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Background: With prostate cancer being the fifth-greatest cause of cancer mortality in

2020, there is a dire need to expand the available treatment options. Castration-resistant

prostate cancer (CRPC) progresses despite androgen depletion therapy. The

mechanisms of resistance are yet to be fully discovered. However, it is hypothesized

that androgens depletion enables androgen-independent cells to proliferate and

recolonize the tumor.

Objectives: Natural bioactive compounds from edible plants and herbal remedies might

potentially address this need. This review compiles the available cheminformatics-based

studies and the translational studies regarding the use of natural products to

manage CRPC.

Methods: PubMed and Google Scholar searches for preclinical studies were performed,

while ClinicalTrials.gov and PubMed were searched for clinical updates. Studies that were

not in English and not available as full text were excluded. The period of literature covered

was from 1985 to the present.

Results and Conclusion: Our analysis suggested that natural compounds exert

beneficial effects due to their broad-spectrum molecular disease-associated targets. In

vitro and in vivo studies revealed several bioactive compounds, including rutaecarpine,

berberine, curcumin, other flavonoids, pentacyclic triterpenoids, and steroid-based

phytochemicals. Molecular modeling tools, including machine and deep learning, have

made the analysis more comprehensive. Preclinical and clinical studies on resveratrol, soy
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isoflavone, lycopene, quercetin, and gossypol have further validated the translational

potential of the natural products in the management of prostate cancer.

Keywords: castration-resistant prostate cancer (CRPC), hormone-sensitive cancer, advance staged cancer, natural

products (NP), natural anticancer agents, tumor microenvironment, cheminformatics

INTRODUCTION

With the global burden of cancer increasing at an alarming rate,
health systems struggle to find any cost-effective strategies,
particularly in poor and developing countries (Suryanarayana
et al., 2015). Despite advancements in screening and early
diagnosis strategies, about 20% of men have prostate cancer
(PCa). PCa is predominantly controlled by androgen-binding
and transcription signals from the androgen receptor (AR)
(Studer et al., 2004; Singer et al., 2008; Padmanabha and
Hariharan, 2016). Men with PCa usually respond to androgen
deprivation therapy (ADT). However, in most individuals, the
illness progresses remarkably within 2 years, which has been

termed castration-resistant prostate cancer (CRPC). CRPC is a
kind of advanced PCa that progresses with the circulating
testosterone levels (<50 ng/dl) after being castrated surgically
or pharmaceutically (Hotte and Saad, 2010; Kirby et al., 2011).
Most individuals with advanced disease acquire resistance to
ADT and develop CRPC (Sarkar et al., 2010). Although it has
not been fully understood how the prostate cells become castrate-
resistant, one of the accepted reasons is the deprivation of
androgen that eventually gives androgen-independent cells a
selection advantage, thus allowing them to flourish and
eventually recolonize the tumor (Hoimes and Kelly, 2009).
However, studies have reported that PCa cells could overcome

castration-induced growth inhibition by upregulating enzymes
that promote androgen production in tumor tissue (Grossmann
et al., 2001). The realization that CRPC still plays a significant
function in the androgen axis has prompted more research and
development of therapy methods (Kirby et al., 2011;
Chandrasekar et al., 2015). Even though new therapy options
for individuals with advanced-stage PCa have recently been
authenticated, the fact remains that CRPC is catastrophic
(Lian et al., 2015).

Recent research developments have resulted in significant
progress in strategies for managing PCa in terms of diagnosis

and treatment. Complementary and alternative medicines
(CAMs), including those from plant, animal, and microbial
sources, are eliciting strong potential for the treatment
management of various diseases and disorders, including
cancer (Al-Menhali et al., 2015; El Hasasna et al., 2015;
Athamneh et al., 2017; Fardoun et al., 2017; Elmas et al., 2018;
Song et al., 2019; Nishimura et al., 2021). Pieces of evidence have
supported the utility potential of CAMs; therefore, clinical studies
were carried out so that CAMs would reach the patient’s bedside.
With advances in organic chemistry and chemical analysis, the
analytical investigation has opened the door to the isolation/

purification and characterization of numerous active compounds
of plants (Newman et al., 2000; Singla et al., 2020a; Shen and
Singla, 2020). One significant advantage of medicinal plant-based

drug development is the availability of ethnopharmacological
data, which can be used to narrow down the vast number of

probable leads and choose the most promising ones (Choudhari
et al., 2020; Singla, 2020). However, the integrated drug discovery
approach supported by multidisciplinary fields, including
medicinal chemistry, pharmacology, natural product
chemistry, biochemistry, and molecular and cellular biology, is
expected to lead to a better understanding of the potential of
phytochemicals (Newman and Cragg, 2016; Singla et al., 2020b;
Choudhari et al., 2020; Singla and Shen, 2020). A large number of
phytochemicals, such as quercetin (Rauf et al., 2018), fisetin (Lall
et al., 2016), curcumin (Ide et al., 2018), genistein (Basak et al.,
2008), resveratrol (Lee et al., 2014), have been found to modulate

AR activity and expression. Bioactive metabolites produced from
edible plants (nutraceuticals) and traditional folk sources are
potentially multitarget and are thus preferred over the primarily
single-target anticancer agents, such as kinase inhibitors
(Kallifatidis et al., 2016).

CASTRATION-RESISTANT PROSTATE
CANCER

Epidemiology
PCa is the second most common cancer in males and the fifth-
greatest cause of cancer mortality in 2020, with an anticipated 1.4

FIGURE 1 | Pie chart depicting the distribution of global prevalence of

the seven most frequent cancers in 2020 for all ages. Adapted from the data

published by Wild et al. (2020).

Frontiers in Pharmacology | www.frontiersin.org October 2021 | Volume 12 | Article 7322662

Singla et al. Natural Products as Anti-CRPC Agents

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


million new cases and 375,000 deaths globally (Figure 1) (Lin
et al., 2018; Sung et al., 2021). It is considered the second leading
cause of cancer-related male fatalities and the most common
noncutaneous malignancy in males, with more than 160,000 new

cases reported in 2017 in the United States (Zhu et al., 2015;
Howlader et al., 2017; Teo et al., 2019). According to the
GLOBOCAN database, in 2018, an estimated 1.2 million new
cases of PCa were recorded worldwide, with developed nations
having a greater prevalence. Moreover, the global burden is
expected to increase to over 2.3 million and 7,40,000 deaths
by 2040 (Ferlay et al., 2018; Rawla, 2019; Culp et al., 2020). PCa is
prevalent in almost all major countries and is the leading cancer-
related cause of death in males in over 100 nations after lung
cancer (112 of 185). The incidence rate ranges from 6.3 to 110.4
per 100,000 males across countries. The higher rates were

observed in Northern and Western Europe, the Caribbean,
Australia/New Zealand, Northern America, and Southern
Africa, whereas the lowest rates were found in Asia and
Northern Africa. Previous research studies have suggested that
African-American males have the highest prevalence of PCa
worldwide and are more prone than other racial and ethnic
groups to get the disease at a younger age (Kheirandish and
Chinegwundoh, 2011). The higher rates may indicate a greater
disease incidence and higher rates of PCa than other places across
the globe (Wild et al., 2020; Sung et al., 2021). For a prevalent
illness like PCa, little is known about its genesis, and only a few

risk factors have been discovered (Lin et al., 2021). Several factors
are responsible for changes in its prevalence at the regional level
due to changes in the susceptibility of different population groups
to environmental risk factors, including racial/ethnic
backgrounds, geographical heterogeneity, advancing age and
an intact hypothalamic-pituitary-gonadal axis, family history,
genetic mutations (e.g., BRCA1 and BRCA2), and diagnosis
and access to good quality treatment (Hoimes and Kelly, 2009;
Rebbeck et al., 2013; Shackleton et al., 2021). PCa incidence and
death rates differ significantly between ethnic groups, implying
ethnic and genetic susceptibility (Shackleton et al., 2021).

