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ARTICLE

Natural optical activity as the origin of the large
chiroptical properties in π-conjugated polymer
thin films
Jessica Wade1,2, James N. Hilfiker 3, Jochen R. Brandt 2,4, Letizia Liirò-Peluso 5,6, Li Wan 1,2,

Xingyuan Shi 2,4, Francesco Salerno2,4, Seán T. J. Ryan4, Stefan Schöche3, Oriol Arteaga7, Tamás Jávorfi8,

Giuliano Siligardi 8, Cheng Wang 9, David B. Amabilino 5, Peter H. Beton 6, Alasdair J. Campbell1,2✉ &

Matthew J. Fuchter 2,4✉

Polymer thin films that emit and absorb circularly polarised light have been demonstrated

with the promise of achieving important technological advances; from efficient, high-

performance displays, to 3D imaging and all-organic spintronic devices. However, the origin

of the large chiroptical effects in such films has, until now, remained elusive. We investigate

the emergence of such phenomena in achiral polymers blended with a chiral small-molecule

additive (1-aza[6]helicene) and intrinsically chiral-sidechain polymers using a combination of

spectroscopic methods and structural probes. We show that – under conditions relevant for

device fabrication – the large chiroptical effects are caused by magneto-electric coupling

(natural optical activity), not structural chirality as previously assumed, and may occur

because of local order in a cylinder blue phase-type organisation. This disruptive mechanistic

insight into chiral polymer thin films will offer new approaches towards chiroptical materials

development after almost three decades of research in this area.
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C
hirality is a fundamental symmetry property that is pre-
sent in all natural and life sciences, from molluscs to
peptides, small molecules to spiral galaxies. Just as mole-

cules can exist in left-handed (LH) and right-handed (RH)
mirror image pairs, light can feature either LH or RH circular
polarisation, depending on the sense of rotation of the electric
field vector with respect to the direction of propagation. The
manipulation of such (chiral) circularly polarised light (CPL)
has received widespread attention over the past decades as it
presents opportunities in next-generation optoelectronics;
through, for example, the development of organic chiral semi-
conducting materials1–6. The tunable electronic properties,
ability to absorb and emit CPL, and potential for spin-polarised
electron transport in chiral organic semiconducting materials
promises far-reaching applications, including in enantioselective
sensing, display technologies and quantum computation7–14. A
number of methods have been explored to create chiroptically
active solid-state structures, including the use of chiral solvents,
the incorporation of chiral sidechains into otherwise achiral
polymers, and the combination of an achiral polymer with a
chiral small-molecule additive2,15–19. The broadly held under-
standing is that such materials exhibit chiroptical effects in thin
films that originate at the local/molecular level (i.e., natural
optical activity, dissymmetry ≈ 10−3), through the presence of
longer-scale structural chirality (i.e., a periodic helicoidal
structure as in a cholesteric-like phase, dissymmetry ≈ >0.1), or
a combination of the two20.

Chiroptical properties for chiral sidechain polymers, which are
by far the most explored materials of this class, are typically
attributed to the supramolecular self-assembly of polymer chains
in the solid state2,21–25. A nematic chiral helicoidal (cholesteric-
like) packing structure, which is typically characterised through
the use of an alignment layer, has been used to account for 1) the
dissymmetry of absorption and 2) luminescence of circularly
polarised light (CPL) in almost all polymer systems (Supple-
mentary Table 1) and how these photophysical values vary with
properties such as film thickness. The exact pitch length of such
helical assemblies varies depending on the chemical composition,
fabrication technique, and experimental approach, and could be
as tight as 300 nm (chiral poly{9,9-bis[(3 S)-3,7-dimethyloctyl}-
2,7-fluorene), cPFO)26 or as wide as 1500 nm (chiral poly(9,9′-
dialkylfluorene-alt-2,5-dialkoxyphenyl) copolymers)2. For mono-
or multi-domain cholesteric films with such pitch lengths, film
thicknesses of >500 nm would be required to achieve high dis-
symmetry (g-factors > 1) in circularly polarised (CP)-absorption
and emission from the polymer via mechanisms such as Bragg
reflection. However, such thick structures are generally not
compatible with the majority of device applications (active layer ≤
200 nm), where increasing film thickness typically diminishes
device performance, other than in rare examples27–29.

