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ABSTRACT. In this paper two different formulations for the numerical simulation of laser surface
coating processes are presented and analysed. Both are based on the use of natural neigh-
bour interpolation, but one employs a Galerkin approach and takes temperature as the primary
variable while the second one is based on the use of finite differences and enthalpy as primary
variable. The main practical difference is thus the description of the interphase of the melted
zone during the process. While in the first method the interphase is described by a set of nodes
that evolve in time, in the second one it is located somewhere between a string of nodes. Both
formulations are described and compared, showing their potential benefits for the simulation of
the before mentioned process.

KEYWORDS: Meshless methods, Partition of Unity methods, Natural Neighbour interpolation,
laser surface coating.



1. Introduction

In this work we analyse the behaviour of methods based on natural neighbour
interpolation applied to the simulation of laser surface coating problems arising, for
instance, in superconductor texturing processes or ceramic tiles processing, see Fig.
1. These kind of problems can be viewed as a particular instance of Stefan problems.

Diodes

Textured zone

Cylindrical lens

Cylindrical lens

Laser beam

Melted zone

Heater

Figure 1. Typical apparatus to texture a superconductor.

The NEM (also known as Natural Neighbour Galerkin Method) belongs to the
wide family of meshless methods and is based on the use of any natural neighbour-
based interpolation scheme in the framework of a Galerkin scheme. NEM allows the
use of a mobile set of nodes that describe the boundary between phases and moves
over a cloud formed by fixed points or formed by mobile points which movement is
independent of the phase’s interaction.

Using natural neighbour interpolants it is also possible to construct finite differ-
ences schemes over irregular clouds of points (See [CUE 03] and references therein).
A method of finite differences based on the enthalpy formulation of the Stefan prob-
lem is also presented and compared with the Galerkin formulation.

Methods based on FE usually conform element boundaries to the interfaces as it
evolves, but these methods are limited by the severe mesh distortion. Thus, remesh-
ing is needed, which is a delicate task in the 3D case. Meshless methods, however,
discretize a continuum body by a finite number of nodes and the field on study is
interpolated without the aid of an explicit mesh. In this paper, a technique to detect
the interface location using Natural Neighbour-based Galerkin methods is presented
and it is applied to several problems to show its behaviour. The results obtained are



Figure 2. Delaunay triangulation and Voronoi diagram of a cloud of points. On the
right, an example of a degenerate distribution of nodes, with the two possible triangu-
lations depicted. In this last case, four points lie in the same circumcircle and thus no
single triangulation exists.

not affected by the relative position of the nodes; this is an important characteristic
of meshless methods. Results are also compared with those obtained by employing
natural neighbour finite difference schemes.

The final aim of this work would be, therefore, to analyse the influence of the sup-
port temperature on the solidification profile and its correlation with the microstructure
properties of the samples textured using the Laser Zone Melting (LZM) processes by
means of numerical simulation of this behaviour.

2. Natural Neighbour interpolation

Natural neighbour Galerkin or finite differences methods can be considered mem-
bers of the vast family of meshless methods. They rely on any of the various natural
neighbour-based interpolation schemes to construct the approximation. So, it is nec-
essary to introduce these kind of interpolation prior to describe the characteristics of
the proposed methods.

There exist various types of natural neighbour-based interpolations, but they all
are based on the construction of the Delaunay triangulation [DEL 34] of the cloud of
points, D, used to discretise the domain. The Delaunay triangulation of a set of points
N = {n1, n2, . . . , nN} is the unique triangulation of the set that verifies the so-called
empty circumcircle criterion. This means that no point of the set lies in the interior of
a circle that passes through the three vertices of each triangle, see Fig. 2.

The dual structure of the Delaunay triangulation is the Voronoi diagram of the
cloud [VOR 08]. For a given node nI , its associated Voronoi cell is composed by all
of the points which are closer to the node nI than to any other node. Formally,

AI = {x ∈ R
n : d(x,xI) < d(x,xJ ) ∀ J �= I}, (1)



where AI is the Voronoi cell and d(·, ·) represents the Euclidean distance. In the
problems considered in this paper, n = 3. Two nodes whose Voronoi cells share one
edge are called natural neighbours and hence the name of these interpolation schemes.

The first, and most obvious, interpolation scheme based on natural neighbours
is the so-called nearest neighbour or Thiessen interpolation [THI 11]. If we give
the nodal value to the whole associated Voronoi cell, we obtain a C−1 interpolation
scheme. This interpolation scheme is not suitable for solving second-order partial dif-
ferential equations, but has been employed in [GON 04b] to construct mixed velocity-
pressure approximations for the simulation of incompressible media.