However, since the 1990s, mortality rates in PCa have
declined in most high-income countries, including Northern
America, Oceania, and Northern and Western Europe, due to
advances in therapeutics and earlier diagnostics using enhanced
screening methods (Tsodikov et al., 2017). This diversity in PCa
mortality rates throughout the world is partly due to underlying
biological disparities in risk and treatment availability. For
example, places with higher diagnosis rates of low-grade
malignancies and improved treatment choices (such as
Northern America and Asia) have lower death rates than
those with poor screening rates, concomitant diagnoses of

aggressive tumors, and limited treatment choices (such as Sub-
Saharan Africa).

Tumor Microenvironment in
Castration-Resistant Prostate Cancer
Immune cells are key components of the tumor
microenvironment associated with tumor progression. T
regulatory cells (Tregs), tumor-associated macrophages

(TAMs), tumor-infiltrating B lymphocytes (TILs), neutrophils,
and myeloid-derived suppressor cells (MDSCs) are part of the
infiltrated immune cell of the prostate tumor microenvironment.
However, various studies have reported that the progression of

PCa is influenced by the tumor-associated immune cells and
inflammatory cytokines, such as IL-23 (Ammirante et al., 2010; Si
et al., 2013; Calcinotto et al., 2018; Wang et al., 2019; Zhang Z.
et al., 2020). TAMs are a major component in the development of
PCa, though the specific pathway for the release of cytokines,
matrix metalloproteinases, and growth factors is still unknown
(Shimura et al., 2000; Arora et al., 2018). Castration resistance is
characterized by both hyper- and/or constitutively active
androgen receptor expression (AR) in PCa cells toward
cellular interactions between stem cells and bone
microenvironmental systems (Karamanolakis et al., 2016). The

cancer cell dependency on the tumor microenvironment
indicates that the noncancer cell component of the tumor can
regulate the spread of PCa. However, the immune response from
the tumor microenvironment contributing to the development of
CRPC is unknown (Calcinotto et al., 2018). The typical prostate
gland comprises prostatic ducts surrounded by epithelium and a
stroma made up of smooth muscle cells with a few fibroblasts,
endothelial cells, and nerve cells. ARs are widely expressed in
several normal prostate stromal cell types, including smooth
muscle cells, endothelial cells, and epithelial cells (Cunha et al.,
1996). Multiple nonmalignant cells, such as fibroblasts,

myofibroblasts, endothelial cells, and immune cells,
chemokines, cytokines, growth factors, extracellular matrices
(ECMs), and matrix-degrading enzymes make up the stromal
compartment (Corn, 2012). The connection between the
epithelial and stromal sections facilitates the progression of
tumors through processes such as ECM reintegration,
increasing penetration and releasing soluble growth factors for
castrate-resistant growth, and angiogenesis stimulation (Rowley,
1998; Karlou et al., 2010). Immune cells are typical inhabitants
and have a protective function against infections that infiltrate
healthy prostatic tissue. However, histological investigations have

revealed that high-grade PCa is associated with enhanced stromal
immune cell infiltration with differences between tumor-stage
cell types (Gurel et al., 2014).

Signaling Pathways Orchestrating
Castration-Resistant Prostate Cancer
One of the factors contributing to PCa progression is androgen
binding to androgen receptors. Herein, androgens play a pivotal
role in the growth and survival of PCas. Moreover, increased
expression of androgen receptors is often observed in CRPC

(Gelmann, 2002). Androgen receptor translocates into the
nucleus with the aid of ligand binding, where it orchestrates
transcription, modulates growth signaling pathways, and dictates
programmed cell death, cellular proliferation, and androgen-
associated genes (Andersen et al., 2010). PI3K-Akt-mTOR
pathway stands at the forefront of the initiation of CRPC,
which is essentially triggered by G protein-coupled receptors
(GPCR). Accumulating evidence has suggested that perturbations
in the PI3K-Akt-mTOR pathway occur in the vast majority of
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metastatic cancers; hence, PI3K-Akt-mTOR can be a potential
therapeutic target (Huang et al., 2018). Phosphatase and tensin
homolog (PTEN) has been associated with PI3K-Akt-mTOR
triggering in advanced stages of the disease, especially the

downregulation of this gene (McMenamin et al., 1999). A
previous study has proven that AR is interlinked with PI3K-
Akt-mTOR, where combination therapy of AR and PI3K-Akt-
mTOR inhibition by EPI-002 and BEZ235 in vitro and in vivo
successfully reduced LNCaP95 cell growth and was noted as a
potential therapeutic avenue in CRPC (Kato et al., 2016).

Similarly, the JAK/STAT pathway is also a membrane-to-
nucleus signaling pathway, which is vital for the development,
proliferation, migration, and apoptosis of cells, often triggered by
agents, such as cytokines and growth factors (Ramalingam et al.,
2017). When triggered, JAKs induce phosphorylation of STAT

proteins. Therefore, STATs are dimerized and thereby
translocated to the nucleus via importin α-5 and the Ran
nuclear import pathway. STATs display a specific stimulation
or suppression of transcription of target genes by binding to
specific sequences inside the nucleus (Ramalingam et al., 2017).
JAK/STAT3 pathway is a well-established prosurvival inducing
mechanism, where repression of this pathway reduced the PCa
cell growth and induced programmed cell death (Liu et al., 2012).
Oncogenes like BRAC induce proliferation and migration via the
JAK/STAT3 pathway (Gao et al., 2001). Furthermore, STAT3
activation triggers other genes linked to the cell cycle,

angiogenesis, and tumor progression (Dhir et al., 2002; Zhu
and Kyprianou, 2008). In various conditions, JAK/STAT3 is a
predictor of poor disease prognosis (Liu et al., 2012).

Src signaling has been implicated in promoting growth factors
and inflammatory cytokines, such as IL-8, and inducing
angiogenesis (Park et al., 2007). Additionally, Src signaling
triggers nuclear factor-KB (Nf-KB) and tumor necrosis factors
involved in evading apoptosis and promoting bone metastasis of
PCa (Park et al., 2007). Targeting Src has immensely slowed down
tumor growth and hindered invasion, which can be achieved
using the two clinical drugs, dasatinib and saracatinib (Yang et al.,

2010; Araujo et al., 2013). Moreover, growth factors, such as IGF-
1, IL-6, and EGFR, can individually promote CRPC (Bettedi and
Foukas, 2017). Activation of Her-2/neu, a receptor tyrosine
kinase, has been observed to increase the growth of CRPC in
clinical samples and xenograft models (Wen et al., 2000; Neto
et al., 2010). A clinical study on targeting growth factor signaling
pathways with the help of cabozantinib and tyrosine kinase
inhibitor has achieved a therapeutic advantage in various
stages, such as survival devoid of disease progression and
marked decrease of metastatic lesions (Smith et al., 2013).

