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Epithelial-to-mesenchymal transition (EMT) is a self-regulated physiological process required 

for tissue repair that, in non-controled conditions may lead to fibrosis, angiogenesis, loss 

of normal organ function or cancer. Although several molecular pathways involved in EMT 

regulation have been described, this process does not have any specific treatment. This article 

introduces a systematic review of effective natural plant compounds and their extract that 

modulates the pathological EMT or its deleterious effects, through acting on different cellular 

signal transduction pathways both in vivo and in vitro. Thereby, cryptotanshinone, resveratrol, 

oxymatrine, ligustrazine, osthole, codonolactone, betanin, tannic acid, gentiopicroside, 

curcumin, genistein, paeoniflorin, gambogic acid and Cinnamomum cassia extracts inhibit 

EMT acting on transforming growth factor-β (TGF-β)/Smads signaling pathways. Gedunin, 

carnosol, celastrol, black rice anthocyanins, Duchesnea indica, cordycepin and Celastrus 

orbiculatus extract downregulate vimectin, fibronectin and N-cadherin. Sulforaphane, luteolin, 

celastrol, curcumin, arctigenin inhibit β-catenin signaling pathways. Salvianolic acid-A and 

plumbagin block oxidative stress, while honokiol, gallic acid, piperlongumine, brusatol and 

paeoniflorin inhibit EMT transcription factors such as SNAIL, TWIST and ZEB. Plectranthoic 

acid, resveratrol, genistein, baicalin, polyphyllin I, cairicoside E, luteolin, berberine, nimbolide, 

curcumin, withaferin-A, jatrophone, ginsenoside-Rb1, honokiol, parthenolide, phoyunnanin-E, 

epicatechin-3-gallate, gigantol, eupatolide, baicalin and baicalein and nitidine chloride inhibit 

EMT acting on other signaling pathways (SIRT1, p38 MAPK, NFAT1, SMAD, IL-6, STAT3, 

AQP5, notch 1, PI3K/Akt, Wnt/β-catenin, NF-κB, FAK/AKT, Hh). Despite the huge amount 

of preclinical data regarding EMT modulation by the natural compounds of plant, clinical 

translation is poor. Additionally, this review highlights some relevant examples of clinical 

trials using natural plant compounds to modulate EMT and its deleterious effects. Overall, 

this opens up new therapeutic alternatives in cancer, inflammatory and fibrosing diseases 

through the control of EMT process.

Keywords: natural plants compounds, epithelial-to-mesenchymal transition (EMT), anti-fibrotic, anti-inflammatory, 

anti-oxidant agent
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INTRODUCTION

Epithelial-to-mesenchymal transition (EMT) is a tightly 
regulated physiological process implicated in tissue repair and 
in embryogenesis (Thiery et al., 2009). During EMT, epithelial 
cells undergo multiple morphologic, biochemical and genetic 
rearranges that gradually enable them to acquire a mesenchymal 
phenotype (Kalluri and Weinberg, 2009; Savagner, 2010; Kong 
et al., 2015).

We could consider two types of EMT, a physiological and a 
pathological EMT. The main characteristic of the physiological 
EMT is its ability to self-regulate, and it is related to embryonic 
development, organ formation, wound healing and tissue 
regeneration (Kalluri, 2009). In contrast, pathological EMT 
usually accompanies diseases and does not self-regulate. In this 
last case, EMT is an irreversible process and contributes to the 
failure of diseased organs (Thiery et al., 2009), which justifies the 
scientific investment into controlling such a process. Pathological 
EMT is present in many inflammatory and immunological 
diseases and leads to tissue fibrosis, angiogenesis, loss of organ 
function, cancer progression and metastasis (Corvol et al., 2009; 
Lee et al., 2006; Kalluri, 2009).

Although the involvement of EMT in some organ fibrosis, 
such as of the kidney, is controversial, more evidence about the 
role of pathological EMT has been reported in other organ fibrosis 
including that of the lung, the peritoneum and the heart, as well 
as in cancer progression (Yáñez-Mó et al., 2003; Rastaldi, 2006; 
Thiery et al., 2009; von Gise and Pu, 2012; Hertig et al., 2008).

EMT starts with the dissociation of intercellular junctions 
and the loss of microvilli and apical-basal polarity, followed 
bythe acquirement of a front to back polarity and an increased 
migratory capacity. In the latest stages of EMT, the cell increases 
its capacity to degrade the basement membrane and to invade the 
fibrotic compact zone. Cells that have undergone a mesenchymal 
conversion possess increased capacity to synthesize extracellular 
matrix (ECM) components as well as a large number of pro-
inflammatory, fibrotic and angiogenic factors, including vascular 
endothelial growth factor (VEGF), inducing angiogenesis (Boutet 
et al., 2006; Yoo et al., 2006; Lopez-Cabrera, 2014; Grande et al., 
2015; Lovisa et al., 2015; Cho et al., 2017; Kida et al., 2007).

To control the pathological EMT, many drugs and 
molecular measures with variable results have been tested, 
but this therapeutic target remains a challenge for current 
medicine (Aguilera et al., 2005). Targeting EMT can be a really 
interesting weapon for the treatment of many fibroproliferative, 
cardiovascular and autoimmune diseases, and other pathologies 
such as cancer.

Molecular Mechanisms Involved in EMT 
Regulation
Mechanistically, EMT is a complex, dynamic and progressive 
process that affects the cellular architecture and requires a deep 
molecular reprogramming with new biochemical instructions 
(Lopez-Cabrera, 2014). The EMT process results from an 
integration of diverse signals transduction pathways and multiple 
triggering factors, including inflammatory cytokines, advanced 

glycation end products (AGEs), oxidative stress and hypoxia, 
transforming growth factor-β1 (TGF-β1)/Smads pathway, 
tyrosine kinase receptors, delta-like jagged Notch, caveolin 
(cav)-1, angiotensin receptor and integrins (Figure 1). A master 
molecule in the EMT induction appears to be TGF-β, nontheless 
the number of molecules and routes implicated in EMT is still 
growing (Lopez-Cabrera, 2014). The binding of the TGF-β1 to 
its “primary receptor” (receptor type II) permits the recruitment, 
trans-phosphorylation, and activation of the “signaling receptor” 
(receptor type I), also known as activin receptor-like kinase 
5 (ALK5). Then, ALK5 is able to exert its activity to phosphorylate 
Smad2 and Smad3 (Masszi and Kapus, 2011). These receptor-
activated Smads (R-Smads) form heterodimers with Smad4, a 
common mediator of the Smad pathways. These resulting Smad 
heterocomplexes are translocated into the nucleus, where they 
bind directly to DNA to regulate the transcription of target genes 
(Lopez-Cabrera, 2014). Another group of Smads, known as 
“inhibitory Smads” (e.g. Smad7), control TGF-β1-induced Smad 
signaling by preventing the phosphorylation and/or nuclear 
translocation of R-Smads and inducing receptor heterocomplex 
degradation (Lopez-Cabrera, 2014).

Among the R-Smads, Smad-3 appears to be the key mediator 
in TGF-β-induced fibrosis and EMT (Zhou et al., 2010). In 
this context, it has been shown that the inhibition of Smad3 
activation and nuclear translocation blocks EMT (Zhou et al., 
2010) and tissue fibrosis (Sato et al., 2003). Translocated Smad-3 
into the nucleus controls TGF-β-responsive genes encoding 
integrin-linked kinase (ILK) (Massagué, 2000). The activation of 
ILK by β1-integrins lead to protein kinase B (Akt) and glycogen 
synthase kinase-3 (GSK-3)-beta phosphorylation (Massagué and 
Wotton, 2000).

Phosphorylated-Akt activates nuclear factor-κB (NF-κB) (Tan 
et al., 2002), which induces the expression of Smad-7 (Bitzer 
et al., 2000) emphasizing the self-regulated nature of the whole 
EMT process (Figure 1). On the other hand, phosphorylated-
GSK-3β is inactive, what subsequently stabilizes β-catenin, 
released from the adherens junction, and activator protein-1 
(AP-1) (D’Amico et al., 2000). When stabilized, β-catenin per se 
may induce EMT (Kim et al., 2002a), while AP-1 activates matrix 
metalloproteinase (MMP)-9 expression inducing the invasion of 
the ECM (Troussard et al., 2000).

The Smad-dependent pathways are not the only ways by 
which TGF-β1 regulate the EMT process. Smad-independent 
pathways also participate in TGF-β1-induced EMT. These 
pathways can either potentiate or modulate the outcome of 
TGF-β1-induced Smad signaling (Lopez-Cabrera, 2014). Amain 
Smad-independent signalling pathway activated by TGF-β1/
receptor I interaction is the Ras homolog gene family member A 
(RhoA)/rho-associated, coiled-coil-containing protein kinase 1 
(ROCK1) pathway. This route regulates cytoskeleton remodelling 
and cellular migration and invasion. RhoA also induces the 
expression of alpha smooth muscle actin (α-SMA) in a ROCK-
independent manner (Masszi et al., 2003).

TGF-β1 also activates the H-Ras/Raf/extracellular signal-
regulated kinase (ERK) pathway, necessary for the induction of 
transcription factor SNAIL1 expression and of EMT (Peinado 
et al., 2003; Barberà et al., 2004; Huber et al., 2004), cooperating 
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with fibroblast growth factor (FGF), a potent inducer of the 
mentioned route (Peinado et al., 2003). SNAIL1 regulates EMT 
by inhibiting E-cadherin (Cano et al., 2000; Poser et al., 2001) and 
by inducing growth arrest and survival, which confer advantage 
to migrating transdifferentiated cells (Vega et al., 2004).

The Notch signalling pathway is another EMT-activating 
route, able to induce SNAIL1 and SNAIL2 expression, down-
regulating E-cadherin. The TGFβ/Smads classical pathway is 
able to cooperate with different signaling routes. The association 
of the tumor necrosis factor (TNF)-receptor associated factor 6 
(TRAF6) with the TGFβ receptor heterocomplex activates 
TGFβ-activated kinase 1 (TAK1) and, as a result, p38 and c-Jun 
N-terminal kinase (JNK) (Thiery et al., 2009). Other stimuli 
such as advanced glycation endproducts AGEs are able to induce 
EMT by acting on specific cellular receptors (RAGE) (Chen et 
al., 2016b). Reactive oxygen species (ROS) can also directly 
activate TGF-β, the production of ECM, MMP and RAS (Thiery 
et al., 2009) (Figure 1). Finally, the activation of mammalian 
target of rapamycin (mTOR) induces inflammatory processes 
mediated by T helper 17 (Th17) cells, TH17, which in turn also 
triggers EMT (Liappas et al., 2015).

