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Abstract: This review is devoted to the study of the biological activity of polyether ionophores produced
by bacteria, unicellular marine algae, red seaweeds, marine sponges, and coelenterates. Biological
activities have been studied experimentally in various laboratories, as well as data obtained using QSAR
(Quantitative Structure–Activity Relationships) algorithms. According to the data obtained, it was shown
that polyether toxins exhibit strong antibacterial, antimicrobial, antifungal, antitumor, and other activities.
Along with this, it was found that natural polyether ionophores exhibit such properties as antiparasitic,
antiprotozoal, cytostatic, anti-mycoplasmal, and antieczema activities. In addition, polyethers have
been found to be potential regulators of lipid metabolism or inhibitors of DNA synthesis. Further study
of the mechanisms of action and the search for new polyether ionophores and their derivatives may
provide more effective therapeutic natural polyether ionophores for the treatment of cancer and other
diseases. For some polyether ionophores, 3D graphs are presented, which demonstrate the predicted and
calculated activities. The data presented in this review will be of interest to pharmacologists, chemists,
practical medicine, and the pharmaceutical industry.
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1. Introduction

Natural polyether ionophore antibiotics are amazing chemical structures that are
potent antibiotics and belong to the larger family of naturally occurring ionophores. It
is known that the term “ionophore”, first used in 1967, refers to the ability of a molecule
to bind a metal ion and facilitate its transport through cell membranes. This chemical-
physiological property has made polyether ionophores a useful tool in studying the mech-
anisms of cation transport and served as a rationale for their biological activity [1–4].
Polyether ionophores are a class of organic substances that are squalene derivatives with
a regular occurrence of multiple C-O-C motifs, including the distinct families of the lad-
der polyethers and exhibiting a wide range of high biological activities [5–7]. However,
according to the Nakanishi hypothesis, many marine polyether metabolites can be biosyn-
thesized from polyunsaturated fatty acids [8,9]. This class of polyether compounds is
produced by unicellular marine algae, red seaweeds, marine sponges, and coelenterates, or
is accumulated by some marine organisms such as mollusks [10–13].

Marine polyether ionophores are also known as phycotoxins and are produced to
a large extent by phytoplankton and, in particular, dinoflagellates and diatoms. These
microalgae and cyanobacteria in aquatic ecosystems, due to the massive increase in their
biomass, create a natural phenomenon known as harmful algal blooms [14–16]. Algal
blooms in seas and lakes have a negative impact on aquatic ecosystems, given that many of
the polyether metabolites are toxic, which destroy coastal flora and fauna and are fatal to
humans and animals [17–19].

The review focuses on natural polyether compounds isolated from bacteria, cyanobac-
teria, dinoflagellates, fungi, and some marine invertebrates. Linear and cyclic polyether
toxins are a class of natural compounds that exhibit a wide range of biological activities
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such as strong antitumor, antifungal, and antibacterial activities. A comparative character-
istic of the pharmacological profile of the individual chemical structure of each polyether
ionophore using the QSAR method is presented [20–22].

2. Polyether Metabolites Produced by Dinoflagellates

Okadaic acid is one of the first marine polyether metabolites that was discovered over
50 years ago. In the early 1970s, a series of food poisoning outbreaks in Japan are known to
have led to the discovery of a new type of shellfish poisoning in Tokyo, Yokohama, and
mussels and scallops harvested in Miyagi Prefecture [23–30]. Numerous studies of these
mollusks have shown that these bivalves accumulate okadaic acid (1) and its derivatives
(2–5) [23]. It turned out that okadaic acid is a polyether compound derived from the fatty
acid C38 [24].

Toxins of the okadaic acid group (Figure 1) are produced by dinoflagellates of the gen-
era Prorocentrum [30–34] and Dinophysis [35–37], while esters are produced by microalgae
(Dinophysis and Prorocentrum spp., see Figure 2) [38–42] or by mollusks by esterification of
these toxins. All of these toxins can lead to diarrheal shellfish poisoning [26].
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Figure 2. Samples of the dinoflagellates of the genera Prorocentrum (a) and Dinophysis (b), which
synthesize the best-known marine polyether toxin called okadaic acid. All photos are taken from
sites where permission is granted for non-commercial use.

According to published experimental data [30–42] (see Table 1), one of the main
properties of okadaic acid is that it is a protein phosphatase inhibitor and an inhibitor of
platelet aggregation. In addition, this acid demonstrates anticancer, antifungal, antiparasitic,
and antimitotic activities. These activities were confirmed by PASS (Prediction of Activity
Spectra for Substances) with a confidence level of 84 to 99%. Of greatest interest is the fact
that okadaic acid can act as an inhibitor of DNA synthesis with more than 99% confidence.
This valuable property of okadaic acid is reflected in Figure 3. Similar results were obtained
for derivatives of okadaic acid with a reliability of 98.3 to 98.8% (Table 2).

Table 1. Reported and predicted activity of okadaic acid.

No. Predicted Biological Activity, Pa * Reported Activity [30–42]

1

Lipid metabolism regulator (0.999)
Angiogenesis stimulant (0.995)
DNA synthesis inhibitor (0.991)

Apoptosis agonist (0.979)
Antineoplastic (0.961)

Antifungal (0.844)
Antiparasitic (0.843)
Antibacterial (0.792)

Antineoplastic metabolite (0.763)
Cardiotonic (0.719)

Immunosuppressant (0.719)
Antimitotic (0.694)

Growth stimulant (0.650)
Platelet aggregation inhibitor (0.539)

Hypolipemic (0.538)

Angiogenesis inducer
Anticancer
Antifungal
Antimitotic

Antiparasitic
Apoptosis inducer

Immunosuppressive activity
Platelet aggregation inhibitor
Protein phosphatase inhibitor

* Only activities with Pa > 0.5 are shown.
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Figure 3. 3D graph showing the predicted and calculated biological property of okadaic acid (1) as
an inhibitor of DNA synthesis with the highest degree of confidence (99.1%).

Table 2. Reported and predicted activity of lipophilic polyether toxins.

No. Predicted Biological Activity, Pa * Reported Activity [41–63]

2

Lipid metabolism regulator (0.998)
Angiogenesis stimulant (0.995)
DNA synthesis inhibitor (0.987)

Apoptosis agonist (0.984)
Antineoplastic (0.964)

Antifungal (0.863)
Antiparasitic (0.846)
Antibacterial (0.818)

Anticancer
Apoptosis inducer

3

Lipid metabolism regulator (0.998)
Angiogenesis stimulant (0.995)

Apoptosis agonist (0.983)
DNA synthesis inhibitor (0.973)

Antineoplastic (0.961)

Anticancer
Apoptosis inducer

4

Lipid metabolism regulator (0.999)
Angiogenesis stimulant (0.994)
DNA synthesis inhibitor (0.983)

Apoptosis agonist (0.979)
Antineoplastic (0.956)

Anticancer

5

Lipid metabolism regulator (0.999)
Angiogenesis stimulant (0.994)
DNA synthesis inhibitor (0.988)

Apoptosis agonist (0.974)
Antineoplastic (0.959)

Anticancer

6

Angiogenesis inhibitor (0.979)
Antifungal (0.922)

Apoptosis agonist (0.906)
Antibacterial (0.900)

Antifungal

7
Apoptosis agonist (0.867)

Antineoplastic (0.819)
Growth stimulant (0.799)

Neurological activity
Anticancer

8
Antineoplastic (0.846)

Apoptosis agonist (0.807)
Antifungal (0.796)

Neurological activity
Anticancer

9 Apoptosis agonist (0.879)
Antineoplastic (0.822)

Neurological activity
Anticancer

* Only activities with Pa > 0.5 are shown.
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It is known that okadaic acid exhibits various biological activities and these are shown
in Table 1. All experimentally found activities were confirmed by PASS and the degree of
significance of each activity is indicated. In this regard, several biological activities showed
a reliability of more than 96%. We isolated the activity called DNA synthesis inhibitor with
more than 99% confidence (3D graph seen in Figure 3). This function of okadaic acid was
discovered over 30 years ago [30–42].

Murakami and colleagues, working with dinoflagellate blooms in a rocky basin on
Jogashima Island in Japan, isolated and identified an antifungal toxin named goniodomin A
(6, for structure see Figure 4) [43]. They identified the dinoflagellate as Goniodoma pseudogo-
niaulax, which is currently considered synonymous with Alexandrium pseudogonyaulax, but
the organism was later revealed to be A. hiranoi [44,45], a morphologically similar species.
Two additional Alexandrium species, A. monilatum and A. pseudogonyaulax, have since been
found to produce goniodomin A [46–49].
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In addition, goniodomin A exhibits antiangiogenic activities via inhibition of actin
reorganization in endothelial cells [50]. Goniodomin A as an inhibitor of angiogenesis with
97.9% confidence and its 3D graph is shown in Figure 5. In addition, goniodomin A shows
antifungal (92.2%) and antibacterial (90%) activities.
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Azaspiracids (7–9, AZAs) are a group of lipophilic polyether toxins produced by
dinoflagellates belonging to the genera Azadinium and Amphidoma and are found in the
shellfish and tunicates that accumulate them [51–54]. The AZAs induced cytotoxic and
neurotoxic effects; however, the mechanism of action is still unknown [55].

Marine polyether metabolites named pectenotoxins (PTXs, 10–16, for structures see
Figure 6, predicted activity shown in Table 3, and 3D graph is shown in Figure 7) are a group
of toxins associated with diarrhetic shellfish (particularly scallop Patinopecten yessoensis) poi-
soning (DSP) and are isolated from DSP toxin-producing dinoflagellates. As demonstrated
by numerous studies that DSP toxins are produced by several of the Dinophysis species,
including D. acuta, D. fortii, D. acuminata, D. norvegica, D. mitra and D. caudata [56–59], they
are also produced by benthic species such as Prorocentrum lima [60,61]. Thus, the PTXs
cause severe acute diseases in humans, as these toxins are highly cytotoxic, promote tumor
development, and cause hepatocyte necrosis. In addition, nothing is known about the
chronic toxicology of PTXs or the potential long-term public health effects [62,63].
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Table 3. Predicted activity of lipophilic polyether toxins.