Recent evidence has revealed a regulatory mechanism, that is,

crosstalk between AR and Wnt pathway, where suppression of
Wnt pathway facilitates reducing AIPC cell growth by inhibiting
cell cycle progression and promoting apoptosis in vitro. Further, a
correlation between Wnt genes, like WNT5A and LEF1, and
metastatic PCa has been observed (Luo et al., 2020). Wnt catenin
pathway plays a principal role in homeostasis, proliferation,
migration, and cell transitions (Kuhl and Kuhl, 2013).
Increased catenin in PCas leads to phosphorylation and
inactivation of GSK3 (Chesire and Isaacs, 2003; He et al.,

2004). Inclined expression of Wnt is correlated with disease
progression and metastasis. Furthermore, FZD4 overexpression
favors EMT in CRPC (Polakis, 2007; Gupta et al., 2010).

Long noncoding RNAs (lncRNAs) are a group of transcripts

widely employed as diagnostic tools and have received great
attention because they are expressed in a more tissue-specific
manner. Recent emerging evidence has shown that lncRNAs play
vital roles in cancer initiation and progression, including PC
progression and AR-related pathways (Ren et al., 2013; Fang
et al., 2016). In a very recent study by Yao et al., LINC00675 has
been abundantly found in both androgen-insensitive cells and
CRPC patients. In the same study, it has been confirmed that
LINC00675 binds to GATA2 mRNA and makes GATA2 an
activator in the AR signaling mechanism in the nucleus,
contributing to both castration resistance and disease

progression (Yao et al., 2020). Signaling pathways associated
with castration-resistant prostate cancer are illustrated in
Figure 2.

An androgen receptor-dependent mechanism of resistance in
hormone-naïve PCa leads to castration resistance. Apart from the
AR, survival can be achieved and enhanced via cell-intrinsic
pathways or progrowth signals from the microenvironment.

Genomic Targets of Phytomolecules
Against Castration-Resistant Prostate
Cancer
Expansion of malignant prostatic cells and normal cells and
proliferation of CRPC are extremely dependent on androgens.
Consequently, it has been hypothesized that androgens play a
fundamental role in prostate tumor genesis. As a result, the main
remedial target for PCa is reducing the levels of androgens (Zhou
et al., 2015), which is accomplished through ADT. Despite this,
severe complications are the resurrection of androgens and
elevation of PSA. This condition is called CRPC and is
characterized by a loss in the ability to respond to ADT,
leading to reappearance of PCa and metastasis (Perlmutter

and Lepor, 2007; Hotte and Saad, 2010). The translation of
hormone-dependent PCa cells to CRPC is chiefly driven by
the upregulation of AR activity. Urbanucci et al. have reported
the overexpression of AR receptors in 22–30% of patients with
CRPC (Urbanucci et al., 2011; Petrylak, 2013; Coutinho et al.,
2016). In another study, Hay et al. have declared that the AR gene
mutation was found in 22–30% of CRPC cases (Lobaccaro et al.,
2012; Eisermann et al., 2013). Sharifi has shown the metabolic
transformation of DHT (dihydrotestosterone). The USFDA has
approved docetaxel for the management of CRPC. Similarly,
cabazitaxel, another taxol derivative, has been tested in phase

III clinical trial against CRPC. Numerous research groups have
reported differentially expressed genes and phytochemicals
established as inhibitors of identified targets for CRPC (Sharifi,
2013).

Rotimi et al. have conducted differential gene expression
analysis of phytoconstituents target for CRPC. Plant-based
phytomolecules were subjected to virtual screening toward
GUCY1A2 variants. The results have revealed that SYT4,
GUCY1A2, and GRIN3A were the most pharmacologically
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significant genes implicated in the pathogenesis of CRPC in the

xenograft model (Rotimi et al., 2019). The docking scores of
(8′S)-neochrome and (8′R)-neochrome were −152.102 and
−160.75, respectively, when targeting G723S and Q217H. In
another report, Cai et al. have observed an elevated expression
of the α-subunit of soluble guanylyl cyclases (α-sGC) in
hormone-refractory PCa at both the mRNA and protein levels
(Krumenacker et al., 2004; Cai et al., 2006). It has been found that
α-sGC leads to suppression of apoptosis via accumulation of p53
in the cytoplasm; hence, it is proposed as a target for CRPC. In
another approach, Liao et al. have reported the screening of
natural products, including terpenes, alkaloids, flavonoids, and

polyphenols. Among them, rutaecarpine, obtained from
Tetradium ruticarpum (A.Juss.) T.G.Hartley, has been found
to exhibit potential effects against CRPC using in vitro and in
vivo studies in LNCap and 22 RV1 cell lines and in xenograft
models, respectively. The outcomes of western blotting analysis
have revealed that AR-V7 and AR-FL were expressed in LNCaP
and 22Rv1. Moreover, rutaecarpine has been found to exhibit a
dose-dependent downregulated AR-V7 protein expression (Liao
et al., 2020). Mendiratta et al. have established the genomic
stratagem to manage CRPC using a transcription-based
androgen receptor activity signature toward LNCaP cell lines

(Mendiratta et al., 2009). AR signature has been employed to
determine whether AR activity varies with hormone therapy;
progression and oncogenic pathway assays were used to recognize
biologic pathways associated with AR activity. The probability of
AR activity was 0.13, 0.11, 0.96, and 087 against PC-3, DU-145,
LNCaP, and 22Rv PCa cell lines, respectively (Amler et al., 2000;
Febbo et al., 2005; Hieronymus et al., 2006). Moreover, these
genomic targets served as diagnostic and prognostic biomarkers,
and their discovery has been expedited multifold due to NGS

technologies (Chen et al., 2013a; Chen et al., 2013b; Shen et al.,

2021). Thus, discovering these biomarkers is fundamental for
developing diagnostic biosensors (Jiang et al., 2014).

NATURAL PRODUCTS FOR THE
TREATMENT MANAGEMENT OF
CASTRATION-RESISTANT PROSTATE
CANCER

Cheminformatics and
Bioinformatics-Based Studies for
Anti-Castration-Resistant Prostate Cancer
Natural Products
Molecular Docking-Based Studies
Molecular modeling analyses are effective tools for studying
structure–activity relationships (SARs). Several plant-based
molecules have been screened to detect and identify various
biological activities (Willett, 1994; Kumar and Jain, 2016;
Sharma et al., 2016; Kumar et al., 2017; Kaur et al., 2019;
Kumar et al., 2021). In the literature, numerous
phytomolecules have been obtained from plants, such as
alkaloids, tannins, glycosides, coumarins, flavonoids, and
polyphenolic constituents, which have been evaluated against
various cancer cell lines (Kumar D. et al., 2015; Kumar et al.,

2016a; Kumar et al., 2016b; Kumar et al., 2018a; Kumar et al.,
2018b; Kaur et al., 2020; Sharma et al., 2021). A wide range of
natural products with high biocompatibility, low toxicity, good
sustainability, and a good safety profile is extensively used to
manage CRPC.

