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Abstract

A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human
genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination
rates. However, it is unclear whether other summaries of genetic variation, like allele frequencies, are also correlated with
recombination rate and whether these correlations can be explained solely by negative selection against deleterious
mutations or whether positive selection acting on favorable alleles is also required. Here we attempt to address these
questions by analyzing three different genome-wide resequencing datasets from European individuals. We document
several significant correlations between different genomic features. In particular, we find that average minor allele
frequency and diversity are reduced in regions of low recombination and that human diversity, human-chimp divergence,
and average minor allele frequency are reduced near genes. Population genetic simulations show that either positive
natural selection acting on favorable mutations or negative natural selection acting against deleterious mutations can
explain these correlations. However, models with strong positive selection on nonsynonymous mutations and little negative
selection predict a stronger negative correlation between neutral diversity and nonsynonymous divergence than observed
in the actual data, supporting the importance of negative, rather than positive, selection throughout the genome. Further,
we show that the widespread presence of weakly deleterious alleles, rather than a small number of strongly positively
selected mutations, is responsible for the correlation between neutral genetic diversity and recombination rate. This work
suggests that natural selection has affected multiple aspects of linked neutral variation throughout the human genome and
that positive selection is not required to explain these observations.
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Introduction

A substantial amount of effort in human population genetics has

been aimed at understanding how natural selection operates in the

human genome. However, we lack a basic understanding of the

importance of positive natural selection versus negative selection at

shaping overall patterns of genome variation. Thus far, most of the

attention has been aimed at locating genes that have been under

positive selection [1–19]. These studies have identified several

hundred candidates throughout the genome that may have been

affected by positive natural selection. However, fewer studies have

attempted to gauge the prevalence of positive natural selection in
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the human genome. Those that have attempted have come to very

different conclusions. Several studies suggested that positive

selection may be common, with around 10% of the genome

having been affected by a recent selective sweep [9,10,14,16].

Other studies argued that selective sweeps were less common

[20,21]. Finally, some have estimated that approximately 10%,

but perhaps up to 40%, of nonsynonymous human-chimp

differences have been fixed by positive natural selection [22,23].

Thus, there is little consensus regarding the importance of positive

natural selection at shaping patterns of variability.

Additionally, the role of negative selection at shaping broad

patterns of genetic variation across the genome needs to be

clarified. Many studies have suggested that nonsynonymous

mutations and mutations in conserved noncoding sequences are

weakly deleterious but may persist in the population due to genetic

drift and other demographic phenomena [22,24–32]. The effect

that these weakly deleterious mutations have on nearby patterns of

genetic variation remains unclear. Furthermore, the importance of

negative versus positive selection at shaping overall patterns of

variation also remains ambiguous.

If natural selection (either positive or negative) is common in the

genome, it should affect patterns of genetic variation at linked

neutral sites across the genome [33,34]. Selection may alter

genetic variation in different ways. We review these ways, discuss

the empirical evidence for these effects, and highlight open

questions that our study seeks to address.

First, selection may generate a correlation between levels of

neutral diversity and recombination rate [35,36]. This can occur

under models with strong positive selection (selective sweeps) or

negative selection acting on many deleterious mutations (back-

ground selection). Selective sweeps remove genetic diversity at

linked neutral sites [33,37]. In a region of the genome with a low

recombination rate, a large length of sequence will have the same

genealogy as the selected site. As such, the selective sweep will

remove neutral variation over a larger portion of the sequence in

low recombination rate regions than in regions with higher

recombination rates. Background selection against deleterious

mutations can also generate this correlation [34,38–41]. Chromo-

somes carrying many deleterious mutations will be rapidly

eliminated from the population. Any neutral variation linked to

the deleterious mutations will also be eliminated from the

population. This model predicts reduced variability in regions of

the genome with low recombination rate because, as with the case of

a selective sweep, a larger portion of the chromosome will share the

same genealogy as the selected site(s) in regions of low recombina-

tion rather than in high recombination. Several studies have

searched for a correlation between diversity and recombination rate

in humans. Early studies based on a small number of genes came to

conflicting conclusions. Nachman et al. [42,43] found a significant

correlation between diversity and recombination rate, but found no

correlation between divergence and recombination rate, suggesting

the effects of natural selection. Hellmann et al. [44], examining a

different dataset, found that the correlation between diversity and

recombination rate disappeared after correcting for human-chimp

divergence. They suggested that recombination may be mutagenic

and that the original correlation was driven by co-variation of

mutation and recombination rates. Another study found that

microsatellite diversity was not correlated with recombination rate

[45]. More recent studies on larger datasets have found significant

correlations between diversity and recombination rate [46–48].

These studies have found that the correlation between human

diversity and recombination rate persists after controlling for

human-chimp divergence. While this is suggestive of the effects of

natural selection, important features of this correlation have yet to

be characterized. For example, if natural selection is primarily

driving the correlation, the correlation ought to be stronger in genic

regions of the genome than in non-genic regions, because functional

sites near genes are the most likely targets of selection. This feature

has yet to be explored.

Second, natural selection may generate a correlation between

the allele frequency distribution and recombination rate. Specif-

ically, models of selective sweeps predict a skew toward an excess

of low-frequency single nucleotide polymorphisms (SNPs) near the

target of selection [49–51]. Following the same logic as above, a

larger region of the genome will be affected in areas with lower

recombination rates, thus generating a correlation between allele

frequency and recombination rate. The effect of background

selection on allele frequencies is less clear. Simulation studies have

suggested that intermediate strengths of background selection,

especially in regions of low recombination, can generate a skew

toward an excess of low-frequency SNPs [34,38,52–58]. Most of

the analytical formulae that describe background selection model

the process as a reduction in effective population size, which does

not predict a skew of the frequency spectrum ([34,38–41], but see

Santiago and Caballero [59]). Consequently, it has been argued

that the effect of background selection on the frequency spectrum

is rather weak, and as such, a skew toward low-frequency SNPs is

more indicative of positive, rather than background selection

[60–66]. It is unclear whether there is a correlation between allele

frequency and recombination rate in the human genome, though

several small studies have found suggestive evidence [6,67].