No. Predicted Biological Activity, Pa *

10
Antineoplastic (0.945); Apoptosis agonist (0.719); Antineoplastic (sarcoma) (0.664)

Antineoplastic (renal cancer) (0.647); T cell inhibitor (0.604); Antineoplastic
(pancreatic cancer) (0.594); Antimetastatic (0.590); Antineoplastic (lymphocytic leukemia) (0.581)

11

Antineoplastic (0.933); Antimitotic (0.747); Apoptosis agonist (0.648)
Antineoplastic (sarcoma) (0.639); Antineoplastic (renal cancer) (0.625)

Antineoplastic (pancreatic cancer) (0.579); Antimetastatic (0.570)
Antineoplastic (lymphocytic leukemia) (0.559); Antineoplastic (multiple myeloma) (0.534)

12
Antineoplastic (0.936); Apoptosis agonist (0.676); Antineoplastic (sarcoma) (0.656)

Antineoplastic (renal cancer) (0.636); Antineoplastic (pancreatic cancer) (0.587)
Antineoplastic (lymphocytic leukemia) (0.582); Antineoplastic (myeloid leukemia) (0.564)

13
Antineoplastic (0.936); Apoptosis agonist (0.717); Antineoplastic (sarcoma) (0.640)

Antineoplastic (renal cancer) (0.624); Antineoplastic (pancreatic cancer) (0.579)
Antimetastatic (0.575); Antineoplastic (lymphocytic leukemia) (0.551)

14 Antineoplastic (0.958); Apoptosis agonist (0.835); Antineoplastic (pancreatic cancer) (0.561)
15 Antineoplastic (0.954); Apoptosis agonist (0.835); Antineoplastic (pancreatic cancer) (0.555)

16 Antineoplastic (0.917); Antineoplastic (sarcoma) (0.639); Antineoplastic (renal cancer) (0.637)
Antineoplastic (lymphocytic leukemia) (0.545); Apoptosis agonist (0.544)

17 Antineoplastic (0.919); Apoptosis agonist (0.765); Antimitotic (0.739)

18 Antineoplastic (0.928); Apoptosis agonist (0.748); Antineoplastic (renal cancer) (0.715)
Antineoplastic (lymphocytic leukemia) (0.654); Prostate cancer treatment (0.500)

* Only activities with Pa > 0.5 are shown.
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The unique structure of a toxin named prorocentin (17) possessed all-trans trienes, an
epoxide, as well as the 6/6/6-trans-fused/spiro-linked polyether ring moieties, is produced
by the marine benthic dinoflagellate Prorocentrum lima, which is widespread in ocean waters
anywhere in the world [64]. Prorocentin exhibited inhibitory activity against human colon
adenocarcinoma DLD-1 and human malignant melanoma RPMI7951 with IC50 values of
16.7 and 83.6 µg/mL, respectively [64].

Gambierol (18) is a marine polycyclic ether toxin that is produced by the dinoflagellate
Gambierdiscus toxicus and is a potent blocker of voltage-gated potassium channels [65–67].
Another analogue of gambierol named gambierone (19, seen in Figure 8) was isolated
from the cultured dinoflagellate Gambierdiscus belizeanus, as well as gambierone and
4-methylgambierone (20), which were found in another species, the benthic dinoflagellate
Gambierdiscus australes [68,69]. Potential antifungal polyether compounds called gambieric
acids A (21), B (22), C (23), and D (24, for structure see Figure 8) were isolated from extracts
from the marine dinoflagellate Gambierdiscus toxicus [70].

A group of lipid soluble polyether compounds called ciguatoxins (CTXs, 25–27, struc-
tures seen in Figure 9) are potent ichthyotoxins produced by a toxic benthic dinoflagellate,
Gambierdiscus toxicus [71–73]. The main toxin, named ciguatoxin, was first isolated from
the liver of a moray eel caught off the coast of the Hawaiian Islands. This epiphytic
G. toxicus dinoflagellate (see Figure 10) is the main source of toxins that accumulate in
various fish species [74,75]. Ciguatera fish poisoning is a form of food poisoning caused by
the consumption of varieties of toxic ciguatera fish species from tropical and subtropical
waters [76–78].
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tures seen in Figure 9) are potent ichthyotoxins produced by a toxic benthic dinoflagellate, 
Gambierdiscus toxicus [71–73]. The main toxin, named ciguatoxin, was first isolated from 
the liver of a moray eel caught off the coast of the Hawaiian Islands. This epiphytic G.tox-
icus dinoflagellate (see Figure 10) is the main source of toxins that accumulate in various 
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Figure 10. Samples of the dinoflagellates that produce red tides in various parts of the world’s
oceans are (a) Gambierdiscus toxicus and (b) Karenia brevis. These microalgae scavenge ciguatoxins and
brevetoxins and other polyether metabolites.

A single-celled phytoplanktonic organism, the marine dinoflagellate G. toxicus, is
found in tropical waters around the world. Maitotoxin (27 and 28, for structure see Figure 9,
predicted activity shown in Table 4, and 3D graph seen in Figures 11 and 12) and related
toxins accumulate in the food chain when predatory fish consume contaminated herbivo-
rous reef fish. Maitotoxin accumulates mainly in the liver and internal organs of fish, but
not in their flesh. Higher concentrations of toxins can be found in large carnivores such as
barracuda, sea bass, amberjack, perch, and others [79,80].
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Figure 12. 3D graph showing the predicted and calculated strong antineoplastic activity of polyether
compounds (compound numbers: 21, 25, and 27) showing the highest degree of confidence, more
than 94%.

Table 4. Predicted activity of lipophilic polyether toxins (19–34).

No. Predicted Biological Activity, Pa *

19 Antineoplastic (0.899); Apoptosis agonist (0.849); Antimetastatic (0.593)

20 Antineoplastic (0.901); Apoptosis agonist (0.845); Antimetastatic (0.602)

21 Antineoplastic (0.940); Apoptosis agonist (0.681); Antineoplastic (renal cancer) (0.664)

22 Antineoplastic (0.933); Antifungal (0.925); Antibacterial (0.904); Antiparasitic (0.874)
Apoptosis agonist (0.679); Antineoplastic (renal cancer) (0.653); Antimetastatic (0.621)

23
Antifungal (0.933); Antineoplastic (0.933); Antibacterial (0.903); Antiparasitic (0.863)

Antimitotic (0.807); Antibiotic (0.791); Apoptosis agonist (0.654)
Antineoplastic (renal cancer) (0.650); Antimetastatic (0.633)

24 Antifungal (0.929); Antineoplastic (0.926); Antibacterial (0.914); Apoptosis agonist (0.652)
Antineoplastic (renal cancer) (0.640); Antimetastatic (0.623); Antileukemic (0.591)

25 Antineoplastic (0.941); Apoptosis agonist (0.773); Antineoplastic (renal cancer) (0.665)

26 Antineoplastic (0.947); Apoptosis agonist (0.815); Antineoplastic (renal cancer) (0.693)

27 Antineoplastic (0.951); Apoptosis agonist (0.757); Antineoplastic (renal cancer) (0.732)
Alzheimer’s disease treatment (0.631); Antileukemic (0.626); Antimetastatic (0.607)

28 Antibacterial (0.979); Antifungal (0.965); Antineoplastic (0.931); Antimetastatic (0.565)

29 Antineoplastic (0.921); Apoptosis agonist (0.664); Antimetastatic (0.651)

30 Antineoplastic (0.929); Cytostatic (0.922); Apoptosis agonist (0.678)
Antineoplastic (lymphocytic leukemia) (0.672); Antineoplastic (renal cancer) (0.606)

31 Antineoplastic (0.931); Cytostatic (0.899); Antifungal (0.897); Antiparasitic (0.882)
Apoptosis agonist (0.664); Antimetastatic (0.655); Antineoplastic (renal cancer) (0.612)

32
Antineoplastic (0.918); Antifungal (0.884); Cytostatic (0.859); Antibacterial (0.849)

Antimitotic (0.817); Antiparasitic (0.793); Antineoplastic (renal cancer) (0.689)
Antimetastatic (0.653); Apoptosis agonist (0.616); Prostate cancer treatment (0.500)

33
Antineoplastic (0.926); Cytostatic (0.907); Antifungal (0.878); Antibacterial (0.850)
Antimitotic (0.821); Antineoplastic (renal cancer) (0.698); Antimetastatic (0.654)

Antileukemic (0.653); Apoptosis agonist (0.632); Prostate cancer treatment (0.526)

34
Antineoplastic (0.926); Antifungal (0.885); Cytostatic (0.876); Antibacterial (0.829)

Antiparasitic (0.820); Antimitotic (0.815); Antineoplastic (renal cancer) (0.700)
Antileukemic (0.684); Antimetastatic (0.655); Apoptosis agonist (0.611)

* Only activities with Pa > 0.5 are shown.
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A microscopic single-cell photosynthetic organism of the genus Karenia, K. brevis
(see Figure 10b), is a marine dinoflagellate that is commonly found in the waters of the
Gulf of Mexico and is responsible for the so-called Florida Red Tides (see Figures 13 and 14)
that affect the Florida and Texas Gulf coasts of the United States and the nearby coasts of
Mexico. Karenia brevis produces a set of potent neurotoxins, collectively called brevetoxins
(PbTxs, 29–34, for structure see Figure 15, predicted activity shown in Table 4), that cause
gastrointestinal and neurological problems in other organisms and are responsible for the
massive death of marine organisms and seabirds [81–83].
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Figure 13. The red tide in Florida is a high concentration of naturally occurring marine dinoflagellates
called Karenia brevis. These microalgae produce brevetoxins, powerful neurotoxins that can kill
marine invertebrates, fish, animals, macroalgae, and can also be dangerous to humans.

Mar. Drugs 2022, 20, x  13 of 59 
 

 

A microscopic single-cell photosynthetic organism of the genus Karenia, K. brevis (see 
Figure 10b), is a marine dinoflagellate that is commonly found in the waters of the Gulf of 
Mexico and is responsible for the so-called Florida Red Tides (see Figures 13 and 14) that 
affect the Florida and Texas Gulf coasts of the United States and the nearby coasts of Mex-
ico. Karenia brevis produces a set of potent neurotoxins, collectively called brevetoxins 
(PbTxs, 29–34, for structure see Figure 15, predicted activity shown in Table 4), that cause 
gastrointestinal and neurological problems in other organisms and are responsible for the 
massive death of marine organisms and seabirds [81–83]. 

 
Figure 13. The red tide in Florida is a high concentration of naturally occurring marine dinoflagel-
lates called Karenia brevis. These microalgae produce brevetoxins, powerful neurotoxins that can kill 
marine invertebrates, fish, animals, macroalgae, and can also be dangerous to humans. 