FIGURE 2 | Signaling pathways in castration-resistant prostate cancer.
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Structure–Activity Relationship and Mechanistic
Insights
Several phytoconstituents have been isolated from various plants
and screened for in vitro, in vivo, in silico, and mechanistic
insights into mitigating CRPC. Mbese et al. have reported the
therapeutic role of curcumin and its derivatives in treating PCa

(Mbese et al., 2019). Curcumin is one of the main constituents of
Curcuma longa L. (Zingiberaceae). It is a polyphenolic compound
widely used as a pigment and spice, available in the market as
turmeric and commonly known as Haldi. Curcumin structure
and its most potent analogs (1–4) are shown in Figure 3

(Mukhopadhyay et al., 2001; Yang et al., 2006; Choi et al.,
2010; Yallapu et al., 2014; Schmidt and Figg, 2016).

Xu et al. have reported the docking studies and three-
dimensional quantitative SARs of curcumin analogs as
androgen receptor antagonists. The bioactive conformation

was explored using molecular docking in SYBYL with binding
interaction of AR. The oxygen atom of the methoxy group forms
binding interactions as a hydrogen bond acceptor by creating
hydrogen bonds with HIS920 and GLU893, respectively, as
depicted in Figure 4 (Cramer et al., 1988; Lill, 2007; Xu et al.,
2012).

Zhou et al. have established the role of curcumin and its

analogs in androgen receptor activation and inhibiting the growth
of human PCa, such as LNCaP and CWR-22Rv1 cell lines. SAR
and the apoptotic effect of curcumin and its analogs (5–7) are
presented in Figure 5 (Zhou et al., 2014).

Numerous research groups have established molecular
targets of curcumin (1) associated with cell proliferation, cell
death, and inflammation. Androgen receptor signaling,
activation of protein-1, PI3K/Akt/mTOR, Bcl-2 family,
NF-KB, and wingless β-catenin signaling are shown in

FIGURE 3 | Structure of curcumin along with mechanistic insights.
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FIGURE 4 | Binding interactions of compound (4) with amino acid residues along with important key findings.

FIGURE 5 | Structure of curcumin and its analogs (5–7) along with structure–activity relationships and mechanistic insights.
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Figure 6, along with important mechanistic insights (Abd.

Wahab et al., 2020). Curcumin can also be recommended
along with prednisone and docetaxel in individuals with
CRPC. It can also be given in combination with isoflavones
in patients who had prostate biopsy due to elevated PSA levels
(Ide et al., 2010; Mahammedi et al., 2016).

Berberine (8) is an isoquinoline derivative and has been

evaluated for anticancer activities against PCa (Li et al., 2011;
Wang et al., 2012). Tian et al. have reported the effect of berberine
in inhibiting synthesis, which employs the interaction with aldo-
keto reductase 1C3 as a potential target against 22Rv1 prostate
cancerous cell lines. Berberine delayed the progression of CRPC

FIGURE 6 | Molecular targets of curcumin.

FIGURE 7 | Structure of berberine along with important key findings.
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by reducing androgen synthesis. Moreover, protein levels were
determined using western blotting and RT-PCR, respectively (Li
et al., 2016). Molecular docking studies of berberine are shown in
Figure 7. In another study, Mantena et al. have reported the
apoptotic potential of berberine; that is, berberine induces cell
cycle arrest in the G1 phase and caspase-3 inhibition in human
PCa cell lines (Mantena et al., 2006).

In another report, Watson et al. have identified the secondary
metabolites produced from cruciferous vegetables, such as

broccoli, cauliflower, and brussels sprouts. These metabolic
products, such as sulforaphane (9) and indole-3-carbinol (10),
were potential candidates for inhibiting PCa as an epigenetic
modulator. Structures of sulforaphane and indole-3-carbinol are
depicted in Figure 8 along with mechanistic insights (Chinni
et al., 2001; Li, 2005; Garikapaty et al., 2006; Beaver et al., 2012;
W.; Watson et al., 2013).

Docetaxel (11) is a semisynthetic taxane derivative and is
widely used to mitigate numerous cancers, such as prostate,
breast, ovarian, lung, and pancreatic cancers (Oudard et al.,
2017). Similarly, cabazitaxel (12) is a second-generation

docetaxel derivative with activity against docetaxel-resistant
tumors. Compound (12) exerts its action by inhibiting
microtubule functions in PCa cell lines (Kotsakis et al., 2016).
Bono et al. have reported the use of cabazitaxel in combination
with prednisone in metastatic CRPC (de Bono et al., 2010). The
structure of taxanes derivatives is depicted in Figure 9.

Flavonoid-based phytochemicals are characterized by a 15-
carbon frame as a common phenyl benzopyrone association
(C6–C3–C6) in their scaffolds (Sharma et al., 2021). Flavonoids

are a potential bioactive class of natural products and are
subdivided into flavones, flavanones, flavan-3-ols, flavonols,
flavanones, and isoflavones. Among these, phytomolecules,
quercetin, kaempferol, luteolin, apigenin, genistein, fisetin,
epigallocatechin-3-gallate, and a mixture of flavo-lignans,
such as silibinin-A and silibinin-B, have been screened
against CRPC using in vitro, in vivo, and preclinical studies
(Kallifatidis et al., 2016; Taylor and Jabbarzadeh, 2017; Salehi
et al., 2019; Fontana et al., 2020). Lin et al. have isolated

wedelolactone from Sphagneticola calendulacea (L.) Pruski
and evaluated its effect on the growth of PCa cell lines,
such as 22Rv1 and LNCaP, with IC50 values of 0.4 µg/ml
and 0.8 µg/ml, respectively (Lin et al., 2007). Structures of
flavonoid-based phytochemicals (13–29) are shown in
Figure 10.

Various pentacyclic triterpenoids and steroid-based
phytochemicals were found to be potential candidates for the
treatment of CRPC (Fulda, 2008; Reiner et al., 2013). Among
these, betulinic acid (30), ursolic acid (31), ginsenoside Rh2 (32),
and ginsenoside Rh3 (33), as depicted in Figure 11, exhibited

remarkable effects against PCa (Kallifatidis et al., 2016).
Mokbel et al. have reported the phytomolecules obtained

from dietary components, which exhibited remarkable effects
against PCa. The effects of these compounds have been revealed
using in vitro assays, cell proliferation assay, and cell cycle arrest
studies in PCa cell lines (Fontana et al., 2019a; Fontana et al.,
2019b; Luo et al., 2019; Mokbel et al., 2019; Montagnani Marelli
et al., 2019). Structures of the compounds (34–41) are shown in
Figure 12.

FIGURE 8 | Structures of sulforaphane and indole-3-carbinol along with mechanistic insights.
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FIGURE 9 | Structure of docetaxel and cabazitaxel.

FIGURE 10 | Structures of flavonoid-based phytochemicals (13–29).
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FIGURE 11 | Structure of compounds (30–33).

FIGURE 12 | Structure of compounds (34–41) along with important key findings.
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Machine Learning-Based Studies
Deep learning and machine learning have been implemented in
various drug discovery processes such as physiochemical activity,
pharmacophore modeling, QSAR, toxicity prediction, and
structure based-virtual screening (Mishra et al., 2017; Joon
et al., 2021). With the recent advancement in modern
technologies, integrated artificial intelligence algorithms and
computer-aided drug design can help overcome the hurdles
and challenges of conventional drug design (Duch et al., 2007;
Lipinski et al., 2019). Badillo et al. have reported the

advancements in predicting biomarkers using machine
learning to provide physicians with new insights into
diagnosis. Using deep machine learning, the application of
biomarkers such as prostate-specific antigen (PSA) and its
clinical relevance in the prediction of metastasis of PCa are
examined. One of the primary challenges in PCa management
is deciding which patients have clinically significant tumors. This
concern includes not only new patients but also relapsed patients
after primary treatment (Majumdar, 1985; Zhang et al., 2017;
Badillo et al., 2020; Gupta et al., 2021).

