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Abstract

We present the Natural Questions corpus, a

question answering data set. Questions consist

of real anonymized, aggregated queries issued

to the Google search engine. An annotator

is presented with a question along with a

Wikipedia page from the top 5 search results,

and annotates a long answer (typically a para-

graph) and a short answer (one or more en-

tities) if present on the page, or marks null if

no long/short answer is present. The public

release consists of 307,373 training examples

with single annotations; 7,830 examples with

5-way annotations for development data; and

a further 7,842 examples with 5-way anno-

tated sequestered as test data. We present

experiments validating quality of the data. We

also describe analysis of 25-way annotations

on 302 examples, giving insights into human

variability on the annotation task. We introduce

robust metrics for the purposes of evaluating

question answering systems; demonstrate high

human upper bounds on these metrics; and

establish baseline results using competitive

methods drawn from related literature.

1 Introduction

In recent years there has been dramatic progress

in machine learning approaches to problems such

as machine translation, speech recognition, and

image recognition. One major factor in these

successes has been the development of neural

methods that far exceed the performance of

previous approaches. A second major factor has

∗♣Project initiation; ♦Project design; ♠Data creation;
♥Model development; ♤Project support; ♥Also affiliated

with Columbia University, work done at Google; ♦No longer

at Google, work done at Google.

been the existence of large quantities of training

data for these systems.

Open-domain question answering (QA) is a

benchmark task in natural language understanding

(NLU), which has significant utility to users, and

in addition is potentially a challenge task that

can drive the development of methods for NLU.

Several pieces of recent work have introduced

QA data sets (e.g., Rajpurkar et al., 2016; Reddy

et al., 2018). However, in contrast to tasks where

it is relatively easy to gather naturally occurring

examples,1 the definition of a suitable QA task,

and the development of a methodology for an-

notation and evaluation, is challenging. Key issues

include the methods and sources used to obtain

questions; the methods used to annotate and col-

lect answers; the methods used to measure and

ensure annotation quality; and the metrics used for

evaluation. For more discussion of the limitations

of previous work with respect to these issues, see

Section 2 of this paper.

This paper introduces Natural Questions2 (NQ),

a new data set for QA research, along with

methods for QA system evaluation. Our goals are

three-fold: 1) To provide large-scale end-to-end

training data for the QA problem. 2) To provide

a data set that drives research in natural language

understanding. 3) To study human performance in

providing QA annotations for naturally occurring

questions.

In brief, our annotation process is as follows. An

annotator is presented with a (question, Wikipedia

page) pair. The annotator returns a (long answer,

short answer) pair. The long answer (l) can

be an HTML bounding box on the Wikipedia

1For example, for machine translation/speech recognition

humans provide translations/transcriptions relatively easily.
2Available at:https://ai.google.com/research/

NaturalQuestions.
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Figure 1: Example annotations from the corpus.

page—typically a paragraph or table—that con-

tains the information required to answer the

question. Alternatively, the annotator can return

l = NULL if there is no answer on the page, or if

the information required to answer the question is

spread across many paragraphs. The short answer

(s) can be a span or set of spans (typically entities)

within l that answer the question, a boolean yes or

no answer, or NULL. If l = NULL then s = NULL,

necessarily. Figure 1 shows examples.

Natural Questions has the following properties:

Source of questions The questions consist of

real anonymized, aggregated queries issued to the

Google search engine. Simple heuristics are used

to filter questions from the query stream. Thus the

questions are ‘‘natural’’ in that they represent real

queries from people seeking information.

Number of items The public release contains

307,373 training examples with single annota-

tions, 7,830 examples with 5-way annotations for

development data, and 7,842 5-way annotated

items sequestered as test data. We justify the use

of 5-way annotation for evaluation in Section 5.

Task definition The input to a model is a ques-

tion together with an entire Wikipedia page. The

target output from the model is: 1) a long-answer

(e.g., a paragraph) from the page that answers the

question, or alternatively an indication that there

is no answer on the page; 2) a short answer where

applicable. The task was designed to be close to

an end-to-end question answering application.

Ensuring high-quality annotations at scale

Comprehensive guidelines were developed for the

task. These are summarized in Section 3. Anno-

tation quality was constantly monitored.

Evaluation of quality Section 4 describes post-

hoc evaluation of annotation quality. Long/short

answers have 90%/84% precision, respectively.

Study of variability One clear finding in NQ is

that for naturally occurring questions there is often

genuine ambiguity in whether or not an answer

is acceptable. There are also often a number

of acceptable answers. Section 4 examines this

variability using 25-way annotations.

Robust evaluation metrics Section 5 intro-

duces methods of measuring answer quality that

account for variability in acceptable answers. We

demonstrate a high human upper bound on these

measures for both long answers (90% precision,

85% recall), and short answers (79% precision,

72% recall).

We propose NQ as a new benchmark for research

in QA. In Section 6.4 we present baseline results

from recent models developed on comparable data

sets (Clark and Gardner, 2018), as well as a simple

pipelined model designed for the NQ task. We

demonstrate a large gap between the performance

of these baselines and a human upper bound. We

argue that closing this gap will require significant

advances in NLU.