Furthermore, it is unclear which models of selection may be

compatible with such a correlation.

Third, if selection is common, it ought to primarily affect

patterns of genetic variation near genes because genes are the

likely targets of selection. Several studies have found that human-

chimp divergence and human diversity were reduced near genes,

suggesting the importance of selection at shaping overall patterns

of variability throughout the genome [67–69]. It is less clear

whether there is a skew toward low-frequency alleles near genes.

Author Summary

While researchers have identified candidate genes that
have evolved under positive Darwinian natural selection,
less is known about how much of the human genome has
been affected by natural selection or whether positive
selection has had a greater role at shaping patterns of
variation across the human genome than negative
selection acting against deleterious mutations. To address
these questions, we have combined patterns of genetic
variation in three genome-wide resequencing datasets
with population genetic models of natural selection. We
find that genetic diversity and average minor allele
frequency are reduced in regions of the genome with
low recombination rate. Additionally, genetic diversity,
human-chimp divergence, and average minor allele
frequency have been reduced near genes. Overall, while
we cannot exclude positive selection at a fraction of
mutations, models that include many weakly deleterious
mutations throughout the human genome better explain
multiple aspects of the genome-wide resequencing data.
This work points to negative selection as an important
force for shaping patterns of variation and suggests that
there are many weakly deleterious mutations at both
coding and noncoding sites throughout the human
genome. Understanding such mutations will be important
for learning about human evolution and the genetic basis
of common disease.

Natural Selection in the Human Genome
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Fourth, pervasive positive natural selection may generate a

negative correlation between nonsynonymous divergence and

levels of neutral genetic diversity ([70–77] and reviewed in [78]).

The reason for this is that selective sweeps acting on amino acid

changing mutations generate nonsynonymous fixed differences

between species. Regions of the genome that have been affected by

these sweeps will likely also have reduced neutral polymorphism,

thus generating the negative correlation between these two

quantities. It is unclear whether such a correlation can be

generated in the absence of positive selection and how strong the

correlation might be under various models of positive selection.

Here we further investigate these issues by studying patterns of

genetic variation in three different genome-wide genetic variation

datasets obtained from resequencing European individuals. We

find that levels of diversity are positively correlated with

recombination rate and negatively correlated with genic content.

Minor allele frequency is also positively correlated with recombi-

nation rate and negatively correlated with genic content. Using

simulations, we show that these correlations are best explained by

a model where many sites are under weak negative selection.

Models with numerous selective sweeps on nonsynonymous

mutations predict too strong a negative correlation between

neutral polymorphism and nonsynonymous divergence. Though

not required to explain the data, some smaller fraction of sites may

be under positive selection. Overall, this work points to the

importance of weak negative selection at shaping patterns of

variation throughout the human genome.

Results

Summarizing genomic patterns of variation
We analyzed genomic patterns of polymorphism from three

genome resequencing datasets. First, we analyzed low-coverage

next-generation sequence data obtained from an exome-capture

study of 2,000 Danish individuals. Due to the non-specificity of the

exome-capture arrays, portions of the genome outside of the

targeted regions were sequenced, but at lower coverage. Given the

shallow sequencing depth across most of the genome (roughly

0.16per individual), it would be impossible to infer genotypes for

each individual with any appreciable accuracy. Instead, we

implemented a statistical approach to estimate the population

allele frequency of a SNP using the counts of different nucleotides

at a particular site in the genome (see Materials and Methods for a

detailed description). When combining reads across all individuals,

approximately 30–40% of the genome had a sequencing depth of

at least 100 reads. We estimated the minor allele frequency (MAF)

for all of these sites with a depth of at least 100 reads. Those sites

with an estimated MAF.5% were considered to be SNPs in this

dataset and were used for subsequent analyses. We used this

conservative cut-off because of the difficulties in reliably estimating

allele frequencies of rare alleles in low-coverage data [79].

In order to verify patterns found in our low-coverage

resequencing dataset, we also analyzed two other complementary

datasets. One dataset consisted of six European genomes that were

sequenced to higher coverage (denoted ‘‘higher coverage,’’ see

Materials and Methods for details). The other dataset consisted of

five genomes from Utah residents with ancestry from northern and

western Europe (abbreviated CEU) and one genome from a

Toscan individual sampled from Italy (abbreviated TSI) sequenced

to high coverage by Complete Genomics (denoted ‘‘CGS,’’ see

Materials and Methods). Summaries of genetic variation were

positively correlated across the three datasets (Figure S1 and

Figure S2). Due to the stochasticity of the evolutionary process,

even with perfect data, patterns of polymorphism will not be

perfectly correlated across different datasets.

To analyze correlations between different summaries of

polymorphism and other genomic features, we divided the genome

into non-overlapping 100 kb windows (see Materials and Methods

for further details). Within each window, we tabulated the number

of SNPs, average MAF, number of human-chimp differences, GC

content, recombination rate (as estimated from the high-resolution

deCODE map [80]), fraction of each window where sequencing

data was available, and the fraction of the window that overlaps

with a RefSeq gene. Since we wanted to examine the indirect

effects of natural selection due to linkage, rather than assess the

effects of natural selection on the selected sites themselves, all of

our analyses removed the roughly 5% of the genome that was most

conserved across species (i.e. the phastCons regions [81], see

Materials and Methods). These were the regions most likely to be

directly under negative selection in the human genome [81]. We

then assumed that the remaining sequence that we analyzed was

selectively neutral. Because many of the genomic features were

correlated with each other (Table S1, Table S2, Table S3), we

performed partial correlation analyses to remove the effects of

possible confounding variables. The partial correlation can be

thought of as the correlation between two variables when one or

more other confounding variables are held constant. We used

partial correlations, rather than a full multivariate analysis,

because the partial correlations have a simpler biological

interpretation and have been used in other recent evolutionary

studies [82].