We and others have reported an alternative approach to gen-
erate high dissymmetry CPL in devices using materials where an
achiral polymer is blended with a chiral additive (ACPCA here-
after)17,30,31. These systems can notably achieve exceptionally
high dissymmetry (absolute absorption and emission g-factors ≈
0.25–1.5) at film thicknesses that are compatible with highly
efficient device applications (~150 nm) and without the use of an
alignment layer. The combination of high dissymmetry at low
thicknesses is inconsistent with the optical mechanisms that
would occur in structurally chiral systems, such as those that have
been proposed for cholesteric chiral sidechain polymers (CSCP)
or ACPCA films on alignment layers22,30–34. It is evident that a
new model is required to describe these systems and fully realise
the application of polymer thin films in efficient devices that
make use of circularly polarised light.

In this work we perform a systematic investigation to establish
the origins of the large chiroptical effects in chiral polymer sys-
tems, with and without alignment layers. To understand the role
of alignment layers, polymer chemical structure, and post-
deposition treatment, we combine our previous chiral small-
molecule additive − enantiopure aza[6]helicene ([M] or [P] aza
[6]H) − with three achiral polyfluorene-based polymers: poly
(9,9-dioctylfluorene) (PFO), poly(9,9-dioctylfluorene-alt-ben-
zothiadiazole) (F8BT), and poly(9,9-dioctylfluorene-alt-bithio-
phene) (F8T2). We then compare such blends to polyfluorene
derivatives bearing chiral sidechains (cPFO and cPFBT, see Fig. 1
for structures and Supplementary Methods for further details)35.
We employ Mueller matrix spectroscopic ellipsometry (MMSE)
to create the first optical model to describe the electromagnetic
interactions of non-aligned ACPCA thin films. The results show
that for non-aligned thin films of both CSCP and ACPCA sys-
tems, the chiroptical effects do not originate from the mechanism
involving solely a twisted dielectric tensor, such as would be
observed in a structurally-chiral cholesteric liquid crystal phase
(long-range effects). Instead, these effects occur due to so-called
natural optical activity, an effect based on short-range interac-
tions between magnetic and electric dipoles20. We find that it is
the use of an alignment layer—something that is rarely employed
in CP-OLED devices due to their insulating properties—that
results in the formation of a chiral structurally ordered meso-
phase. Resonant soft x-ray scattering (RSoXS) and atomic force
microscopy (AFM) suggest that the natural optical activity may
arise due to the assembly of twisted polymer fibrils into a double
twist cylinder type blue phase. This understanding of chiral
semiconducting polymer systems will help optimise their prop-
erties towards ultrathin, stretchable and efficient CP sensitive/
emissive devices for a range of technologies.

Results
Chiroptical response of ACPCA and CSCP films. Following our
previous optimisation of non-aligned F8BT-based ACPCA thin
films30, we broadened this material class by introducing 10 wt%
of the chiral small-molecule additive 1-aza[6]helicene (aza[6]H)
to three different polymers, F8BT, PFO and F8T2, in solution
(Fig. 1 for structures). These blend ACPCA materials and two
CSCP polymers (cPFO and cPFBT) were subsequently spin-
coated into thin films, annealed at 140 °C for 10 min in a N2