Active Substances Derived from Plants 
Capable of Regulating EMT
Natural plant compounds (NPCs) have been used for many years 
as a source of therapeutic substances and a structural basis for 
drug elaboration. Unique architectures that can lead to novel 
therapeutic agents are provided by nature (Newman and Cragg, 
2007; Song et al., 2014; Khan and Gurav, 2017).

NPCs are bioactive elements isolated from natural sources 
(plants) that can regulate the EMT through anti-inflammatory, 
anti-fibrotic or antioxidant mechanisms (Boldbaatar et al., 2017). 
Bioactive natural components are presented in this review which 
delves into their mechanisms of action against EMT (Table 1).

Arctigenin (ARC). It has been proposed as an anti-
inflammatory and anti-cancer substance. In human lung 
cancer cells, ARC has been shown to inhibit TGF-β-induced 
phosphorylation, smad2/3 transcriptional activity, snail and 
N-cadherin expression, by contrast increasing the expression 
of E-cadherin in dose and time dependent manners. It blocks 
ERK-phosphorylation and β-catenin transcriptional activity. 
Through these mechanisms, ARC represses TGF-β-induced 
EMT (Xu et al., 2017).

FIGURE 1 | Key events during the development of epithelial-to-mesenchymal transition (EMT) and target pathways for therapeutic use of natural plant compounds 

(NPCs). The diagram shows key essential steps for the EMT course. Briefly, BMP7 and hepatocyte growth factor (HGF) are responsible for maintaining the cellular 

epithelial phenotype. Both molecules maintain E-cadherin and Smads1, 5, 7 and 8 expressions, and block Smads 2 and 3. On the other hand, inflammatory 

conditions triggered by exogenous or endogenous factors lead to a dysregulation of Th17/Treg equilibrium with IL6 synthesis that stimulates NFκB and induces 

EMT. Advanced glycation end products (AGEs) induce proteins structural crosslink, stimulate inflammatory response (monocytes), oxidative stress and finally 

uprregulation of Snail, leading to EMT. These effects are mediated through specific receivers called RAGES. Reactive oxigen species (ROS) generate oxidation 

and stimulate TGF-β, αSMA, RAS/RAF/MEK/ERK cascade and matrix metalloproteinases (MMPs) upregulation initiating cell migration. TGF-β initiates the 

classic route of EMT induction overexpressing Snail, Slug, N-Cadherin, Smads 2 and 3 and downregulating E-Cadherin and Smads 1, 5, 7 and 8. TGF-β also 

stimulates RhoA/ROCK and finally NFκB. Growth factors also stimulate the RAS/RAF/MEK/ERK cascade and MMPs upregulation, again inducing cell migration 

and invasion. Likewise they stimulate the P13k/ integrin-linked kinase (ILK)/ protein kinase B (Akt) cascade and GSK3β is blocked. Inflammatory cytokines 

such as IL6 also stimulates signal transducer and activator of transcription 3 (STAT3), vascular endothelial growth factor (VEGF) and MMPs inducing migration, 

invasion and angiogenesis. Finally Notch-1C directly induces mesenchymal genes such as N-Cadherin. The numbers in green indicate where each NPC acts. 

Many of them have an effect on several molecules or pathways. Depending on the target route over which the corresponding NPC acts, we have defined the 

following groups (green numbers). Group 1 acts by increasing ZO-1 expression: (Plumbagin), Group 2 acts by decreasing IL-1β action: (Baicalin), Group 3 acts 

by blocking Smad 2/3 phosphorilation; Paeoniflorin, Eupatolide, Gallic acid, Cairicoside E. Group 4 acts by up-regulating E-cadherin expression: α-solanine, 

Osthole, coumarin, Betanin, Cinnamomum cassia extracts, Genisteín, Withaferin A, Gedunin, Celastrus orbiculatus extract, Celastrol, Black rice anthocyanins, 

Duchesnea extracts, Cordycepin, Nitidine chloride, Phoyunnanin E, Epicatechin-3-gallate, Honokiol, Gallic acid, Piperlongumine, Brusatol, Berberine. Group 5 acts 

by inhibiting NFk-β signaling: Honokiol, Parthenolide, Baicalin and baicalein Group 6 acts by inhibiting NEDD9/Rac1 signaling: Acid plectranthoic. Group 7 acts 

by blocking TGF-β-1 signaling: Cryptotanshinone, Resveratrol, Oximatrina, Ligustrazina, Osthole, coumarin, Codonolactone, Betanin, Tannic acid, Cinnamomum 

cassia extracts Cairicoside E, Gentiopicroside, Genistein, Paeoniflorin, Gambogic acid, Arctigenin, Curcumin, Baicalin and baicalein, Baicalin and Cairicoside-E. 

Group 8 acts by downregulating hedgehog (Hn) signaling: Resveratrol, Sedum sarmentosum Bunge and extract Nitidine chloride Group 9 acts by decreasing 

Twist and ZEB expression: Resveratrol, Paeoniflorin, Jatrophone, Gedunin, Nitidine chloride, Plumbagin, Honokiol, Phoyunnanin E, Gallic acid, Piperlongumine, 

Brusatol, Nimbolide, Baicalin and baicalein. Group 10 acts by downregulation Snail expression: Resveratrol, Osthole, coumarin, Paeoniflorin, Gedunin, Celastrol, 

Nitidine chloride, Plumbagin, Phoyunnanin E, Piperlongumine, Berberine and Nimbolide. Group 11 acts by Inhibit Nrf2-mediated oxidative stress signaling 

pathway: Betanin, Salvianolic-acid-A and Plumbagin. Group 12 acts by Suppressing focal adhesion kinase (FAK)/AKT signaling: Phoyunnanin, Epicatechin-3-

gallate, Gigantol and Eupatolide. Group 13 acts by blocking P13K/Akt cascade: Berberine, Nimbolide, and Curcumin. Group 14 acts by blocking Wnt/β-catenin 

Wnt signaling: Withaferin A, Jatrophone, Ginsenoside-Rb1 and Withaferin-A. Group 15 acts by down-regulated β-Catenin expression: Celastrol, Sulforaphane, 

Arctigenin, Plumbagin, Curcumin and Luteolin. Group 16 acts by down-regulating MMPs expression: α-solanine, Resveratrol, Cinnamomum cassia extracts, 

Paeoniflorin and Celastrus orbiculatus extract. Group 17 acts by inhibiting IL-6 activity: Baicalin and Polyphyllin-I. Group 18 acts by blocking Notch-1 signaling: 

Gedunin, Nimboliden and Luteolin. Group 19 acts by down-regulating N-cadherin expression: Tannic acid, Paeoniflorin, Gedunin, Celastrus orbiculatus extract, 

Celastrol Duchesnea indica, Cordycepin, Nitidine chloride, Honokiol, Phoyunnanin E, Gigantol, Gallic acid, Berberine and Nimbolide. Group 20 acts by down-

regulating Vimentin expression: α-solanine Tannic acid, Cinnamomum cassia extracts, Paeoniflorin, Withaferin A, Jatrophone, Gedunin, Celastrus orbiculatus 

extract, Celastrol Black rice anthocyanins, Duchesnea indica, Nitidine chloride, Plumbagin, Phoyunnanin E, Gigantol, Gallic acid, Berberine and Nimbolide. Group 

21 acts by down-regulation Fibronectin expression: Tannic acid, Cinnamomum cassia extracts, Jatrophone, Withaferin A, Black rice anthocyanins, Duchesnea 

indica, Epicatechin-3-gallate, Gallic acid and Berberine. Group 22 acts by down-regulating α-SMA expression: Betanin, Celastrol and Salvianolic-acid-A. Group 23 

acts by blocking extracellular signal-regulated kinase (ERK) signaling: Arctigenin, Gigantol, Eupatolide and Nimbolide. Group 24 acts by blocking STAT- 3 signaling: 

Honokiol and Polyphyllin-I. Group 25 acts by blocking mammalian target of rapamycin (mTOR) signaling: Nimbolide. Group 26 acts by suppressing the cav-1 

phosphorylation, stabilizating β-catenin: curcumin.
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TABLE 1 | Natural plants compounds able to modulate epithelial-to-mesenchymal transition (EMT).

Target Scientific name of 

plant

Active compounds EMT-related signaling pathways Type of study References

7,15,23 Asteraceae 

plants
O

O O

OH

H
3
C

OH
3
C

O

H
3
C

Arctigenin 
(ARC)

Represses TGF-β-induced phosphorylation of ERK 

and transcriptional activity of β-catenin

In vitro Xu et al., 2017

2,7,5,9,17 Scutellaria baicalensis 

Georgi

Baicalin and baicalein

O

OH

HO

O

O

O

OH

HO

HO

OHO

O

OH

HO

HO

O

Blocks TNF-α and IL-1B, reduce TGF-β1, TNF-

α, IL-6 and increase IL-10 (anti-inflammatory 

cytokine). 

Downregulates Slug expression and block NF-κB 

pathway signaling.

In vitro Chung et al., 2015; Zheng et al., 

2016

4,10,13,19,20,21 Berberis 

vulgaris,aristata

and aquifolium

Berberine

N
+

O

O

O

O
CH

3

CH
3

Increases E-cadherin and decreases N-cadherin, 

vimentin, fibronectin and β-catenin. Inhibits snail1, 

slug, and ZEB1. Blocks PI3K/AKT and RARα/

RARβ.

In vitro Kou et al., 2016

4,7,11,22 Opuntia elatior Mill. Betanin

HO

O

O

OH

HO

HO

HO

N

O

OH

N

O

OH

O

HO

Blocks TGF-β signal pathway and modulates 

mRNA and protein expression of TGF-β, type IV 

collagen, α-SMA and E-cadherin and regulates 

oxidative stress and TGF-β pathway 

In vivo Sutariya and Brijesh, 2017

4,20,21 Oryza sativa L. Black rice anthocyanins (BRACs).