The most extended form of natural neighbour-based interpolation is due to Sibson
[SIB 81]. For the definition of Sibson interpolation it is necessary to previously intro-
duce the concept of second order Voronoi cell. It is defined as the locus of the points
that have the node nI as the closest node and the node nJ as the second closest node:

AIJ = {x ∈ R
n : d(x,xI) < d(x,xJ ) < d(x,xK) ∀ K �= J ; ∀ K �= I}. (2)

If a new point is added to a given cloud of points, the Voronoi cells will be modified
by its presence. Sibson [SIB 80] defined the natural neighbour coordinates of a point
x with respect to one of its neighbours I as the ratio of the cell AI that is transferred
to Ax to the total area of Ax. In other words, being κ(x) and κI(x) the Lebesgue
measures of Ax and AxI respectively, the natural neighbour coordinates of x with
respect to the node I is defined as

φsib
I (x) =

κI(x)

κ(x)
. (3)

The resultant shape function depends obviously on the relative position of the nodes.
An example for a node surrounded by other six is depicted in Fig. 5.

The resultant shape function has some remarkable properties (see [SUK 98] or
[CUE 03] for more in-deep explanations and rigorous proofs of this behaviour). Firstly,
it is smooth (C1) everywhere except from the nodes, as can be seen from Fig. 5. Natu-
ral neighbour (Sibson) shape functions posses linear completeness [SUK 98] and form
a partition of unity. Therefore, it is possible to enrich natural neighbour interpolants
in order to increase the order of the polynomial reproduced by the interpolation, as
proposed in [BAB 96].

Recently, Hiyoshi and co-workers [HIY 99] have generalised the form of natural
neighbour interpolants. One different type of interpolation has attracted the interest
of researchers, since it is slightly faster to compute, although gives less smooth inter-
polations. It has received the name of Laplace interpolant. The Laplace interpolant
is defined by using geometrical entities of one dimension less than the original space
under consideration. If we define the cell intersection tIJ = {x ∈ TI

⋂
TJ , J �= I}

(note that tIJ may be an empty set) we can define the value

αJ (x) =
|tIJ |

d(x,xJ )
. (4)
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Figure 3. Definition of the Natural Neighbour coordinates of a point x.

Thus, the point x shape function value with respect to node 4 in Fig. 4 is defined
as

φns
4 (x) =

α4(x)∑n
J=1 αJ(x)

=
s4(x)/h4(x)∑n

J=1

[
sJ(x)/hJ (x)

] , (5)

where sJ represent the length of the Voronoi segment associated to node J and n
represents the number of natural neighbours of the point under consideration, x.

Figure 4. Definition of non-Sibsonian coordinates.

Derivatives of the Laplace shape function are not defined along the edges of the
Delaunay triangles that lie inside its support (see [SUK 01]).



(a) (b)

Figure 5. (a) Natural Element (Sibson) shape function and (b) non-Sibsonian or
Laplace shape function (photo courtesy N. Sukumar).

In the context of two- and three-dimensional approximations, the unknown vari-
able is approximated in the form:

Th(x) =

n∑
I=1

φI(x)TI (6)

where TI is the vector of nodal values and n the number of natural neighbours of each
point x. This leads to a C0 interpolation scheme.

3. Modelling the melting process as a Stefan problem involving an interphase
tracking

3.1. Governing equations

Mathematically, laser surface coating processes can be viewed as a particular in-
stance of Stefan problems [STE 91]. Consider a domain formed by two phases, liquid
and solid, respectively, Ω1 and Ω2 (Figure 6).

In the boundary of the domain, Γ = ∂Ω, either the temperature (T = T on Γ1),
or heat flux (q = q on Γ2) are imposed. The problem is defined in a time interval
[0, tmax], being the initial temperature T (x, t0) = T0 prescribed in the whole domain.
At time t = t0 the temperature on Γ1 is set to a value T1 > Tm, being Tm the
material’s melting temperature. In laser surface coating processes, the region Γ1 can
be seen as the area under the laser beam, that can move or change during the process.
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Figure 6. A domain formed by a liquid phase and a solid one.

A melting front ΓI is generated that moves at a velocity v, dividing the domain Ω in
the two before mentioned regions.