glovebox and quickly cooled to room temperature. In their initial
as-cast state, as shown in Fig. 2, the PFO- and F8BT-based
ACPCA films are virtually Circular Dichroism (CD)-silent in the
absorption bands of the polymers (between 390 and 500 nm), but
contain the CD signature of the aza[6]H ( ≈334 nm). The F8T2
thin films show a weak Cotton effect (≈30 mdeg, λ = 498 nm)
near their lowest energy transition (inset of Fig. 2). On the other
hand, as-cast CSCP thin films have non-negligible CD, with
cPFBT demonstrating a pronounced CD signal (>600 mdeg, λ =
470 nm) (Fig. 2) even before annealing. In all cases, annealing
dramatically increases the chiroptical activity of the lowest energy
transition (PFO: 3,110 mdeg, F8BT: 10,200 mdeg, F8T2: 21,500
mdeg, cPFO: 13,900 mdeg, cPFBT: 12,100 mdeg, see Supple-
mentary Table 2 and Supplementary Fig. 1). High resolution
(50–100 μm) spatially resolved CD imaging confirms that this
chiroptical response is remarkably uniform over large areas
(Supplementary Fig 2)36,37. As has been reported elsewhere, the
cross-coupling of linear birefringence (LB) and linear dichroism
(LD) and CP-selective reflection from structurally-chiral choles-
teric stacks can result in apparent optical activity18,38. For
example, in liquid crystalline materials that are configured in a
nematic chiral helicoidal structure, the pitch can be tuned such
that the modulation of refractive index through a given thickness
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produces an apparent CD due to circular birefringence. It is not
possible, however, to discriminate between specific origins of
such chiroptical activity – natural optical activity or structural
chirality – just using steady-state transmission based measure-
ments such as CD20. Monodomain cholesteric stacks (i.e.,
structural chirality that is out of the substrate plane) with a given
pitch demonstrate temperature-sensitive Bragg reflection at a
particular wavelength (the photonic band gap), which is not
observed in systems with purely natural optical activity. How-
ever, Bragg reflection characteristics of a cholesteric stack are
rarely observed in non-aligned polymer thin films17,21. To
overcome potential artefacts and establish the true origins of the
chiroptical effect in polymer thin films, we have performed
detailed MMSE in both transmission and reflection, which is
well suited to the optical analysis of thin films of complicated
chiral systems39. MMSE has previously been used to evaluate the
structural CD and Circular Birefringence (CB) in cellulose,
small-molecule aggregates and non-conjugated polymers22,40–42.
Further mathematical descriptions of the MMSE are provided in
the Supplementary Discussion 1.

Annealed thin films of the neat achiral polymers (F8T2, F8BT,
PFO) (Supplementary Fig. 3) exhibit uniaxial anisotropy (of the
form in Supplementary Eq. 2) with the optical axis perpendicular
to the sample surface. Uniaxial anisotropy of this nature can be
described by diagonal dielectric tensor elements (Supplementary
Eq. 4), the individual terms of which are illustrated in
Supplementary Fig. 4. In contrast to the annealed films of neat
polymers, annealed, non-aligned ACPCA and CSCP films (Fig. 3,
Supplementary Figs. 5–6) exhibit both CD and CB, (as inferred
from matrix elements M14, M23, M32, M41,) in transmission.
These circular elements do not vary when the sample is rotated
and are silent in reflection for these films.

Optical models generated to interpret the chiroptical response.
We first attempted to model the MMSE data by assuming the
chiroptical effects arose from a either a mono- or multi-domain

cholesteric stack structure. As the refractive index of these
materials is ≈2 at wavelengths close to the maxima of the lowest
energy CD band, the pitch of a mono-domain cholesteric would
need to be ≈250 nm to generate the chiroptical effects observed
(Supplementary Fig. 7). In transmission, this model of structural
chirality produces linear effects in several MM elements that are
not exhibited in experimental data (Supplementary Fig. 7), whilst
in reflection, the monodomain cholesteric stack model produces
strong differential reflection of CPL that does not appear in our
measurements (Fig. 3, red curves). These findings show that the
origins of the CB and CD in non-aligned chiral films do not result
from a mesoscopic model based on a dielectric tensor that is a
periodic function of the thickness, as would occur in structurally
chiral monodomain cholesteric stack systems. We shall refer to
this mesoscopic description as the twisted dielectric tensor model.
We next considered helical multi-domain models43, which eval-
uate the optical response of incoherent (domains > the wave-
length of light) and coherent (domains ≤ the wavelength of light)
superpositions of cholesteric grains (Supplementary Discussion 2
and Supplementary Fig. 8). Neither an incoherent or coherent
multi-domain model can satisfy the MMSE results acquired at
multiple angles of incidence or without introducing significant
depolarisation, which is not observed in our measurements. The
uniformity of the circular response was evaluated using spatially
resolved MMSE (Supplementary Fig. 8), which, comparable to the
spatially resolved CD measurements described above (Supple-
mentary Fig. 2), show no evidence of a mono or multi-domain
structure.