 
Figure 14. The red tide in Florida caused catastrophic consequences, and above all, it was the mass 
death of marine fish, animals, and marine invertebrates. The number of dead fish and animals is Figure 14. The red tide in Florida caused catastrophic consequences, and above all, it was the mass
death of marine fish, animals, and marine invertebrates. The number of dead fish and animals
is estimated at tens of thousands of tons. Red tides in Florida affect areas in southwest Florida
including Palm Beach, Martin, St. Lucie, Glades, Hendry, Lee, and Okeechobee counties. The tourism
business has been deeply affected because people do not want to be outdoors due to the strong smell
and cough that the red tide causes. Fish kills and respiratory problems in humans can occur when
microalgae cell levels reach 10,000 cells per liter, and cell concentrations as high as 2.5 million cells
per liter have been found in some locations near the Sanibel Lighthouse.
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Figure 15. Karenia brevis produced a set of potent neurotoxins called brevetoxins.

A marine toxin and complex polycyclic ether called brevisulcenal-F (35, for structure
see Figure 16) was found in an extract of the dinoflagellate Karenia brevisulcata, which was
dominant in the red tide of K. brevisulcata in Wellington Harbour, New Zealand. An extract
of K. brevisulcata showed potent mouse lethality and cytotoxicity, and laboratory cultures
of K. brevisulcata produced a range of novel lipid-soluble toxins [84]. Other polycyclic
ether toxins, namely brevisulcenals A1 (36) and brevisulcatic acids (BSXs, 37–39, structures
seen in Figure 17, and see 3D graph in Figure 18) produced by the red tide dinoflagellate
K. brevisulcata, were the cause of a toxic incident that occurred in New Zealand [85].
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Figure 17. Brevisulcatic acids are produced by the red tide dinoflagellate Karenia brevisulcata, and 
gymnocin A and B are derived from the dinoflagellate, Gymnodinium mikimotoi. 

Figure 17. Brevisulcatic acids are produced by the red tide dinoflagellate Karenia brevisulcata, and
gymnocin A and B are derived from the dinoflagellate, Gymnodinium mikimotoi.
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Figure 18. 3D graph showing the predicted and calculated strong cytostatic activity of polyether
compounds (compound numbers: 37 and 39) showing the highest degree of confidence, more than 91%.

Two cytotoxic polyethers named gymnocin A (40) and B (41) were isolated from the
notorious red tide dinoflagellate, Gymnodinium mikimotoi [86–88].

Ciguatoxins (42–45, for structures see Figure 19, and activity see in Table 5) are
polyether toxins derived from marine dinoflagellates. Ciguatera fish poisoning (CFP)
is currently the most common marine biotoxin food poisoning worldwide, associated with
human consumption of circumtropical fish and marine invertebrates that are contami-
nated with ciguatoxins. Ciguatoxins are a potent sodium channel activator and contain
neurotoxins that pose a health hazard at very low concentrations [89,90].
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Table 5. Predicted activity of lipophilic polyether toxins (35–45).

No. Predicted Biological Activity, Pa *

35 Antineoplastic (0.953); Antibacterial (0.907); Antifungal (0.814); Antimitotic (0.721)
Apoptosis agonist (0.675); Antiparasitic (0.651); Antimetastatic (0.628)

36 Antineoplastic (0.936); Antibacterial (0.930); Antifungal (0.848); Apoptosis agonist (0.623)
Antimetastatic (0.609); Anti-mycoplasmal (0.577)

37
Cytostatic (0.912); Antineoplastic (0.912); Antifungal (0.901); Antibacterial (0.860)

Antiparasitic (0.849); Antimitotic (0.825); Antineoplastic (renal cancer) (0.656)
Antimetastatic (0.655); Apoptosis agonist (0.642)

38 Cytostatic (0.961); Antineoplastic (0.925); Antifungal (0.910); Antibacterial (0.871)
Antiparasitic (0.868); Antimitotic (0.846); Apoptosis agonist (0.694); Antimetastatic (0.672)

39
Antineoplastic (0.913); Cytostatic (0.910); Antifungal (0.870); Antiparasitic (0.852)

Antibacterial (0.842); Antimitotic (0.822); Apoptosis agonist (0.683); Antimetastatic (0.654)
Antineoplastic (renal cancer) (0.652); Autoimmune disorders treatment (0.565)

40 Antineoplastic (0.949); Antineoplastic (liver cancer) (0.905); Antiparasitic (0.869)
Cytostatic (0.859); Apoptosis agonist (0.840); Antimetastatic (0.739)

41 Antineoplastic (0.946); Antimitotic (0.832); Antifungal (0.788); Antiparasitic (0.785)
Antineoplastic (renal cancer) (0.750); Antimetastatic (0.691); Prostate cancer treatment (0.521)

42 Antineoplastic (0.920); Antifungal (0.821); Antibacterial (0.805); Antimetastatic (0.526)
43 Antineoplastic (0.928); Apoptosis agonist (0.824); Antimetastatic (0.515)

44 Antineoplastic (0.930); Antimitotic (0.823); Apoptosis agonist (0.762)
Alzheimer’s disease treatment (0.741); Antineoplastic (renal cancer) (0.520)

45
Antineoplastic (0.967); Growth stimulant (0.881); Antiparasitic (0.845); Antibacterial (0.832)

Antimitotic (0.821); Antifungal (0.775); Apoptosis agonist (0.699); Cytostatic (0.687)
Antimetastatic (0.655); Antineoplastic (non-Hodgkin’s lymphoma) (0.587)

* Only activities with Pa > 0.5 are shown.

The use of fish from the tropics, which are contaminated with ciguatoxins, leads
to various diseases characterized by neurological, cardiovascular, and gastrointestinal
disorders, and the toxins themselves demonstrate the ability to cause persistent activation
of voltage-gated sodium channels, which increases the excitability of neurons and the
release of neurotransmitters. There is currently no medically approved treatment for
ciguatera [89–91].

The pinnatoxins A (46, for structure see Figure 20, predicted activity shown in Table 6),
C (47), and D (48) were first found in a bivalve, the pen shell Pinna muricata, in Japan [92–94].
Other pinnatoxins (49–53) were detected in Pacific oysters in New Zealand, following the
determination of pinnatoxins E, F, and G in shellfish from South Australia [95]. These toxins
have been shown to be synthesized by related dinoflagellates of the genera Ensiculifera,
Pentapharsodinium, and Bysmatrum [96,97].
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Figure 20. Polycyclic ether pinnatoxins were first found in the bivalve mollusc Pinna muricata. 

Table 6. Predicted activity of lipophilic polyether toxins (46–61). 

No. Predicted Biological Activity, Pa * 
46 Antineoplastic (0.871); Apoptosis agonist (0.656); Antibacterial (0.631) 

47 Antineoplastic (0.839); Antibacterial (0.720); Antineoplastic (myeloid leukemia) (0.551) 
Antileukemic (0.540); Antineoplastic (lymphocytic leukemia) (0.531) 

48 Antineoplastic (0.855); Antifungal (0.793); Antibacterial (0.704); Antimitotic (0.674) 
Antineoplastic (myeloid leukemia) (0.562); Antineoplastic (lymphocytic leukemia) (0.553) 

49 
Antineoplastic (0.858); Antifungal (0.798); Antibacterial (0.743); Apoptosis agonist (0.631)   
Antineoplastic (myeloid leukemia) (0.573); Antineoplastic (lymphocytic leukemia) (0.550)   

50 
Antineoplastic (0.906); Antifungal (0.813); Antibacterial (0.748)   

Apoptosis agonist (0.692); Alzheimer’s disease treatment (0.625)   
Antineoplastic (myeloid leukemia) (0.576); Antineoplastic (lymphocytic leukemia) (0.560)    

51 
Antineoplastic (0.871); Antifungal (0.736); Antimitotic (0.685); Antibacterial (0.683)   

Apoptosis agonist (0.670); Antineoplastic (myeloid leukemia) (0.606)   
Antileukemic (0.593); Antineoplastic (lymphocytic leukemia) (0.568)  

52 
Antineoplastic (0.886); Antifungal (0.768); Antimitotic (0.731); Antibacterial (0.716)   

Apoptosis agonist (0.644); Antineoplastic (myeloid leukemia) (0.581)   
Antileukemic (0.580); Antineoplastic (lymphocytic leukemia) (0.544)    

53 
Antineoplastic (0.851); Antifungal (0.804); Antibacterial (0.735); Antimitotic (0.704)   

Apoptosis agonist (638); Antineoplastic (myeloid leukemia) (0.566) 
Antileukemic (0.554); Antineoplastic (lymphocytic leukemia) (0.548) 

54 
Antineoplastic (0.928); Antibacterial (0.854); Antifungal (0.827); Antimitotic (0.655)   
Antimetastatic (0.615); Prostate cancer treatment (0.613); Apoptosis agonist (0.591)    

Figure 20. Polycyclic ether pinnatoxins were first found in the bivalve mollusc Pinna muricata.

An imine neurotoxin called pinnatoxin G acts through the antagonism of nicotinic
acetylcholine receptors with preferential binding to the α7 subunit, often activated in cancer.
Since the increased activity of the α7 nicotinic acetylcholine receptor promotes increased
growth and resistance to apoptosis, the effect of pinnatoxin G on cancer cell viability was
tested. In a panel of six cancer cell lines, all cell types lost their viability, but HT29 colon
cancer cells and LN18 and U373 glioma lines were more sensitive than MDA-MB-231 breast
cancer cells, PC3 prostate cancer cells, and U87 glioma cells, respectively with levels of
expression of nicotinic acetylcholine receptors α7, α4, and α9 [98].
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Table 6. Predicted activity of lipophilic polyether toxins (46–61).