In another study, Pantuck et al. have developed CURATE.AI
to determine adequate drug doses. In this study, a combination
of enzalutamide and experimental drug ZEN-3694 was
administered to a patient with metastatic CRPC. Using
CURATE.AI, it was found that a dose 50% lower than the
starting dose of ZEN-3694 can achieve the desired results and
arrest PCa growth (Pantuck et al., 2018; Su et al., 2019).
Similarly, Kaiwen Deng et al. have reported treating patients
with mCRPC by machine learning using a computational
model. Through this model, patients were accurately
allocated to docetaxel-intolerable and docetaxel-tolerable

groups. This algorithm predicts the adverse effects of
docetaxel treatment in patients. In this experiment, the data
were collected from 1600 patients in phase III clinical trials for
PCa treatment. These data generated the gold standards
framework, including treatment status, discontinuation, and
the number of deaths. The discontinuation status can be
envisaged using models with clinical parameters. Moreover,
death and treatment status were associated with discontinuation
(Deng et al., 2020).

FIGURE 13 | Schematic representation of machine learning and molecular docking of CYP inhibitors.
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Lee et al. have developed the novel machine learning model
for investigating non-mCRPC. In this model (Survival Quilts),
an algorithm automatically tunes and selects ensembles of
survival models based on clinical-pathological parameters
using the Surveillance, Epidemiology, and End Results

(SEER) datasheet. Data have been collected from
(approximately) 30% of the US population, especially from
men aged 35–95 years (Adamo et al., 2016; Lee et al., 2021).
Survival Quilts is open-source software designed to mechanize
the operation of machine learning in estimating survival rates.
Demographic characteristics of patients were age, T-stage, PSA,
primary and secondary Gleason grades score or grade groups,
PCa-specific mortality, and all-cause mortalities. This machine
learning model is competent in predicting ten-year PCa-specific
mortality (Lee C. et al., 2019).

In another study, Raju et al. have conducted multiple

machine learning, ADMET screening, and molecular docking
studies to identify selective inhibitors of CYP1B1. Different
machine learning models have been developed along with
molecular databases, including Maybridge, ChemBridge, and
a natural compound library, from which the selected models of
CYP1B1 and CYP1A1 were evaluated. These inhibitors were
highly expressed in wide varieties of cancer such as prostate,
colon, and breast. The most widely used anticancer compounds,
including paclitaxel, tamoxifen, docetaxel, and imatinib, are
rapidly inactivated by CYP1B1, eventually leading to drug
resistance (Androutsopoulos et al., 2009; Afarinkia et al.,

2013; Raju et al., 2021). These inhibitors were subjected to
molecular docking and pharmacokinetic analysis, as shown in
Figure 13.

Role of Network Pharmacology Approach in
Castration-Resistant Prostate Cancer
Traditional Chinese systems of medicine and complementary and
alternative systems of medicine are the three main systems used
to manage many types of cancer such as colon, gastric, breast,

ovarian, and prostate cancer. The mechanisms of phytomolecules
against CRPC have not been fully explored in the literature (Chen
et al., 1996; Liu et al., 2018). Various research groups have
reported the network pharmacology-based approach to explore
natural products such as curcumin, quercetin, and ursolic acid as
potential candidates for the treatment of CRPC (Barton et al.,
2008; Hopkins, 2008; Li et al., 2014; Ru et al., 2014; Lee D. et al.,
2019). Li et al. have demonstrated the network pharmacology of
TCM based on the binding interactions of natural herbs, isolated
phytochemicals, targets, genes, and diseases (Li et al., 2010; Li and
Zhang, 2013). The main goal of network pharmacology is to

investigate a potential candidate against disease with high
efficiency, minimal side effects, and less toxicity. Song et al.
have developed a network pharmacology-based technique to
explore the mechanism of Scleromitrion diffusum (Willd.)
R.J.Wang as a therapeutic candidate against CRPC.
Prospective target genes of PCa were screened using databases
such as OMIM, DisGeNET, and GeneCards. A network was
constructed by evaluating the possible interactions among diverse
target nodes. Protein–protein interaction, Kyoto Encyclopedia of
Genes and Genomes (KEGG), and Gene Oncology enrichment
analyses have been performed to explore and discover the

mechanistic insights and pathways for therapy against PCa
(Zhu et al., 2014; Yu et al., 2020). The PPI network revealed
the multiple imperative targets and PCa-related targets, such as

FIGURE 14 | Schematic representation of network pharmacology framework.
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PI3K, AkT1, mTOR, BCL2, Cyclin D1, PARP1, MAPK1, MMP3,
MMP9, caspase-3, caspase-9, STAT-3, and RAF-1 (Song et al.,
2019). A general schematic representation of the network
pharmacology framework is depicted in Figure 14 (de

Carvalho et al., 2014).
Bi et al. have established the mechanism of curcumin against

tumors based on pharmacology networking using DAVID 6.8
and GeneMANIA server database for analysis. This study
identified multiple drug targets, target pathways, and signaling
pathways (Bi et al., 2018). Thus, phytomolecules can also be used
in the future to manage other diseases, as stated in
complementary and traditional systems of medicine (Choi
et al., 2010).

Translational Studies of Phytomolecules for
Castration-Resistant Prostate Cancer:
Assessment of Translation Potential for
Bench to Bedside
Over the last 40 years, most chemotherapy drugs used to treat
cancer originated from natural products. Moreover,
phytomolecules may provide various lead structures used as
templates to synthesize new, pharmacologically more effective
agents (Mann, 2002). Since concomitant side effects, if any, are
reported to be mild, plants and their metabolites are considered to
be potentially acceptable choices for chemoprevention. It has

been shown that several phytocompounds, such as genistein,
green tea polyphenols, curcumin, lycopene, and vitamin D,
prevent or postpone the onset of PCa or its development to
CRPC (Kallifatidis et al., 2016). Basic and applied research are
two types of study that are usually separated. Basic research is
important for better understanding normal and pathological
states, but it does not directly translate this information into
therapeutically relevant applications. Based on our understanding
of illness formation and progression, applied research aids in the
development of novel diagnostic tools or treatments for patients.
The major objective of “translational” research is to combine

molecular biology advances with clinical trials, bringing research
from the bench to the patients’ bedside (Gibbs, 2000; Saijo et al.,
2003; Goldblatt and Lee, 2010). Most cancers likely develop due
to multiple genetic abnormalities, implying the need for a cocktail
of agents against multiple targets in cancer cells or the use of
agents with a broad range of targets, which is one of the most
critical factors limiting the effectiveness of targeted therapy. The
treatment of CRPC patients is still a serious clinical issue.
Researchers now have a better knowledge of the mechanisms
of CRPC owing to molecular, basic, and translational studies
(Amaral et al., 2012). Many clinical trials to assess the efficacy of

phytochemicals in human subjects have been undertaken, and
they have partially corroborated the encouraging results found
in vitro and preclinical models. We will only discuss those clinical
studies where the pure phytocompounds or the characterized
phytofractions were considered. We have excluded studies on
extracts and juices, as they would have deviated content from
the theme. Plant-derived constituents showing remarkable
anticancer effects against CRPC in clinical trials are discussed
as follows.