9 anthocyanins have been detected in black 

rice (Hao et al., 2015)

Upregulates E-cadherin, and decreases fibronectin 

and vimentin expression

In vivo and in vitro Sehitoglu et al., 2014; Hou, 2003; 

Zhou et al., 2017

4,9 Bruceae fructus Brusatol 
(BR)

O

O

HO

CH
3

OH

H
O

HO

O

H

H

CH
3

O CH
3

CH
3

O
H

O

O
CH

3

Increases E-cadherin mRNA expression and 

decreases Twist expression

In vitro Lu et al., 2017

2,7 Rosemary (Rosmarinus 

officinalis L.) 
Carnosol (CAR) Controls the TNF-α/TGF-β-induced EMT and 

modulating the activation of miR-200c.

In vitro Giacomelli et al., 2017

4,10,15,19,20,22 Tripterygium wilfordii Celastrol (also named tripterine)

CH
3

H

CH
3

CH
3

HO

O

CH
3

CH
3

CH
3

OHO

Upregulates E-cadherin and down-regulates 

N-cadherin, Vimentin and Snail

In vivo and in vitro Lin et al., 2015

Downregulates β-catenin, N-cadherin, vimentin, 

α-SMA, FSP-1 and collagen expression and 

inhibits heat shock protein 90 signaling

In vivo and in vitro Divya et al., 2018

(Continued)
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TABLE 1 | Continued

Target Scientific name of 

plant

Active compounds EMT-related signaling pathways Type of study References

3,7 Ipomoea cairica Cairicoside E

(CE)

Down-regulates AQP5 expression and suppresses 

p-Smad2/3 induced by TGF-β1

In vitro and in vivo Chen et al., 2017a

4,16,19,20 Celastrus orbiculatus Celastrus orbiculatus extract (COE) 

There are 11 compounds in the stems 

(Li et al., 2012a).

Reduces angiogenesis by targeting the VEGF 

protein

In vitro and in vivo Qian et al., 2012

Activates MAPK and inhibits Akt signaling 

pathways

In vitro Zhang et al., 2012a

Inhibits Cofilin 1 signaling pathway, N-cadherin, 

vimentin, MMP-2 and MMP-9 protein expression 

and upregulates E-cadherin protein expression 

in vitro Wang et al., 2017b

4,7,16,20,21 Cinnamomum cassia Cinnamomum cassia extracts (CCE) 

There are 15 compounds in the bark

(Zhao et al., 2013)

Inhibits TGF-β1 by repressing MMP-2 and 

urokinase-type plasminogen activator also 

downregulating expression of vimentin and 

fibronectin and upregulating E-cadherin

In vitro Lin et al., 2017

7 Atractylodes lancea Codonolactone (CLT)

O

CH
2

O

H
3
C

CH
3

OH

H

Suppresses of TGF-β signal pathway and Runx2 

phosphorylation

In vivo and in vitro Fu et al., 2016

4,19 Cordyceps sinensis  Cordycepin (3′-deoxyadenosine)

N

N N

N

NH
2

O
HO

OH

Upregulates E-cadherin and downregulates 

N-cadherin protein expression

in vitro Su et al., 2017

7 Salvia miltiorrhiza

O

H
3
C CH

3

O

O

CH
3

Cryptotanshinone 
(CTS)

Inhibits TGF-β1/ Smad3/integrin β1 signaling 

pathway

In vivo and in vitro Li et al., 2015; Zhu et al., 2016; 

Jin et al., 2013; Ma et al., 2012; 

Ma et al., 2014; Wang et al., 

2017c

7,13,15,26 Curcuma longa Curcumin  (diferuloylmethane)

HO

O
CH

3

O O

OH

O
CH

3

Blocks the PI3K/Akt/NF-κB signaling pathway In vitro Li et al., 2018b

Suppresses the cav-1 phosphorylation stabilizating 

β-catenin

In vivo and in vitro Sun et al., 2014

Inhibits TGF-β/Smad signaling In vivo and in vitro Kong et al., 2015

9,14,20,21 Jatropha isabelli and 

Jatropha gossypiifolia

H
3
C

H
3
C

O

H
3
C

H
3
C

O

O

CH
3

Jatrophone 
(JA). 

Inhibits Wnt/β-catenin signaling and reduces 

mRNA expression levels for SLUG, fibronectin and 

vimentin.

In vitro Fatima et al., 2017

(Continued)
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TABLE 1 | Continued

Target Scientific name of 

plant

Active compounds EMT-related signaling pathways Type of study References

4,19,20,21 Duchesnea indica and 

Duchesnea chrysantha

Duchesnea extracts.

Involve a wide range of chemical 

compounds.

Downregulates N-cadherin, fibronectin and 

vimentin and upregulates E-cadherin expression. 

Exerts antioxidant action.

In vivo and in vitro Chen et al., 2017c; Kim et al., 

2002b; Kim et al., 2007; Hu et al., 

2009; Hu et al., 2011

4,12,21 Green tea leaves

O

O

OH

OH

HO

OH OH

OH

OH

O

Epicatechin-3-gallate 
(ECG)

Downregulates fibronectin expression, inhibits 

p-FAK and upregulates E-cadherin expression

In vivo and in vitro Huang et al., 2016

3,12,23  Inula britannica Eupatolide
O

O

CH
2

H

CH
3

CH
3

H

OH

Suppresses TGF-β1-induced EMT via 

downregulation of Smad3 phosphorylation and 

decreasing the TGF-β type 1 receptor. 

In vitro Lee et al., 2010a; Kim et al., 2013; 

Wrighton et al., 2009; Boldbaatar 

et al., 2017

3,4,9,19,20,21 Polygonum minus Gallic acid O

HO

HO

OH

OH

Downregulates collagen types I, III, fibronectin, 

CTGF, N-cadherin, vimentin, SNAI1, TWIST1 

expression, and Smad3 phosphorylation 

In vitro and in vivo Kee et al., 2014; Ryu et al., 2016; 

Jin et al., 2017

7 Garcinia hanburyi 

Hook.f.

O O

O

H
3
C

CH
3

CH
3

O

O

OH

H
3
C CH

3

CH
3H

3
C

CH
3

OH

O

Gambogic 
acid (GA)

Suppresses TGF-β1/Smad3 pathway signaling and 

modulates VASH-2/VASH-1

In vitro and in vivo Qu et al., 2016

4,9,10,18,19,20 Azadirachta indica Gedunin

O

O

O

CH
3

H

O
H

CH
3

H
3
C

CH
3

CH
3

O

O

CH
3

O

Decreases expression of N-Cadherin, Slug, Snail, 

Vimentin, Notch 1 and 2, and Zeb while increases 

expression of E-cadherin. 

In vivo and in vitro. Subramani et al., 2017

7,4 Soybeans Genistein 
OHO

HO

O
OH

Downregulates TGF-β pathway signaling. In vitro Kim et al., 2015

Blocks Smad4-dependent and independent 

pathways signaling through p38 MAPK

In vitro Han et al., 2012

Downregulates the nuclear factor of activated T 

cells 1 (NFAT1)

In vitro Dai et al., 2015

7 Gentianae 

O O

O

O

OH

OH
O

CH
2

H
OH

OH

Gentiopicroside (GPS) Downregulates the expression of TNF-alpha, 

IL1-b, TGF-β1 and CTGF

In vivo and in vitro Chen et al., 2017b

12,19,20,23 Dendrobium draconis Gigantol

HO

O
H

3
C

OH

O
H

3
C

Downregulates N-cadherin, vimentin, and Slug, 

Inhibits AKT, ERK, and caveolin-1 (cav-1) signaling

In vitro Unahabhokha et al., 2016

(Continued)
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TABLE 1 | Continued

Target Scientific name of 

plant

Active compounds EMT-related signaling pathways Type of study References

14,15 Panax quinquefolius 

and 

notoginseng

Ginsenoside-Rb1

O

O

O

O

O

O

O

O

HO

HO

HO

OH

OH

OH

OH
CH

3

H
3
C

H
3
C

H

CH
3

HO
H

CH
3

CH
3

H

H
CH

3
H

3
C

H

HO

HO

HO

HO

OH

HO

H

HO

Inhibits Wnt/β-catenin signaling and EMT In vitro Deng et al., 2017

4,5,9,19,24 Magnolia spp. 

(officinalis, obovata, and 

grandiflora) 

OH

OH

H
2
C

H
2
C

Honokiol (HNK) Downregulates Stat3 and Zeb1 expression. 

Upregulates E-cadherin 

in vitro and in vivo Avtanski et al., 2014

Downstream pathways of c-FLIP are NF-κB 

signaling and N-cadherin/snail signaling

Lv et al., 2016

7 Ligusticum wallichii 

Franchat. 
Ligustrazine 
(LIG) 

N

N

CH
3

H
3
C

CH
3

CH
3

Downregulates the TGF‐β1-induced loss of 

cytokeratin-18 expression.

In vivo Yuan et al., 2012

15,18 Naturally found in 

several plant species 

including Lonicera 

japonica

(Caprifoliaceae)

Luteolin

O

OH

OH

HO

OH O

Suppresses Notch1 signaling In vitro Zang et al., 2017

Downregulates β-catenin expression. Upregulates 

epithelial markers (E-cadherin and claudin) while 

downregulates mesenchymal markers (N-cadherin, 

vimentin, Snail and Slug).

in vitro and in vivo Lin et al., 2017

9,10,13,18,19,20,23,25 Azadirachta indica Nimbolide

O

O

O

O

O

CH
3

CH
3

H

H

CH
3

CH
3

H

O

O

H
3
C

H

Reduces PI3K/AKT/mTOR and ERK signaling and 

decreases Notch-2, N-cadherin, vimentin and 

Snail, Slug and Zeb expression

In vitro Bodduluru et al., 2014; Hao et al., 

2014; Subramani et al., 2016

4,8,9,10,19,20 Zanthoxylum nitidum

N
+

O

O

O

O
CH

3

CH
3

H
3
C

Cl
–Nitidine chloride 

(NC)

Inhibits cellular migration and invasion.