No. Predicted Biological Activity, Pa *

46 Antineoplastic (0.871); Apoptosis agonist (0.656); Antibacterial (0.631)

47 Antineoplastic (0.839); Antibacterial (0.720); Antineoplastic (myeloid leukemia) (0.551)
Antileukemic (0.540); Antineoplastic (lymphocytic leukemia) (0.531)

48 Antineoplastic (0.855); Antifungal (0.793); Antibacterial (0.704); Antimitotic (0.674)
Antineoplastic (myeloid leukemia) (0.562); Antineoplastic (lymphocytic leukemia) (0.553)

49 Antineoplastic (0.858); Antifungal (0.798); Antibacterial (0.743); Apoptosis agonist (0.631)
Antineoplastic (myeloid leukemia) (0.573); Antineoplastic (lymphocytic leukemia) (0.550)

50
Antineoplastic (0.906); Antifungal (0.813); Antibacterial (0.748)

Apoptosis agonist (0.692); Alzheimer’s disease treatment (0.625)
Antineoplastic (myeloid leukemia) (0.576); Antineoplastic (lymphocytic leukemia) (0.560)

51
Antineoplastic (0.871); Antifungal (0.736); Antimitotic (0.685); Antibacterial (0.683)

Apoptosis agonist (0.670); Antineoplastic (myeloid leukemia) (0.606)
Antileukemic (0.593); Antineoplastic (lymphocytic leukemia) (0.568)

52
Antineoplastic (0.886); Antifungal (0.768); Antimitotic (0.731); Antibacterial (0.716)

Apoptosis agonist (0.644); Antineoplastic (myeloid leukemia) (0.581)
Antileukemic (0.580); Antineoplastic (lymphocytic leukemia) (0.544)

53
Antineoplastic (0.851); Antifungal (0.804); Antibacterial (0.735); Antimitotic (0.704)

Apoptosis agonist (638); Antineoplastic (myeloid leukemia) (0.566)
Antileukemic (0.554); Antineoplastic (lymphocytic leukemia) (0.548)

54 Antineoplastic (0.928); Antibacterial (0.854); Antifungal (0.827); Antimitotic (0.655)
Antimetastatic (0.615); Prostate cancer treatment (0.613); Apoptosis agonist (0.591)

55 Antineoplastic (0.914); Antifungal (0.820); Antimitotic (0.653); Antimetastatic (0.620)
Prostate cancer treatment (0.612); Antineoplastic (lymphocytic leukemia) (0.541)

56
Antineoplastic (0.915); Antifungal (0.752); Antibacterial (0.746); Antimitotic (0.698)

Antineoplastic (myeloid leukemia) (0.677); Antimetastatic (0.613)
Prostate cancer treatment (0.592); Antineoplastic (lymphocytic leukemia) (0.550)

57
Antineoplastic (0.872); Antibacterial (0.793); Antifungal (0.668); Antimitotic (0.662)

Antimetastatic (0.656); Antineoplastic (lymphocytic leukemia) (0.576)
Apoptosis agonist (0.509); Antineoplastic (non-Hodgkin’s lymphoma) (0.506)

58
Antineoplastic (0.921); Antibacterial (0.877); Antifungal (0.852); Antimitotic (0.704)

Prostate cancer treatment (0.625); Antimetastatic (0.621)
Antineoplastic (lymphocytic leukemia) (0.575); Antineoplastic (myeloid leukemia) (0.533)

59 Antineoplastic (0.895); Antibacterial (0.856); Antifungal (0.796); Antimitotic (0.762)
Antineoplastic (lymphocytic leukemia) (0.591); Antineoplastic (myeloid leukemia) (0.545)

60 Antineoplastic (0.935); Antibacterial (0.912); Antifungal (0.905); Chemopreventive (0.760)
Apoptosis agonist (0.638); Anticarcinogenic (0.625); Antimetastatic (0.617)

61 Antibacterial (0.934); Antineoplastic (0.933); Antifungal (0.913); Chemopreventive (0.758)

* Only activities with Pa > 0.5 are shown.

Yessotoxin (54, structure seen in Figure 21) is a disulfated polyether toxin produced by
dinoflagellates and accumulated in filter feeding shellfish. This toxin was first isolated in
1986 in Mutsu Bay, Japan from digestive glands of scallops Patinopecten yessoensis after a
food intoxication episode [99]. Later, Protoceratium reticulatum, Lingulodinium polyedrum,
Gonyaulax spinifera, and G. taylorii, were identified as the dinoflagellates that produce
yessotoxin and its analogues (55–61, structures seen in Figure 22, and 3D graph seen
in Figure 23) [100,101]. In addition to Japan, this toxin has been identified in shellfish
harvested in Europe, including Spain, Italy, Norway, the Adriatic Sea, and the Sea of
Japan, Russia; Chile; and New Zealand [102,103]. Yessotoxin and its analogues can induce
programmed cell death at nanomolar concentrations in different model systems [104].
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Figure 21. A disulfated polyether toxin, yessotoxin, is produced by marine dinoflagellates and ac-
cumulated in filter feeding shellfish. 

Figure 21. A disulfated polyether toxin, yessotoxin, is produced by marine dinoflagellates and
accumulated in filter feeding shellfish.
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The family of polyene-polyhydroxy compounds named amphidinols (62–67, see Fig-
ure 24) were isolated as a potent hemolytic and antifungal agent from a cultured strain of 
dinoflagellates Amphidinium klebsii, A. carterae, and Amphidinium sp. [105–108]. 

Figure 23. 3D graph showing the predicted and calculated activity with strong antineoplastic
(compound numbers: 54, 58, 60) and antibacterial (compound number 61) properties of polyether
compounds with the highest degree of confidence, more than 91%.

The family of polyene-polyhydroxy compounds named amphidinols (62–67, see Figure 24)
were isolated as a potent hemolytic and antifungal agent from a cultured strain of dinoflagel-
lates Amphidinium klebsii, A. carterae, and Amphidinium sp. [105–108].

The karlotoxins are a class of amphidinol-like compounds (68–72, structures seen in
Figure 25, predicted activity shown in Table 7, and 3D graph seen in Figure 26) produced
by mixotrophic strains of the dinoflagellate Karlodinium veneficum (originally Gymnodinium
veneficum), and Amphidinium sp. The karlotoxins have been reported to display a variety of
interesting effects on biological systems, including cellular lysis, damage of fish gills, and
immobilization of prey organisms. The cytolytic activity of the karlotoxins is modulated by
membrane sterol composition, which has been proposed as a mechanism for K. veneficum
avoiding autotoxicity. This dinoflagellate has been implicated in several fish kill events
apparently caused by the damaging effects of the karlotoxins [109–112].
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Figure 24. A class of amphidinol-like compounds named karlotoxins produced by mixotrophic 
strains of the dinoflagellate Karlodinium veneficum and some Amphidinium species. 
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Figure 24. A class of amphidinol-like compounds named karlotoxins produced by mixotrophic
strains of the dinoflagellate Karlodinium veneficum and some Amphidinium species.
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Figure 25. A class of amphidinol-like compounds named karlotoxins produced by mixotrophic 
strains of the dinoflagellate Karlodinium veneficum and several Amphidinium species. 

  

Figure 25. A class of amphidinol-like compounds named karlotoxins produced by mixotrophic
strains of the dinoflagellate Karlodinium veneficum and several Amphidinium species.
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Table 7. Predicted activity of lipophilic polyether toxins (62–72).

No. Predicted Biological Activity, Pa *

62 Antifungal (0.884); Lipid metabolism regulator (0.875); Apoptosis agonist (0.851)
63 Antifungal (0.890); Antibacterial (0.837); Antineoplastic (0.836); Apoptosis agonist (0.782)
64 Antifungal (0.842); Antineoplastic (0.814); Antibacterial (0.762); Apoptosis agonist (0.738)
65 Antifungal (0.896); Antineoplastic (0.867); Antibacterial (0.831); Apoptosis agonist (0.806)
66 Antifungal (0.901); Antibacterial (0.870); Antineoplastic (0.863); Apoptosis agonist (0.718)
67 Antifungal (0.895); Apoptosis agonist (0.858); Antineoplastic (0.843); Antibacterial (0.826)
68 Antifungal (0.892); Antineoplastic (0.794); Antibacterial (0.773); Apoptosis agonist (0.772)
69 Antifungal (0.904); Antineoplastic (0.850); Apoptosis agonist (0.849); Antibacterial (0.821)
70 Antifungal (0.896); Antineoplastic (0.800); Apoptosis agonist (0.781); Antibacterial (0.779)
71 Antifungal (0.907); Antineoplastic (0.795); Antibacterial (0.783); Apoptosis agonist (0.777)
72 Antifungal (0.901); Antineoplastic (0.789); Antibacterial (0.780); Apoptosis agonist (0.772)

* Only activities with Pa > 0.5 are shown.
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3. Polyether Ionophores Derived from Marine Algae and Invertebrates

Marine invertebrates and seaweeds are the source of many bioactive compounds,
including unusual or rare lipids, fatty acids, and, of course, phycotoxins [113–122]. Thus,
the golden alga, Prymnesium parvum is a haptophyte species that produces phycotoxins
called prymnesin 1 (73, structure seen in Figure 27, predicted activity shown in Table 8) and
prymnesin 2 (74), usually during red tide algal blooms. These toxins mostly kill fish and
appear to have little effect on cattle or humans. Although harmful effects to humans are
unknown, it is not recommended to consume dead or dying fish that have been exposed to
P. parvum blooms [123–126].
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Figure 27. The golden alga Prymnesium parvum produces phycotoxins prymnesins. 
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75 Antifungal (0.973); Antibacterial (0.939); Antineoplastic (0.870); Apoptosis agonist (0.628)   
76 Antifungal (0.975); Antibacterial (0.943); Antineoplastic (0.879); Apoptosis agonist (0.638)    

* Only activities with Pa > 0.5 are shown. 

Palytoxin (75, seen in Figure 28) was originally isolated in Hawaii from the tropical 
soft coral Palythoa sp., the zoanthids, and is produced by dinoflagellates from the genus 
Ostreopsis (Ostreopsis siamensis, O. mascarenensis, O. lenticularis, and O. ovata) [127–130]. 
Although palytoxin was first discovered in the extract of Palythoa spp., this toxin was also 
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Table 8. Predicted activity of lipophilic polyether toxins (73–76).

No. Predicted Biological Activity, Pa *

73 Antifungal (0.974); Antibacterial (0.969); Antineoplastic (0.906); Antimetastatic (0.524)
74 Antifungal (0.979); Antibacterial (0.959); Antineoplastic (0.916); Apoptosis agonist (0.672)
75 Antifungal (0.973); Antibacterial (0.939); Antineoplastic (0.870); Apoptosis agonist (0.628)
76 Antifungal (0.975); Antibacterial (0.943); Antineoplastic (0.879); Apoptosis agonist (0.638)

* Only activities with Pa > 0.5 are shown.