Resveratrol. Resveratrol is a polyphenol found in nature that
has been shown to inhibit PCa growth and development. In
several preclinical investigations, resveratrol has been shown to
decrease prostate cancer development in vitro and in animal

models. Moreover, resveratrol has been found to reduce androgen
receptor expression, decrease proliferation, induce apoptosis in
PCa cell lines, and improve their ionizing radiation sensitivity
(Jasinski et al., 2013). Dietary resveratrol suppresses β-catenin-
mediated AR signaling and represses nuclear localization of
β-catenin by reducing HIF-1 production, perhaps in a
proteasome-independent way, contributing to the reduction of
CRPC tumor progression (Mitani et al., 2014). Kjaer et al. have
conducted a randomized controlled trial (RCT) using two doses
of resveratrol (150 mg or 1,000 mg resveratrol daily) for
4 months in 66 middle-aged men suffering from metabolic

syndrome. High-dose resveratrol (1,000 mg daily) treatment
for 4 months dramatically reduced blood levels of the
androgen precursors androstenedione, dehydroepiandrosterone,
and dehydroepiandrosterone sulfate. However, the prostate size
and circulating levels of PSA, testosterone, free testosterone, and
dihydrotestosterone were unchanged (Kjaer et al., 2015). Patients
with nonmetastatic biochemically recurrent PCa were allocated to
escalating doses of MPX (pulverized muscadine grape skin rich in
ellagic acid, quercetin, and resveratrol) in cohorts of two patients,
with six patients at the maximum dose in the phase I section
of this phase I/II trial, which used a modified continuous

reassessment technique. The phase I section revealed that the
largest dose tested, 4,000 mg/d, was safe, with only grade 1
adverse event being recorded. Even though the phase I
population was small and there was no sustained decrease in
serum PSA from baseline, the findings show that 4,000 mg/d of
muscadine grape skin extract is safe (Paller et al., 2015).

Furthermore, Paller et al. have conducted a randomized,
multicenter, placebo-controlled, dose-evaluating phase II trial.
The results on 112 biochemically recurrent (BCR) patients
were evaluated, revealing that MPX did not significantly
improve the prostate-specific antigen doubling time (PSADT)

compared with the placebo. Nevertheless, other benefits
have been observed in the exploratory analysis (Paller et al.,
2018). Further, testing resveratrol’s chemopreventive effects
in conjunction with other antioxidants occurring naturally
together, such as in grapes, might be beneficial (Singh et al.,
2016).

Soy Isoflavone. Incidence rates of PCa are lowest in Asian
nations, where soy foods are frequently part of a normal diet (Jian,
2009). In some animal models, physiologically active isoflavones
found in soy products, such as genistein, daidzein, equol, and
glycitin, prevented PCa (Mahmoud et al., 2014). Antioxidant

defense, DNA repair, suppression of angiogenesis and metastasis,
potentiation of radio- and chemotherapeutic drugs, and
antagonism of estrogen- and androgen-mediated signaling
pathways are all involved in soy isoflavone-induced growth
arrest and death of PCa cells (Mahmoud et al., 2014). In
numerous clinical trials (Table 1), soy isoflavones have been
found to reduce PSA levels.

Lycopene. Lycopene, a natural pigment found mostly in the
ripe tomato fruits, is gaining popularity in preventing and
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treating heart disease and cancer (Heber and Lu, 2002).
Lycopene’s anticancer actions on PCa cells are mediated via
decreasing cell proliferation, inducing apoptosis, stopping the
cell cycle, and lowering DNA damage in various investigations

(Ivanov et al., 2007; Holzapfel et al., 2013). In vitro studies have
shown that a normal physiological concentration of lycopene in
culture conditions inhibits the growth of PCa cell lines, which are
either androgen-dependent or androgen-independent (Kim et al.,

TABLE 1 | Clinical studies evaluating the potential of soy isoflavones in reducing PSA levels.

Clinical study protocol Outcome PMIDs References

Healthy men (N � 112 aged 50–80 years) were randomly

allocated to groups drinking either a soy protein drink with

83 mg of isoflavones (+ISO) or a comparable drink with

isoflavones removed in a double-blind, parallel-arm,

randomized experiment for 12 months

In the isoflavone therapy group, there was no significant

change in blood PSA level, velocity, or PCa incidence

15066931 Adams et al.

(2004)

For 3 months, 24 males were put on a high or low soy diet in a

randomized, double-blind, crossover clinical trial

14% decrease in circulating blood PSA levels was observed

but with no change in testosterone levels

16775579 Maskarinec et al.

(2006)

In a randomized study, 58 men at high risk of PCa were

allocated to groups taking one of three protein isolates

containing 40 g/d protein at random (107 mg/d isoflavones,

<6 mg/d isoflavones, or 0 mg/d isoflavones) for 6 months

Soy protein isolate intake reduces AR expression in the

prostate but did not affect ER β expression

17585029 Hamilton-Reeves et al.

(2007)

Twenty patients with increasing PSA following previous local

treatment were treated with soy milk with 47 mg of

isoflavonoid per 8 oz serving three times per day for

12 months in an open-labeled phase II study

In six patients, the slope of PSA after study enrollment was

substantially lower than that before entering the study, while in

two individuals, the slope of PSA after study admission was

significantly greater

18471323 Pendleton et al.

(2008)

In a randomized, double-blind experiment, 25 PCa patients

were given placebo or soy isoflavone supplements for

2 weeks before prostatectomy

In PCa patients, soy isoflavones decreased prostate COX-2

mRNA while increasing p21 mRNA

19127598 Swami et al. (2009)

In the phase II trial, 29 patients with increasing PSA levels

following intense radiotherapy for prostate cancer were told to

drink 500 ml of soy beverage every day for 6 months

In 41% of PCa patients, soy caused a substantial delay in

PSA doubling time

20099194 Kwan et al. (2010)

53men with PCa took a daily supplement comprising 450 mg

genistein, 300 mg daidzein, and other isoflavones for

6 months in a double-blind, placebo-controlled, randomized

study

In men with low-volume PCa, there was no significant

reduction in PSA levels

21058191 deVere White et al.

(2010)

33 males undergoing androgen deprivation therapy for PC

were given either 20 g of soy protein with 160 mg of total

isoflavones or a taste-matched placebo (20 g whole milk

protein) for a 12-weeks

In androgen-deficient males, high-dose isoflavones do not

enhance metabolic or inflammatory markers

20798386 Napora et al. (2011)

Phase II, randomized, double-blind, placebo-controlled trial,

or oral isoflavone (60 mg/day) for 12 months, N � 158

PSA levels did not significantly change, following treatment

with isoflavones. The isoflavone group had a substantially

reduced PCa incidence in 53 individuals aged 65 years

21988617 Miyanaga et al. (2012)

47 Norwegian patients were given 30 mg genistein or placebo

capsules daily for 3–6 weeks before prostatectomy in a phase

2 placebo-controlled, randomized, double-blind clinical study

mRNA level of KLK4 in tumor cells was considerably

decreased, while androgen and cell cycle-related biomarkers

were not significantly lowered

22397815 Lazarevic et al. (2012)

A double-blinded, randomized, placebo-controlled trial

included 86 men given soy isoflavone capsules (80 mg/d of

total isoflavones and 51 mg/d aglucon units) for 6 weeks

After consuming soy isoflavones for a short time, no

significant changes in blood hormone levels, total cholesterol,

or PSA were observed

`23874588 Hamilton-Reeves et al.

