

Natural radioactivity of Portland cement mortars made with granite aggregates

Miguel Angel Sanjuan¹, Cristina Argiz², Maria del Mar Alonso³, Jose Antonio Suarez⁴, Catalina Gascó⁴, Francisca Puertas³

¹Instituto Español del Cemento y sus Aplicaciones (IECA), Madrid, Spain ²Dept. Ingenieria Civil: Construcción, E.T.S. de Ing. de Caminos Canales y Puertos, Politecnical University, Madrid, Spain ³Eduardo Torroja Institute for Construction Sciences - (IETcc-CSIC), Madrid, Spain ⁴Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Objectives

The goals of this study are:

- To determine the specific radioactivity concentrations of ²³⁸U, ²³²Th, and ⁴⁰K in local granites provided by three different quarries (Spain).
- ii) To study the effect of the aggregate grain size in the gamma radiation.
- iii) To determine the specific radioactivity concentrations of ²³⁸U, ²³²Th, and ⁴⁰K in mortars and to assess the effect of the granite aggregates on Portland cement mortars.

Location of granite quarries	Materials												
- Star	Granite samples Chemical composition (XRF)												
FRANCE			SiO ₂	Al ₂ O ₃	Fe ₂ O ₃		MgO	SO ₃	Na₂O	K ₂ O	TiO ₂	P ₂ O ₅	LOI
CORUNA SPAIN	9-20 mm	CEM 152,5 R Coruña	72.20	4.42	2.62	0.75	0.62	0.03	2.35	0.94 2.67	0.23	0.16	1.23
		Vigo	75.57	13.89	3.25	0.89	0.51	0.03	2.54	2.34	0.32	0.09	0.46
	5.8 mm	Lugo	71.65	13.73	3.61	1.97	1.10	0.06	2.33	2.35	0.33	0.09	2.70

15th International Congress on the Chemistry of Cemer

Methodology

Gamma spectrometry analysis

Each granite aggregate sample was packed in a cylindrical (Φ 76 mm x 30 mm) plastic beaker, sealed for three weeks to achieve secular equilibrium between ²²⁶Ra and ²³²Th with their decay products. Later, the activity concentrations of ²²⁶Ra, ²³²Th and ⁴⁰K for all the aggregate samples were measured by a gamma ray spectrometry by using High Purity Germanium (HPGe) detector.

The Council Directive 2013/59/EURATOM defines the Activity Concentration Index (ACI) for the gamma radiation emitted by building materials. This Directive stipulates that building materials ACI must lie below the reference level of 1 mSv year⁻¹.

ACI was calculated for each aliquot and the mean determined for each type of material from the

Results

Influence of aggregate particle size on ACI

Activity concentration of the radioisotopes ⁴⁰K, ²¹⁴Pb and ²¹²Pb for all the samples.

Sample	Size	Activity concentration (Bq kg ⁻¹)					
		⁴⁰ K	²¹⁴ Pb (²²⁶ Ra)	²¹² Pb (²³² Th)			
	230 µm	1015 ± 43	200 ± 30	70.5 ± 5.7			
Coruña	0-2 mm	1030 ± 44	207 ± 31	72 ± 12			
	0-4 mm	1081 ± 92	180 ± 27	65 ± 11			
	5-8 mm	1206 ± 104	148 ± 22	63 ± 11			
	9-20 mm	1021 ± 88	172 ± 26	95 ± 16			
Vigo	230 µm	945 ± 81	135 ± 20	99 ± 16			
	0-2 mm	875 ± 75	128 ± 19	90 ± 15			
	0-4 mm	841 ± 72	115 ± 17	86 ± 14			
	5-8 mm	1244 ± 106	99 ± 15	88 ± 14			
	9-20 mm	1191 ± 103	120 ± 18	120 ± 20			
	230 µm	1032 ± 88	114 ± 17	161 ± 26			
Lugo	0-2 mm	933 ± 80	96 ± 15	148 ± 24			
	0-4 mm	1050 ± 90	90 ± 14	139 ± 23			
	5-8 mm	1347 ± 115	111 ± 17	152 ± 33			
	9-20 mm	1073 ± 92	90 ± 14	79 ± 13			
Siliceous standard aggregate	0 - 2 mm	147 ± 13	4.2 ± 0.71	7.2 ± 1.2			
Cement		205 ± 18	32.0 ± 4.9	15.0 ± 2.4			

Activity concentration index (ACI) for tested granite aggregate types in function of the particle size

following equation:

$$ACI = \frac{C_{226_{Ra}}}{300} + \frac{C_{232_{Th}}}{200} + \frac{C_{40_K}}{3000}$$

where C_{226Ba} , C_{232Th} and C_{40K} are the activity concentrations in Bq kg⁻¹ for radium (equivalent to uranium under secular equilibrium conditions), thorium and potassium, respectively. The activity concentration of ⁴⁰K was determined directly from the 1460 keV photopeak.