Palytoxin (75, seen in Figure 28) was originally isolated in Hawaii from the tropical
soft coral Palythoa sp., the zoanthids, and is produced by dinoflagellates from the genus
Ostreopsis (Ostreopsis siamensis, O. mascarenensis, O. lenticularis, and O. ovata) [127–130].
Although palytoxin was first discovered in the extract of Palythoa spp., this toxin was also
found in organisms living in close association with colonial zoanthids (Palythoa caribaeorum,
P. tuberculosa, and Palythoa sp.) [129,131]. In addition, the toxin and its analogs (76, 3D graph
seen in Figure 29) have been found in many marine organisms: Artemia salina (brine shrimp),
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Equinometra lucunter (rock boring urchin), Haliotis virginea (sea snail), Evechinus chloroticus
(New Zealand sea urchin), Pecten novaezealandiae (N.Z. scallop), Crassostrea gigas (Pacific
oyster), Perna canaliculus (green-lipped mussel), and Mytilus galloprovincialis (Mediterranean
mussel) [132], as well as primary producers such as the red algae Chondria crispus and
Ch. armata [133,134] and benthic dinoflagellates Ostreopsis spp. [135–138]. In addition,
bacteria associated with antecedent organisms have also been studied as a possible source
of this toxin production. This is supported by the fact that the hemolytic activity of the
toxin was found in extracts of bacteria such as Pseudomonas, Brevibacterium, Acinetobacter,
Bacillus cereus, Vibrio sp., and Aeromonas sp. [139–141]. Thus, the presence of palytoxin and
analogs in various marine organisms may indicate the bacterial origin of this toxin [142].
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4. Polyether Ionophores Produced by Actinomycetes

Genus Streptomycetes (family Streptomycetaceae, Gram-positive bacteria) produce a
wide variety of commercially important polyketide compounds, including the well-known
unusual fatty acids, macrolide, polyene, and polyether antibiotics, which exhibit antibacte-
rial, antifungal, anthelmintic, antitumour, and immunosuppressive activities [143–150].

Terrosamycins A (77, structure seen in Figure 30, predicted activity shown in Table 9,
and 3D graph seen in Figure 31) and B (78), two polycyclic polyether natural products, were
purified from the fermentation broth of Streptomyces sp. RKND004, isolated from Prince
Edward Island sediment. Like other polyether ionophores, both compounds exhibited ex-
cellent antibiotic activity against Gram-positive pathogens. Interestingly, the terrosamycins
also exhibited activity against two breast cancer cell lines [151]. Two polyether-type metabo-
lites (79 and 80) were isolated from the marine-derived Streptomyces cacaoi and showed
antimicrobial activity, while (80) also showed anticancer activity against Hela, PC-3, and
A549 [152].
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Table 9. Predicted activity of lipophilic polyether toxins (75–85).

No. Predicted Biological Activity, Pa *

75 Antifungal (0.973); Antibacterial (0.939); Antineoplastic (0.870); Apoptosis agonist (0.628)
76 Antifungal (0.975); Antibacterial (0.943); Antineoplastic (0.879); Apoptosis agonist (0.638)
77 Antiprotozoal (Coccidial) (0.943); Antibacterial (0.939); Antiparasitic (0.867)
78 Antiprotozoal (Coccidial) (0.928); Antibacterial (0.921); Antiparasitic (0.872)
79 Antiprotozoal (Coccidial) (0.906); Antibacterial (0.902); Antiparasitic (0.877)

80 Antibacterial (0.953); Antiprotozoal (Coccidial) (0.924); Antitreponemal (0.906)
Antiparasitic (0.898); Antineoplastic (0.867); Antiprotozoal (Plasmodium) (0.686)

81 Antineoplastic (0.893); Antifungal (0.842); Antibacterial (0.818)
Apoptosis agonist (0.638); Antiprotozoal (Coccidial) (0.634); Antimetastatic (0.629)

82
Growth stimulant (0.974); Antimycobacterial (0.971); Antifungal (0.967)

Antiprotozoal (Coccidial) (0.943); Antibacterial (0.942); Antineoplastic (0.937)
Antiparasitic (0.919); Antiprotozoal (Plasmodium) (0.699); Antimetastatic (0.602)

83

Growth stimulant (0.974); Antimycobacterial (0.972); Antifungal (0.971)
Antiprotozoal (Coccidial) (0.947); Antibacterial (0.943); Antineoplastic (0.937)

Antiparasitic (0.921); Antiprotozoal (Plasmodium) (0.701); Antimetastatic (0.604)
Antineoplastic (renal cancer) (0.604); Antineoplastic (sarcoma) (0.590)

Apoptosis agonist (0.580); Antineoplastic (lymphocytic leukemia) (0.559)

84
Growth stimulant (0.974); Antimycobacterial (0.972); Antifungal (0.971)

Antiprotozoal (Coccidial) (0.947); Antibacterial (0.943); Antineoplastic (0.937)
Antiparasitic (0.921); Antiprotozoal (Plasmodium) (0.701); Antimitotic (0.663)

85
Antimycobacterial (0.963); Growth stimulant (0.960); Antineoplastic (0.956)
Antifungal (0.951); Antibacterial (0.942); Antiprotozoal (Coccidial) (0.937)

Antiparasitic (0.917); Apoptosis agonist (0.914); Antiprotozoal (Plasmodium) (0.701)

* Only activities with Pa > 0.5 are shown.
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A polyether antibiotic named ionomycin (81) with a high affinity for calcium ions was
obtained in pure form from fermentation broths of Streptomyces conglobatus. Ionomycin is a
narrow spectrum antibiotic that is active against Gram-positive bacteria such as Staphylococ-
cus aureus FAD 209P, Streptococcus pyogenes C 203, Bacillus subtilis ATCC 6633, Micrococcus
luteus ATCC 9341, Diplococcus pneumoniae ATCC 6303, Corynebacterium diphtheriac ATCC
19401, and Clostridium tetazomorplum SC 3103 [153–157].

Other antibiotics called salinomycin (82, 3D graph seen in Figure 32), SY-2 (84), and SY-
9 (85) were produced by a strain of Streptomyces albus (ATCC 21838) [158–160]. Salinomycin
is active against Gram-positive bacteria including mycobacteria and some filamentous
fungi: Bacillus subtilis PCI 219, B. cereus IFO 3466, B. circulans 1170 3329, B. megaterium IFO
3003, Staphylococcus aureus FDA 209P, S. aureus, S. epidermidis IFO 3762, Sarcina lutea NIHJ,
Micrococcus flavus IFO 3242, M. luteus IFO 2763, Mycobacterium smegmatis ATCC 607, M. phlei
IPCR, and M. avium IFO 3153. Narasin (83) is also an antibiotic polyether and is produced
by a strain of Streptomyces aureofaciens. It differs from salinomycin in an extra methyl group
in position 4. Narasin is active in vitro against Gram-positive bacteria, anaerobic bacteria,
and fungi and is effective in protecting chickens from coccidial infections: Ceratocystis
ulmi, Mycoplasma gallisepticum, M. hyorhinis, M. synoviae, M. hyopneumoniae, M. hyosynoviae,
Trichophyton mentagrophytes, Actinomyces bovis, Clostridium innocuum, C. perfringens, Eubac-
terium aerofuciens, Peptococcus anaerobius, Propionibacterium acenes, Fusobacterium symbiosunt,
and Bacteroides fragilis [161,162]. In addition, narasin is active against several viruses includ-
ing vaccinia virus, herpes virus, type III poliovirus, transmissible gastroenteritis, Newcastle
disease virus, and infectious bovine rhinotracheitis virus [162].

Mar. Drugs 2022, 20, x  33 of 59 
 

 

85 
Antimycobacterial (0.963); Growth stimulant (0.960); Antineoplastic (0.956)   
Antifungal (0.951); Antibacterial (0.942); Antiprotozoal (Coccidial) (0.937)   

Antiparasitic (0.917); Apoptosis agonist (0.914); Antiprotozoal (Plasmodium) (0.701)    
* Only activities with Pa > 0.5 are shown. 

A polyether antibiotic named ionomycin (81) with a high affinity for calcium ions 
was obtained in pure form from fermentation broths of Streptomyces conglobatus. Ionomy-
cin is a narrow spectrum antibiotic that is active against Gram-positive bacteria such as 
Staphylococcus aureus FAD 209P, Streptococcus pyogenes C 203, Bacillus subtilis ATCC 6633, 
Micrococcus luteus ATCC 9341, Diplococcus pneumoniae ATCC 6303, Corynebacterium diph-
theriac ATCC 19401, and Clostridium tetazomorplum SC 3103 [153–157]. 

Other antibiotics called salinomycin (82, 3D graph seen in Figure 32), SY-2 (84), and 
SY-9 (85) were produced by a strain of Streptomyces albus (ATCC 21838) [158–160]. Salino-
mycin is active against Gram-positive bacteria including mycobacteria and some filamen-
tous fungi: Bacillus subtilis PCI 219, B. cereus IFO 3466, B. circulans 1170 3329, B. megaterium 
IFO 3003, Staphylococcus aureus FDA 209P, S. aureus, S. epidermidis IFO 3762, Sarcina lutea 
NIHJ, Micrococcus flavus IFO 3242, M. luteus IFO 2763, Mycobacterium smegmatis ATCC 607, 
M. phlei IPCR, and M. avium IFO 3153. Narasin (83) is also an antibiotic polyether and is 
produced by a strain of Streptomyces aureofaciens. It differs from salinomycin in an extra 
methyl group in position 4. Narasin is active in vitro against Gram-positive bacteria, an-
aerobic bacteria, and fungi and is effective in protecting chickens from coccidial infections: 
Ceratocystis ulmi, Mycoplasma gallisepticum, M. hyorhinis, M. synoviae, M. hyopneumoniae, M. 
hyosynoviae, Trichophyton mentagrophytes, Actinomyces bovis, Clostridium innocuum, C. 
perfringens, Eubacterium aerofuciens, Peptococcus anaerobius, Propionibacterium acenes, Fuso-
bacterium symbiosunt, and Bacteroides fragilis [161,162]. In addition, narasin is active against 
several viruses including vaccinia virus, herpes virus, type III poliovirus, transmissible 
gastroenteritis, Newcastle disease virus, and infectious bovine rhinotracheitis virus [162]. 

 
Figure 32. 3D graph showing the predicted and calculated activity as growth stimulant of polyether 
compounds (compound numbers: 82, 83, and 84) with the highest degree of confidence, more than 
97%. 

Figure 32. 3D graph showing the predicted and calculated activity as growth stimulant of polyether
compounds (compound numbers: 82, 83, and 84) with the highest degree of confidence, more than 97%.

Two isomeric homologs of lasalocid A (86, structure seen in Figure 33, predicted
activity shown in Table 10) and B (87) have been isolated from cultures of Streptomyces
lasaliensis. The homolog B differs from lasalocid A in that at position 4 of the benzene ring,
homolog B contains an ethyl group, and homolog A contains a methyl group [163,164].
Both homologues are known to exhibit anticoccidial activity [165].
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Table 10. Predicted activity of lipophilic polyether toxins (86–97).