2 Related Work

The SQuAD (Rajpurkar et al., 2016), SQuAD 2.0

(Rajpurkar et al., 2018), NarrativeQA (Kocisky

et al., 2018), and HotpotQA (Yang et al., 2018)

data sets contain questions and answers writ-

ten by annotators who have first read a short

text containing the answer. The SQuAD data

sets contain questions/paragraph/answer triples

from Wikipedia. In the original SQuAD data set,

annotators often borrow part of the evidence para-

graph to create a question. Jia and Liang (2017)
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showed that systems trained on SQuAD could

be easily fooled by the insertion of distractor

sentences that should not change the answer, and

SQuAD 2.0 introduces questions that are designed

to be unanswerable. However, we argue that ques-

tions written to be unanswerable can be identified

as such with little reasoning, in contrast to NQ’s task

of deciding whether a paragraph contains all of the

evidence required to answer a real question. Both

SQuAD tasks have driven significant advances in

reading comprehension, but systems now outper-

form humans and harder challenges are needed.

NarrativeQA aims to elicit questions that are not

close paraphrases of the evidence by separate sum-

mary texts. No human performance upper bound is

provided for the full task and, although an extrac-

tive system could theoretically perfectly recover

all answers, current approaches only just outper-

form a random baseline. NarrativeQA may just be

too hard for the current state of NLU. HotpotQA is

designed to contain questions that require reason-

ing over text from separate Wikipedia pages. As

well as answering questions, systems must also

identify passages that contain supporting facts.

This is similar in motivation to NQ’s long answer

task, where the selected passage must contain all

of the information required to infer the answer.

Mirroring our identification of acceptable variabil-

ity in the NQ task definition, HotpotQA’s authors

observe that the choice of supporting facts is

somewhat subjective. They set high human upper

bounds by selecting, for each example, the score

maximizing partition of four annotations into one

prediction and three references. The reference

labels chosen by this maximization are not rep-

resentative of the reference labels in HotpotQA’s

evaluation set, and it is not clear that the upper

bounds are achievable. A more robust approach

is to keep the evaluation distribution fixed, and

calculate an acheivable upper bound by approx-

imating the expectation over annotations—as we

have done for NQ in Section 5.

The QuAC (Choi et al., 2018) and CoQA

(Reddy et al., 2018) data sets contain dialogues

between a questioner, who is trying to learn about

a text, and an answerer. QuAC also prevents the

questioner from seeing the evidence text. Con-

versational QA is an exciting new area, but it is

significantly different from the single turn QA

task in NQ. In both QuAC and CoQA, conversa-

tions tend to explore evidence texts incrementally,

progressing from the start to the end of the text.

This contrasts with NQ, where individual questions

often require reasoning over large bodies of text.

The WikiQA (Yang et al., 2015) and MS Marco

(Nguyen et al., 2016) data sets contain queries

sampled from the Bing search engine. WikiQA

contains only 3,047 questions. MS Marco con-

tains 100,000 questions with freeform answers.

For each question, the annotator is presented with

10 passages returned by the search engine, and

is asked to generate an answer to the query, or

to say that the answer is not contained within the

passages. Free-form text answers allow more flex-

ibility in providing abstractive answers, but lead to

difficulties in evaluation (BLEU score [Papineni

et al., 2002] is used). MS Marco’s authors do

not discuss issues of variability or report quality

metrics for their annotations. From our expe-

rience, these issues are critical. DuReader (He

et al., 2018) is a Chinese language data set con-

taining queries from Baidu search logs. Like NQ,

DuReader contains real user queries; it requires

systems to read entire documents to find answers;

and it identifies acceptable variability in answers.

However, as with MS Marco, DuReader is reliant

on BLEU for answer scoring, and systems already

outperform a humans according to this metric.

There are a number of reading comprehension

benchmarks based on multiple choice tests

(Mihaylov et al., 2018; Richardson et al., 2013; Lai

et al., 2017). The TriviaQA data set (Joshi et al.,

2017) contains questions and answers taken from

trivia quizzes found online. A number of Cloze-

style tasks have also been proposed (Hermann

et al., 2015; Hill et al., 2015; Paperno et al., 2016;

Onishi et al., 2016). We believe that all of these

tasks are related to, but distinct from, answering

information-seeking questions. We also believe

that, because a solution to NQ will have genuine

utility, it is better equipped as a benchmark for

NLU.

3 Task Definition and Data Collection

Natural Questions contains (question, wikipedia

page, long answer, short answer) quadruples

where: the question seeks factual information; the

Wikipedia page may or may not contain the infor-

mation required to answer the question; the long

answer is a bounding box on this page containing

all information required to infer the answer; and

the short answer is one or more entities that give

a short answer to the question, or a boolean yes or
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1.a where does the nature conservancy get its funding

1.b who is the song killing me softly written about

2 who owned most of the railroads in the 1800s

4 how far is chardon ohio from cleveland ohio

5 american comedian on have i got news for you

Table 1: Matches for heuristics in Section 3.1.

no. Both the long and short answer can be NULL if

no viable candidates exist on the Wikipedia page.

3.1 Questions and Evidence Documents

All the questions in NQ are queries of 8 words or

more that have been issued to the Google search

engine by multiple users in a short period of time.

From these queries, we sample a subset that either:

1. start with ‘‘who’’, ‘‘when’’, or ‘‘where’’ di-

rectly followed by: a) a finite form of ‘‘do’’

or a modal verb; or b) a finite form of ‘‘be’’

or ‘‘have’’ with a verb in some later position;

2. start with ‘‘who’’ directly followed by a verb

that is not a finite form of ‘‘be’’;

3. contain multiple entities as well as an adjec-

tive, adverb, verb, or determiner;

4. contain a categorical noun phrase immedi-

ately preceded by a preposition or relative

clause;

5. end with a categorical noun phrase, and do

not contain a preposition or relative clause.3

Table 1 gives examples. We run questions

through the Google search engine and keep those

where there is a Wikipedia page in the top 5 search

results. The (question, Wikipedia page) pairs are

the input to the human annotation task described

next.