Correlation between neutral polymorphism and
recombination rate

We found a strong positive correlation between the number of

SNPs in a window and the recombination rate of the window

(Spearman’s rpairwise~0:200, Pv10{16, Table S1) when looking at

the low-coverage data. We also observed a strong correlation between

the number of human-chimp differences within a window (d) and

recombination rate (Spearman’s rpairwise~0:244, Pv10{16, Table

S1). When scaling diversity by divergence (i.e. dividing the number of

SNPs per covered base within a window by the number of human-

chimp differences) to potentially account for differences in mutation

rate across the genome, we still found a strong correlation between

scaled SNP diversity (defined here as Snorm) and recombination rate

(Spearman’s rpairwise~0:111, Pv10{16, Table 1, Table S1). In

particular, regions of the genome with low rates of recombination (i.e.

,0.5 cM/Mb) had especially low levels of polymorphism. The rate

of change of Snorm was less dramatic over the rest of the range of

recombination rates.

We also found a positive correlation between Snorm and

recombination rate when analyzing the higher-coverage and

CGS datasets (Spearman’s rpairwise~0:209, Pv10{16, Table 1,

and Table S2 for the higher-coverage data; Spearman’s

rpairwise~0:200, Pv10{16, Table 1, and Table S3 for the CGS

data). The correlation was even stronger than that observed in the

low-coverage data. We discuss several possible reasons for this

difference in the Discussion section. Nevertheless, the fact that we

found the correlation in all three datasets strongly argues that it is

a true biological correlation and not an artifact due to biases in the

low-coverage Danish data. The correlation between Snorm and

recombination rate remained significant even after controlling for

GC content, d, the number of neutral bases covered by sequencing

data, and the fraction of genic bases within a window (Table 1),

suggesting that these factors cannot completely explain this

correlation. Further, the average number of pairwise differences

Natural Selection in the Human Genome
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per window normalized by d was also positively correlated with

recombination rate in both datasets (Table S2 and Table S3).

If natural selection is responsible for this correlation between

Snorm and recombination rate, it may be stronger in genic regions of

the genome than in non-genic regions. The reason for this is that,

all else being equal, genic regions will likely experience more

natural selection than non-genic regions. Non-genic windows were

defined to be those that did not overlap with a RefSeq transcript.

Genic windows were those where at least half the window

overlapped with a RefSeq transcript.

Indeed, the correlation was significantly stronger in genic

windows than in non-genic windows in all three datasets

(P,0.0001 by permutation test, Figure 1, Table 2, Figure S3,

and Figure S4). This pattern holds even after controlling for

confounding variables using a partial correlation analysis.

Inspection of the lowess lines in Figure 1A illustrates the

differences between the correlation in genic and non-genic regions.

In genic regions with low recombination rates (,0.5 cM/Mb),

there is a sharp decrease in Snorm. However, non-genic regions with

low recombination rates did not show such a pronounced decrease

in Snorm (Figure 1A). One concern with these analyses is that the

low-coverage dataset was an exome resequencing dataset and the

exome-capture process may have resulted in systematic differences

between genic and nongenic regions. However, we found the same

pattern in the higher-coverage dataset and the CGS dataset, which

were not targeted toward genes or exons (Figure S3 and Figure

S4). This argues that the differences between genic and non-genic

regions were not due to systematic biases in the data, but rather to

inherent differences between genic and non-genic regions of the

genome.

Correlation between average MAF and recombination rate
We then examined the correlation between average MAF within

a window and recombination rate (Table 1 and Table S1) in the

low-coverage data. We found a weak, but statistically significant,

positive correlation between these two variables (Spearman’s

rpairwise~0:062, Pv10{16). In regions of low recombination, there

was a skew toward lower average MAF. The correlation remained

significant even after controlling for GC content, d, the number of

neutral bases covered by sequencing data, and genic content,

suggesting that it cannot be completely explained by these other

factors (Spearman’s rpartial~0:042, Pv10{8, Table 1). Finally, we

also found a positive correlation between average MAF and

recombination rate in the higher-coverage and the CGS data

(Table 1, Table S2, Table S3), again suggesting that it was not due

to biases in estimating SNP frequencies from low-coverage data. A

different summary of the frequency spectrum, Tajima’s D [49], also

showed a correlation with recombination rate (Table S2 and Table

S3), indicating that this correlation was not sensitive to the summary

of the frequency spectrum employed.

However, no clear pattern emerged when testing whether the

correlation between average MAF and recombination rate was

stronger in genic versus non-genic regions. For all three datasets,

the pairwise correlation between average MAF and recombination

rate was higher in genic regions than non-genic regions (P,0.05,

by permutation test, Figure 1B, Figure S3B, Figure S4B, Table 2).

In the higher-coverage dataset, genic regions showed a stronger

correlation between MAF and recombination rate than non-genic

regions even after controlling for GC content, d, and the number

of bases covered by sequencing data using a partial correlation

analysis (P,0.02 by permutation test, Table 2). However, after

controlling for the confounding variables, there was little

difference in the partial correlation coefficients between genic

and non-genic regions in the low-coverage and the CGS datasets

(Table 2). Thus, there was no clear evidence suggesting that the

correlation between MAF and recombination rate was stronger in

genic than non-genic regions of the genome. This may not be

surprising because this correlation was quite weak, making it

difficult to detect subtle changes in its strength across the genome.

Diversity, MAF, and divergence in relation to genes
If natural selection affects patterns of genetic variation across

the genome, Snorm, average MAF, and d may be reduced in

windows of the genome that contain more genic bases. These

patterns would be expected if most of the selection in the genome

occurs near genes, rather than in intergenic regions.