Downregulates Snail, Slug and Zeb1, decreases 

N-cadherin and Vimentin and increases E-cadherin 

expression

In vitro Sun et al., 2014; Sun et al., 2016

4,7,10 Cnidium monnieri Osthole

O O

CH
3

H
3
C

O
H

3
C

Inhibits the TGF-β/Akt/MAPK pathways signaling, 

reduces Snail-DNA-binding activity and induces 

E-cadherin expression

In vivo and in vitro. Wen et al., 2015

7 Sophora japonica Oxymatrine (OM) 

N
+

N

O

H H

H

H

O
–

Blocks TGF-β1/Smad pathway signaling Liu et al., 2012; Wu et al., 2008; 

Shi and Li, 2005; Chen et al., 

2008; Shen et al., 2011; Fan 

et al., 2012; Liu et al., 2016 

(Continued)
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TABLE 1 | Continued

Target Scientific name of 

plant

Active compounds EMT-related signaling pathways Type of study References

3,7,9,10,16,19,20 Paeonia lactiflora 

Pallas

Paeoniflorin
(PF)

O O

O

O

O

O

OH

HO

H
H

3
C

HO

H

H

HO

OH

Downregulates TGF-β1 expression, maintains BMP-7 

mRNA expression, and inhibits Smad2/3 activation 

In vivo Zeng et al., 2013

Downregulates TGFβ, snail, N-cadherin, vimentin 

and MMP-2/-9 expressions

In vivo and in vitro Wang et al., 2018

Inhibits collagen-I synthesis and downregulates 

Snail and Slug expressions upregulating smad7

In vivo Ji et al., 2016

16,15,11,5,4 Paeonia 

suffruticosa Andrews 

(Cortex Moutan)

Paeonol Decreased the expression levels of PCNA, 

β-catenin, p53, and COX-2. Upregulated 

E-cadherin and MMP-2/-9, also eliminates ROS

In vivo and in vitro Lu et al., 2018; Zhang et al., 2015; 

Lin et al., 2014; Chou, 2003

5 Tanacetum parthenium
O

CH
3

O

H
2
C

OH

H

CH
3

Parthenolide 
(PTL)

Blocks EMT via the NF-κB/Snail pathway In vitro and in vivo Hehner et al., 1999; Li et al., 2018a

6 Ficus microcarpa

CH
3

H
3
C

CH
3

CH
3

CH
3

CH
3

H

CH
3

H

H
HO

O

HO

Plectranthoic acid 
(PA) 

Inhibits NEDD9/Rac1 signaling In vitro Akhtar et al., 2018

4,9,10,12,19,20 Dendrobium venustum

O

HO

HO O

CH
3

OH

O
CH

3

Phoyunnanin E Suppresses FAK/AKT signals, decreases 

N-cadherin, vimentin, snail, and slug, and 

increases E-cadherin 

In vitro Petpiroon et al., 2017

4,9,10 Piper longum

N
O

CH
3

O
CH

3

O
CH

3

O OPiperlongumine 
(PL)

Downregulates the expression of Snail, Slug, 

β-catenin, zeb1, N-Cadherin, Claudin-1, and ZO-1

In vivo and in vitro Liu et al., 2017

1,9,10,11,15,20 Plumbaginaceae 

plants

Plumbagin (PLB) O

O

CH
3

OH

Inhibits Nrf2-mediated oxidative stress signaling 

pathway. Downregulates snail, slug, TCF-8/ZEB1, 

β-catenin, and vimentin and upregulates claudin-1 

and ZO-1 expression.

In vitro Pan et al., 2015

17,24 Polyphylla rhizomes

O
O

CH
3H

3
C

H

H
CH

3

HCH
3

HH

O

O

HO

O

H
O

HO

O

H

OHHO

HO

O

OH

HO

CH
3

H

HO

Polyphyllin I 
(PPI)

Blocks IL-6/STAT3 signaling pathway and 

stimulates epithelial marker expressions. Blocks 

EGF receptor tyrosine kinase inhibitors.

In vitro Lou et al., 2017

7,9,10,8,16 Resveratrol (can be 

obtained from grapes, 

wine, mulberries and 

peanuts)

Resveratrol (RSV; trans-3,5,4-
trihydroxystilbene)

OH

HO

OH

Suppresses TGF-β1-induced EMT, downregulates 

Snail and Slug expression, up-regulates E-cadherin 

and down-regulates fibronectin and vimentin

In vitro Wang et al., 2013

Inhibits the Hedgehog signaling pathway In vitro Bai et al., 2014b; Gao et al., 2015

Upregulates SIRT1 and inhibits Smad4 and MMP7 

expression

In vivo and in vitro Xiao et al., 2016

Suppresses MMP-2/-9 via MAPK and NFkb signals In vitro Liu et al., 2010a; Yang et al., 2009

Represses EGF-induced ERK In vitro Vergara et al., 2011

Downregulates Zeb-1, Slug and Snail. In vitro Shankar et al., 2011

(Continued)
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TABLE 1 | Continued

Target Scientific name of 

plant

Active compounds EMT-related signaling pathways Type of study References

11,22 Salvia miltiorrhiza 

Bunge
Salvianolic acid A (SAA)

O

HO

OH

O

O

HO

OH

OH

OH

OH

Downregulates α-SMA expression, suppresses 

oxidative stress. Inhibits the Nrf2/HO-1 pathway 

signaling 

 In vivo and in vitro Chen et al., 2016a; Chen et al., 

2017d

8 Sedum sarmentosum 

Bunge

Sedum sarmentosum Bunge (SSBE) extract Downregulates the Hedgehog signaling activity. In vivo and in vitro Bai et al., 2014a; Bai et al., 

2014b; Bai et al., 2017

15 Cruciferous plants

“broccoli sprouts”
N

S
CH

3

O

C
S

Sulforaphane Blocks miR-616-5p/GSK3β/β-catenin pathway 

signaling

In vivo and in vitro Wang et al., 2017a

7,19,20,21 Natural dietary 

polyphenolic 

compound

Tannic acid (TA) Reduces the TGF-β1-induced increase in TGF-β 

receptors expression. Decreases expression of 

N-cadherin, type-1-collagen, fibronectin, and 

vimentin.

In vitro Pattarayan et al., 2018

4,14,15 Withania somnifera Withaferin A (WA)

O
O

O

O

CH3

OH

OH

CH
3

CH3

H H

H

CH3

H
H

 

Witha-D partially inhibits EMT acting on 

Wnt/β-catenin signaling and recovering E-cadherin 

expression

In vitro Chaurasiya et al., 2008; Sarkar 

et al., 2014

4,16,20 Solanum nigrum Linn.

N

CH
3

HCH
3

CH
3H

CH
3

H

H

HH

O

O

HO

O O

HO

O

O

OH

OH

OHH
3
C

OH

HO

HO

HO

α-solanine  

 

Reduces ERK and PI3K/Akt phosphorylation. 

Inhibits expression of MMP-2/-9, decreases 

vimentin, and increases E-cadherin.

In vitro Shen et al., 2014

Chemical structures of the natural products included in this publication were obtained from scifinder and drawn with the program MarvinSketch.
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Baicalin and baicalein. These molecules significantly 
decreased the TGF-β1-mediated EMT, by reducing the Slug 
expression and NF-κB signaling pathway in mammary epithelial 
cells. Likewise, both molecules decremented growth and cell 
migration capacities of human breast cancer cells (Chung et al., 
2015). In the same way, baicalin also inhibited SMADs 2 and 3 
phosphorylation and suppressed migration and invasion in 
pancreatic cancer cells (Zheng et al., 2016).

Berberine. It exhibits strong anti-cancer, anti-inflammatory, 
and anti-microbial effects (Tillhon et al., 2012). Kou et al. 
detected that berberine markedly upregulated E-cadherin 
and downregulated N-cadherin, fibronectin and vimentin 
expressions. Cadherin-bound β-catenin, which is required for 
cell adhesion, was also inhibited. The therapeutic espectrum of 
berberine also involved the downregulation of Snail, Slug and 
zinc finger E-box binding homeobox 1 (Zeb1) as well as the 
regulation of PI3K/Akt and retinoic acid receptor alpha and beta 
(RARα/RARβ) signaling, acting on the proliferation capacity of 
various cancer cells (Liu et al., 2015; Kou et al., 2016).

Betanin. It presents powerful anti-oxidative and anti-
inflammatory activities. Studies from Sutariya and Brijesh 
showed that betanin reduces streptozotocin (STZ) fibrosis 
induced in diabetic nephropathy model, by modulating EMT 
associated markers such as of TGF-β, type IV collagen, α-SMA 
and E-cadherin expression. Therefore, betanin can efficiently 
suppress renal fibrosis in diabetic nephropathy and may slow 
down the advancing to end-stage renal disease by regulating 
TGF-β pathway (Sutariya and Brijesh, 2017).

Black rice anthocyanins (BRACs). These NPCs are extracted 
from the black rice, considered as a healthy food due to its 
effects on the liver and gastrointestinal tract (Kong et al., 2012). 
Anthocyanins happen to have potential beneficial effects such 
as antioxidant, anti-inflammatory, anti-cancerous and anti-
metastatic effects (Hou, 2003; Sehitoglu et al., 2014). Zhou et al. 
observed that focal adhesion kinase (FAK) signaling pathway 
plays a function in the anti-metastatic properties of BRACs, 
decreasing the adhesion, migration and invasion of human 
HER-2-positive breast cancer cells in vitro. Likewise, these 
NPCs significantly modified the morphology of those cells from 
a mesenchymal to an epithelial phenotype. BRACs elevated 
the expression of E-cadherin and reduced the expression of 
fibronectin and vimentin (Zhou et al., 2017).

Brusatol (BR). This NPC strongly inhibits pancreatic tumor 
action in vitro (Zhao et al., 2011). Research sugests that BR 
could sensitize the current first-line chemotherapeutic agents to 
pancreatic cancer via inhibition of the EMT process. It has been 
proven that BR increased E-cadherin while decreasing vimentin 
protein expressions, and also reducing Twist mRNA expression 
(Lu et al., 2017).