Each phase is assumed to be homogeneous and isotropic. Equilibrium equations
in each phase can be stated as:{

c1
∂T (x,t)

∂t = ∇ · (k1∇T ) in Ω1

c2
∂T (x,t)

∂t = ∇ · (k2∇T ) in Ω2

(7)

where c1 and c2 represent, respectively, the heat capacities of solid and liquid phases,
while k1 and k2 represent the thermal conductivity of each phase. Initial and boundary
conditions of the problem are:⎧⎪⎨

⎪⎩
T (x, t = 0) = T0, ∀x ∈ Ω

T (x, t) = T (x, t), ∀x ∈ Γ1

−k∇T (x, t) · n = q(x, t), ∀x ∈ Γ2

(8)

Evolution of the interphase ΓI is governed by the so-called Stefan’s condition:

v(x ∈ ΓI(t)) =
|[q]|

L
· nI (9)

where v represents the velocity of the interphase, L is the latent heat, nI(x) is the
outward unit vector of the interphase, directed towards the liquid phase and, finally,
|[q]| represents the discontinuity of the flux across the interphase:

|[q]| = (k1∇T |Γ+

I

− k2∇T |Γ−

I

) · nI (10)

Finally, one last restriction affects the melting temperature, that must remain con-
stant along the interphase:

T (x, t) = Tm ∀x ∈ ΓI(t) (11)



3.2. Natural neighbour Galerkin discretization

The weak form of the problem (7)-(8) will read:

Find T ∈ H1(Ω) satisfying T = T on ΓI such that:∫
Ω

c
∂T

∂t
δTdΩ = −

∫
Ω

k∇T · δTdΩ +

∫
ΓI(t)

|[q]|δTdΓ, ∀δT ∈ H1
0 (Ω) (12)

being H1 and H1
0 the usual Sobolev spaces of order one. Substituting in this ex-

pression the unknown and admissible variations fields by a suitable approximation
obtained through natural neighbour interpolation, we arrive to:

CṪ + KT = F (13)

where T is a vector containing the nodal temperatures. Equation (12) is discretised
through the generalised midpoint rule:

∂Tn+1

∂T
=

Tn+1 − Tn − (1 − α)Δt∂T n

∂t

αΔt
(14)

thus obtaining:
(Cn+1 + αΔtKn+1)Tn+1 = F

n+1 (15)
where

C
n+1 =

∫
Ωn+1

N
tcNdΩ (16)

K
n+1 =

∫
Ωn+1

B
tkBdΩ (17)

and

F
n+1 = C

n+1
T

n + (1−α)Δt

∫
Ωn+1

N
t ∂Tn

∂t
dΩ + αΔt

∫
Γn+1

I

N
t|[q]|n+1dΓ (18)

where N is a vector containing the shape functions and B la matrix with shape func-
tion derivatives.

Integration of the before presented equations is achieved by employing three quadra-
ture points within each Delaunay triangle. In [GON 04a] it has been demonstrated that
this technique leads to errors in the quadrature that can be avoided, for example, by
employing stabilised conforming nodal quadrature schemes.

3.3. Interphase tracking

Interphase tracking in FE-like discretisation of Stefan problems deserves some
comments. As mentioned before, two different sets of nodes are considered, namely
a fixed one1 to discretise the domain and a moving one that discretises the interphase.

1. If a deformation process is linked to the problem, this set of nodes can also move, but this
movement is not related with the thermal problem.



This last set of nodes will create a planar straight-line graph in two-dimensional prob-
lems, while in three-dimensional ones it will discretise a surface.

The problem is thus to determine the geometry of the evolving phases as the mov-
ing set of nodes is governed by the Stefan condition, Eq. (9). The planar straight
line graph is equipped with a normal vector at each segment, pointing to the liquid
phase, in order to determine if a node in the first set belongs to the melted or solid
phases. Once each node is located within its sub-domain (see Fig. 7) the shape of the
sub-domain is extracted by employing a shape constructor. A shape constructor is a
geometrical entity that gives shape to a set of nodes. In our case we employ α-shapes
[EDE 94]. Briefly, an α-shape is a polytope (a subset of the Delaunay triangulation
of the cloud) whose geometry depends on a value α that represents the level of detail
up to which we wish to represent the domain. Of course, this level of detail can not
be finer than the nodal spacing parameter, h. Thus, every triangle whose cimcurcircle
possesses a radius bigger than α is eliminated from the triangulation. The employ
of α-shapes has another advantage, since it allows to obtain linear precision along
the boundary of the domain, whenever it is convex or not [CUE 00]. Thus, a fully
conforming method is obtained.

v�1
�

�

Fixed nodes

Moving nodes

Figure 7. Algorithm to extract the shape of each phase.