The goal of these heuristics is to discard a

large proportion of queries that are non-questions,

while retaining the majority of queries of 8 words

or more in length that are questions. A manual

inspection showed that the majority of questions in

the data, with the exclusion of question beginning

with ‘‘how to’’, are accepted by the filters. We

focus on longer queries as they are more complex,

and are thus a more challenging test for deep NLU.

3We pre-define the set of categorical noun phrases used

in 4 and 5 by running Hearst patterns (Hearst, 1992) to find

a broad set of hypernyms. Part of speech tags and entities

are identified using Google’s Cloud NLP API: https://cloud.

google.com/natural-language.

Figure 2: Annotation decision process with path pro-

portions from NQ training data. Percentages are propor-

tions of entire data set. A total of 49% of all examples

have a long answer.

We focus on Wikipedia as it is a very important

source of factual information, and we believe that

stylistically it is similar to other sources of factual

information on the Web; however, like any data

set there may be biases in this choice. Future data-

collection efforts may introduce shorter queries,

‘‘how to’’ questions, or domains other than

Wikipedia.

3.2 Human Identification of Answers

Annotation is performed using a custom annota-

tion interface, by a pool of around 50 annotators,

with an average annotation time of 80 seconds.

The guidelines and tooling divide the annotation

task into three conceptual stages, where all three

stages are completed by a single annotator in

succession. The decision flow through these is

illustrated in Figure 2 and the instructions given

to annotators are summarized below.

Question Identification: Contributors deter-

mine whether the given question is good or bad.

A good question is a fact-seeking question that

can be answered with an entity or explanation.

A bad question is ambigous, incomprehensible,
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dependent on clear false presuppositions, opinion-

seeking, or not clearly a request for factual in-

formation. Annotators must make this judgment

solely by the content of the question; they are not

yet shown the Wikipedia page.

Long Answer Identification: For good ques-

tions only, annotators select the earliest HTML

bounding box containing enough information for

a reader to completely infer the answer to the ques-

tion. Bounding boxes can be paragraphs, tables,

list items, or whole lists. Alternatively, annotators

mark ‘‘no answer’’ if the page does not answer the

question, or if the information is present but not

contained in a single one of the allowed elements.

Short Answer Identification: For examples

with long answers, annotators select the entity or

set of entities within the long answer that answer

the question. Alternatively, annotators can flag

that the short answer is yes, no, or they can flag

that no short answer is possible.

3.3 Data Statistics

In total, annotators identify a long answer for

49% of the examples, and short answer spans or

a yes/no answer for 36% of the examples. We

consider the choice of whether or not to answer

a question a core part of the question answering

task, and do not discard the remaining 51% that

have no answer labeled.

Annotators identify long answers by selecting

the smallest HTML bounding box that contains

all of the information required to answer the

question. These are mostly paragraphs (73%).

The remainder are made up of tables (19%), table

rows (1%), lists (3%), or list items (3%).4 We

leave further subcategorization of long answers to

future work, and provide a breakdown of base-

line performance on each of these three types of

answers in Section 6.4.

4 Evaluation of Annotation Quality

This section describes evaluation of the quality

of the human annotations in our data. We use

a combination of two methods: 1) post hoc

evaluation of correctness of non-null answers,

under consensus judgments from four ‘‘experts’’;

4We note that both tables and lists may be used purely for

the purposes of formatting text, or they may have their own

complex semantics—as in the case of Wikipedia infoboxes.

2) k-way annotations (with k = 25) on a subset of

the data.

Post hoc evaluation of non-null answers leads

directly to a measure of annotation precision. As is

common in information-retrieval style problems

such as long-answer identification, measuring

recall is more challenging. However, we describe

how 25-way annotated data provide useful insights

into recall, particularly when combined with ex-

pert judgments.

4.1 Preliminaries: The Sampling

Distribution

Each item in our data consists of a four-tuple

(q, d, l, s) where q is a question, d is a document,

l is a long answer, and s is a short answer. Thus

we introduce random variables Q, D, L, and S
corresponding to these items. Note that L, can be

a span within the document, or NULL. Similarly,

S can be one or more spans within L, a boolean,

or NULL.

For now we consider the three-tuple (q, d, l). The

treatment for short answers is the same throughout,

with (q, d, s) replacing (q, d, l).

Each data item (q, d, l) is independent and iden-

tically distrbuted (IID) sampled from

p(l, q, d) = p(q, d)× p(l|q, d)

Here, p(q, d) is the sampling distribution (prob-

ability mass function [PMF]) over question/

document pairs. It is defined as the PMF cor-

responding to the following sampling process:5

First, sample a question at random from some

distribution; second, perform a search on a major

search engine using the question as the underlying

query; finally, either: 1) return (q, d) where d is

the top Wikipedia result for q, if d is in the top

5 search results for q; 2) if there is no Wikipedia

page in the top 5 results, discard q and repeat the

sampling process.