No. Predicted Biological Activity, Pa *

86 Growth stimulant (0.932); Antitreponemal (0.908); Antineoplastic (0.906)
Antiprotozoal (Coccidial) (0.900); Antiparasitic (0.891); Antifungal (0.882)

87 Growth stimulant (0.932); Antitreponemal (0.910); Antineoplastic (0.906)
Antiprotozoal (Coccidial) (0.900); Antiparasitic (0.891); Antifungal (0.877)

88 Antieczematic (0.920); Antibacterial (0.839); Antineoplastic (0.802)

89 Antieczematic (0.922); Antibacterial (0.834); Antineoplastic (0.820)

90
Antineoplastic (0.929); Growth stimulant (0.920); Antibacterial (0.918)

Antiprotozoal (Coccidial) (0.903); Antifungal (0.898); Antiparasitic (0.877)
Antimycobacterial (0.790); Antineoplastic (renal cancer) (0.626); Antimetastatic (0.624)

91

Antineoplastic (0.928); Growth stimulant (0.919); Antibacterial (0.919)
Antiprotozoal (Coccidial) (0.903); Antifungal (0.895); Antiparasitic (0.878)

Antimycobacterial (0.660); Antimitotic (0.659); Antineoplastic (renal cancer) (0.623)
Antimetastatic (0.622); Antiprotozoal (Plasmodium) (0.547); Chemoprotective (0.523)

92 Antibacterial (0.896); Growth stimulant (0.886); Antiprotozoal (Coccidial) (0.877)
Antineoplastic (0.868); Antifungal (0.854); Antiparasitic (0.747)

93 Antibacterial (0.945); Antiprotozoal (Coccidial) (0.938); Growth stimulant (0.929)
Antiparasitic (0.916); Antitreponemal (0.915); Antiprotozoal (Plasmodium) (0.731)

94

Antibacterial (0.944); Antiprotozoal (Coccidial) (0.940); Growth stimulant (0.918)
Antitreponemal (0.917); Antiparasitic (0.915); Antineoplastic (0.900); Antifungal (0.858)

Antiprotozoal (Plasmodium) (0.732); Antineoplastic (renal cancer) (0.677)
Antimycoplasmal (0.673); Antineoplastic (lymphocytic leukemia) (0.583)

95

Antibacterial (0.912); Antineoplastic (0.873); Antiprotozoal (Coccidial) (0.865)
Antiparasitic (0.796); Antifungal (0.794); Antineoplastic (renal cancer) (0.633)

Antineoplastic (sarcoma) (0.621); Antimetastatic (0.578)
Antineoplastic (lymphocytic leukemia) (0.551)

96
Antibacterial (0.992); Antiprotozoal (Coccidial) (0.964); Antitreponemal (0.954)

Antiparasitic (0.948); Antineoplastic (0.901); Antifungal (0.796)
Antiprotozoal (Plasmodium) (0.790); Antineoplastic (renal cancer) (0.575)

97
Antibacterial (0.981); Antiprotozoal (Coccidial) (0.978); Antitreponemal (0.966)

Antiparasitic (0.946); Antineoplastic (0.919); Growth stimulant (0.842)
Antiprotozoal (Plasmodium) (0.696); Antimycoplasmal (0.597)

* Only activities with Pa > 0.5 are shown.

A polyether antibiotic named tetronomycin (88, 3D graph seen in Figure 34) and an
acetylated derivative (89) were found in the extract of a strain of Streptomyces sp. nov.
Tetronomycin sodium salt shows a broad antibiotic activity against all Gram-positive
bacteria tested and is also active against several Mycoplasma laidlawii and Neisseria pharynges
species. Activity against other Gram-negative bacteria is lacking as well as an inhibition
of yeasts and filamentous fungi: Staphylococcus aureus, Streptococcus faecalis, Micrococcus
lysodeikticus, Bacillus subtilis, Micrococcus luteus, and Clostridium pasteurianum [166].
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Noboritomycins A (90) and B (91), two ionophoric polyethers, were isolated from
a strain of Streptomyces noboritoensis. An unusual spiroketal system as well as a salicylic
acid chromophore represent further remarkable elements. Noboritomycin A shows, in
this respect, structural relationships to both salinomycin and lasalocid. Comparison of
physico-chemical data, in particular the interpretation of the 1H- and 13C-NMR spectra,
revealed that noboritomycins A and B are structurally closely related, with noboritomycin B
carrying an ethyl substituent on the aromatic ring in the place of a methyl group present in
noboritomycin A. Both metabolites exhibit activity against Gram-positive bacteria Staphylo-
coccus aureus, Micrococcus lysodeikticus, Micrococcus sp., Bacillus subtilis, Streptococcus faecalis,
Sarcina lutea, Neisseria pharynges, Clostridican pasteurianum, and Mycoplasma laidlawii, and
against Eimeria tenella (chicken coccidiosis) [167].

An antibiotic named lysocellin (92, or K-5610) was isolated from Streptomyces cacaoi var.
asoensis K-9 Met-. It had antimicrobial activity against Gram-positive bacteria, antibiotic-
resistant Staphylococcus aureus and some fungi, but not against Gram-negative bacteria [168].

The molecular structure and the cation binding of nigericin (93), an antibiotic affecting
ion transport and ATPase activity in mitochondria, has been detected in Streptomyces sp.
The molecule is found to be like monensin, another antibiotic of similar properties [169].
Two years later, an antibiotic related to nigericin was named grisorixin (94), isolated from
cultures of a strain of Streptomyces griseus [170]. It shows microbial activity against Gram-
positive bacteria and fungi: Bacillus subtilis CIP 5262, Staphylococcus aureus CIP 53156,
Streptococcus pyogenes CIP 561, Mycobacterium chelonii CLA 1952, Streptomyces antibioticus
CLA 3430, Saccharomyces cerevisiae CLA 15, Madurella mycetoni CLA 1313, Penicillium roque-
forti CLA 1617, Aspergillus ochraceus CLA 1714, Endothia parasitica CLA 516, Cercospora
beticola CLA 32, Rhizoctonia solani CLA 1718, Phoma betae CLA 162, Sclerotinia sclerotiorum
CLA 183, Monilia laxa CLA 1312, Phomopsis mali CLA 1613, Botrytis cinerea CLA 23, Verti-
cillium albo-atrum CLA 211, Epichloe typhina CLA 519, Helminthosporium festucae CLA 76,
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Dactylium dendroides CLA 44, Trichothecium roseum CLA 1810, Colletotrichum lindemuthianum
CLA 311, and Ascochyta pisi CLA 116 [171].

The polyether antibiotic, X-206 (95), was isolated from Streptomyces sp. strain K99-0413
and has shown potent antimalarial properties in vitro against drug-resistant Plasmodium
falciparum [172–174]. The pandemic spread of new human pathogenic viruses, such as the
current SARS-CoV-2, is a major health and social concern. Antibiotic X-206 has shown
potent ability to inhibit SARS-CoV-2 replication and cytopathogenicity in cells. Thus,
the antibiotic X-206 can be considered one of the reliable agents for the treatment and
prevention of SARS-CoV-2 coronavirus [175]. An antibiotic polyether with anthelmintic
properties, A204A (96), has been found in the culture of Streptomyces albus [176].

Septamycin (97) is a metal-complexing polyether antibiotic produced by a strain of Strep-
tomyces hygroscopicus NRRL 5678. Septamycin possesses antiviral activity against Newcastle
Disease and herpes simplex viruses. In addition, this antibiotic in vitro shows antimicrobial
activity against: Staphylococcus aureus, Streptococcus pyogenes, Bacillus subtilis, B. stearother-
mophilus, Escherichia coli, and Clostridium pasteurianum [177]. The ionophores septamycin (97),
salinomycin (82), and CP-82,009 were purified from fermentation broth of the Actinomadura
sp. culture N742-34 [178,179]. The other two are polyether antibiotic K-41A (98, structure seen
in Figure 35, predicted activity shown in Table 11) and its analogue K-41Am (99), with antibac-
terial activity against Gram-positive bacteria and coccidia and anti-HIV activity exhibited,
produced by a marine-derived Streptomyces sp. SCSIO 01680 [180].

Table 11. Predicted activity of lipophilic polyether toxins (98–107).

No. Predicted Biological Activity, Pa *

98 Antibacterial (0.992); Antiprotozoal (Coccidial) (0.977); Antitreponemal (0.959)
Antiparasitic (0.950); Antifungal (0.799); Antiprotozoal (Plasmodium) (0.778)

99 Antibacterial (0.991); Antiprotozoal (Coccidial) (0.964); Antitreponemal (0.953)
Antiparasitic (0.950); Antiprotozoal (Plasmodium) (0.803); Antifungal (0.798)

100 Antimycobacterial (0.957); Antineoplastic (0.956); Antifungal (0.913)
Antibacterial (0.910); Antiparasitic (0.876); Antihelmintic (0.804)

101
Growth stimulant (0.946); Antibacterial (0.921); Antiprotozoal (Coccidial) (0.918)

Antiparasitic (0.909); Antineoplastic (0.905); Antifungal (0.881)
Antiprotozoal (0.880); Antitreponemal (0.829); Antiprotozoal (Plasmodium) (0.702)

102
Antiprotozoal (0.944); Antibacterial (0.935); Antiprotozoal (Coccidial) (0.931)

Antiparasitic (0.927); Antitreponemal (0.914); Antifungal (0.879)
Antiprotozoal (Plasmodium) (0.725); Antimycoplasmal (0.603)

103
Antiprotozoal (0.948); Antiprotozoal (Coccidial) (0.938); Antibacterial (0.935)

Antitreponemal (0.930); Antiparasitic (0.927); Antifungal (0.880); Antihelmintic (0.704)
Antiprotozoal (Plasmodium) (0.690); Antimycoplasmal (0.650)

104 Antibacterial (0.946); Antiprotozoal (Coccidial) (0.943); Antiparasitic (0.932)
Antitreponemal (0.924); Antifungal (0.890); Antiprotozoal (Plasmodium) (0.692)

105 Antibacterial (0.930); Antitreponemal (0.926); Antiprotozoal (Coccidial) (0.922)
Antiparasitic (0.914); Antifungal (0.858); Antiprotozoal (Plasmodium) (0.637)

106 Antineoplastic (0.919); Antifungal (0.894); Antiparasitic (0.872); Antibacterial (0.869)

107
Antibacterial (0.995); Antiprotozoal (Coccidial) (0.988); Antineoplastic (0.926)

Antiparasitic (0.925); Growth stimulant (0.904); Antifungal (0.898)
Antitreponemal (0.803); Antimitotic (0.706); Antihelmintic (0.702)

* Only activities with Pa > 0.5 are shown.
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An antibiotic, macrocyclic lactone carbonic acid named sorangicin A (100) was found
in the culture supernatant of the myxobacterium Sorangium (Polyangium) cellulosum strain
eel2. The antibiotic mainly works against Gram-positive bacteria, including mycobacteria,
as well as Gram-negative bacteria, and yeast and mold are completely resistant to this
antibiotic [181].