Carnosol (CAR) is a naturally occurring phenolic diterpene 
located in several Mediterranean herbs and is a main component 
of rosemary (Rosmarinus officinalis L). It has been reported 
that the CAR anti-proliferative actions is preferentially directed 
towards cancer cells, as reported in both animal and in vitro 
models. Furthermore, CAR presented a favourable therapeutic 
option in glioblastoma cells (Johanson, 2011; Vergara et  al., 
2014; Giacomelli et al., 2016). CAR could interfere with the diverse 

processes implicated in cancer resistance and aggressiveness, 
such as cancer stem cells (CSC) formation, proliferation and self-
renewal. Fascinatingly, also diminished the influence of the cancer 
microenvironment by reducing the cytokine- induced EMT 
that underlies the possession of the mesenchymal phenotype. 
Likewise, CAR had the ability to reactivate the p53 functionality 
promoting CSC proliferation control and decreasing EMT was 
highlighted for the first time (Giacomelli et al., 2017).

It also possesses anti-cancer effects on several tumor types. 
It has shown to promote apoptotic cell death through p53 
functional reactivation and to control the TNF-α/TGF-β-
induced EMT, counteracting the effects of the cytokine on EMT 
master regulator genes (Slug, Snail, Twist and ZEB1). It has also 
been demonstrated that CAR is able to modulate the activation 
of miR-200c, a key player in the EMT process. Finally, CAR 
increase the temozolomide anti-proliferative effects in vitro 
(Giacomelli et al., 2017).

Cairicoside E (CE). It has been published that this compound 
down-regulates the Aquaporin-5 (AQP5) expression and 
suppressed the EMT process in colon-rectal cancer cells. Research 
suggested that TGF-β1 increased the expression of AQP5 and 
activated the EMT byincreasing the expressions of p-Smad2/3, 
while silence of AQP5 with CE blocked the levels of p-Smad2/3 
(Chen et al., 2017a).

Celastrol. It is a pharmacologically active element that 
demonstrates significant therapeutic actions in chronic 
inflammatory, autoimmune, cancer, and neurodegenerative 
disorders (Allison et al., 2001; Dai et al., 2010; Ge et al., 2010; 
Venkatesha et al., 2011; Wong et al., 2012). Recently, Divya et al. 
suggested that celastrol decreased the N‐cadherin, snail, slug, 
vimentin and β‐catenin expression in a Bleomycin‐induced lung 
fibrosis rat model. They, likewise, feature this anti-EMT effect 
to the inhibition of heat shock protein 90 inhibition (Divya 
et al., 2018). Other research established that celastrol suppresses 
inflammatory reactions, as well as regulates oncogenic proteins 
including β-catenin. Celastrol also decreases pro-inflammatory 
cytokines (TNF-α, IL-1β and IL-6) serum concentrations, down-
regulates cyclooxygenase 2 (COX-2), inducible nitric oxide 
synthase (iNOS), N-cadherin, Vimentin and Snail expressions, 
inactivates NF-κB and upregulates E-cadherin (Lin et al., 2015).

Celastrus orbiculatus Thunb extract (COE). The extracts 
from the stems of this plant constitute 11 compounds (Li et al., 
2012a). The ethyl acetate of COE constrains the proliferation, 
EMT (targeting VEGF, activating MAPK and inhibiting Akt 
signaling pathways), invasion and metastatic faculties of 
tumor cells (Qian et al., 2012; Zhang et al., 2012a). Moreover, 
COE is used in the antiinflammatory and analgesic handling 
of various diseases. In human gastric cancer AGS cells, it has 
been observed that Cofilin 1, Ncadherin, vimentin, MMP2 
and MMP9 proteins expressions were significantly reduced by 
COE, whereas the Ecadherin expression was increased (Wang 
et al., 2017b).

Cinnamomum cassia extracts (CCE). Fifteen compounds were 
isolated from the bark extract of C. cassia growing in China (Zhao 
et al., 2013). These extracts were shown to diminish the TGF-β1-
induced motility and invasive capacities of A549 and H1299 cells 
by inhibiting MMP-2 and urokinase-type plasminogen activator. 
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Moreover, they impaired cell adhesion associated with collagen 
production. CCE also down-regulated vimentin and fibronectin 
and upregulated E-cadherin expressions (Lin et al., 2017).

Codonolactone (CLT). It inhibited the expression of acquired 
EMT’s mesenchymal markers such as N-cadherin and vimentin 
in a dose-dependent manner in in vivo and in vitro experiments in 
breast cancer. Likewise, it blocked the expression of transcription 
factors Snail, Slug, Twist-1 (TGF-β signaling) and the Runx2 
phosphorylation (Fu et al., 2016).

Cordycepin. Its properties have been evaluated on a human 
oral squamous cell carcinoma xenograft model, through its 
administration in a regular, low-dose upregulated E-cadherin 
and downregulated N-cadherin protein expressions, inhibiting 
EMT (Su et al., 2017).

Cryptotanshinone (CTS). It exhibits multiple pharmacological 
benefits, involving anti-cancer (Li et al., 2015; Zhu et al., 2016), 
anti-oxidative stress (Jin et al., 2013), and anti-cardiac fibrosis 
properties via downregulation of COX-2, NADPH oxidase 2 and 
4 and MMP-2 (Ma et al., 2012; Ma et al., 2014). The antifibrotic 
mechanism proposed for CTS is the inhibition of Smad2 
phosphorylation. Although it did not inhibit Smads 3 and 4 or 
mitogen-activated protein kinase (MAPK) signals, the ECM 
accumulation was importantly reduced in a renal fibrosis model 
(Wang et al., 2017c).

Curcumin. This NPC inhibit EMT in CoCl2-treated 
hepatocytes. This action might be due to its capacity to diminish 
TGF-β-R1 expression in these cells. This effect suggests a 
disruption on the downstream signal transduction transmitted 
by SMADs pathway (Kong et al., 2015). Moreover, it was found 
that SMADs2 and 3 phosphorylation was inhibited by curcumin, 
pointing its powerful action blocking upstream the EMT pathway 
signaling. Another mechanism by which curcumin inhibits 
these pathways is by suppressing the cav-1 phosphorylation, 
stabilizating β-catenin (Sun et al., 2014). Recently, it has been 
published that curcumin inhibits the superoxide dismutase-
induced invasion and migration of pancreatic cancer cells by 
inhibiting the PI3K/Akt/NF-κB signaling pathway (Li et al., 
2018b). Curcumin was not related to toxicity including high 
dose administration, in human clinical trials (Gupta et al., 2013; 
Hewlings and Kalman, 2017).

Jatrophone (JA). This diterpene shows a broad assortment 
of biological actions, counting antitumoral, cytotoxic, anti-
inflammatory, anti-malarial and fungicidal properties (Devappa 
et al., 2010). It has been demostrated that JA reduces mRNA 
expression of Slug, fibronectin and vimentin, but not ZEB1, 
and also exhibits an anti-proliferative and anti-migratory effect 
acting on Wnt/β-catenin signaling in triple-negative breast 
cancer (Fatima et al., 2017).

Duchesnea extracts. Duchesnea chrysantha and Duchesnea 
indica belong to the Rosaceae family, and their extracts show a 
diversity of biological properties, involving anti-biotic, anti-
oxidative, anti-inflammatory and some cytotoxic features (Kim 
et al., 2002b; Kim et al., 2007). These extracts involve a range of 
chemical compounds such as triterpenes, triterpene glycodides, 
flavonoid glycodides and sterols (Lee et al., 1994; Qiao et al., 
2009). An in vivo research showed that tumor growth was 
importantly diminished in BALB/c nude mouse xenograft model 

orally treated with Duchesnea indica extracts (DIE) (Chen et al., 
2017c). In the same study, DIE also inhibited highly metastatic 
cells by reducing the secretions of MMP‐2 and urokinase‐
type plasminogen activator (uPA) (Chen et al., 2017c). It was 
also able to decrease the cell adhesion capacity, down-regulate 
the N-cadherin, fibronectin, and vimentin and increase the 
E-cadherin expression (Kim et al., 2002b; Kim et al., 2007; Chen 
et al., 2017c). Another protective mechanism related with DIE 
is its antioxidant action which can also modulate the EMT (Hu 
et al., 2009; Hu et al., 2011).

Epicatechin-3-gallate (ECG). It elicits several anti-oxidant 
and anti-inflammatory activities and is one of the four types of 
catechins mainly detected in green tea, together with epicatechin, 
epigallocatechin and epigallocatechin-3-gallate (EGCG) 
(Chowdhury et al., 2016). In human lung cancer cells, ECG also 
reverts the TGF-β1-induced EMT by upregulating epithelial 
markers (E-cadherin) and downregulating mesenchymal 
markers (fibronectin). Moreover, it also phosphorylates FAK. 
Based on these facts, it has been recommended that ECG may be 
administered as an effective agent against TGF-β1-induced EMT 
(Huang et al., 2016).

Eupatolide. It shows anti-inflammatory, anti-proliferative 
and anti-migratory effects (Lee et al., 2010a; Kim et al., 2013). 
It has also been suggested that eupatolide might be employed as 
an inhibitor of the TGF-β1 signaling pathway to suppress EMT 
(Wrighton et al., 2009). Moreover, eupatolide suppress TGF-β1-
induced EMT via downregulation of Smad3 phosphorylation 
and decreasing the TGF-β type 1 receptor (Boldbaatar et al., 
2017).

Gallic acid. In vivo experiments with this NPC diminished 
vascular calcification, cardiac hypertrophy, cardiac fibrosis and 
hypertension. Gallic acid also inhibited pathological changes 
in the lungs, such as pulmonary fibrosis (Kee et al., 2014; Ryu 
et  al., 2016). Moreover, it reduced the expression of fibrosis-
related genes, including collagen types I and III, fibronectin, 
connective tissue growth factor (CTGF), and Smad3. In a 
mouse model, Garlic acid blocked the of EMT-related genes 
expression, such as N-cadherin, vimentin, Snail, and TWIST1 
(Jin et al., 2017).