Here p(l|q, d) is the conditional distribution

(PMF) over long answer l conditioned on the pair

(q, d). The value for l is obtained by: 1) sampling

an annotator uniformly at random from the pool

5More formally, there is some base distribution pb(q)
from which queries q are drawn, and a deterministic function

s(q) which returns the top-ranked Wikipedia page in the top

5 search results, or NULL if there is no Wikipedia page in

the top 5 results. Define Q to be the set of queries such that

s(q) �= NULL, and b =
∑

q∈Q pb(q). Then p(q, d) = pb(q)/b
if q ∈ Q and d �= NULL and d = s(q), otherwise p(q, d) = 0.
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of annotators; 2) presenting the pair (q, d) to the

annotator, who then provides a value for l.
Note that l is non-deterministic due to two

sources of randomness: 1) the random choice of

annotator; 2) the potentially random behavior of

a particular annotator (the annotator may give a

different answer depending on the time of day,

etc.).
We will also consider the distribution

p(l, q, d|L �= NULL) =
p(l, q, d)

P (L �= NULL)
if l �= NULL

= 0 otherwise

where P (L �= NULL) =
∑

l,q,d:l �=NULL p(l, q, d).
Thus p(l, q, d|L �= NULL) is the probability of

seeing the triple (l, q, d), conditioned on L not

being NULL.

We now define precision of annotations. Con-

sider a function π(l, q, d) that is equal to 1 if l
is a ‘‘correct’’ answer for the pair (q, d), 0 if

the answer is incorrect. The next section gives a

concrete definition of π. The annotation precision

is defined as

Ψ =
∑

l,q,d

p(l, q, d|L �= NULL)× π(l, q, d)

Given a set of annotationsS = {(l(i), q(i), d(i))}
|S|
i=1

drawn IID from p(l, q, d|L �= NULL), we can

derive an estimate of Ψ as Ψ̂ = 1
|S|

∑

(l,q,d)∈

Sπ(l, q, d).

4.2 Expert Evaluations of Correctness

We now describe the process for deriving

‘‘expert’’ judgments of answer correctness. We

used four experts for these judgments. These

experts had prepared the guidelines for the anno-

tation process.6 In a first phase each of the four

experts independently annotated examples for cor-

rectness. In a second phase the four experts met to

discuss disagreements in judgments, and to reach

a single consensus judgment for each example.

A key step is to define the criteria used to

determine correctness of an example. Given a

triple (l, q, d), we extracted the passage l′ corre-

sponding to l on the page d. The pair (q, l′) was

then presented to the expert. Experts categorized

(q, l′) pairs into the following three categories:

Correct (C): It is clear beyond a reasonable doubt

that the answer is correct.

6The first four authors of this paper.

Figure 3: Examples with consensus expert judgments, and

justification for these judgments. See Figure 6 for more

examples.

Correct (but debatable) (Cd): A reasonable person

could be satisfied by the answer; however,

a reasonable person could raise a reasonable

doubt about the answer.

Wrong (W): There is not convincing evidence

that the answer is correct.

Figure 3 shows some example judgments. We

introduced the intermediate Cd category after

observing that many (q, l′) pairs are high quality

answers, but raise some small doubt or quibble

about whether they fully answer the question. The

use of the word ‘‘debatable’’ is intended to be

literal: (q, l′) pairs falling into the Cd category

could literally lead to some debate between

reasonable people as to whether they fully answer

the question or not.

Given this background, we will make the follow-

ing assumption:

Answers in the Cd category should be very

useful to a user interacting with a QA system, and

should be considered to be high-quality answers;

however, an annotator would be justified in either

annotating or not annotating the example.

For these cases there is often disagreement

between annotators as to whether the page contains
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Quantity Long answer Short answer

Ψ̂ 90% 84%

Ê(C) 59% 51%

Ê(Cd) 31% 33%

Ê(W) 10% 16%

Table 2: Precision results (Ψ̂) and empirical

estimates of the proportions of C, Cd, and W
items.

an answer or not: We will see evidence of this

when we consider the 25-way annotations.

4.3 Results for Precision Measurements

We used the following procedure to derive mea-

surements of precision: 1) We sampled examples

IID from the distribution p(l, q, d|L �= NULL). We

call this set S . We had |S| = 139. 2) Four experts

independently classified each of the items inS into

the categories C, Cd, W . 3) The four experts met to

come up with a consensus judgment for each item.

For each example (l(i), q(i), d(i)) ∈ S , we define

c(i) to be the consensus judgment. This process was

repeated to derive judgments for short answers.

We can then calculate the percentage of exam-

ples falling into the three expert categories; we

denote these values as Ê(C), Ê(Cd), and Ê(W ).7

We define Ψ̂ = Ê(C)+Ê(Cd). We have explicitly

included samples C and Cd in the overall precision

as we believe that Cd answers are essentially cor-

rect. Table 2 shows the values for these quantities.

4.4 Variability of Annotations

We have shown that an annotation drawn from

p(l, q, d|L �= NULL) has high expected precision.

Now we address the distribution over annotations

for a given (q, d) pair. Annotators can disagree

about whether or not d contains an answer to

q—that is, whether or not L = NULL. In the case

that annotators agree that L �= NULL, they can

also disagree about the correct assignment to L.

In order to study variability, we collected 24

additional annotations from separate annotators

for each of the (q, d, l) triples in S . For each

(q, d, l) triple, we now have a 5-tuple (q(i), d(i),

l(i), c(i), a(i)) where a(i) = a
(i)
1 . . . a

(i)
25 is a vector

of 25 annotations (including l(i)), and c(i) is

7More formally, let [[e]] for any statement e be 1 if e is

true, 0 if e is false. We define Ê(C) = 1
|S|

∑|S|
i=1[[c

(i) = C]].

The values for Ê(Cd) and Ê(W) are calculated in a similar

manner.