Indeed, in all three datasets, we found a negative correlation

between Snorm and the fraction of bases within a window that

overlapped with a RefSeq transcript (Table 1). In other words,

windows with a higher genic content tended to have fewer SNPs.

These correlations became stronger when controlling for d,

recombination rate, the fraction of the window with sequencing

coverage, and GC content (Table 1).

There was a weak, but significant, negative correlation between

MAF and fraction of bases that overlapped with a RefSeq

transcript in all three datasets examined (Table 1). Windows with a

higher genic content tended to have lower average MAF than

windows with lower genic content. In the low-coverage and

Table 1. Summary of the correlation coefficients (Spearman’s r) for the three datasets.

Dataset Correlation type
Snorm vs. recom-
bination ratea

MAF vs. recom-
bination ratea

Snorm vs. genic
contentb

MAF vs. genic
contentb

Low-coverage Pairwise correlation 0.111**** 0.062**** 20.039*** 20.012

Partial correlation 0.117**** 0.042*** 20.056*** 20.018*

Higher2 coverage Pairwise correlation 0.209**** 0.086**** 20.033*** 20.043***

Partial correlation 0.173**** 0.046*** 20.076**** 20.035***

CGS Pairwise correlation 0.200**** 0.101**** 20.040*** 20.040***

Partial Correlation 0.188**** 0.066**** 20.077**** 20.020*

aPartial correlation controls for human-chimp divergence, GC content, genic content, and coverage (the number of neutral bases covered by sequencing data).
bPartial correlation controls for human-chimp divergence, GC content, recombination rate, and coverage (the number of neutral bases covered by sequencing data).
*P,0.05.
**P,0.001.
***P,1025.
****P,10216.
doi:10.1371/journal.pgen.1002326.t001

Natural Selection in the Human Genome
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higher-coverage datasets, the correlation became stronger when

controlling for d, recombination rate, the fraction of the window

with sequencing coverage, and GC content (Table 1).

Finally, we found a very strong negative correlation between d

and the fraction of genic bases within a window (Spearman’s

rpairwise~{0:307,Pv10{16, Table S1, Table S2, Table S3).

These results were in agreement with those from a study [67]

which found reduced diversity and divergence near genes even

after removing the regions of the genome most conserved across

species (i.e. the phastCons elements).

Neutral diversity and nonsynonymous divergence
We next tested whether there was a correlation between Snorm

and the number of nonsynonymous human-chimp differences

within a window (DN). A negative correlation between these two

variables has been interpreted as evidence of selective sweeps

across the genome ([70–77] and reviewed in [78]). When

tabulating DN, we did not remove sites which were conserved

across species. We observed weak negative correlations between

Snorm and DN as well as between Snorm and the number of

synonymous human-chimp differences (DS) for several of the

datasets (Table S4). However, when we normalized DN by the

number of nonsynonymous sites per window (the normalized value

is called dN) or used a partial correlation analysis to control for the

number of nonsynonymous sites per window, none of the datasets

showed a significant negative correlation (Table S4). The same

was true for synonymous human-chimp differences.

Haddrill et al. [77] suggested that a negative correlation

between Snorm and dN may be more apparent in genes with elevated

dN. Thus, we also tested for a correlation between Snorm and dN

using only the windows in the 90th percentile of dN. In general, the

values of Spearman’s r were more negative in this subset of the

data than when analyzing the entire dataset (Table S5). For

example, in the CGS data, rpartial~{0:081 (P~0:047) when

controlling for d, GC content, recombination rate, the number of

nonsynonymous sites, and the fraction of the window with

sequencing coverage. However, Snorm was also negatively correlat-

ed with dS in the windows in the 90th percentile of dS

(rpartial~{0:101,P~0:012, controlling for d, GC content,

recombination rate, the number of synonymous sites, and the

fraction of the window with sequencing coverage). The fact dS

showed a similar negative correlation with Snorm as dN did,

combined with the fact that synonymous sites are usually assumed

to be neutrally evolving in humans, suggested that these

correlations may have been driven by a neutral process, rather

than positive selection. One possibility was that the recent fixations

of neutral synonymous or nonsynonymous mutations led to a

decrease in neutral diversity, as suggested by earlier theoretical

work [83]. As such, regions with high dN (or high dS) would have

lower Snorm, generating the negative correlation. Overall, these

results suggest that regions of the genome that have more

nonsynonymous human-chimp differences do not have lower

levels of neutral polymorphism, beyond the reduction in diversity

already expected in genic regions of the genome or surrounding

neutral fixations.

Correlations predicted by various population genetic
models

We next evaluated whether population genetic models including

population size changes, recombination rate variation, and natural

selection could generate the correlations that we observed in the

empirical datasets. We simulated 100 kb regions consisting of

exons, introns, and an intergenic sequence (see Materials and

Methods, Figure S5). We examined several different models of

selection (see Table S6 for the specific parameter values) and

examined the correlation between patterns of genetic variation in

the neutrally evolving intergenic sequence and other genomic

attributes. Because many studies have found that nonsynonymous

mutations are weakly deleterious [22,26,28,84], one model

included weak negative selection acting only on nonsynonymous

sites (shown in purple in Figure 2). It had been suggested that

conserved noncoding sites are also likely to be weakly deleterious

[25,27,31], so another model included negative selection acting on

a fraction of intronic sites (shown in blue in Figure 2). In the third

model (shown in orange in Figure 2), most mutations at

Figure 1. Correlations between summaries of genetic variation
and recombination rate in the low-coverage dataset dividing
the data into genic and non-genic windows (see text). (A)
Number of SNPs per covered base divided by human-chimp divergence
(Snorm) versus recombination rate. (B) Average minor allele frequency
versus recombination rate. Red and green lines denote the lowess
curves fit to the two variables for genic and non-genic windows,
respectively. Black points denote genic windows while gray points
denote non-genic windows. Each point represents the average statistics
computed over 50 100 kb windows. The windows were sorted by
recombination rate prior to binning. Note that several outlier data
points fell outside the plotting area.
doi:10.1371/journal.pgen.1002326.g001
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nonsynonymous positions were negatively selected, but a small

fraction was positively selected. Finally, the fourth model added

weak negative selection at a fraction of intronic sites to a model

where most mutations at nonsynonymous positions were nega-

tively selected, but a small fraction was positively selected.