Testing mortars were mixing according to the European standard EN 196-1:2016, and moulding was made directly into the testing plastic beakers. They were made with w/c of 0.5 and cement/sand ratio of 1/3. They were cured at 21 \pm 2 °C and 99 % RH for 28 days. Activity concentrations of ²²⁶Ra, ²³²Th and ⁴⁰K and ACI for the cement mortars made with quartz and granite aggregates were determined.

REFERENCES

Benke, R.R.; Kearfott, K.J. (2000). Accounting for ²²²Rn loss during oven drying for the immediate laboratory gamma-ray spectroscopy of collected soil samples. Applied Radiation and Isotopes, 52 [2] 271-287.

Dias, G.; Leterrier, J.; Mendes, A.; Simões, P.P.; Bertrand, J.M. (1998). U-Pb zircon and monazite geochronology of postcollisional Hercynian granitoids from the Central Iberian Zone (northern Portugal). Lithos, 45 [1-4], 349-369C.

European Commission. Council Directive 2013/59/Euratom, laying down basic safety standards for protection against the dangers arising from exposure to ionizing radiation and repealing directives, Dec. 2013. Official Journal of the European Union 17/01/2014.

European Commission (2018). Joint Research Centre. Monitoring Radioactivity Environmental https://remon.jrc.ec.europa.eu/About/Atlas-of-Natural-Radiation.

Puertas, F.; Alonso, M.M.; Torres-Carrasco, M.; Rivilla, P.; Gasco, C.; Yagüe, L.; Suárez, J.A.; Navarro, N. (2015). Radiological characterization of anhydrous/hydrated cements and geopolymers. *Construc. Build. Mat.* 101, 1105–1112.

Trevisi, R.; Risica, S.; D'Alessandro, M.; Paradiso, D.; Nuccetelli, C (2012). Natural radioactivity in building materials in the European Union: a database and an estimate of radiological significance, J. Environ. Radioac. 105, 11–20.

ACI values of cement mortars with/without granite aggregates

Activity concentration of ⁴⁰K, ²¹⁴Pb and ²¹²Pb and ACI of cement mortars made with granite and siliceous aggregates.

Mortar	Activit	y concentratio	Gamma activity			
	⁴⁰ K	²¹⁴ Pb (²²⁶ Ra)	²¹² Pb (²³² Th)	concentration index (ACI)		
CEM I 52.5R & (0-4 mm) Coruña	685 ± 59	116 ± 18	41.6 ± 7.1	0.822 ± 0.070		
CEM I 52.5R & (0-4 mm) Vigo	608 ± 52	75 ± 11	59 ± 10	0.748 ± 0.091		
CEM I 52.5R & (0-4 mm) Lugo	633 ± 55	60.1 ± 9.1	89 ± 15	0.8565 ± 0.0091		
CEM I 52.5% & (0-2mm) siliceous aggregate	130 ± 11	7.3 ± 1.2	8.9 ± 1.4	0.1120 ± 0.0086		

Conclusions

1. All granite aggregates gave ACI values greater than 1, and therefore would not meet the requirements established in European Directive 2013/59/EURATOM

2. The aggregate particle size affects directly to the activity concentration of ⁴⁰K, ²³²Th and ²²⁶Ra.

3. Portland cement acts a thinner constituent in mortars and concretes allowing to the granite aggregates to be used in mentioned building materials.

4. The additive effect of all the mortar constituents on the activity concentration of all the radioisotopes has been established.

AKNOWLEDGEMENTS

The authors wish to thank to Spanish Ministry of Science, Innovation and Universities for funding the BIA2016-77252-P (AEI/FEDER,

UE), where tests of this study were conducted. The authors also thank Votorantim Cimentos for providing the experimental materials.

They are also grateful to P. Rivilla and A. Gil for their help with laboratory tests.