Instead, to describe the optical activity recorded in transmis-
sion and reflection of the non-aligned ACPCA and CSCP thin
films requires them to be modelled as a bianisotropic medium.
Just as with the neat polymers, uniaxial anisotropy is required to
fit the linear terms of the MM, whereas the circular terms
require magneto-electric coupling that is represented by an
optical activity tensor. The tensorial constitutive equations for
the ACPCA and CSCP thin films can be written in the following
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compact form (Eq. 1)44.
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Here E refers to the electric field strength, B the magnetic flux
density, D the electric displacement density and H the magnetic
field strength, ε refers to the permittivity tensor, μ is the
permeability tensor (for nonmagnetic media it is the 3 × 3
identity) and α is the optical activity tensor (Supplementary
Discussion 1). The explicit 6 × 6 tensor that has been used to fit all

experimental data is given by A (Eq. 2).
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While the twisted dielectric tensor model does not fit the
obtained MM data, magneto-electric coupling given by the optical
activity tensor (Eq. 2), can simultaneously predict the transmitted
and reflected MM in all our chiral polymeric systems (Fig. 3). The
optical activity tensors that we have determined for all three
ACPCA systems are respectively shown in Supplementary Fig. 9
and require the same uniaxial symmetry as the dielectric tensor of
neat polymers.

In an effort to rationalise this observation with previously
reported results, we introduced anisotropic alignment layers of
rubbed polyimide (PI) before spin-coating the polymer thin
films17,45,46. Rubbed PI layers have been shown to promote the
unidirectional alignment of liquid crystalline materials46,47. In
contrast to their non-aligned counterparts, the MMSE of polymer
thin films with alignment layers have linear and circular terms in
both reflection and transmission (Supplementary Fig. 10), which
cannot be isolated upon sample rotation. For the aligned CSCP
films we first attempted to fit these data using an optical model
with natural optical activity but found that it could not accurately
reproduce both linear and circular terms simultaneously (Fig. 4,
Supplementary Fig. 11). In contrast, when we introduced the
twisted dielectric tensor model (considering a helical dependence
in ε, as one would expect for a cholesteric stack) (Fig. 4,
Supplementary Fig. 12) we could qualitatively fit both the
reflected and transmitted data at a range of incident angles using

a twist of ≈85°. Whilst the same appears to be true for the aligned
ACPCA films, there seems to be a combination of natural optical
activity and a twisted structure for such materials, which
complicates our analysis (Supplementary Fig. 13).

Morphological investigations. In order to obtain structural
insight into the features that underpin the optical properties, the
molecular conformation of the chiral phase in the annealed, non-
aligned neat and ACPCA films was probed using RSoXS at the
carbon K-edge (E = 283.5 eV). RSoXS permits investigations into
the orientation of carbon bonds in nanoscale helical assemblies,
and is sensitive to molecular conformation in the plane of the
substrate when recorded in transmission48,49. Whilst there is no
clear scattering for the as-cast and annealed neat achiral polymer
films, or for as-cast ACPCA thin films, the annealed ACPCA
films show distinct scattering arcs, corresponding to an in-plane
periodic feature with a characteristic length scale of 260–330 nm
(Supplementary Figs. 14–15). For the annealed ACPCA thin
films, there is a consistent offset between the incident beam
direction and the scattering patterns, in opposite directions for
[P] and [M] aza[6]H (Supplementary Fig. 14). The surface
molecular packing of these systems was investigated using
tapping-mode (noncontact AC mode) AFM. The measurements
reveal that the annealed ACPCA films (Fig. 5, Supplementary
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Fig. 3 Experimental and modelled MM data for non-aligned ACPCA thin films. Measured MM data (black solid line) associated to CD (M14) and CB