Figure 4: Values of Ê[(θ1, θ2]] and Ê[(θ1, θ2], C/Cd/
W ] for different intervals (θ1, θ2]. The height of each

bar is equal to Ê[(θ1, θ2]], the divisions within each bar

show Ê[(θ1, θ2], C], Ê[(θ1, θ2], Cd], and Ê[(θ1, θ2],W ].

the consensus judgment for l(i). For each i also

define

µ(i) =
1

25

25
∑

j=1

[[a
(i)
j �= NULL]]

to be the proportion of the 25-way annotations

that are non-null.

We now show that µ(i) is highly correlated with

annotation precision. We define

Ê[(0.8, 1.0]] =
1

|S|

|S|
∑

i=1

[[0.8 < µ(i) ≤ 1]]

to be the proportion of examples with greater than
80% of the 25 annotators marking a non-null long
answer, and

Ê[(0.8, 1.0], C] =
1

|S|

|S|
∑

i=1

[[0.8<µ(i)≤1 and c(i) = C]]

to be the proportion of examples with greater

than 80% of the 25 annotators marking a non-null

long answer and with c(i) = C. Similar definitions

apply for the intervals (0,0.2], (0.2, 0.4], (0.4, 0.6],
and (0.6, 0.8], and for judgments Cd and W .

Figure 4 illustrates the proportion of annotations

falling into the C/Cd/W categories in different

regions of µ(i). For those (q, d) pairs where

more than 80% of annotators gave some non-null

answer, our expert judgements agree that these

annotations are overwhelmingly correct. Simi-

larly, when fewer than 20% of annotators gave

a non-null answer, these answers tend to be incor-

rect. In between these two extremes, the disagree-

ment between annotators is largely accounted for

by the Cd category—where a reasonable person

could either be satisfied with the answer, or want

more information. Later, in Section 5, we make

use of the correlation between µ(i) and accuracy

to define a metric for the evaluation of answer
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quality. In that section, we also show that a model

trained on (l, q, d) triples can outperform a sin-

gle annotator on this metric by accounting for the

uncertainty of whether or not an answer is present.

As well as disagreeing about whether (q, d)
contains a valid answer, annotators can disagree

about the location of the best answer. In many

cases there are multiple valid long answers in

multiple distinct locations on the page.8 The most

extreme example of this that we see in our 25-way

annotated data is for the question ‘‘name the sub-

stance used to make the filament of bulb’’ paired

with the Wikipedia page about incandescent light

bulbs. Annotators identify 7 passages that discuss

tungsten wire filaments.

Short answers can be arbitrarily delimited and

this can lead to extreme variation. The most

extreme example of this that we see in the 25-way

annotated data is the 11 distinct, but correct,

answers for the question ‘‘where is blood pumped

after it leaves the right ventricle’’. Here, 14 anno-

tators identify a substring of ‘‘to the lungs’’ as

the best possible short answer. Of these, 6 label

the entire string, 4 reduce it to ‘‘the lungs’’, and

4 reduce it to ‘‘lungs’’. A further 6 annotators do

not consider this short answer to be sufficient and

choose more precise phrases such as ‘‘through the

semilunar pulmonary valve into the left and right

main pulmonary arteries (one for each lung)’’.

The remaining 5 annotators decide that there is no

adequate short answer.

For each question, we ranked each of the unique

answers given by our 25 annotators according to

the number of annotators that chose it. We found

that by just taking the most popular long answer,

we could account for 83% of the long answer

annotations. The two most popular long answers

account for 96% of the long answer annotations.

It is extremely uncommon for a question to have

more than three distinct long answers annotated.

Short answers have greater variability, but the

most popular short answer still accounts for 64%
of all short answer annotations. The three most

popular short answers account for 90% of all short

answer annotations.

8As stated earlier in this paper, we did instruct annotators

to select the earliest instance of an answer when there are

multiple answer instances on the page. However, there are

still cases where different annotators disagree on whether an

answer earlier in the page is sufficient in comparison to a

later answer, leading to differences between annotators.

5 Evaluation Measures

NQ includes 5-way annotations on 7,830 items for

development data, and we will sequester a further

7,842 items, 5-way annotated, for test data. This

section describes evaluation metrics using this

data, and gives justification for these metrics.

We choose 5-way annotations for the following

reasons: First, we have evidence that aggregating

annotations from 5 annotators is likely to be much

more robust than relying on a single annotator (see

Section 4). Second, 5 annotators is a small enough

number that the cost of annotating thousands of

development and test items is not prohibitive.

5.1 Definition of an Evaluation Measure

Based on 5-Way Annotations

Assume that we have a model fθ with parameters

θ that maps an input (q, d) to a long answer l =
fθ(q, d). We would like to evaluate the accuracy

of this model. Assume we have evaluation

examples {q(i), d(i), a(i)} for i = 1 . . . n, where

q(i) is a question, d(i) is the associated Wikipedia

document, and a(i) is a vector with components

a
(i)
j for j = 1 . . . 5. Each a

(i)
j is the output from

the j’th annotator, and can be a paragraph in d(i),
or can be NULL. The five annotators are chosen

uniformly at random from a pool of annotators.

We define an evaluation measure based on the

five way annotations as follows. If at least two

out of five annotators have given a non-null long

answer on the example, then the system is required

to output a non-null answer that is seen at least

once in the five annotations; conversely, if fewer

than two annotators give a non-null long answer,

the system is required to return NULL as its output.

To make this more formal, define the function

g(a(i)) to be the number of annotations in a(i)

that are non-null. Define a function hβ(a, l) that

judges the correctness of label l given annotations

a = a1 . . . a5. This function is parameterized by

an integer β. The function returns 1 if the label l
is judged to be correct, and 0 otherwise:

Definition 1 (Definition of hβ(a, l)) If g(a) ≥ β
and l �= NULL and l = aj for some j ∈ {1 . . . 5}
Then hβ(a, l) = 1; Else If g(a) < β and

l = NULL Then hβ(a, l) = 1; Else hβ(a, l) = 0.