Our simulations confirmed previous predictions that both

hitchhiking and background selection [33,34,37–41] could gener-

ate a positive correlation between genetic diversity at linked

neutral sites and recombination rate (Figure 2A and Figure S6A).

Importantly, these simulations demonstrated that the background

selection effect can occur with weak negative selection acting on

many sites simultaneously. Models with negative selection acting

on noncoding and coding mutations, as well as models with

positive selection, could generate positive correlations similar to

those in the observed data (red lines in Figure 2A and Figure S6A).

Models of natural selection predicted a positive correlation

between average MAF at linked neutral sites and recombination

rate (Figure 2B and Figure S6B). The strongest correlations seen

for models with only negative selection were for intermediate

strengths of selection (e.g. 25% of intronic sites with s = 2.561024).

Stronger selection (s = 561023) resulted in a weaker correlation

(Table S7). Importantly, models that contained no sites under

positive selection predicted a correlation between MAF and

recombination rate roughly similar in magnitude to that seen in

the observed data (red lines in Figure 2B and Figure S6B). These

results suggest that both positive and weak negative selection were

capable of affecting allele frequencies at linked neutral sites. Thus,

a correlation between allele frequency and recombination rate

cannot be taken as unambiguous evidence of positive selection.

In some cases, the correlation coefficients between MAF and

recombination rate and diversity and recombination rate were

significantly higher than zero under purely neutral models

(Figure 2 and Figure S6). We performed coalescent simulations

using ms [85] under the standard neutral model with different rates

of recombination to further investigate this issue. Not only was the

variance of the distribution of diversity (or average MAF) greater

in simulations without recombination, but the shape of the

distribution changed depending on the recombination rate. For

example, in the case of a high recombination rate, the distribution

of the number of segregating sites approached a Poisson

distribution, and was symmetric about its mean. However, with

no recombination, the distribution became less symmetric, with a

higher mass below the mean and a longer tail to the right (Figure

S7). Thus, the median of the distribution of diversity simulated

with no recombination was lower than the median of the

distribution with the high recombination rate. As such, a weak

positive correlation between recombination rate and diversity may

be expected. The same arguments hold for understanding the

correlation between MAF and recombination rate (Figure S7) and

Tajima’s D and recombination rate (Figure S7, see also [63,86]).

Since we used simulations to interpret the correlations observed in

the actual data, this effect did not alter our interpretation.

Previous authors ([70–77] and reviewed in [78]) had suggested

that a negative correlation between neutral polymorphism and

nonsynonymous divergence may be a signature of positive

selection that cannot be generated by negative selection and/or

demographic processes. In our simulations, a model with negative

selection acting on noncoding sites, but where a fraction of coding

mutations were positively selected showed a negative correlation

between Snorm and dN (orange points in Figure 2C and Figure S6C).

Models that did not include any positive selection, but included

negative selection on a fraction of noncoding sites (blue points in

Figure 2C and Figure S6C), showed little correlation between

these two variables. Thus, for the models investigated here, the

negative correlation was specific to models of positive selection. As

such, it may offer a way to distinguish between models of negative

and positive selection. However, a significant negative correlation

was not always seen in models that included some sites under

positive selection (green points in Figure 2C and Figure S6C).

Instead, the correlation was influenced by the relative amounts of

negative versus positive selection. Negative selection made the

correlation more positive, while positive selection made the

correlation more negative. The correlation ultimately observed

was due to the net effect of both types of selection.

We next used the simulations to evaluate what role positive

selection may have played in shaping patterns of variability across

Table 2. Summary of correlation coefficients (Spearman’s r) for the three datasets divided into genic and non-genic windows.

Dataset Correlation type Window type Snorm vs. recombination ratea MAF vs. recombination ratea

Low coverage Pairwise correlation Genic 0.175**** 0.073***

Nongenic 0.028* 0.042**

Partial correlation Genic 0.185**** 0.029*

Nongenic 0.050** 0.033*

Higher coverage Pairwise correlation Genic 0.250**** 0.123****

Nongenic 0.168**** 0.043**

Partial correlation Genic 0.209**** 0.063***

Nongenic 0.132**** 0.031*

CGS Pairwise correlation Genic 0.241**** 0.123****

Nongenic 0.154**** 0.074***

Partial correlation Genic 0.227**** 0.065***

Nongenic 0.138**** 0.055***

aPartial correlation controls for human-chimp divergence, GC content, and coverage (the number of neutral bases covered by sequencing data).
*P,0.05.
**P,0.001.
***P,1025.
****P,10216.
doi:10.1371/journal.pgen.1002326.t002
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the genome. We first examined models with only strong positive