(M23) recorded in transmission (a, b) and reflection (c, d) along with a model-calculated match to the MM transmission and reflection data for a 131 nm

thick non-aligned F8BT:aza[M]H film assuming the origins of the chiroptical effect are structural chirality (red dashed line) or natural optical activity (blue

dashed line).
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Figs. 16–17) are very smooth compared to those of the neat
polymer (RMS roughness, F8BT:aza[6]H: 0.49 nm, F8BT: 0.81 nm,
calculated over a 1 µm2 scan area). Whilst both systems adopt an
isotropic fibril-like organisation, this pattern is more distinct for
the annealed ACPCA thin films. The fibril domains (for the neat
and ACPCA samples) are sub-micron in size, as revealed in the
polarised optical micrographs of the films (Supplementary
Fig. 17). The weakly birefringent ACPCA films (Supplementary
Fig. 5) appear dark green-blue in transmission with crossed
polarizers, and have a texture that is seen most clearly by applying
a Berek compensator. In these samples, fibrils of various lengths
diverge around features reminiscent of topological defects. Further
details of the RSoXS and AFM measurements are reported in the
Supplementary Information (Supplementary Figs. 14–17, Supple-
mentary Discussion 3).

The AFM and RSoXS data appear to be consistent with the
formation of a double twist cylinder blue phase50,51. This phase
comprises a number of twisted polymer chains that form linear
fibrils parallel to the substrate on the surface, which, in turn, are
organised in cylinders that pack perpendicular to one another in
the bulk (Fig. 6). The apparent topological defects in the AFM
images are attributed to points where twisted fibrils (characteristic
width of 25 nm, Supplementary Fig. 16) comprising of a few
polymer chains with a variable-length emerge from the lower
layers of the film. The aggregation of these fibrils would generate
cylinders, spaced between 260 and 330 nm apart, a dimension

observed with RSoXS. The tilt angle in the RSoXS pattern
(Supplementary Fig. 14) indicates that these cylinders are
comprised of double twisted polymer fibrils, and the lack of a
distinct second-order Bragg peak (Supplementary Fig. 15)
indicates that these cylinders have a weak structural order over
large length scales. Double twist cylinder blue phases that pack
into disordered structures have previously been observed in chiral
liquid crystalline materials51. In the AFM images, the regions
between the tops of the cylinders (topological defects), which
would be disordered in the bulk of the sample in the blue phase
model, comprise of pseudo-aligned fibrils because they are
restricted to the surface plane (Fig. 5)52. The crossed polarised
optical images of annealed ACPCA thin films recorded through a
Berek compensator are comprised of interlaced finger-like
domains, which is consistent with the formation of a blue
phase53. The domain sizes are considerably smaller than those
reported for small-molecule based systems. We attribute this to
the fact that small-molecule systems are closer to equilibrium and
will undergo Ostwald ripening faster into large domains during
annealing.

As the intensity (Fig. 2) and origins (Fig. 3) of the chiroptical
effects in annealed non-aligned ACPCA and CSCP thin films
appear to be the same, despite different molecular strategies –

chiral additive vs. chiral sidechain to induce a chiral film
structure, we further compared these approaches using in situ
CD mapping (Fig. 7, Supplementary Figs. 18–24). Heating both
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the ACPCA and CSCP thin films causes an increase in the
chiroptical activity of the lowest energy transition associated with
the polymer, although with different kinetics (Fig. 7e, f)). For the
ACPCA thin films, the onset of CD is consistent with the glass
transition temperature of the given polymer. In contrast to the
ACPCA thin films, where the temperature which gives rise to the
strongest chiroptical signal, TCD Max (PFO: 160 °C, F8BT: 125 °C,
F8T2: 120 °C), is sensitive to the chemical structure of the
polymer, TCD Max is the same for both the CSCP thin films
(cPFO: 140 °C, cF8BT: 140 °C) (Fig. 7d), Supplementary Fig. 23),
above which there is considerable CD (≈11,000 mdeg). Further
discussion relating to the phase behaviour of the thin films can be
found in Supplementary Discussions 4 and 5. Taken together, this
data suggests that for ACPCA materials it is essential to
kinetically trap the chiral film structure formed around the glass
transition temperature, whereas for CSCPs the structure induced
by the chiral sidechains is more persistent over repeated heating-
cooling cycles.