We used β = 2 in our experiments.9

9This is partly motivated through the results on 25-way

annotations (see Section 4.4), where for µ(i) ≥ 0.4 over 93%

(114/122 annotations) are in the C or Cd categories, whereas
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The accuracy of a model is then

Aβ(fθ) =
1

n

n
∑

i=1

hβ(a
(i), fθ(q

(i), d(i)))

The value for Aβ is an estimate of accuracy

with respect to the underlying distribution,

which we define as Āβ(fθ) = E[hβ(a, fθ(q, d))].
Here the expectation is taken with respect

to p(a, q, d) = p(q, d)
∏5

j=1 p(aj |q, d) where

p(aj |q, d) = P (L = aj |Q = q,D = d); hence

the annotations a1 . . . a5 are assumed to be drawn

IID from p(l|q, d).10

We discuss this measure at length in this section.

First, however, we make the following critical

point:

It is possible for a model trained on (l(i), q(i),
d(i)) triples drawn IID from p(l, q, d) to exceed the

performance of a single annotator on this measure.

In particular, if we have a model p(l|q, d; θ),
trained on (l, q, d) triples, which is a good

approximation to p(l|q, d), it is then possible to use

p(l|q, d; θ) to make predictions that outperform a

single random draw from p(l|q, d). The Bayes

optimal hypothesis (see Devroye et al., 1997) for

hβ , defined asargmaxf Eq,d,a[[hβ(a, f(q, d))]], is

a function of the posterior distribution p(·|q, d),11

and will generally exceed the performance of a

single random annotation, Eq,d,a[[
∑

l p(l|q, d) ×
hβ(a, l)]].

We also show this empirically, by constructing

an approximation to p(l|q, d) from 20-way anno-

tations, then using this approximation to make

predictions that significantly outperform a single

annotator.

for µ(i) < 0.4 over 35% (11/17 annotations) are in the W
category.

10This isn’t quite accurate as the annotators are sampled

without replacement; however, it simplifies the analysis.
11Specifically, for an input (q, d), if we define l∗ =

argmaxl �=NULL p(l|q, d), γ = p(l∗|q, d), and γ̄ =
p(NULL|q, d), then the Bayes optimal hypothesis is to output

l∗ if P (hβ(a, l
∗) = 1|γ, γ̄) ≥ P (hβ(a,NULL) = 1|γ, γ̄),

and to output NULL otherwise. Implementation of this

strategy is straightforward if γ and γ̄ are known; this

strategy will in general give a higher accuracy value than

taking a single sample l from p(l|q, d) and using this sample

as the prediction. In principle a model p(l|q, d; θ) trained

on (l, q, d) triples can converge to a good estimate of

γ and γ̄. Note that for the special case γ + γ̄ = 1 we

have P (hβ(a,NULL) = 1|γ, γ̄) = γ̄5 + 5γ̄4(1 − γ̄) and

P (hβ(a, l
∗) = 1|γ, γ̄) = 1 − P (hβ(a,NULL) = 1|γ, γ̄). It

follows that the Bayes optimal hypothesis is to predict l∗ if

γ ≥ α where α ≈ 0.31381, and to predict NULL otherwise.

α is 1− ᾱ where ᾱ is the solution to ᾱ5 +5ᾱ4(1− ᾱ) = 0.5.

Precision and Recall During evaluation, it is of-

ten beneficial to separately measure false positives

(incorrectly predicting an answer), and false neg-

atives (failing to predict an answer). We define

the precision (P ) and recall (R) of fθ:

t(q, d, a, fθ) = hβ(a, fθ(q, d))[[fθ(q, d) �= NULL]]

R(fθ) =

∑n
i=1 t(q

(i), d(i), a(i), fθ)
∑n

i=1[[g(a
(i) ≥ β]]

P (fθ) =

∑n
i=1 t(q

(i), d(i), a(i), fθ)
∑n

i=1[[fθ(q
(i), d(i)) �= NULL]]

5.2 Super-Annotator Upper Bound

To place an upper bound on the metrics introduced

above we create a ‘‘super-annotator’’ from the 25-

way annotated data introduced in Section 4. From

this data, we create four tuples (q(i), d(i), a(i), b(i)).
The first three terms in this tuple are the

question, document, and vector of five reference

annotations. b(i) is a vector of annotations b
(i)
j for

j = 1 . . . 20 drawn from the same distribution

as a(i). The super-annotator predicts NULL if

g(b(i)) < α, and l∗ = argmaxl∈d
∑20

j=1[[l = bj ]]
otherwise.

Table 3 shows super-annotator performance

for α = 8, with 90.0% precision, 84.6% recall,

and 87.2% F-measure. This significantly exceeds

the performance (80.4% precision/67.6% recall/

73.4% F-measure) for a single annotator. We

subsequently view the super-annotator numbers

as an effective upper bound on performance of a

learned model.