selection. A model where 0.5% of nonsynonymous mutations were

positively selected (s = 0.625%) could generate the observed

correlation between Snorm and recombination rate (black,

p+ = 100%, p2 = 0% in Figure 3A; p+ denotes the proportion of

simulated windows where positive selection could occur). Howev-

er, this model predicted too strong a negative correlation between

Snorm and dN to be compatible with the data (black, p+ = 100%,

p2 = 0% in Figure 3B). Because several studies have suggested that

0–10% of the genome has been affected by a selective sweep

[9,10,14,16,20,21], we next examined a model where 5% of the

simulated windows included positive selection. A model where the

remaining 95% of the windows were neutral does not predict a

correlation between Snorm and recombination rate strong enough to

match the actual data (black, p+ = 5%, p2 = 0% in Figure 3A). This

suggests that a small number of positively selected sites by

themselves are not sufficient to generate this correlation. Further,

this model still predicted a negative correlation between Snorm and

dN (black, p+ = 5%, p2 = 0% in Figure 3B). However, a model

where 5% of the simulated windows included positive selection

and the remaining 95% of windows included negative selection on

coding and noncoding sites predicted a correlation between Snorm

and recombination rate similar to that observed in the actual data

(black, p+ = 5%, p2 = 95% in Figure 3A). Because adding negative

selection resulted in an increase in the strength of this correlation,

we concluded that the correlation observed in the data has been

primarily driven by negative selection. Also, under this model, the

negative correlation between Snorm and dN was very weak and was

compatible with that from the actual data (black, p+ = 5%,

p2 = 95% in Figure 3B), presumably because most of the windows

have been subjected to negative selection. A model where the

strength of positive selection was weaker showed similar trends

(pink points in Figure 3). This analysis indicated that the

correlation between neutral diversity and recombination rate

was primarily driven by many weakly deleterious polymorphisms

across the genome, rather than by a small proportion of strongly

positively selected mutations.

Finally, our simulations (Figure 4) suggest that negative or

positive selection can generate a strong correlation between

neutral human-chimp divergence (d) and recombination rate even

when the mutation rate is constant across all simulation replicates.

This correlation was likely driven by selection occurring in the

ancestral population [67,87]. Thus, the correlation between d and

Figure 2. Comparison of Spearman’s r for genic regions with
the expected values based on forward simulations for the low-
coverage dataset. (A) Number of SNPs per covered base divided by
human-chimp divergence (Snorm) versus recombination rate. (B) Average
minor allele frequency versus recombination rate. (C) Number of SNPs
per covered base divided by human-chimp divergence (Snorm) versus
human-chimp nonsynonymous divergence (dN). The red solid lines
denote the point estimates from the genic regions in the low-coverage
data. The dotted lines represent 95% confidence intervals obtained by
bootstrapping. Black points denote a model with no selection and pink
points a model where negative selection acted only on nonsynon-
ymous mutations. Blue points denote models where both nonsynon-
ymous and some intronic sites were subjected to negative selection.
Orange points denote models where most nonsynonymous mutations
were negatively selected, but some were positively selected. Green
points denote models where nonsynonymous and some intronic
mutations were subjected to negative selection, but a fraction of
nonsynonymous mutations were positively selected. See Table S6 for a
more detailed description of the different models of selection.
Nonsynonymous divergence was measured from the simulations as
the fraction of differences between the human and chimp sequences at
first and second codon positions.
doi:10.1371/journal.pgen.1002326.g002
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recombination rate can be readily explained by mechanisms other

than recombination itself being mutagenic [44,46,88].

Discussion

We have examined patterns of putatively neutral genetic

variation in three genome-wide resequencing datasets to gauge

the extent of natural selection throughout the human genome. To

the best of our knowledge, this is the first report that the allele

frequency spectrum is correlated with recombination rate across

the human genome (though suggestive evidence was found in

smaller datasets [6,67]). As discussed below, these correlations are

best explained by natural selection affecting linked neutral

variation across the human genome, rather than artifacts in the

data or other mutational processes. Through the use of population

genetic simulations, we have shown that a model with negative

selection acting on both coding and noncoding mutations fits the

data. While we cannot rule out models that include some positive

selection, models with abundant positive selection on nonsynon-

ymous mutations and little negative selection predict too strong a

negative correlation between neutral polymorphism and non-

synonymous divergence.

In general, we observed qualitatively similar patterns in all three

resequencing datasets. However, several of the correlations

between different genomic attributes were stronger in the

higher-coverage and CGS data than in the low-coverage data

(Table 1 and Table 2). Several characteristics of the datasets may

contribute to this difference. For example, the higher-coverage

Figure 3. Negative selection is required to match multiple
aspects of the low-coverage data. (A) Number of SNPs per covered
base divided by human-chimp divergence (Snorm) versus recombination
rate. (B) Number of SNPs per covered base divided by human-chimp
divergence (Snorm) versus human-chimp nonsynonymous divergence
(dN). The red solid lines denote the point estimates from the genic
regions in the low-coverage data. The dotted lines represent 95%
confidence intervals obtained by bootstrapping. p+ denotes the
proportion of simulated windows that contained positively selected
mutations and p2 denotes the proportion of windows that experienced
negative selection. All sites in the remaining windows evolved neutrally.
In windows with positive selection, 0.5% of nonsynonymous mutations
were positively selected (black points: s = 0.625%; pink points: s = 0.3%),
while the remainder evolved neutrally. In windows with negative
selection, a gamma distribution of selective effects was used for
nonsynonymous mutations and 50% of intronic mutations were
selected against with s = 0.0075%.
doi:10.1371/journal.pgen.1002326.g003

Figure 4. Correlation between neutral human-chimp diver-
gence (d) and recombination rate. The red solid line denotes the
point estimate from the genic regions in the low-coverage data. The
dotted lines represent 95% confidence intervals obtained by boot-
strapping. Black points denote a model with no selection and pink
points a model where negative selection acted only on nonsynon-
ymous mutations. Blue points denote models where both nonsynon-
ymous and some intronic sites were subjected to negative selection.
Orange points denote models where most nonsynonymous mutations
were negatively selected, but some were positively selected. Green
points denote models where nonsynonymous and some intronic
mutations were subjected to negative selection, but a fraction of
nonsynonymous mutations were positively selected. See Table S6 for a
more detailed description of the different models of selection.
doi:10.1371/journal.pgen.1002326.g004
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and CGS datasets are likely to be of higher quality than the low-

coverage dataset. Additionally, a greater proportion of each

window is covered in the higher-coverage and CGS datasets than

in the low-coverage dataset (Figure S8). Both of these features lead

to estimated correlation coefficients that are lower in the low-

coverage data than in the higher-coverage and CGS data. Finally,

the higher-coverage and CGS datasets contain a sample of a

smaller number of chromosomes than the low-coverage data.