4. Modelling the melting process with an enthalpy formulation involving an
interphase capturing

In this section we propose an alternative approach for the melt front treatment. In
order to simulate the change of phase process, an explicit finite volumes scheme will
be applied, which, as proved later, allows to proceed with a fixed mesh of the whole
domain. In order to avoid the difficulties related to the change of phase accounting, an
enthalpy formulation will be used. To describe easily the proposed strategy, which will
considered in this work, first we consider the one-dimensional heat transfer problem
defined in the interval containing N nodes uniformly distributed. A representative
volume is associated to each node, where both the temperature and the enthalpy are



assumed constant. The temperature is prescribed at both boundaries as well as the
initial temperature. The enthalpy is defined by:

H(T ) =

⎧⎪⎨
⎪⎩

∫ T

Tref
c2dT if T < Tm

∫ Tm

Tref
c2dT + ΔHm +

∫ T

Tm

c1dT if T > Tm

(19)

where c2 and c1 are used to identify the solid and liquid phases respectively. ΔHm

represents the fusion enthalpy and Tref is a reference temperature.

The energy balance, taking into account eventual phase changes, results:

∂H

∂t
− ∇ · (k∇T ) = 0 (20)

If we consider N nodes uniformly distributed (h being the distance between two con-
secutive nodes), and assuming that the initial enthalpy can be computed using equation
(19), the discretisation of Eq. (20) results

Hn+1
i − Hn

i

Δt
−

ki+1/2
∂T
∂x |

n
i+1/2 − ki−1/2

∂T
∂x |

n
i−1/2

h
= 0 ∀i ∈ [2, · · · , N − 1]

(21)

Being the nodes uniformly distributed, the heat flux derivatives at the cell bound-
aries can be approximated by:

∂T

∂x

∣∣∣∣
n

i−1/2

=
Tn

i − Tn
i−1

h
(22)

and
∂T

∂x

∣∣∣∣
n

i+1/2

=
Tn

i+1 − Tn
i

h
(23)

Now, from the enthalpy just computed using Eqs. (21)-(23), the nodal tempera-
tures Tn+1

i can be updated using Eq. (19), i.e.:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hn+1
i =

∫ Tm

Tref
c2dT + ΔHm +

∫ T n+1

i

Tm

c1dT if Hn+1
i >

∫ Tm

Tref
c2dT + ΔHm

Tn+1
i = Tm if Hn+1

i >
∫ Tm

Tref
c2dT and

Hn+1
i <

∫ Tm

Tref
c2dT + ΔHm

Hn+1
i =

∫ T n+1

i

Tref
c2dT if Hn+1

i <
∫ Tm

Tref
c2dT

(24)

In the general 2D or 3D unstructured case the Voronoi cells can be considered
as finite volumes. The temperature and enthalpy are assumed constant within each



Voronoi cell. Eqs. (19), (20) and (24) are still valid. However, the discretized form
related to Eq. (20) results after integration in each Voronoi cell Ωi:

Hn+1
i − Hn

i

Δt
|Ωi| −

∫
∂Ωi

k ∇Tn · n dS = 0 (25)

where n represents the unit outwards vector, |Ωi| the area or volume of cell Ωi and
∂Ωi its boundary. The integral term in Eq. (25) can be approximated as:

∫
∂Ωi

k ∇T · n dS =

j=Ni∑
j=1

Lij ∇Tn|ij · nij (26)

where Ni is the number of neighbor cells related to cell Ωi, Lij the length of the
common edge between Ωi and Ωj , ∇Tn|ij the temperature gradient evaluated at the
middle point of that edge, and nij the unit outwards vector related to that edge. In
the scheme here presented the temperature gradient has been computed by using the
natural neighbor shape functions derivatives.

5. Numerical results

5.1. Validation of the proposed Galerkin scheme

One of the few Stefan problems with analytical solution is employed here in order
to validate the accuracy of the proposed technique. It consists of a rectangular plate
subjected to a sudden fall of temperature along one of its sides, thus leading to frozen
of the material. This problem was also analysed by employing a fully implicit method
in [YVO 05].

Initial temperature T0 is assumed constant and at time t = 0, one of the plate’s
sides is subjected to a temperature T1, under the temperature of solidification. For a
semi-infinite plate, the analytical solution to this example can be found in [YVO 05].