6 Baseline Performance

The NQ corpus is designed to provide a benchmark

with which we can evaluate the performance of

QA systems. Every question in NQ is unique under

exact string match, and we split questions ran-

domly in NQ into separate train/development/test

sets. To facilitate comparison, we introduce base-

lines that either make use of high-level data set

regularities, or are trained on the 307k examples in

the training set. Here, we present well-established

baselines that were state of the art at the time

of submission. We also refer readers to Alberti

et al. (2019) for more recent advances in model-

ing. All of our baselines focus on the long and

short answer extraction tasks. We leave boolean

answers to future work.
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Long answer Dev Long answer Test Short answer Dev Short answer Test

P R F1 P R F1 P R F1 P R F1

First paragraph 22.2 37.8 27.8 22.3 38.5 28.3 – – – – – –

Most frequent 43.1 20.0 27.3 40.2 18.4 25.2 – – – – – –

Closest question 37.7 28.5 32.4 36.2 27.8 31.4 – – – – – –

DocumentQA 47.5 44.7 46.1 48.9 43.3 45.7 38.6 33.2 35.7 40.6 31.0 35.1

DecAtt + DocReader 52.7 57.0 54.8 54.3 55.7 55.0 34.3 28.9 31.4 31.9 31.1 31.5

Single annotator† 80.4 67.6 73.4 – – – 63.4 52.6 57.5 – – –

Super-annotator† 90.0 84.6 87.2 – – – 79.1 72.6 75.7 – – –

Table 3: Precision (P), recall (R), and the harmonic mean of these (F1) of all baselines, a single annotator, and

the super-annotator upper bound. The human performances marked with † are evaluated on a sample of five

annotations from the 25-way annotated data introduced in Section 5.

6.1 Untrained Baselines

NQ’s long answer selection task admits several

untrained baselines. The first paragraph of a

Wikipedia page commonly acts as a summary

of the most important information regarding the

page’s subject. We therefore implement a long

answer baseline that simply selects the first

paragraph for all pages.

Furthermore, because 79% of the Wikipedia

pages in the development set also appear in

the training set, we implement two ‘‘copying’’

baselines. The first of these simply selects the

most frequent annotation applied to a given page in

the training set. The second selects the annotation

given to the training set question closest to the eval

set question according to TFIDF weighted word

overlap. These three baselines are reported as First

paragraph, Most frequent, and Closest question in

Table 3, respectively.

6.2 Document-QA

We adapt the reference implementation12 of

Document-QA (Clark and Gardner, 2018) for the

NQ task. This system performs well on the SQuAD

and TriviaQA short answer extraction tasks, but it

is not designed to represent: (i) the long answers

that do not contain short answers, and (ii) the

NULL answers that occur in NQ.

To address (i) we choose the shortest available

answer span at training, differentiating long and

short answers only through the inclusion of special

start and end of passage tokens that identify long

answer candidates. At prediction time, the model

can either predict a long answer (and no short

answer), or a short answer (which implies a long

answer).

12https://github.com/allenai/document-qa.

To address (ii), we tried adding special NULL

passages to represent the lack of answer. However,

we achieved better performance by training on the

subset of questions with answers and then only

predicting those answers whose scores exceed a

threshold.

With these two modifications, we are able to

apply Document-QA to NQ. We follow Clark and

Gardner (2018) in pruning documents down to the

set of passages that have highest TFIDF similarity

with the question. Under this approach, we con-

sider the top 16 passages as long answers. We con-

sider short answers containing up to 17 words. We

train Document-QA for 30 epochs with batches

containing 15 examples. The post hoc score thresh-

old is set to 3.0. All of these values were chosen

on the basis of development set performance.

6.3 Custom Pipeline (DecAtt + DocReader)

One view of the long answer selection task is that

it is more closely related to natural language infer-

ence (Bowman et al., 2015; Williams et al., 2018)

than short answer extraction. A valid long answer

must contain all of the information required to

infer the answer. Short answers do not need to con-

tain this information—they need to be surrounded

by it.

Motivated by this intuition, we implement a

pipelined approach that uses a model drawn from

the natural language interference literature to se-

lect long answers. Then short answers are selected

from these using a model drawn from the short

answer extraction literature.

Long answer selection Let t(d, l) denote the

sequence of tokens in d for the long answer

candidate l. We then use the Decomposable

Attention model (Parikh et al., 2016) to produce
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Figure 5: Examples from the questions with 25-way annotations.

a score for each question, candidate pair

xl = DecAtt(q, t(d, l)). To this we add a 10-

dimensional trainable embedding rl of the long

answer candidate’s position in the sequence of

candidates;13 an integer ul containing the number

of the words shared by q and t(d, l); and a

scalar vl containing the number of words shared

by q and t(d, l) weighted by inverse document

frequency. The long answer score zl is then

given as a linear function of the above features

zl = w
⊤[xl, rl, ul, vl] + b where w⊤ and b are the

trainable weight vector and bias, respectively,

Short answer selection Given a long answer,

the Document Reader model (Chen et al., 2017;

abbreviated DocReader) is used to extract short

answers.

Training The long answer selection model is

trained by minimizing the negative log-likelihood

of the correct answer l(i) with a hyperparameter η
that down-weights examples with the NULL label:

−

n
∑

i=1

(

log
exp(zl(i))
∑

l exp(zl)

)

×(1−η[[l(i) = NULL]])

We found that the inclusion of η is useful in

accounting for the asymmetry in labels—because

a NULL label is less informative than an answer

location. Varying η also seems to provide a more

stable method of setting a model’s precision point

than post hoc thresholding of prediction scores.

An analogous strategy is used for the short answer

model where examples with no entity answers are

given a different weight.

13Specifically, we have a unique learned 10-dimensional

embedding for each position 1 . . . 19 in the sequence, and a

20th embedding used for all positions ≥ 20.

6.4 Results

Table 3 shows results for all baselines as well

as a single annotator, and the super-annotator

introduced in Section 5. It is clear that there is a

great deal of headroom in both tasks. We find that

Document-QA performs significantly worse than

DecAtt+DocReader in long answer identification.