It is known that monensin A is a representative of a large group of natural polyether
ionophore antibiotics and was discovered in 1967 by Agtarap and colleagues as a metabolite
formed during the biosynthesis of Streptomyces cinnamonensis [182]. One of the monensin
analogs is monensin C (101), which demonstrates activity against Gram-positive bacteria
of the genera Micrococcus, Bacillus, and Staphylococcus [183,184].

The antibiotic named promomycin (102) and the related ionophoric polyethers A80438 (103),
mutalomycin (104, 3D graph see in Figure 36), and lomonomycin (105), are produced by Strepto-
myces scabrisporus and have also been found in various Streptomyces spp., including Streptomyces
ribosidificus and S. mutabilis. Promomycin and other antibiotics (102–105) found inhibit the
growth of the Gram-positive bacteria Bacillus subtilis [185–188].
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An antibiotic called octacyclomycin (107) was found in the fermentation broth of
Streptomyces sp. No. 82–85 and showed both cytocidal activity against B16 melanoma cells
and antimicrobial activity against Gram-positive bacteria in vitro [189].

An antibiotic named nanchangmycin (108, structure seen in Figure 37, predicted
activity shown in Table 12, and 3D graph seen in Figure 38) was produced by Streptomyces
nanchangensis NS3226 [143]. It demonstrated cytotoxic activity against several cancer cell
lines, being most active against HL-60 (human leukemia) and HCT-116 (human colon
carcinoma) cell lines, presenting IC50 and (IS) values: 0.0014 µM (30.0) and 0.0138 µM
(3.0), respectively. On HCT-116, nigericin caused apoptosis and autophagy. Nigericin also
showed activity against a panel of cancer-related kinases and inhibited both JAK3 and
GSK-3β kinases in vitro and its binding affinities [190].
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Table 12. Predicted activity of lipophilic polyether toxins (108–121).

No. Predicted Biological Activity, Pa *

108
Antibacterial (0.996); Antiparasitic (0.994); Antiprotozoal (Coccidial) (0.985)

Antineoplastic (0.937); Antifungal (0.935); Antitreponemal (0.919)
Antiprotozoal (Plasmodium) (0.769); Antimycoplasmal (0.570)

109 Antibacterial (0.936); Antiprotozoal (Coccidial) (0.890); Antiparasitic (0.791)
Antifungal (0.789); Antiprotozoal (Plasmodium) (0.507); Antimycoplasmal (0.500)

110 Antibacterial (0.991); Antiprotozoal (Coccidial) (0.990); Antiparasitic (0.924)
Antitreponemal (0.921); Antineoplastic (0.915); Antiprotozoal (Plasmodium) (0.746)

111 Antimycobacterial (0.969); Antibacterial (0.936); Antifungal (0.907)
Antiprotozoal (Coccidial) (0.897); Antiparasitic (0.866); Antimycoplasmal (0.533)

112
Antibacterial (0.994); Antiprotozoal (Coccidial) (0.969); Antiparasitic (0.968)

Antineoplastic (0.932); Antifungal (0.924); Antitreponemal (0.904)
Antiprotozoal (Plasmodium) (0.703); Antimycoplasmal (0.562)

113 Antibacterial (0.946); Antiprotozoal (Coccidial) (0.943); Antiparasitic (0.921)
Antitreponemal (0.915); Antifungal (0.875); Antiprotozoal (Plasmodium) (0.693)

114 Growth stimulant (0.932); Antitreponemal (0.908); Antineoplastic (0.906)
Antiprotozoal (Coccidial) (0.900); Antiparasitic (0.891); Antifungal (0.882)

115 Antiprotozoal (Coccidial) (0.916); Antibacterial (0.912); Antiparasitic (0.907)

116 Antibacterial (0.955); Antiprotozoal (Coccidial) (0.929); Antitreponemal (0.916)

117 Antibacterial (0.982); Antiprotozoal (Coccidial) (0.977); Antitreponemal (0.952)
Antiparasitic (0.941); Antifungal (0.831); Antiprotozoal (Plasmodium) (0.786)

118
Antibacterial (0.995); Antiprotozoal (Coccidial) (0.986); Antineoplastic (0.936)

Antiparasitic (0.921); Growth stimulant (0.907); Antifungal (0.884)
Antitreponemal (0.843); Antiprotozoal (Plasmodium) (0.708); Antimycoplasmal (0.647)

119
Antibacterial (0.995); Antiprotozoal (Coccidial) (0.984); Antiparasitic (0.950)

Antineoplastic (0.930); Growth stimulant (0.889); Antitreponemal (0.886)
Antifungal (0.842); Antiprotozoal (Plasmodium) (0.723); Antimycoplasmal (0.582)

120 Growth stimulant (0.945); Antiprotozoal (Coccidial) (0.922); Antibacterial (0.921)
Antiparasitic (0.916); Antitreponemal (0.775); Antiprotozoal (Plasmodium) (0.729)

121 Antibacterial (0.987); Antiprotozoal (Coccidial) (0.962); Antineoplastic (0.947)
Antifungal (0.907); Antiparasitic (0.889); Antiprotozoal (Plasmodium) (0.686)

* Only activities with Pa > 0.5 are shown.

Streptomyces scabrisporus NF3, an endophytic actinomycete, which was isolated from
Amphipterygium adstringens in Mexico, exhibited the potential to produce diverse bioactive com-
pounds, for instance, the antibacterial hitachimycin and the antitumoral alborixin (109) [191].

A polyether antibiotic marked as 6016 (110) was isolated from the culture of Streptomyces
albus strain No. 6016. The antibiotic exhibited activity against Gram-positive bacteria including
mycobacteria and was effective in the treatment of coccidiosis of fowl [192,193]. A polyether
ionophore antibiotic named cationomycin (111) was isolated from extracts of Actinomadura
NOV sp. [194], and endusamycin (112) was isolated from Streptomyces endus [195].
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An antibiotic named mutalomycin (113) is a new metal-complexing polyether antibi-
otic produced by a strain of Streptomyces mutabilis NRRL 8088. Mutalomycin contains six
heterocyclic rings and is structurally related to nigericin. The metabolite is active against
Gram-positive bacteria and Eimeria tenella (chicken coccidiosis) [186]. Lasalocid metal (114)
was isolated from Streptomyces lasaliensis. Crystal structures of lasalocid acid barium, silver,
and strontium salts were determined. The monomeric unit of lasalocid thallium salt is
stabilized by strong, intramolecular aryl-Tl type-metal half sandwich bonding interactions.
Homologs of lasalocid acid were also described [196–198].

Antibiotics 27C6 (115, for structure see Figure 39, predicted activity shown in Table 12)
and K-41 (116), carboxylic polyether compounds, were isolated from Leclercia adecarboxylata,
the strain KP-27C6, and Streptomyces hygroscopicus K41, respectively. Both molecules
exhibited antibacterial activity against Gram-positive bacteria, anti-coccidal activity, and
delayed toxicity for poultry in vivo [199]. The structure of CP-96,797 (117), a polyether
antibiotic, is related to K-41A and produced by Streptomyces sp. [200].

An antibiotic named octacyclomycin (118) was found in the culture broth of Strepto-
myces sp. No. 82-85 [201] and is also produced by Actinoallomurus sp. ID14582 [202]. An
antibiotic marked W341C (119) is a monocarboxylic polyether metabolite with anti-coccidal
properties produced by Streptomyces sp. W341, and it demonstrated the ability of W341C to
induce potassium loss in Bacillus subtilis and Streptococcus agalactiae and promote potassium
uptake into Escherichia coli [203].
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The culture broth of an isolate, Streptomyces sp. CS684, showed antibacterial activity
on methicilin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci
(VRE). Among purified substances from the organism, CSU-1, which is active against
MRSA and VRE, is identified as laidlomycin (120) [204].

A polyether antibiotic labeled CP-84,657 (121, structure seen in Figure 40 and activity
prediction shown in Table 13) was isolated by solvent extraction from the fermentation broth
of Actinomadura sp. (ATCC 53708). This antibiotic is among the most potent anti-coccidal
agents known, effectively controlling the Eimeria species that are the major causative agents
of chicken coccidiosis at doses of 5 Mg/kg or less in feed. It is also active in vitro against
certain Gram-positive bacteria, as well as the spirochete, Treponema hyodysenteriae [205]. An-
other antibiotic ionophore, CP-54,883 (122), the molecule of which contains a polyether ring
network and side chain terminated by an aromatic ring containing a phenoxy and two chlo-
rine substituents, was found in the fermentation broth of Actinomadura routienii [206], and
an antibiotic ionophore CP-80219 (123) was found in the fermentation broth of Streptomyces
hygroscopicus ATCC 53626 [207].
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Table 13. Predicted activity of lipophilic polyether toxins (122–132).

No. Predicted Biological Activity, Pa *

122 Antibacterial (0.944); Antiprotozoal (Coccidial) (0.940); Antitreponemal (0.917)
Antiparasitic (0.915); Antifungal (0.858); Antiprotozoal (Plasmodium) (0.732)

123 Antiprotozoal (Coccidial) (0.894); Antiparasitic (0.893); Antibacterial (0.876)
124 Antineoplastic (0.907); Antibacterial (0.893); Antifungal (0.863); Apoptosis agonist (0.799)

125 Antibacterial (0.944); Antiparasitic (0.941); Antiprotozoal (Coccidial) (0.935)
Antitreponemal (0.925); Antifungal (0.905); Antiprotozoal (Plasmodium) (0.764)

126 Antiparasitic (0.995); Antibacterial (0.995); Antiprotozoal (Coccidial) (0.986)
Antifungal (0.935); Antitreponemal (0.933); Antiprotozoal (Plasmodium) (0.776)

127 Antibacterial (0.925); Antineoplastic (0.907); Antiprotozoal (Coccidial) (0.899)

128
Antineoplastic (0.985); Chemoprotective (0.964); Growth stimulant (0.934)

Antitreponemal (0.913); Antiparasitic (0.902); Antifungal (0.902); Antiprotozoal (Coccidial) (0.895)
Antibacterial (0.874); Antihelmintic (0.660); Antiprotozoal (Plasmodium) (0.602)

129
Antineoplastic (0.932); Growth stimulant (0.926); Antibacterial (0.912)

Antiprotozoal (Coccidial) (0.910); Antifungal (0.897); Antiparasitic (0.878)
Antimycobacterial (0.775); Antitreponemal (0.676); Antimetastatic (0.629)

130 Antineoplastic (0.924); Growth stimulant (0.922); Antiprotozoal (Coccidial) (0.910)
Antibacterial (0.904); Antifungal (0.898); Antiparasitic (0.880); Antimycobacterial (0.800)

131 Antibacterial (0.981); Antiprotozoal (Coccidial) (0.978); Antitreponemal (0.961)
Antiparasitic (0.950); Antineoplastic (0.930); Antiprotozoal (Plasmodium) (0.646)

132 Antibacterial (0.949); Antiprotozoal (Coccidial) (0.911); Growth stimulant (0.909)
Antiparasitic (0.899); Antifungal (0.894); Antitreponemal (0.841)

* Only activities with Pa > 0.5 are shown.