(2013)

In 177 men at high risk of recurrence following radical

prostatectomy for PCa, a randomized, double-blind trial

comparing daily use of beverage powder containing 20 g of

protein in the form of either soy protein isolate (n � 87) or as

placebo calcium caseinate (n � 90). Within 4 months of surgery,

supplementation was started and was followed up for 2 years

Following radical prostatectomy, daily intake of a beverage

powder supplement containing soy protein isolate for 2 years

did not prevent biochemical recurrence of PCa in men at high

risk of PSA failure

23839751 Bosland et al. (2013)
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2002; Mirahmadi et al., 2020). A human intervention study has
demonstrated that consumption of carotenoid-containing plant
products significantly decreased oxidative base damage (Pool-
Zobel et al., 1997). In phase II randomized clinical trial, 26 men

with newly diagnosed, clinically localized PCa randomly allocated
to groups taking 15 mg of lycopene twice daily (n � 15) or no
supplementation (n � 11) for 3 weeks before radical
prostatectomy exhibited reduced PSA, connexin 43, and
insulin-like growth factor-1 levels (Kucuk et al., 2001). In an
unblinded randomized phase I clinical study, 32 patients with
localized prostate adenocarcinoma consumed tomato sauce-
based pasta dishes for 3 weeks (30 mg lycopene/day), which
resulted in higher lycopene levels in prostate tissues and
serum, reduction in PSA serum levels, and DNA damage in
both prostate and leukocyte cells in prostatectomy (Bowen et al.,

2002). In a prospective trial, 20 metastatic HRPC patients were
given 10 mg lycopene daily for 3 months and in almost all men,
disease progression inversely changed to a lower grade. Moreover,
PSA levels were reduced and ECOG function and bone pain
improved (Ansari and Gupta, 2004). In phase II clinical trial,
10 mg lycopene per day for 1 year resulted in a reduced PSA
velocity in 40 individuals (Barber et al., 2006). Bunker et al. have
conducted a randomized, unblinded phase I clinical trial in
81 high-risk Afro-Caribbean patients with neoplasia and found
that 30 mg/day of lycopene for 4 months lowers PSA serum
concentrations (Bunker et al., 2007). In a phase II research,

46 androgen-independent PC patients were given lycopene
(15 mg twice daily), which resulted in a 50% drop in PSA
levels; however, the trial showed no clinical benefit for the
advanced stage of cancer (Jatoi et al., 2007). In another trial,
32 patients with high-grade prostatic intraepithelial neoplasia
were given a lycopene-enriched diet (20–25 mg/day) for
6 months; however, no meaningful effect was observed in
terms of lycopene’s effects on cancer development or PSA
levels in these individuals (Mariani et al., 2014). In phase II
research, Zhuang et al. have studied the clinical efficacy and
safety profile of docetaxel with lycopene in CRPC patients and

revealed that the combination of docetaxel and lycopene
resulted in enhanced PSA response rate and tolerability
(Zhuang et al., 2021).

Quercetin. Quercetin, a flavonoid found in fruits and
vegetables, has been shown to have anti-inflammatory,
antioxidant, and cancer-fighting properties. The activity of
promoters of two major genes implicated in PCa pathogenesis,
i.e., AR and PSA, is inhibited by quercetin (Ghafouri-Fard et al.,
2021). By suppressing the main survival protein Akt, quercetin
has also been shown to promote the apoptosis of PCa dose-
dependently (Ghafouri-Fard et al., 2021). On PC-3 cells (model

cells of CRPC), quercetin and paclitaxel coadministration
significantly reduced cell proliferation, increased apoptosis,
triggered cell cycle arrest at the G2/M stage, activated
endoplasmic reticulum stress, and enhanced reactive oxygen
species production (Zhang X. et al., 2020). Henning et al. have
conducted a prospective randomized, parallel design, placebo-
controlled trial in which 31 men with PCa were given either 1 g of
green tea extract containing 830 mg of green tea polyphenols with
800 mg of quercetin or placebo for 4 weeks before prostatectomy

(Henning et al., 2020). Following the coadministration of green
tea extract and quercetin, they have found a significant rise in
quercetin concentrations in plasma, urine, and prostate tissue.
Furthermore, this regimen decreased epicatechin gallate levels in

the urine. In prostate tissue or RBCs, no significant change in the
concentration of green tea polyphenols or methylation activity
across the groups was observed and there was no evidence of liver
injury (Henning et al., 2020).

Gossypol. (-)-Gossypol, a polyphenolic chemical found in
cottonseed, improves radiation therapy response and shrinks
human PCa tumors (Xu et al., 2005). (-)-Gossypol induced
apoptosis in DU-145 cells by downregulating Bcl-2 and Bcl-xL
and increasing Bax at the mRNA and protein levels. It also
enhances PARP cleavage and activates caspase-3, -8, and -9
(Huang et al., 2006). In PCa cells and prostate tumor-

initiating cells, gossypol activates p53 and induces apoptosis
(Volate et al., 2010). AT-101 (R-(-)-gossypol acetic acid;
Ascenta Therapeutics, Inc.), a derivative of gossypol, exhibited
anticancer activity in various tumor models. Liu et al. have
conducted a phase I/II study of AT-101 in 23 patients with
CRPC and investigated that AT-101 was well tolerated when
given at a dose of 20 mg/day for 28 days (Liu et al., 2009).

(-)-Epigallocatechin-3-gallate (EGCG). (-)-Epigallocatechin-3-
gallate (EGCG), biologically active catechin of green tea, has been
evaluated for its chemopreventive activity against CRPC using
in vitro and in vivo animal studies (Ju et al., 2005; Thangapazham

et al., 2007; Rahmani et al., 2015). Bettuzzi et al. have explored
cancer-preventive effects of green tea catechins (GTCs) in
volunteers with high-grade prostatic intraepithelial neoplasia
(HGPIN). The volunteers were given 200 mg of GTC three
times daily for a total of 600 mg/d and followed up after
1 year. Only one instance of PCa in the treatment group
(incidence 3%) and nine cases of PCa (incidence 30%) in the
placebo group were observed (Bettuzzi et al., 2006). A decrease in
PSA levels, although not significant, and a significant decrease in
International Prostate Symptom Score were observed in the GTC
group. Furthermore, during a 2-year follow-up, two of the nine

placebo males and one of the 13 GTC patients were diagnosed
with PCa, demonstrating an 80% reduction in PCa diagnosis in
patients with HGPIN (Brausi et al., 2008). Polyphenon E (PolyE),
a mix of GTCs, containing 400 mg of EGCG, was given daily for
1 year to men with HGPIN in a placebo-controlled, randomized
clinical trial (Kumar NB. et al., 2015). A decrease in serum PSA
levels and ASAP in the PolyE group was observed. In another
study, males with PCa were given 1.3 g of PolyE containing
800 mg of EGCG daily (McLarty et al., 2009). A significant
reduction in PSA, HGF, and VEGF serum levels was observed
at the time of prostatectomy (after 3–6 weeks). Moreover,

supplementation with PolyE containing 800 mg of EGCG for
3–6 weeks resulted in a beneficial but nonsignificant reduction in
serum PSA in a similar clinical study (Nguyen et al., 2012).
Contrary to the above observations, minimal antineoplastic
action was identified after daily dosages of EGCG were given
to 42 patients with androgen-independent PCa in phase II clinical
study (Jatoi et al., 2003).