This is likely because Document-QA was designed

for the short answer task only.

To ground these results in the context of

comparable tasks, we measure performance on

the subset of NQ that has non-NULL labels for both

long and short answers. Freed from the decision

of whether or not to answer, DecAtt+DocReader

obtains 68.0% F1 on the long answer task, and

40.4% F1 on the short answer task. We also ex-

amine performance of the short answer extraction

systems in the setting where the long answer

is given, and a short answer is known to exist.

With this simplification, short answer F1 increases

57.7% for DocReader. Under this restriction

NQ roughly approximates the SQuAD 1.1 task.

From the gap to the super-annotator upper bound

we know that this task is far from being solved

in NQ.

Finally, we break the long answer identification

results down according to long answer type. From

Table 3 we know that DecAtt+DocReader predicts

long answers with 54.8% F1. If we only measure

performance on examples that should have a

paragraph long answer, this increases to 65.1%.

For tables and table rows it is 66.4%. And for lists

and list items it is 32.0%. All other examples have

a NULL label. Clearly, the model is struggling to

learn some aspect of list-formatted data from the

6% of the non NULL examples that have this type.
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Figure 6: Answer annotations for four examples from Figure 5 that have long answers that are paragraphs (i.e., not

tables or lists). We show the expert judgment (C/Cd/W) for each non-null answer. ‘‘Long answer stats’’ a/25,

b/25 have a = number of non-null long answers for this question, b = number of long answers the same as that

shown in the figure. For example, for question A1, 13 out of 25 annotators give some non-null answer, and 4 out

of 25 annotators give the same long answer After mashing . . .. ‘‘Short answer stats’’ has similar statistics for

short answers.

7 Conclusion

We argue that progress on QA has been hindered

by a lack of appropriate training and test data.

To address this, we present the Natural Questions

corpus. This is the first large publicly available

data set to pair real user queries with high-quality

annotations of answers in documents. We also

present metrics to be used with NQ, for the purposes

of evaluating the performance of question answer-

ing systems. We demonstrate a high upper bound

on these metrics and show that existing methods do

not approach this upper bound. We argue that for

them to do so will require significant advances in

NLU. Figure 5 shows example questions from the

data set. Figure 6 shows example question/answer

pairs from the data set, together with expert judg-

ments and statistics from the 25-way annotations.
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Grefenstette, Lasse Espeholt, Will Kay, Mustafa

Suleyman, and Phil Blunsom. 2015. Teaching

machines to read and comprehend. In Proceed-

ings of the 28th International Conference

on Neural Information Processing Systems,

NIPS’15. Cambridge, MA.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason

Weston. 2015. The goldilocks principle: Read-

ing children’s books with explicit memory rep-

resentations. In Proceedings of the International

Conference on Learning Representations.

Robin Jia and Percy Liang. 2017. Adversarial

examples for evaluating reading comprehension

systems. In Proceedings of the 2017 Conference

on Empirical Methods in Natural Language

Processing, pages 2021–2031, Copenhagen.

Mandar Joshi, Eunsol Choi, Daniel Weld, and

Luke Zettlemoyer. 2017. Triviaqa: A large scale

distantly supervised challenge dataset for read-

ing comprehension. In Proceedings of the 55th

Annual Meeting of the Association for Compu-

tational Linguistics (Volume 1: Long Papers),

pages 1601–1611.

Tomas Kocisky, Jonathan Schwarz, Phil Blun-

som, Chris Dyer, Karl Moritz Hermann, Gabor

Melis, and Edward Grefenstette. 2018. The nar-

rative qa reading comprehension challenge.

Transactions of the Association for Compu-

tational Linguistics, 6317–328.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming

Yang, and Eduard Hovy. 2017. Race: Large-

scale reading comprehension dataset from

examinations. In Proceedings of the 2017 Con-

ference on Empirical Methods in Natu-

ral Language Processing, pages 785–794.

Copenhagen.

Todor Mihaylov, Peter Clark, Tushar Khot, and

Ashish Sabharwal. 2018. Can A suit of armor

conduct electricity? A new dataset for open book

question answering. In Proceedings of the 2018

Conference on Empirical Methods in Natural

LanguageProcessing, pages2381–2391,Brussels.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng

Gao, Saurabh Tiwary, Rangan Majumder, and

Li Deng. 2016. MS MARCO: A human gen-

erated machine reading comprehension dataset.

In Proceedings of the Workshop on Cognitive

Computation: Integrating Neural and Symbolic

Approaches.

Takeshi Onishi, Hai Wang, Mohit Bansal, Kevin

Gimpel, and David McAllester. 2016. Who

did what: A large-scale person-centered cloze

dataset. In Proceedings of the 2016 Conference

on Empirical Methods in Natural Language

Processing, pages 2230–2235. Austin, TX.

Denis Paperno, Germán Kruszewski, Angeliki

Lazaridou, Ngoc Quan Pham, Raffaella Bernardi,

Sandro Pezzelle, Marco Baroni, Gemma

Boleda, and Raquel Fernandez. 2016. The

LAMBADA dataset: Word prediction requiring

a broad discourse context. In Proceedings of

the 54th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long

Papers), pages 1525–1534, Berlin.

Kishore Papineni, Salim Roukos, Todd Ward, and

Wei-Jing Zhu. 2002. BLUE: A method for

automatic evaluation of machine translation.

In Proceedings of 40th Annual Meeting of

the Association for Computational Linguistics,

pages 311–318, Philadelphia.
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