To further confirm that it is natural optical activity and not
structural chirality that gives rise to the strong chiroptical
response of non-aligned chiral polymer films, we measured the g-
factors of aligned and non-aligned thin films of different
thicknesses (Supplementary Fig. 25 and Supplementary Discus-
sion 6). Once reflection losses are accounted for, the non-aligned
thin films have thickness independent gabs, as expected from
natural optical activity, whereas aligned thin films show a gabs that
increases linearly as a function of film thickness41.

Discussion
In this study, we compare two approaches to the formation of
chiral polymer thin films: a chiral additive or a chiral sidechain.
While these materials have different phase behaviour and thermal
stability (Supplementary Discussion 5), both allow for a com-
plementary means to achieve chiral polymer films with very large
chiroptical activity. The comparative MMSE data obtained in this
study show that the previously assumed formation of cholesteric
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stacks for these chiral polymer systems only occurs when align-
ment layers are employed. In systems without alignment layers,
the MMSE data can instead be fitted to an optical activity tensor
that represents magneto-electric coupling (Fig. 3, Eq. 2). These
findings indicate that the strong chiroptical effect observed in

non-aligned chiral polymer thin films arises from natural optical
activity as opposed to the mesoscopic structural chirality pre-
viously assumed. Moreover, the observed anisotropy in optical
activity, i.e., the different values of optical activity for light pro-
pagating parallel or perpendicular to the sample surface as
expressed by the optical activity tensor, suggests that not only
inter-chain interactions, but also intra-chain interactions, play a
role in the overall chiroptical response. According to the AFM
and RSoXS data, the magneto-electric coupling in annealed
ACPCA systems may have its origin in the formation of a double
twist cylinder-type blue phase50,51, which to the best of our
knowledge has never been reported for conjugated polymer
materials.

The very large chiroptical effects associated with a natural
optical activity that we report contrast with the small effects
typically observed for small molecules in solution, but is remi-
niscent of the high optical activity of chiral aggregates where
supramolecular chirality leads to CD effects that are magnitudes
higher than those of the isolated molecules54–57. Dissymmetry
factors of isolated chromophores can be enhanced through the
excitonic coupling of dipoles on nearby chromophores. Deloca-
lisation of the excited state over multiple chromophores will also
result in the breakdown of the dipole approximation, as the
extended excited state is no longer significantly smaller than the
wavelength of light. For unaligned ACPCA polymer films, the in-
plane helical periodic modulation of the polymer in the double
twist cylinder blue phase may give rise to a chromophore large
enough to possess no local symmetry, meaning that transitions
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are electrically and magnetically allowed58. Exciton coupling of
nearby polymer chains, as evidenced by the positive and negative
Cotton bands in the CD spectra (Figs. 2 and 7), may serve to
further enhance the chiroptical response, which leads to a greater
contribution from the magnetic transition dipoles and electronic
quadrupole transition to the CP dissymmetry.