Gambogic acid (GA). It has been proved in vitro that this 
compound reverses TGF-β1-mediated EMT and endothelial–
mesenchymal transition (EndoMT) in human lung fibroblasts 
(HLF-1). It also prevents pulmonary fibrosis in vivo and 
attenuates the EMT by modulating the TGFβ1/Smad3 pathway 
(Qu et al., 2016).

Gedunin. It has been shown to have potential anti-cancer 
activity (Kamath et al., 2009; Patwardhan et al., 2013; Hao et al., 
2014). Recent research suggests that gedunin inhibits EMT by 
reducing the expression of the mesenchymal markers N-Cadherin, 
Slug, Snail, Vimentin, Notch 1 and 2, and Zeb whereas increasing 
the E-cadherin expression (Subramani et al., 2017).

Genistein (GEN). Soybeans and most soy products contain 
large amounts of isoflavones called soy phytoestrogens, and one 
of the most concentrated is the GEN (Lee et al., 2012). GEN is a 
phytoestrogen known for its chemopreventive effects in several 
types of cancers (Kim et al., 2015). It suppresses the EMT response 
induced by 17β-estradiol and two estrogens-like compounds, 
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bisphenol-A and nonylphenol. Thus, it reduces the protein 
expressions of vimentin, cathepsin D, and MMP-2, increases 
E-cadherin expression and downregulates TGF-β. (Kim et al., 
2015). In ovarian cancer derived cells, GEN inhibits the NF-κB 
and Akt signaling pathways, playing important roles in keeping 
the homeostatic balance between cell survival and apoptosis. It 
has been considered as a potencial antiangiogenic, antioxidant 
and anticancer agent (Han et al., 2012; Dai et al., 2015).

Gentiopicroside (GPS). It has been proved that in 
bronchoalveolar cells isolated from fluids of lungs pulmonary 
fibrosis in a mouse model, GPS decreased the levels of 
proinflammatory cytokines, including TNF-α and IL-1β, and 
downregulated TGF-β1 and CTGF expression. In vitro, GPS 
inhibited the EMT of A549 cells stimulated by TGF-β1 to induce 
transdifferentiation at a dose-dependent manner (Chen et al., 
2017b).

Gigantol. It has been described to have anti-proliferative, anti-
apoptosis and anti-metastatic properties (Charoenrungruang 
et al., 2014; Klongkumnuankarn et al., 2015). Recent publications 
suggest that gigantol considerably reduces lung cancer cells’ 
viability in a detached condition. It also shrinkages EMT 
biomarkers including N-cadherin, vimentin and Slug, leading 
to a meaningful suppression of AKT, ERK, and cav-1 survival 
pathways (Unahabhokha et al., 2016).

Ginsenoside. It has been registered in pharmacopeias for 
thousands of years due to its abundant content of saponins. 
One of the most extensively known saponins in the rhizome of 
ginseng is ginsenoside-Rb1 (Jia and Zhao 2009). In vivo studies 
mention that Rb1 showed cardioprotective, hepatoprotective 
and anti-inflammatory effects (Wang et al., 2008; Li et al., 2012b; 
Cheng et  al., 2013; Hou et al., 2014). Likewise, it inhibits cell 
proliferation, angiogenesis and apoptosis stimulation (Zheng 
et al., 2013; Lee et al., 2016). A recent publication shows that 
ginsenoside-Rb1, especially its metabolite compound K, 
particularly sensitize cancer stem/tumor-initiating cells from 
ovarian cancer to chemotherapy through the inhibition of Wnt/
β-catenin signaling and EMT (Deng et al., 2017).

Honokiol (HNK). It has been associated with anti-tumor 
and more recently anti-EMT effects (Fujita et al., 1973; Lee 
et  al., 2005; Ahn et al., 2006; Sheu et al., 2008; Arora et al., 
2011; Arora et al., 2012; Nagalingam et al., 2012). For instance, 
in breast cancer cells, Avtanski et al. demonstrated that HNK 
inhibited signal transducer and activator of transcription 3 
(Stat3) phosphorylation and transactivation activity and Zeb1 
expression, which plays a main role in EMT initiation. More than 
that, HNK induces an increase in E‐cadherin (Avtanski et  al., 
2014). Additionally, it has been published that HNK inhibits 
EMT motility and migration by targeting cellular FLICE (FADD-
like, IL-1β-converting enzyme)-inhibitory protein (c-FLIP), 
considered a master anti-apoptotic regulator in non-small-cell 
lung cancer (Lv et al., 2016).

Isoviolanthin extracted from the leaves of Dendrobium 
officinale inhibits transforming growth factor (TGF)-β1-
induced EMT in hepatocellular carcinoma (HCC) cells, it is the 
most significant constituents responsible for the antimetastasis 
activity of Dendrobium officinale. Recent publications report that 
isoviolanthin targets the TGF-β/Smad and PI3K/Akt/mTOR 

pathways to repress TGF-β1-induced EMT phenotypes in HepG2 
and Bel-7402 HCC cells. Furthermore, these results confirm that 
isoviolanthin could be a favorable natural compound with low 
toxicity for the treatment of metastatic HCC by affecting TGF-
β1-induced EMT (Xing et al., 2018).

Ligustrazine (LIG). In a model of renal tubulointerstitial 
fibrosis, LIG showed pleyotropic effects acting at different levels 
of EMT induction. LIG   decreased the mRNA expression of 
TGF-β1, CTGF, monocyte chemoattractant protein-1 (MCP-1) 
and osteopontin, and, subsequently cytokeratin-18 expression 
decreased. Mainly, this molecule increased the expression of the 
natural inhibitors of TGF-β, hepatocyte growth factor (HGF) and 
bone morphogenetic protein (BMP)-7 (Yuan et al., 2012).

Luteolin. Many biological properties of luteolin, such as 
anti-inflammation, anti-allergy, antioxidant, anticancer and 
anti-microbial effects have been described (Chung et al., 2001; 
Chen et al., 2007; Lin et al., 2008). In breast cancer (in vivo and 
in vitro), epithelial markers such as E-cadherin and claudin were 
upregulated in response to luteolin while mesenchymal markers 
N-cadherin, vimentin, Snail and Slug were downregulated 
at dose-dependent manner. Researchers found that these 
positive effects of luteolin were extinguished by overexpression 
of β-catenin, indicating that downregulation of β-catenin 
expression may mediate the inhibitory effects of luteolin on EMT 
(Lin et al., 2017). Same results were found by Zang et al., who 
described that other pathways such as Notch1 were also blocked 
by Luteolin (Zang et al., 2017).

Nimbolide. Recent studies indicate that treatment with this 
agent reduces the expression of Notch-2, N-cadherin, vimentin 
and transcription factors (Snail, Slug and Zeb) in pancreatic cancer 
cell lines. Moreover, nimbolide treatment likewise increased the 
expression of E-cadherin. Additionally, the generation of ROS 
mediated by nimbolide reduces cell proliferation (via reduction 
of PI3K/AKT/mTOR and ERK signaling) and metastasis (via 
reduction of EMT, invasion, migration and colony forming 
abilities) through mitochondrial-mediated apoptotis but not 
through autophagy (Bodduluru et al., 2014; Hao et al., 2014; 
Subramani et al., 2016).

Nitidine chloride (NC). It has been shown to exert antimalarial 
(Bouquet et al., 2012), anti-inflammatory (Wang et al., 2012), anti-
angiogenic (Chen et al., 2012), and anticancer effects (Fang et al., 
2013). Likewise, NC inhibited the cellular migration and invasion 
through suppression of FAK-associated pathway in breast cancer 
metastasis (Sun et al., 2014). It has also been recently proposed 
that inactivation of Hedgehog signaling pathway by NC led to 
significantly decreased Smo and Gli expressions, targeting breast 
cancer metastasis. Thus, NC could be suitable for the prevention 
and treatment of breast cancer through dual-blocking EMT (Sun 
et al., 2016).

Osthole. It inhibits growth and metastasis in many types of 
cancer (Kao et al., 2012; Zhang et al., 2012b; Ding et al., 2014). 
It has also been proposed that osthole mediated the EMT by 
downregulating Snail and cell-invasive capability, suppressing 
the TGF-β/Akt/MAPK pathway (Wen et al., 2015).

Oxymatrine (OM). Many studies have proved that OM 
shows an anti-fibrotic effect on liver, pulmonary, myocardial 
and skin scar tissue fibrosis through inhibition of the TGF-β1/

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org


Natural Plants Compounds as Modulators of EMTAvila-Carrasco et al.

14 July 2019 | Volume 10 | Article 715Frontiers in Pharmacology | www.frontiersin.org

Smad signaling cascade (Shi and Li, 2005; Chen et al., 2008; Wu 
et al., 2008; Shen et al., 2011; Fan et al., 2012; Liu et al., 2012). 
Thus, Liu et al. demonstrated that OM inhibits the high glucose-
induced renal tubular EMT, decreasing the degradation of SnoN 
mediated by a E3 ubiquitin ligase (Arkadia), and that promotes 
EMT amplifying TGF-β signalling through Smad7 degradation 
(Liu et al., 2016).

Paeoniflorin (PF). Pharmacological reports have shown that 
it prevents pulmonary EMT inhibiting collagen type-I synthesis, 
downregulating Snail and Slug and up-regulatining Smad7. 
These properties provide PF a protective action against cellular 
transdifferentiation in a lung bleomycin-induced fibrosis model 
in mice (Ji et al., 2016). It has also been demonstrated that PF 
down-regulates TGF-β1, maintains BMP-7 expression and 
inhibits Smad2/3 in a renal fibrosis model (Zeng et al., 2013). 
Likewise, PF blocks EMT in gliblastoma cells, and reduces TGF-β, 
Snail, N-cadherin, Vimentin and MMP2/9 expression at doses 
depended manner (Wang et al., 2018).