Curcumin. Curcumin, diferuloylmethane, inhibits PCa
proliferation and metastatic development by downregulating
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androgen receptor and epidermal growth factor receptors and
causing cell cycle arrest (Teiten et al., 2010). Twenty-six patients
with advanced CRPC and elevated PSA were given docetaxel/
prednisone in usual settings for six cycles, along with curcumin

(6,000mg per os each day; day −4 to day +2 of docetaxel)
(Mahammedi et al., 2016). This study demonstrates that
curcumin has a high response rate, good tolerability, and
patient acceptability, justifying the need for a randomized trial.
An RCT was conducted on 64 eligible patients with PCa to assess
the beneficial role of nanocurcumin in preventing and/or
mitigating radiation-induced proctitis in PCa patients
undergoing RT (Saadipoor et al., 2019). 33 patients received
nanocurcumin (120mg/day) 3 days before and during the RT
course. Radiation-induced proctitis occurred in 18/31 (58.1%) of
placebo-treated patients compared to 15/33 (45.5%) of

nanocurcumin-treated patients (Saadipoor et al., 2019). The role
of anticancer effects of curcumin in patients with PCa that undergo
intermittent androgen deprivation (IAD) treatment has been
studied. A randomized, double-blind, placebo-controlled trial
was performed on 97 patients with PCa (49 patients took oral
curcumin (1440 mg/day) and 48 received placebo for
6 months) who received IAD treatment (Choi et al., 2019).
The results have demonstrated that oral administration of
curcumin for 6 months can lower PSA levels significantly in
patients compared to those in the placebo group. Curcumin
(total 3 g/day), a radiosensitizing and radioprotective agent,

showed significant improvement of antioxidant status in
patients with PCa who received radiotherapy (Hejazi et al.,
2016). Another clinical study has been conducted to examine
the effect of curcumin supplements and isoflavones on serum
PSA levels (Ide et al., 2010). The isoflavones and curcumin were
administered orally to patients who had prostate biopsy due to
elevated PSA levels for 6 months, and a significant decrease of
serum PSA level was observed. Two clinical studies on the effect
of adjuvant use of curcumin after prostatectomy on improving
recurrence-free survival in PCa patients (clinicaltrials.gov;
NCT02064673) and reducing the risk of PCa progression in

low-risk men (clinicaltrials.gov; NCT03769766) are undergoing.

CONCLUSION AND FUTURE
PERSPECTIVES

PCa is a leading cause of cancer-related morbidity and mortality.
CRPC poses a pathophysiological and therapeutic challenge that
imposes a significant burden on individuals and the healthcare

system (Tang et al., 2013). A growing number of studies have
focused on deciphering its mechanistic underpinnings and
targeting the key elements of its pathogenesis. Therefore, it
might be more effective to address several pathogenetic
mechanisms contributing simultaneously to castration resistance
and cancer progression. These mechanisms can also complement
conventional and novel anticancer treatments. The main findings
of our review can be summarized as follows:

• The tumor microenvironment, with its immune cells,
cytokines, chemokines, androgen receptors and their

molecular interactions, plays an important role in
castration resistance. Simulating this environment can be
a key to the success of cheminformatics modeling studies.

• Multiple signaling pathways and transcription factors are

associated with CRPC. Natural compounds may be used to
target their elements and disrupt them. However, this may
be ground for potential side effects stemming from other
body systems.

• Oncogenes and mutations (SYT4, GUCY1A2, GRIN3A, and
BRAC) that are implicated in PCa resistance constitute
therapeutic targets. Exploring the effect of natural
products alongside the genetic traits of CRPC can lead to
more precise and, therefore, effective treatment approaches.

• Molecular docking studies and structure–activity models
can play an important role in identifying potent molecules

for further exploration in in vitro, in vivo, and clinical
studies.

• The use of disruptive technologies, including machine and
deep learning and artificial intelligence, can accelerate drug
discovery using comprehensive risk and efficacy analysis.

• Network pharmacology can reveal the evidence behind the
potential efficacy of complementary medicine in CRPC.

The present study attempts to provide an overview of a rapidly
expanding topic. It provides insights and guidance for future
studies that will examine specific elements mentioned in this

analysis, such as molecular docking or structure–activity
modeling. Relevant future studies may benefit from a systematic
review and a metanalysis methodology assessing both the available
quantitative and qualitative evidence. Disruptive technology is
expected to play an important role in future research. Artificial
intelligence models based on deep machine learning can broadly
analyze several natural compounds and their interactions.
Quantum computing can act as an accelerator in such studies
enabling the screening of big databases.

The adoption of a translational approach is a critical step
toward clinical practice and application. Computational analysis

of the effect of natural compounds on CRPC in combination with
specific biomarkers extracted from the patients’ histopathological
specimens can lead to the identification of compounds that may
be beneficial. The clinical outcomes of the patients receiving these
compounds and their regular treatment can be compared with
those of the control groups. Nonetheless, such an approach would
be possible only using natural compounds that have been
approved for clinical use by the respective health authorities.
The use of a broader number of natural compounds might be
possible in end-stage CRPC under compassionate authorization.
However, such studies might reduce the efficacy of natural

products due to the poor prognosis of the patients. In other
words, it should be understood that the results of these studies do
not necessarily reflect the efficacy of natural compounds
administered at earlier stages of the disease.

Finally, yet importantly, it is important to integrate social and
health economics factors in this research. Cultural factors have
been shown to affect patients’ attitudes toward several anticancer
drugs; moreover, the attitudes toward natural compounds need to
be assessed. People of different nationalities may be more open to
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receiving phytochemicals that they are already familiar with
because of their cultural background. On top of this, the
integration of phytochemicals as supplements in anticancer
treatment may be evaluated in terms of cost-effectiveness. This

will determine whether insurance systems and policymakers are
willing to make such treatments widely available to the public. In
the long run, patients, physicians, and regulatory authorities will
accept the use of natural compounds for managing CRPC, which
will result in conducting more large-scale studies and collecting
better evidence and data.

As advanced-stage PCas are prone to the extensive point
mutations that lead to drug resistance, single-targeted and
specific drugs are no longer beneficial and cannot go further
in clinical trials. In contrast, many natural products, such as
resveratrol, soy isoflavone, lycopene, quercetin, gossypol, EGCG,

and curcumin, progressed to clinical studies because of their
multitarget anticancer potential.

Moreover, formulation advancements and the discovery of
potent natural products play a crucial role in overcoming the
limitations concerning the poor pharmacokinetics and
bioavailability of natural products. Nanocurcumin-based
clinical studies are a small step toward addressing the
solubility and bioavailability related issues.

Utilizing all means available to integrate the use of natural
compounds sources into clinical practices can be extremely
beneficial in the management of CRPC in the future.
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