It should be emphasised that the majority of applications of
such materials in devices (for example CP-OLEDs) do not use
alignment layers21,30,33,59,60. Therefore, assignment of molecular
packing, and the chiroptical mechanisms that arise from this
packing, which have been generated in aligned thin films cannot
necessarily be valid in situations where such alignment has not
been performed. Moreover, in devices, parameters other than the
CP dissymmetry become important for optimal operation. Thick
film structures are generally not compatible with the majority of
device applications (active layer ≤ 200 nm), where increasing film
thickness typically diminishes device performance. As a result,
chiral materials that can generate large chiroptical responses in
very thin films via natural optical activity have greater techno-
logical potential than those which require structural chirality.
Furthermore, the large dissymmetry factors measured in trans-
mission for aligned polymer thin films arise mainly due to
reflection losses (i.e., the differential reflection of left- and right-
handed light), whereas in the non-aligned polymer films the
dissymmetry is the result of the intrinsic absorption of CPL. Such
an outcome creates many other opportunities in the application
of the aligned/non-aligned films. For example, isotropic non-
aligned films demonstrating a large chiroptical response would be
well suited for the intrinsic photodetection of CPL.

We demonstrate that both chiral sidechain polymers (CSCP)
and achiral polymer/chiral additive blends (ACPCA) can form
chiral structures in non-aligned polymer thin films with excep-
tionally large chiroptical effects. We propose these effects may
occur through the spatial dispersion introduced by the in-plane
helical periodic modulation of polymer fibrils in a double twist
cylinder-type blue phase. In contrast, when an alignment layer is
introduced, the chiroptical effects in transmission occur due to
the creation of a mesoscopic cholesteric-like stack normal to the
substrate plane, where the twist and pitch of the polymer layers
dictate the size of the chiroptical response through dissymmetric
reflection of left- and right-handed CPL. These models unify the
understanding of aligned and unaligned CSCP and ACPCA sys-
tems. The discovery that magneto-electric coupling—and not
longer-range structural chirality—is responsible for the high
dissymmetry of non-aligned chiral polymers will allow the
rational design of polymers for a range of device applications. For
example, the optical models described in this study can be
combined with measurements of the dielectric tensor of other
polymer systems to calculate their chiroptical response in
reflection and transmission. Further, we anticipate that these
findings will inform the design of new conjugated polymers and
device architectures, where chemical structure and backbone
conformation have been optimised to maximise magneto-electric
coupling, allowing for strong chiroptical effects without the need
for alignment and excessively thick active layers.

Methods
Synthesis of cPFBT and cPFO. (S)-3,7-Dimethyloctyl bromide was synthesised
based on the procedure by George, Balasubramanian and co-workers61. 2,7-
Dibromo-9,9-bis[(3 S)-3,7-dimethyloctyl]-9H-fluorene was synthesised based on
the procedure by Fukiji, Nomura and Yamada62. Polymers were purified at room
temperature using chloroform as solvent on a preparative GPC: liquid chroma-
tography apparatus (JAI LaboACE LC-5060 series) equipped with a pump (P-
LA60, flow rate 10 ml min−1), a UV detector (UV-VIS4ch LA, λ = 210 nm, 254
nm, 330 nm, 400 nm) and two columns (Jaigel 2HR and 2.5HR, inner diameter 20
mm × length 600 mm each). Flash chromatography was performed on Fluorochem
Silica Gel 40–63 µm particle size using a forced flow of eluent at 0.3–0.5 bar

pressure63. Bis(1,5-cyclooctadiene)nickel(0) (CAS 1295-35-8) was purchased from
Sigma and taken from a previously unopened bottle. 4,7-Dibromobenzo[c]-1,2,5-
thiadiazole was provided by Cambridge Display Technology. Tris(dibenzylide-
neacetone)dipalladium(0) was recrystallised according to literature procedure64.
NMR measurements were performed on a Bruker AV400 or AV500 spectrometer.
Chemical shifts were referenced to the residual proton solvent peaks (1H: CDCl3, δ
7.26), solvent 13C signals (CDCl3, δ 77.16)65. Signals are listed in ppm, and mul-
tiplicity identified as s = singlet, br = broad, d = doublet, t = triplet, q = quartet,
quin = quintet, sep = septet, m = multiplet; coupling constants in Hz; integration.
Concentration under reduced pressure was performed by rotary evaporation at
around 40 °C at the appropriate pressure. Purified compounds were further dried
under high vacuum (0.1–0.01 mbar). Further details on the synthesis are provided
in the Supporting Information.