Paeonol. It is an aspirin analogue extracted from numerous 
medicinal herbs including Moutan Cortex, Cynanchi paniculati 
Radix et rhizome, and Paeoniae Radix rubra. Paeonol was 
discovered to present comprehensive pharmacological activities, 
such as antioxidant, anti-inflammatory, anti-aging, and anti-
cancer activities (Chou, 2003; Zhang et al., 2015). Another 
author reported that paeonol influenced antioxidative stress 
activity in endothelial cells by controlling the expressions of 
Sirt1. It has been described, too, that paeonol ameliorated colitis 
related colorectal cancer by suppressing cytokine-induced EMT 
and NF-jB activation (Lin et al., 2014). Likewise, suggested that 
paeonol inactivated ERK and TGF-beta1/Smad pathway leading 
to regulation of relevant EMT markers. These results suggest 
that paeonol might be developed as a potential agent used for 
oxidative stress injury and EMT in premalignant lesion (Yang 
et al., 2018).

Parthenolide (PTL). It has been conventionally used for the 
treatment of headaches and arthritis. Recent analyses suggest that 
PTL is a valuable antitumor and anti-inflammatory NPC, and it 
was evaluated in clinical studies for leukemia and neurological 
tumors (Ghantous et al., 2013). These effects of PTL in tumors 
and inflammatory diseases primarily happen via the inhibition of 
NF-κB signaling pathways (Hehner et al., 1999). Current studies 
have established that PTL inhibit pulmonary fibrosis increasing 
E-Cadherin and decreasing vimentin NF-κB and Snail expression 
in TGF-β1-treated primary lung epithelial cells (Li et al., 2018a).

Plectranthoic acid (PA). It induces cell cycle arrest and 
apoptosis in prostate cancer cells (Akhtar et al., 2016). Recent 
research demonstrates that PA-exposed cells exhert considerably 
reduced cell migration capacity and a reversal of TGF-β induced 
EMT, representing the potential effectiveness of PA against 
prostate cancer, throughout regulation of Rac1 signaling (Akhtar 
et al., 2018).

Phoyunnanin-E. Recent publications suggest that Phoyunnanin 
E decreased the E-cadherin to N-cadherin switch and reduced 
upregulation of mesenchymal markers such as vimentin and snail, 
as well as slug expression. Phoyunnanin-E has also been shown 
to inhibit migration and growth and promote EMT suppression, 
reduce migratory-associated integrins αv and β3, and suppress 

FAK/AKT cascade, which subsequently suppressed downstream 
migratory proteins in lung cancer cells (Petpiroon et al., 2017).

Piperlongumine (PL). It has been identified as a powerful 
cytotoxic element highly selective to cancer cells (Raj et al., 2011; 
Bezerra et al., 2013; Liu et al., 2014; Zheng et al., 2016; Zhou et al., 
2016). PL has also been demonstrated to accurately suppress 
bladder cancer development both in vitro and in vivo, via inhibition 
of EMT. Thereby, the expression of EMT-associated factors such 
as Slug, β-catenin, zeb1, N-Cadherin, Claudin-1, and zonula 
occludens-1 (ZO-1) were importantly decreased (Liu et al., 2017).

Plumbagin (PLB). It presents anti-inflammatory, anti-
atherosclerotic, anti-bacterial, anti-fungal, and anti-cancer 
properties shown both in vitro and in vivo (Padhye et al., 2012). 
The anti-EMT effect of the PLB can be vinculated by its ability to 
adjust epithelial adherent junctions in human tongue squamous 
carcinoma cells. PLB also boosted the expression of E-cadherin 
and decreased of N-cadherin in these cells. Moreover, it reduced 
the expression of Snail, Slug, TCF-8/zeb1, β-catenin, and vimentin, 
whereas increased the expression of claudin-1 and ZO-1. Notably, 
PLB inhibited the translocation of nuclear factor erythroid 2-related 
factor (Nrf2) from cytosol to nucleus, causing an inhibition in the 
expression of downstream targets (Pan et al., 2015).

Polyphyllin (PP) I. It has been broadly investigated for its anti-
inflammatory and anti-cancer activities. PPI exhibited inhibitory 
effect on various cancer types, involving hepatocarcinoma (Ong 
et al., 2008), non-small cell lung cancer (Kong et al., 2010), 
osteosarcoma (Chang et al., 2015), chronic myeloid leukemia 
(Wu et al., 2014), ovarian cancer (Gu et al., 2016) and glioma 
cells (Yu et al., 2014). Recent investigation described that PPI 
was capable to reverse EMT in osteosarcoma cells (Chang 
et al., 2015). Likewise, ZH-2, a compound derived from PP VII, 
exherts anti-chemoresistance properties through inhibiting 
EMT (He et al., 2016). In anacquired-erlotinib-resistant cell line, 
PPI inhibited IL-6/STAT3 signaling pathways and stimulates 
epithelial marker expression, reversing EMT. Significantly, PPI 
exhibited an inhibitory effect on epidermal growth factor (EGF) 
receptor tyrosine kinase inhibitors, which has a mutagenic and 
pro-EMT action in non-small cell lung cancer (Lou et al., 2017).

Resveratrol (RSV). RSV has been published to have many 
pharmacological activities, such as protection against coronary 
heart disease, anti-inflammatory properties, chemo-prevention of 
cancer, anti-oxidative and antiasthmatic effects (Frémont, 2000; 
Wallerath et al., 2002; Aggarwal et al., 2004; Bisht et al., 2010). It can 
be obtained from grapes, wine, mulberries and peanuts (Shakibaei 
et al., 2009). It also reduced renal injury and renal fibrosis by 
suppressing the inflammatory activity and by inhibiting lipid 
peroxidation (Chander and Chopra, 2005; De Jesus et al., 2007). 
The inhibitory effect of RSV on EMT has been demostrated in 
prostate (Li et al., 2014), ovarian (Baribeau et al., 2014), breast (Tsai 
et al., 2013) and pancreatic cancer (Li et al., 2013). Recent papers 
show that RSV inhibits EMT in renal tubular cells by antagonizing 
the hedgehog signaling pathway (Bai et al., 2014b). Likewise, Gao 
et al. suggested that RSV prevents from cancer cell invasion and 
metastasis in vitro by inhibiting the hedgehog pathway and EMT 
(Gao et al., 2015). In this context, RSV downregulates the EMT-
inducting transcription factor (including Zeb-1, Slug and Snail) to 
reduce migration and invasion in pancreatic cancer cells (Shankar 

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org


Natural Plants Compounds as Modulators of EMTAvila-Carrasco et al.

15 July 2019 | Volume 10 | Article 715Frontiers in Pharmacology | www.frontiersin.org

et al., 2011). EGF is a well-known EMT-inducer in human breast 
cancer cells (Ackland et al., 2003; Vergara et al., 2011). RSV blocks 
EGF-induced EMT by repressing EGF-induced ERK (Vergara 
et al., 2011). Furthermore, it is known that renal injury has a close 
relationship with the development of renal fibrosis and, during 
this process, tubular epithelial cells in the kidney undergo EMT 
via upregulating β-catenin/lymphoid enhancer-binding factor 1 
(LEF1) signaling and MMP-7 (Liu, 2004; Shibata et al., 2009). A 
current study using RSV showed that this product attenuated renal 
injury and fibrosis through inhibition of EMT. Authors suggested 
that this inhibition was due to the fact that RSV up-regulated 
sirtuin 1 (SIRT1), which deacetylated Smad4 and inhibited the 
expression of MMP-7 (Xiao et al., 2016). Other findings also 
demonstrate that RSV modulates EMT by suppressing MMP-2 
and MMP-9 via MAPK and NF-κb signals in lung cancer invasion 
and metastatic cells (Yang et al., 2009; Liu et al., 2010a). Moreover, 
RSV has been recently shown to limit EMT by controlling gene 
expression at post-transcriptional level (it  favors the epithelial-
type alternative splicing of pre-mRNAs that encode crucial factors 
in adhesion and migration, and enhances the expression of some 
RNA-Binding Proteins) (Moshiri et al., 2017). It also inhibits 
TGF-β1-induced EMT and suppresses lung cancer invasion and 
metastasis (Wang et al., 2013)

Salvianolic acid A (SAA). It exerts many pharmacological 
actions, such as myocardial protection, anti-thrombosis, anti-
fibrosis, and the prevention of diabetes complications (Ho and 
Hong, 2011; Xu et al., 2014). Investigations have revealed that 
SAA treatment effectively decreased lung parenchymal injury 
and collagen deposition and diminished the apoptosis and 
lung fibrosis on a pulmonary arterial hypertension rat model. 
Furthermore, in pulmonary tissue, SAA treatment upregulated 
BMP type II receptor (BMPRII) expression and augmented the 
Smad1/5 phosphorylation. Both molecules showed an anti-EMT 
effect (Chen et al., 2016a). An anti-EndoMT capacity was also 
discovered in bleomycin-induced pulmonary fibrosis in mice, 
acting on Nrf2/HO-1 signaling pathway (Chen et al., 2017d).

Sedum sarmentosum Bunge (SSBE). Pharmacological reports 
have shown that SSBE has significant antiinflammatory, anti-
tumor and anti-angiogenic effects (Oh et al., 2004; Morikawa 
et al., 2007; Ninomiya et al., 2007; Jung et al., 2008). Other authors 
demonstrated that SSBE has marked effects against renal fibrosis 
(Bai et al., 2014a; Bai et al., 2014b), down-regulating hedgehog 
signaling pathway (which promotes renal fibrogenesis fostering 
the formation of myofibroblasts from different cell types through 
an EMT process). SSBE also reduced the ECM accumulation and 
angiogenesis (Bai et al., 2017).

Sulforaphane. Numerous studies have observed the effects 
of sulforaphane in control of tumor generation or cancer 
progression, such as in lung, breast and prostate (Amjad et al., 
2015; Atwell et al., 2015; Jiang et al., 2016), and also digestive 
system neoplasms (Jeon et al., 2011; Kim et al., 2015). Other 
authors demonstrated that reduced expression of the micro 
RNA miR-616-5p, transcriptionally induced by sulforaphane 
management, contributes to the suppression of EMT in non-
small cell lung cancer and in lung cancer metastasis through 
the miR-616-5p/GSK3β/β-catenin signaling pathway (Wang 
et al., 2017a).