Grisorixin (124) is an ionophorous antibiotic of the nigericin group isolated from
cultures of a strain of Streptomyces griseus. It shows activity against Gram-positive bacteria
and fungi but is also very toxic [208].

An antibiotic labeled SF-2487 (125) was isolated from a culture broth of Actinomadura sp.
SF2487. It showed moderate activity against Gram-positive bacteria, but no activity against
Gram-negative bacteria. SF-2487 exhibited in vitro antiviral activity against influenza
virus [209]. Another antibiotic labeled X-14931A (126) was isolated from a culture of
Streptomyces sp. X-14931. Antibiotic X-14931A showed in vitro activity against Gram-
positive microorganisms and yeasts. It was also active against mixed Eimeria infection in
chickens and exhibited activity in the rumen growth [210].

Two polyether ionophores, X-14873A (127, structure seen in Figure 41, predicted
activity shown in Table 14) and X-14873H (128, 3D graph seen in Figure 42) were isolated
from the fermentation of Streptomyces sp. X-14873 (ATCC31679). Antibiotic X-14873A was
mainly active against Gram-positive bacteria, and X-14873H, the descarboxyl derivative of
X-14873A, was also active against Gram-positive bacteria [211].
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Table 14. Predicted activity of lipophilic polyether toxins (133–141).

No. Predicted Biological Activity, Pa *

133
Antibacterial (0.975); Antineoplastic (0.948); Antiprotozoal (Coccidial) (0.935)

Antiparasitic (0.909); Antifungal (0.904); Antihelmintic (0.821); Antitreponemal (0.724)
Antimycoplasmal (0.633); Antiprotozoal (Plasmodium) (0.628)

134
Antibacterial (0.994); Antiparasitic (0.979); Antiprotozoal (Coccidial) (0.973)

Antineoplastic (0.935); Antifungal (0.922); Antitreponemal (0.911)
Antiprotozoal (Plasmodium) (0.738); Antimycoplasmal (0.525)

135 Antibacterial (0.969); Antiprotozoal (Coccidial) (0.933); Antineoplastic (0.917)
Antiparasitic (0.904); Antitreponemal (0.897); Antiprotozoal (Plasmodium) (0.716)

136
Growth stimulant (0.965); Antimycobacterial (0.965); Antifungal (0.945)

Antineoplastic (0.940); Antiprotozoal (Coccidial) (0.935); Antibacterial (0.935)
Antiparasitic (0.921); Antitreponemal (0.861); Antihelmintic (0.855)

137
Growth stimulant (0.968); Antimycobacterial (0.967); Antifungal (0.949)

Antineoplastic (0.944); Antiprotozoal (Coccidial) (0.933); Antibacterial (0.930)
Antiparasitic (0.922); Antiprotozoal (Plasmodium) (0.788)

138 Antibacterial (0.940); Antiprotozoal (Coccidial) (0.935); Antineoplastic (0.891)
Antifungal (0.880); Antiparasitic (0.848); Antimycoplasmal (0.579)

139 Growth stimulant (0.883); Antitreponemal (0.837); Antiprotozoal (Coccidial) (0.829)
Antibacterial (0.823); Antiparasitic (0.814); Antiprotozoal (Plasmodium) (0.546)

140 Growth stimulant (0.883); Antitreponemal (0.837); Antiprotozoal (Coccidial) (0.829)
Antibacterial (0.823); Antiparasitic (0.814); Antiprotozoal (Plasmodium) (0.546)

141 Antimycobacterial (0.965); Antibacterial (0.932); Antifungal (0.905)
Antiprotozoal (Coccidial) (0.894); Antiparasitic (0.861)

* Only activities with Pa > 0.5 are shown.
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An antibiotic named noboritomycin (129) was isolated from Streptomyces noboritoensis.
It was a polyether ionophore possessing two carboxylic acid functions on the carbon
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backbone, namely a free acid and an additional carboxylic acid ethyl ester group. This
antibiotic was active against a wide range of Gram-positive bacteria [212]. The antibiotic
6-chloronoboritomycin (130) was isolated from S. malachitofuscus. It was active against
Gram-positive bacteria and some anaerobes. In addition, it exhibited in vitro activity
against several strains of Treponema hyodysenteriae, a causal agent of swine dysentery [213].

Antibiotic CP-82009 (131) was isolated by solvent extraction from the fermentation
broth of Actinomadura species (specimen of this species seen in Figure 43). It exhibited activ-
ity against Gram-positive bacteria, as well as the spirochete Treponema hyodysenteriae [214].
An antibiotic named abierixin (132) was isolated from Streptomyces albus. It exhibited weak
activity against Gram-positive bacteria [215].
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Figure 43. The genus Actinomadura is aerobic, Gram-positive, and chemoorganotrophic and belongs
to the Thermomonosporaceae family, which includes over 70 species. The Actinomadura species
produces a wide variety of antibiotics including polyether ionophores. Colonies of Actinomadura
meyerae are shown in the photographs. Both pictures adapted by author.

A potent polyether ionophore antibiotic named maduramicin (133, structure seen in
Figure 44, and activity shown in Table 14) produced by Actinomadura rubra and Actinomadura
yumaensis NRRL12515 showed anthelmintic properties and is an antiprotozoal agent used
in veterinary medicine to prevent coccidiosis [216,217].
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Figure 44. Lipophilic polyether antibiotics produced by Actinomycetes (133–141).

An interesting antibiotic called lenoremycin (134) that demonstrated antimicrobial
activity (up to 60 µM), cancer cell line cytotoxicity (up to 20 µM), and displayed antibacterial
and antifungal activities, is produced by Streptomyces sp. RM-14-6 [218].

Carriomycin (135), a polyether antibiotic, was isolated from the culture broth of
Streptomyces irygroscoprcus T-42082. It is active against Gram-positive bacteria, several fungi,
yeasts, and mycoplasma [219,220]. SY-4 (136) is 5-hydroxysalinomycin, produced by a
strain of Streptomyces albus (ATCC 21838) [158].

A polyether antibiotic, kijimicin (137, 3D graph seen in Figure 45) was found in the
culture nitrate of Actinomadura sp. MI215-NF3, which was isolated from a soil sample
collected at Bunkyo-ku, Tokyo, Japan. The antibiotic showed higher anticoccidial activity
than monensin or salinomycin [221,222].
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Actinomycete Actinomadura sp. produced the antibiotic cationomycin (138) and its
biosynthesis has been studied [223,224].

Ferensimycins A (139) and B (140) were isolated, as were their sodium salts, from
the fermentation broth of Streptomyces sp. No. 5057. Both antibiotics are active against
Gram-positive bacteria [225]. Semduramicin (141, 3D graph seen in Figure 45) was isolated
from Actinomadura roserufa [226], and this antibiotic showed activity against five species of
poultry Eimeria [227].

5. Structure–Activity Relationships and Biological Activities of Natural Polyether Ionophores

It is known that the chemical structure of both natural and synthetic molecules pre-
determines biological activity, which makes it possible to analyze the structure–activity
relationships (SARs). Such a wise idea was first proposed by Brown and Fraser more
than 150 years ago, in 1868 [228]; although, according to other sources, SAR originates
from the field of toxicology, according to which Cros, in 1863, determined the relationship
between the toxicity of primary aliphatic alcohols and their solubility in water [229]. More
than 30 years later, Richet in 1893 [230], Meyer in 1899 [231], and Overton in 1901 [232]
separately found a linear correlation between lipophilicity and biological effects. By 1935,
Hammett [233,234] presented a method of accounting for the effect of substituents on reac-
tion mechanisms using an equation that considered two parameters, namely the substituent
constant and the reaction constant. Complementing Hammett’s model, Taft proposed, in
1956, an approach for separating the polar, steric, and resonance effects of substituents in
aliphatic compounds [235]. Combining all previous developments, Hansch and Fujita laid
out the mechanistic basis for the development of the QSAR method [236], and the linear
Hansch equation and Hammett’s electronic constants are detailed in the book by Hansch
and Leo published in 1995 [237].
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Some well-known computer programs can, with some degree of reliability, estimate the
pharmacological activity of organic molecules isolated from natural sources or synthesized
compounds [238–240]. It is known that classical SAR methods are based on the analysis of
(quantitative) structure–activity relationships for one or more biological activities, using
organic compounds belonging to the same chemical series as the training set [241]. The
computer program PASS, which has been continuously updating and improving for the
past thirty years [20], is based on the analysis of a heterogeneous training set including infor-
mation about more than 1.3 million known biologically active compounds with data on ca.
10,000 biological activities [20,22]. Chemical descriptors implemented in PASS, which reflect
the peculiarities of ligand–target interactions and the original realization of the Bayesian
approach for elucidation of structure–activity relationships, provide the average accuracy
and predictivity for several thousand biological activities equal to about 96% [20,21]. In
several comparative studies, it was shown that PASS outperforms, in predictivity, some
other recently developed methods for the estimation of biological activity profiles [20–22].
Freely available via the Internet, the PASS Online web service [242] is used by more than
thirty thousand researchers from almost a hundred countries to determine the most promis-
ing biological activities for both natural and synthetic compounds [243–247]. To reveal the
hidden pharmacological potential of the natural substances, we have successfully used
PASS for the past fifteen years [248–254].

6. Conclusions

In connection with the intensive development of information technology in the last
decade, a lot of computer programs have appeared that use algorithms to determine
the biological activity of various natural and synthetic molecules. Many of them, as a
rule, are not effective enough for these purposes. However, there are programs that
have proven their effectiveness for several decades. The data on the biological activity
of natural polyether ionophores given in this review were obtained both experimentally
and using PASS. The data comparison shows that natural polyether ionophores exhibit
strong antitumor, antifungal, antibacterial, and antimicrobial activities, among many other
activities. The presented data may be of interest to specialists in various fields of science
such as organic chemistry and molecular biology; however, these data are of the greatest
interest in a practical use for pharmacologists, physicians, and in applied medicine.
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