Solution preparation and thin film deposition. PFO (MP = 59 K), F8T2 (MW =

54 K), F8BT (MW = 31 K), aza[6]H were dissolved in toluene to a concentration of
20 mg/ml and blended to form a 10% (wt%) aza[6]H solution. The achiral poly-
mers were provided by Cambridge Display Technology (CDT). cPFO and cPFBT
were dissolved in toluene to a concentration of 20 mg/ml. The rubbed alignment
layer was drop-cast from a dilute polyimide sealing resin based on N-methyl-2-
pyrrolidone was purchased from Supelco (product number 23817). Fused silica
substrates were rinsed in an ultrasonic bath in acetone and isopropyl alcohol for 20
min each, which was repeated three times. They were then transferred to an oxygen
plasma asher for 5 min at 80W before spin-coating. Thin films were spin-coated at
2,000 rpm for 60 s. Annealing took place in a nitrogen glovebox, with <0.1 ppm
H2O and O2.

Photophysical and morphological characterisation. Steady-state circular
dichroism (CD) measurements were performed using an Applied Photophysics
Chirascan spectrophotomer. For films demonstrating strong chiroptical activity (>
2000 mdeg), a correction factor is used to calculate the true ΔA and accurate
CDmdeg

66. In situ CD measurements were carried out at the B23 beamline at the
Diamond Light Source using a vertical sample compartment for CD mapping with
the XY motorised temperature controller Linkam MDS600 stage purged with N2

gas. Details of the experimentally set up can be found in references36,37. For the
in situ heating/cooling measurements, the heating rate was 10 °C/min and the
samples were held at a given temperature for 1 min before spectra were acquired.
For the in situ time-dependent measurements, the films were held at a given
temperature and CD was acquired at a single wavelength every 1.25 s. The dis-
symmetry factor (gabs) is calculated from gabs = ΔA/A, where A = ½ (AL+AR),
which refer to absorption of left- and right-handed light, respectively. Ellipticity in
millidegrees can be simply calculated using CDmdeg ¼ CDΔA ´ 32982.

Absorption measurements were acquired using an Agilent Technology Cary 300
UV–vis spectrometer. Film thicknesses were measured using a DektakXT surface
profilometer.

Mueller Matrix Spectroscopic Ellipsometry was performed using a J.A.
Woollam RC2 spectroscopic ellipsometer (model DI). This instrument collects
1091 data points from 193 nm to 1690 nm using a silicon CCD and InGaAs
detector array for wavelengths shorter and longer than 1000 nm, respectively.
Wavelength spacing is 1 nm and 2.5 nm on the Si and InGaAs detectors,
respectively. Data are collected using a dual-rotating compensator ellipsometer
configuration to measure all 15 normalised elements of the Mueller matrix
simultaneously. All data were collected using a collimated beam with diameter of
3–4 mm. Measurements were collected at variable angles of incidence and variable
azimuthal rotations for both the specularly reflected beam and transmitted beam.

Resonant Carbon K-edge soft X-ray scattering measurements were performed
on the (11.0.1.2) soft x-ray scattering beamline at the Advanced Light Source of the
Lawrence Berkeley National Laboratory. The x-ray energy was held at the carbon
K-edge resonance (283.5 eV) and samples were drop-cast on clean silicon nitride
membrane windows (Silson). Scattering intensity was collected in two-dimensions
using a Princeton CCD (full experimental details provided in reference48). The
beam is linearly polarised and can collect diffraction ring arcs in both horizontal to
vertical polarisations.

AFM measurements were carried out using an Asylum Cypher S atomic force
microscope (Oxford Instruments-Asylum Research, Santa Barbara, USA) operating
under ambient conditions. The images (512 × 512 pixels) were acquired in AC
(tapping) mode with a Scout 70 R cantilever from Nunano with a spring constant
of 2 Nm−1 and a resonant frequency of 70 kHz. The typical scan rate was 2.4 Hz.
The data were processed using Gwyddion, a modular program for SPM data
visualisation and analysis.
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