Tannic acid (TA). This molecule acts upstairs in the EMT 
induction process, in lung epithelial cells. It reduces the 
expression of TGF-β and N-cadherin and decreases the SMADs 
2 and 3 phosphorylation and the production of ECM (fibronectin 
and vimentin). Moreover, cell proliferation in G0/G1 phase and 
the mitogenic activity of protein kinase (ERK1/2, JNK1/2, and 
p38) also decrease (Pattarayan et al., 2018).

Withaferin-A (WA). Pharmacological reports have shown 
anti-cancer effects in rodent experiments (Padmavathi et al., 
2005; Garodia et al., 2007; Widodo et al., 2007). Withanolide-D 
(witha-D) is an active element of WA that partially inhibits EMT 
acting on Wnt/β-catenin signaling and recovering E-Cadherin 
expression in a human pancreatic tumour cell line (Chaurasiya 
et al., 2008; Sarkar et al., 2014).

Alpha-Solanine. This NPC presents pharmacological activities 
involving anti-proliferation, anti-apoptosis and anti-angiogenesis 
(Mohsenikia et al., 2013). Alpha-solanine also reduced ERK 
and PI3K/Akt phosphorylation. Likewise, this component also 
reduces the expression of MMP-2/9 and vimentin and induces 
the expression of E-cadherin (Shen et al., 2014).

Potential Therapeutic Effects of Natural 
Plants Compounds
Currently, there is growing evidence for potential plant-derived 
compounds as inhibitors in several stages of tumourgenesis and 
inflammatory and fibrosis processes. In several clinical trials it 
has been demonstrated that NPCs have elicited anti‐aging, anti‐
cancer and other health‐enhancing effects. A key target of the 
effects of NPCs may be in suppressing oxidative stress and the 
induction of 5′AMP-activated Kinase (AMPK), or suppression 
of the WNT/beta-catenin, PI3K/Akt/mTOR and RAS/MEK/ERK 
signaling pathways, among others, which results in cell death or 
prevents aging, diabetes, cardiovascular, cancer and other diseases 
(McCubrey et al., 2017).

One NPC is Berberine, which has been tested in a wide 
spectrum of clinical applications. Oral administration of berberine 
significantly reduced the familial adenomatous polyposis patients’ 
polyp size along with the inhibition of cyclin D1 expression in 
polyp samples. These statements suggest that berberine inhibits 
colon tumour formation through inhibition of Wnt/β-catenin 
signalling and might be a favorable drug for the prevention of 
colon cancer (Zhang et al., 2013; Farooqi et al., 2019). Additionally, 
it has been described that Berberine shows an extensive array of 
pharmacological effects, being effective against gastroenteritis, 
abdominal pain and diarrhea, and having antimicrobial, 
antidiabetic and antiinflammatory properties (Imanshahidi and 
Hosseinzadeh, 2008; Kulkarni and Dhir, 2010; Vuddanda et al., 
2010). Another beneficial effect of berberine has been reported 
on the treatment of type II diabetes (Yin et al., 2008). This natural 
compound has an explicit potential as a drug in a wide spectrum of 
already defined clinical purposes (Tillhon et al., 2012). Numerous 
pharmacological reports have suggested the cardiovascular effects 
of berberine and B. vulgaris, such as preventing ischemia induced 
ventricular tachyarrhythmia, improving cardiac contractility 
and lowering peripheral vascular resistance and blood pressure 
(Marin-Neto et al., 1988).
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Likewise, RSV is being examined in many clinical trials, on 
age-related disease, cancer, cardiovascular problems, chronic renal 
insufficiency and other disorders (Boocock et al., 2007; Brown et al., 
2010; la Porte et al., 2010; Howells et al., 2011; Popat et al., 2013).

Clinical trials show that RSV has been shown to activate 
sirtuins and such activation is able to explain most of the beneficial 
properties of the mediterranean diet (MD). While observational 
studies and meta-analysis have demonstrated an antiageing effect 
of MD accompanied by a reduced risk of age-related pathologies, 
such as cardiovascular, metabolic and neurodegenerative diseases, 
as well as cancer (Russo et al., 2014; Gliemann et al., 2016).

Other studies that involved healthy volunteers established 
that RSV synchronized the carcinogen metabolizing enzyme 
cytochrome P450 and phase II detoxification enzymes, which 
repressed carcinogen metabolism and subsequently prevented 
carcinogenesis (Chow et al., 2010).

In the same way, Curcumin is being evaluated in numerous 
clinical trials for various disorders such as acute kidney injury, 
neurodegenerative diseases, cancer cardiovascular abnormalities, 
psychiatric disorders, osteoarthritis, type 2 diabetes mellitus, 
ulcerative colitis, rheumatoid arthritis, lupus nephritis, multiple 
sclerosis and other health problems (Allegra et al., 2017; White 
and Lee, 2019; Yang et al., 2019). Its efficacy appears to be related 
to the induction of glutathione S-transferase enzymes, inhibition 
of prostaglandin E2 (PGE2) production, or the suppression of 
oxidative DNA adduct formation. Oral curcumin was administered 
to patients with advanced colorectal cancer refractory to standard 
chemotherapies to explore its pharmacodynamics in humans 
(Sharma et al., 2004). In this study, the authors concluded that 
administration of 0.5 to 3.6 g/day for up to 4 months is associated 
with mild diarrhea as its only toxicity, and that a dosis of 3.6 g/day 
generates detectable levels of parent compound and conjugates 
in plasma and urine, causing inhibition of PGE2 production 
in blood leukocytes measured ex vivo. They proposed that an 
oral dose of 3.6 g/day is suitable for evaluation in Phase II trials 
(Sharma et al., 2004). In fact, curcumin has been found to be safe 
when administered at doses up to 10 g/day. All of these studies 
suggest that curcumin has enormous potential in the prevention 
and therapy of cancer (Aggarwal et al., 2003). Another study 
showed that curcumin is not toxic to humans up to 8 g/day when 
taken orally for 3 months (Cheng et al., 2001).

Likewise, epigallocatechin-3-gallate (EGCG) have been studied in 
a wide range of illnesses related to excessive oxidative stress, involving 
cancers, cardiovascular diseases, metabolic syndromes, diabetes, 
cerebral ischemic stroke, lung diseases, and neurodegenerative 
disorders (Chowdhury et al., 2016). Recently, EGCG has been 
studied for management and prevention of various kidney diseases, 
which are usually associated with oxidative stress and inflammation 
(Bao and Peng, 2016; Kanlaya and Thongboonkerd, 2019).

Meanwhile, baicalin decreases blood lipids and inflammation 
in patients with coronary artery disease and rheumatoid arthritis, 
supporting its further clinical application (Hang et al., 2018). 
This NPC exhibits high clinical value, having anti-inflammatory, 
anti-arrhythmic and anti-hypertensive effects (Huang et al., 
2005; Huang et al., 2006; Dinda et al., 2017).

The therapeutic usefulness and anti-inflammatory properties 
of celastrol have been studied in numerous inflammatory diseases, 

involving rheumatoid arthitis, ankylosing spondylitis, systemic 
lupus erythematosus, inflammatory bowel disease, osteoarthritis, 
allergies, and skin inflammation (Cascão et al., 2017). Celastrol 
exhibits beneficial effects decreasing cardiovascular symptoms 
involving hypertension. Researchers investigated the treatment 
outcome against preeclampsia with a combined use of celastrol and 
nifedipine in clinical trials. A total of 626 patients with preeclampsia 
were enrolled, screened, and assigned randomly to groups receiving 
either nifedipine + placebo or nifedipine + celastrol orally. This 
study provides evidence for the potential role of celastrol serving 
as an effective and safe adjuvant to oral nifedipine against 
hypertension in patients with preeclampsia (Xiao et al., 2017). The 
therapeutic effects such as the anti-inflammatory, anticancer, and 
neuroprotective properties of celastrol can be mainly attributed 
to its capacity to inhibit NF-κB, a central player in inflammation, 
cancer and neurodegenerative diseases (Cascão et al., 2017).

Clinical investigation shows that gallic acid (GA) inhibits 
oxidative stress in diabetic patients. A small amount of GA 
prevents oxidative DNA injury and decreases markers which 
reflect inflammation and augmented risks of cancer and 
cardiovascular diseases (Ferk et al., 2018).

Clinical reports in asthma patients show that Genistein exerts 
antioxidant effects and could inhibit the pathway of NF-κB and 
TNF-α in these patients (Liu et al., 2010b).

It has been reported that Ginsenoside Rb1 (GS-Rb1) treatment 
was efficient in decreasing the extent of oxidative stress and 
inflammation in chronic kidney disease, whereas persistent 
deterioration was observed in the placebo group. Thus, extended 
treatments using GS-Rb1 may represent an interesting approach to 
slow the development of this disease at early stages (Xu et al., 2017).

Limitations
Although NPCs are promising therapeutic agents, they need 
in vivo studies (animal models) mainly analyzing the specificity 
of their therapeutic action as well as toxic, mutagenic or side 
effects. Scientists must identify the components of each extract as 
well as the therapeutically active molecule/s. Moreover, previous 
prospective clinical trials are mandatory to recommend their use 
in clinical practice.

CONCLUSION

EMT is a physiological and self-regulated process of tissue repair. 
However, pathologic EMT is characterized by its irreversibility 
and loss of self-regulation being a pathogenic part of many 
diseases. Thus, EMT is a therapeutic target with no established 
treatment yet. Natural products appear as therapeutic alternatives 
that need deep studies to be used in humans. Synergy and 
antagonism with other agents and interactions with prescription 
drugs should be studied in order to develop clinical trials.

The use of natural plant compounds versus standard drugs 
offers therapeutic advantages, such as the potential lower price 
and ease of being obtained, as they do not need to be artificially 
syntethized. Moreover, some of them are usually employed in the 
diet, like curcumin, although other routes of administration should 
be analyzed to calculate potential doses. Moreover, although many 
new drugs are made by synthetic chemistry and novel approaches 
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to drug discovery such as combinatorial chemistry and computer-
based design have been developed, they cannot replace the role of 
plant compounds in drug discovery, serving as chemical templates 
for the design and synthesis of new therapeutical drugs.

The relevance of this study lies on the necessity of finding 
effective therapies against EMT, which is a process involved in 
many diseases.
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