Population genetic simulations suggest that some of the correla-

tions are expected to be stronger in smaller samples than in larger

samples (compare Figure 2 to Figure S6). Thus, the quantitative

differences among the correlation coefficients across the different

datasets are not too surprising. Instead, the fact that all three

datasets show the same general trends is powerful evidence that

the correlations are not technical artifacts specific to any one type

of data.

Thus, it is our conclusion that these correlations were, at least in

part, driven by natural selection across the human genome.

Several lines of evidence support this conclusion. First, the

correlations remain significant after filtering repetitive sequence

and CpG islands (Table S8), and after controlling for the effects of

GC content, suggesting that base composition or mutational

patterns associated with base composition are not entirely

responsible for the correlations.

Second, we have evaluated whether biased gene conversion, a

neutral alternative sometimes invoked to explain signatures of

natural selection [89,90], can generate the correlations we have

identified. Our simulations show that neutral models with biased

gene conversion cannot generate a correlation between Snorm and

recombination rate similar in magnitude to that observed in our

datasets (Table S6 and Table S7).

The third line of evidence is that the correlation between

neutral polymorphism and recombination rate is stronger in genic

regions compared to non-genic regions. Natural selection would

predominately occur closer to genes, while mutational effects

would be distributed throughout the genome [88]. We have also

found that both diversity and minor allele frequency are negatively

correlated with genic content, suggesting a difference in patterns of

variability between genic and non-genic regions of the genome. As

discussed further below, models that include natural selection can

readily account for these observed patterns.

We have explored which models of selection can generate the

correlations that we observed in the actual data. While we have

found population genetic models that qualitatively predict the

correlations that we have observed in the data, it is more difficult

to translate these models into specific statements about the

absolute amount of selection in the genome. For example, many of

our simulations of negative selection on noncoding sites assume

that 25% of intronic sites were under weak negative selection. This

is likely to be a substantial over-estimate of the proportion of sites

under negative selection [81,91]. One explanation for this

discrepancy is that, for computational convenience, we simulated

100 kb windows independently of each other, rather than whole

chromosomes. In reality, each 100 kb window of the genome is

linked to other selected mutations outside of the window that may

affect patterns of diversity within the window. In fact, simulations

of larger windows (348 kb) provide similar values of Spearman’s r
when only 5% of intronic sties are under negative selection (Table

S6 and Table S7). This may explain why the models that fit the

data include so many selected sites. Simulating larger regions

would only yield more biologically relevant simulations if we were

able to simulate the correct magnitude of selection at noncoding

sites, as well as the correct spatial distribution of sites under

selection across the genome. Though there has been some progress

from comparative and population genomic studies

[25,27,31,81,91], further work is needed in this area. Additionally,

there are nearly an infinite number of possible models for how

selection can operate in the genome. For example, selection

coefficients within a given window may be correlated with each

other, and windows may not be exchangeable (i.e. each window

may have its own distribution of selective effects). Our simulations

do not capture these phenomena and instead merely illustrate the

types of correlations predicted for very basic models of certain

types of selection.

Nevertheless, our simplified models do allow some important

qualitative statements regarding the relative importance of

negative versus positive selection in the human genome. First, all

of the correlations observed in all three datasets can be explained

without invoking positive selection. Different models of negative

selection can readily account for these correlations (Table S6 and

Table S7). Second, based on the lack of a negative correlation

between Snorm and dN in any of our datasets (Table S4, Figure 2C,

Figure S6C), we can reject models with an abundance of selective

sweeps acing on nonsynonymous mutations in the presence of few

negatively selected sites (Figure 2, Figure 3, Figure S6). This

finding is complementary to what was found in a recent study by

Hernandez et al. [21].

However, we cannot rule out the presence of some positively

selected mutations in the presence of many negatively selected

ones. It is difficult to precisely estimate the fraction of the genome

that has been affected by positive selection because such inferences

are likely to be highly model-dependent and influenced by many

unknown variables. Yet, for the model shown in Figure 3, which

fits the actual data (black, p+ = 5%, p2 = 95%), 5% of the simulated

windows included positively selected mutations. This model

predicts that roughly 2.3% of the windows will have at least one

positively selected nonsynonymous mutation that fixed in humans

within the last Ne generations (here 20,000 generations, or 500,000

years, assuming 25 years per generation). This is likely to be an

upper bound on the fraction of the genome subjected to such

strong positive selection because a higher fraction would predict a

negative correlation between Snorm and dN that is too strong to

match the data. However, if the strength of positive selection on

individual mutations is weaker, if selection operates on standing

variation, predominantly on noncoding mutations, or on multiple

mutations simultaneously, then a much greater fraction of the

genome could have been subjected to positive selection [20,92–

94]. Nonetheless, even if a small fraction of the genome was linked

to a selective sweep, this amount of selection is not sufficient to

generate the correlation between diversity and recombination rate

seen in the actual data (Figure 3A). The widespread presence of

weakly deleterious alleles, however, can generate this correlation,

even in the presence of some positively selected sites (Figure 3A).

Taken together, our results suggest that selective sweeps were not

the dominant factor explaining the distribution of variability across

the human genome.

The notion that sites under natural selection can affect linked

neutral variation in the human genome has several important

implications for learning about human history using genetic

variation data. Most methods to infer parameters in population

genetic models assume that all of the SNPs being analyzed are

selectively neutral and are not linked to other sites that are affected

by selection [17,95–100]. Many of these methods summarize the

genetic variation data by the number or proportion of SNPs at

different frequencies in the sample (i.e. the frequency spectrum)

and then find the demographic parameters that can generate the

observed frequency spectrum. Compared to other regions of the

genome, we found an excess of low-frequency SNPs in regions
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near genes and with low recombination rate. It is unlikely that

these regions provide an accurate picture of the selectively neutral

frequency spectrum for the population of interest. It is unclear

what effect including such regions in demographic studies will

have on the final parameter estimates. Further investigation of this

topic is warranted. In the meantime, one way of circumventing the

potential problem of natural selection confounding studies of

demography would be to study regions of the genome far away

from genes and with high recombination rate [101].