PROPERTY SOLID LIQUID
Heat capacity (cal ·◦ C−1cm−3) 0.49 0.62

Conductivity (cal · cm−1s−1 ◦C−1) 9.6 × 10−3 6.9 × 10−3

Melting temperature (◦C) 0.0
Latent heat (cal · cm−3) 19.2

Table 1. Properties of liquid and solid phases.

The cloud of points for the discretisation of the problem consisted of 66 back-
ground nodes, discretising the geometry of the domain and 6 moving nodes, describ-
ing the interphase location, see Fig. 8. The time step was chosen to be Δt = 0.002s
in an explicit scheme.

Solutions for different time steps are shown in Figs. 9 to 11.



Figure 8. Initial cloud of points and associated triangulation. The second column of
nodes on the left represents the moving set.

T
3.36284
2.47199
1.58113
0.690276

-0.20058
-1.09144
-1.98229
-2.87315
-3.76401
-4.65486
-5.54572
-6.43657
-7.32743
-8.21829
-9.10914

(a) (b)

Figure 9. (a) Temperature distribution at t = 0. (b) Solid phase (blue) and liquid
(red)

Evolution of the interphase is near the vertical expected position, with some alter-
ations near the boundary of the domain, where the number of neighbours is lower, and
consequently the quality of the approximation decreases.

The position of the interphase (as a mean value of the position of its discretising
nodes) compared with the analytical results is show in Fig. 12. Similar results can be
obtained for three-dimensional settings, as shown in Fig. 13.
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Figure 10. (a) Temperature distribution after 200 time steps. (b) Solid phase (blue)
and liquid (red)

T
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-9.10914

(a) (b)

Figure 11. (a) Temperature distribution after 300 time steps. (b) Solid phase (blue)
and liquid (red)

5.2. Simulation of a plate under a moving heat source

In this example we study the case of a moving heat source, representing the laser
beam, that runs on the top of a plate, as represented in Fig. 14. The plate is isolated at
the bottom. The heat source moves at a speed such that it remains at a node location
at each time step. Material characteristics are the same as in Table 1.

This problem thus represents a simplified process of surface treatment by laser.
Unfortunately, there is no analytical solution to this problem, but qualitative agree-
ment with melted zone patterns obtained experimentally can be observed. Different
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Figure 12. Theoretical vs. numerical solution for the solidification problem described
in § 5.1.
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Figure 13. Temperature distribution in the three-dimensional problem at time steps 1
(a) and 60 (b).
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Figure 14. Schematic representation of the problem described in § 5.2.

snapshots of the process are shown in Fig. 15. See Fig. 16 for a transversal cut of a
laser textured superconductor. The shape of the melted zone can be observed in the
center of the image.

In three dimensional cases this same qualitative agreement can be observed (see
Fig. 17).

5.3. Voronoi finite volumes simulation

In this section we consider the application of a laser beam on a metallic surface.
When the temperature reaches the vaporization temperature the volume is removed
and the heating process can continue in the new domain geometry. Of course, at
present we have not considered the effects of the vaporized metal because they require
the plasma modelling.

In Fig. 19 we can appreciate the temperature evolution at the three positions in-
dicated in Fig. 18. We can notice that the temperature remains constant whereas the
considered volumes are changing of phase. Obviously, in this kind of approach it is
not possible to define accurately the position of the interphase.

6. Conclusion

In this paper two different schemes are proposed and compared for the simulation
of laser surface coating processes. Both are based in the use of natural neighbour
interpolation. The first one is based in a Galerkin implementation, that allows for
an accurate description of the interphase. By employing a moving set of nodes that
discretize the interphase it is possible to accurately describe its position, while the
resulting “elements” are not affected by the distortion, as in FE techniques.

The second technique is based on a natural neighbour finite difference scheme
and a formulation of the problem based in the enthalpy, instead of temperature. This
alternative formulation proves to be also very accurate, but the exact position of the
interphase is lost.
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Figure 16. Transversal cut of a textured Bi-2212 sample. Photo courtesy Instituto de
Ciencia de Materiales de Aragón, CSIC.
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Figure 17. Evolution of the melted zone geometry at time steps 1 (a) and 60 (b). The
background triangulation is represented in wireframe.

Both techniques render accurate results and represent alternative ways of solving
the same problem. However, a validation of the proposed techniques with some ex-
periments (say, for instance, for the problem of superconductor texturing processes) is
lacking. This validation constitutes nowadays the main work of the authors and will
be published hopefully elsewhere.
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Figure 18. Domain geometry.

Figure 19. Temperature profiles (temperature versus time) at the three different points
indicated in Fig. 18.
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