking predictive accuracy variables to classify six different diseases. 
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Several studies, including those of Lehman et al., Luo et al., and Ghassemi et al. [106, 142, 

178, 179], applied topic models and extended tensor-based topic models to learn better 

coherent features. Chen et al. [180] have applied an unsupervised system that is based on 

phrase chunking and distortional semantics to find features that are important to individual 

patients. Zhang et al. [181] have applied an unsupervised approach to extract named entities 

from biomedical text. Their model is a stepwise method, detecting entity boundaries and 

also classifying entities without pre-defined rules or annotated data. To do this, they assume 

that entities of same class tend to have similar vocabulary and context, which is called 

distributional semantics. Their model achieves a stable and competitive performance.

In addition to features, it is also critical to capture relations among features. Understanding 

these relations is important for knowledge representation and inference to augment 

structured knowledge bases [182, 183]. To date, a majority of the state-of-the-art methods 

for relation extraction are graph-based. Xu et al. [184] developed medication information 

extraction system (MedEx) to extract medications and relations between them. They applied 

the Kay Chart Parser [185] to parse sentences according to a selfdefined grammar. In this 

way, they converted narratives to conceptual graph representations of medication relations. 

Using this graph representation, they were able to extract the association strength, 

frequencies, and routes. Representing medical concepts with graph nodes, Luo et al. [108] 

augmented the Stanford Parser with UMLS-based concept recognition to generate graph 

representations for sentences in pathology reports. They then applied frequent subgraph 

mining to collect important semantic relations between medical concepts.

The integration of named entity detection with relation extrachon will produce end-to-end 

systems that can further automate the discovery and curation of novel biomedical 

knowledge. In addition, there is a trend towards increasingly unsupervised relation 

extraction, which is more adaptable across biomedical subdomains. Unsupervised methods 

have been investigated for feature relations too. Ciaramita et al. [186] presented an 

unsupervised model to learn semantic relations from text, hypothesizing that semantically 

related words co-occur more frequently. The model represented relations as syntactic 

dependency paths between ordered pairs of named entities. Relations were selected using the 

similarity scores associated with each class pair and dependency paths. Most recently, 

Alicante et al. [187] proposed using unsupervised methods for both entity and relation 

extrachon from clinical notes. Clustering was applied to all the entity pairs for possible 

relations discovery.

5 Future Work

While notable progress has been made in computational phenotyping, challenges remain in 

developing generalizable, efficient, and effective models for accurate phenotype 

identification. Below we discuss these challenges and directions for future work.

5.1 Information heterogeneity in clinical narratives

Boland et al. [188] highlighted the heterogeneity apparent in clinical narratives due to the 

variance in physicians’ expertise and behaviors. Different clinicians’ perspectives can be 

quite different, and in practice they often are. Also, clinical narratives are often 
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ungrammatical, incomplete with limited context, and contain a large number of 

abbreviations and acronyms [189], all of which make computational phenotyping 

challenging. Studies have applied UMLS or other external controlled vocabularies to 

recognize the various expressions of the same medical concept. However, performances of 

those external modules remain controversial [190, 191]. How to resolve the heterogeneity in 

clinical narratives remains an interesting topic.

5.2 Model generalizability

There is an ongoing trend of expanding generalizable algorithms to mine multiple diseases 

from different narratives. But these methods are still lacking in computational phenotyping 

[192, 193]. In addition, rule-based systems are one of the most prevalent methods for NLP-

based computational phenotyping [3]. The intensive human labor required to adapt rules to a 

new system affects the model generalizability. Studies investigating algorithms that 

automatically mine rules are not yet available. Furthermore, even though statistical analysis 

and machine learning have provided alternative ways to automatically generate phenotypes, 

high dimensional feature spaces, data sparsity, and data imbalance remain impediments to 

the adoption of these methods [194]. Development of complete pipelines using various data 

sources for different phenotypes is one potential solution for generalizable computational 

phenotyping.

5.3 Model interpretability

More sophisticated models, such as convolutional neural networks, have the potential to 

automatically learn the phrases associated with each phenotype, which can reduce 

annotation complexity for clinical domain experts [104]. Using such models, one might be 

able to develop a system with good generalizability and have the availability to use multiple 

data sources. However, these same models tend to lack interpretability, which presents a 

problem that remains to be solved. Furthermore, meaningful interpretations of the novel 

phenotypes discovered in unsupervised clustering models remain one of the next big 

challenges in the field. Another promising direction is improving interpretation while 
retaining, or even improving, performance.

5.4 Characterizing the context of computational phenotyping

Clinical narratives contain patients’ concerns, clinicians’ assumptions, and patients’ past 

medical histories. Clinicians also record diagnoses that are ruled out or symptoms that 

patients denied. Conditions, mentions, and feature relations can be extracted to better 

distinguish differential diagnoses. In computation phenotyping, generalized relation and 

event extraction, rather than binary relation classification, are expected to be a promising 

direction for future research; especially for the tasks of extracting clinical trial eligibility 

criteria [195], representing test results for automating diagnosis categorization [108], and 

building pharmacogenomic semantic networks [58], where the number of nodes is flexible, 

and the relation structure may not be entirely pre-specified due to the high complexity. To 

this end, graph methods are a promising class of algorithms and should be actively 

investigated [108, 142].
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5 Conclusion

In this paper, we review the applications of NLP methods for EHR-based computational 

phenotyping, including the state-of-the-art NLP algorithms for this task. Our review shows 

that the keyword search, rule-based methods, and supervised machine learning-based NLP 

are the most widely used methods in the field. Well-designed keyword search and rule-based 

systems often show high accuracy. However, manually constructing keyword lists and rules 

results in problematically low generalizability and scalability for those methods.

Supervised classification has higher accuracy and is easy to train and test. However, the 

supervised classification methods require the training samples to be labeled, which can be 

labor intensive. To date, there is not a dominating method in the field; rather, model 

performances for the same type of methods may even vary depending on the data sources, 

data types, and sample sizes.

The combination of different data sources has the potential to improve model performance. 

Recently, unsupervised machine learning algorithms are gaining more attention because they 

require less human annotation and hold potential for finding novel phenotypes. Furthermore, 

new developments in machine learning methods, such as deep learning, have been 

increasingly adopted.

Finally, there is an emerging trend to extract relations between medical concepts as more 

expressive and powerful features. The extracted relations have been shown to increase 

algorithm performance significantly.

Despite these advances across multiple frontiers, there are many remaining challenges and 

opportunities for NLP-based computational phenotyping. These challenges include better 

model interpretability and generalizability, as well as proper characterization of feature 

relations in clinical narratives. These challenges will continuously shape the emerging 

landscape and provide research opportunities for NLP methods in EHR-based computational 

phenotyping.
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