Finally, our study illustrates the utility of low-coverage

sequencing data for population genetic studies. Here we have

shown that analyzing the low-coverage data without first inferring

individual genotypes provides estimates of allele frequency across

the genome that are in broad agreement with estimates made from

higher-coverage sequencing of a smaller number of individuals.

Another unique feature of the low-coverage dataset was that it was

generated as part of an exome-capture experiment [84]. Because

the capture process is not completely specific and only enriches for

sequences within the targeted regions, portions of the genome

outside of the targeted regions were sequenced at a lower rate.

Such data from a large number of individuals can be used to study

patterns of genetic variation across the non-targeted regions of the

genome, provided that one analyzes it using an approach that is

appropriate for low-coverage data. Such studies promise to yield

new insights in population and medical genetics.

Materials and Methods

Generation of the low-coverage data
The low-coverage dataset that we used here was an augmented

version of the dataset published in Li et al. [84]. The sequencing

was performed on 2,000 Danish individuals ascertained from three

sources: 1) the population-based Inter99 study [102] (Clinical-

Trials.gov ID-no: NCT00289237; n = 887), 2) the ADDITION

study [103] (ClinicalTrials.gov ID-no: NCT00237548); n = 354)

and 3) the Steno Diabetes Center (n = 759). All participants (mean

age of 54.5 years) were of self-reported Danish nationality. All

study participants provided written informed consent, and the

study was conducted in accordance with the Declaration of

Helsinki and approved by the Ethics Committee of Copenhagen

County, Denmark. DNA from these individuals was analyzed in

an exome-capture resequencing experiment. Each individual was

sequenced separately without any pooling. NimbleGen2.1M HD

arrays were used to enrich for exome sequences. These arrays

contain probes complementary to exonic DNA fragments. Exonic

DNA hybridized to the array while non-exonic DNA was washed

away. However, this hybridization process was not perfect, and

some non-exonic DNA remained bound to the array and was

sequenced. The Illumina Genome Analyzer II was used to

perform the sequencing. Further methodological details can be

found in Li et al. [84].

Bioinformatic analysis of the low-coverage data
The bioinformatic pipeline used for these data is similar to the

one previously published [84]. First, reads were aligned to the

NCBI human genome reference assembly (build 36.3) using

SOAPaligner [104,105]. Reads that mapped outside of the exome

target regions were retained for further analyses, but bases with a

Q score ,20 were removed. Ideally, since we wish to compare

allele frequency estimates for different regions of the genome, we

would like to have a similar depth of coverage across the genome.

However, depth of coverage varied greatly across the genome with

the target regions having very high coverage and the non-target

regions having substantially lower coverage. To circumvent this

problem, at each position in the genome, we selected a random

subset of 100 reads (from the 2,000 individuals) to be used for the

frequency estimation process. We chose a cutoff of 100 reads since

about 35–40% of the total genome was covered by at least 100

Q .20 bases. Decreasing this cutoff would increase the number of

bases that were covered, but it would also make it harder to

accurately estimate the frequency of lower-frequency SNPs.

We estimated allele frequencies directly from the read counts

without attempting to call SNPs or individual genotypes from

these data. For each site in the genome with at least 100 reads, we

first estimated the population minor allele frequency (MAF) using

the method-of-moments estimator (p̂p) [84]. For sites that had an

estimated MAF .1% using (p̂p), we obtained a more precise

estimate of the MAF using the maximum likelihood approach

described by Kim et al. [79,106]. Due to computational

constraints on analyzing a dataset of this size, we did not use the

genotype likelihood files from soapSNP [107]. Rather, we used the

binomial distribution to compute the probability of the read counts

for each individual, taking the base-specific sequencing error

probabilities into account. We treated the second-most common

base at each site as the minor allele. Finally, only sites with

estimated MAF .5% were considered as SNPs and were used in

subsequent analyses. Given the low depth of coverage (100 reads),

it would be difficult to distinguish lower-frequency SNPs from

sequencing errors. For example, for a SNP with a MAF of 1%, the

less common allele would only be seen approximately one time

across all individuals.

Bioinformatic analysis of the higher-coverage data
We also analyzed a dataset of six European individuals whose

genomes were sequenced to higher coverage. This dataset is

complementary to the low-coverage dataset because each

individual in this dataset was sequenced to higher coverage,

coverage was more uniform across the genome, and a higher

fraction of bases were covered. But, the sample depth at any

particular site in the genome was substantially lower (only 12

chromosomes at most). This dataset included the genomes of

James Watson [108], Craig Venter [109], the two parents from a

CEU trio (NA12891 and NA12892) that was sequenced to high

coverage in pilot 2 of the 1000 Genomes project [69], and two

European genomes (NA07022 and NA20431) sequenced by

Complete Genomics [110]. Since each individual’s genome was

sequenced to higher coverage, we treated the called genotypes as

though they were the true genotypes throughout subsequent

analyses.

For the Venter and Watson genomes, we downloaded SNP

genotypes from the ‘‘Genome Variants’’ table of the UCSC

browser. Coverage information across these two genomes was

obtained from ‘‘emf’’ files from the Ensembl database. Sites with a

score of 1 or greater were considered covered. SNPs overlapping

regions with a lower score as well as indels and other structural

variants were dropped from the analysis. Sites that were covered

by reads, but did not have a SNP genotype were considered to be

homozygous for the reference genotype.

We downloaded the ‘‘.vcf’’ and ‘‘mask’’ files for the CEU trio of

the 1000 Genomes Project. Genotypes for variable positions were

obtained from the .vcf files. For the rest of the genome, the

individuals were assumed to be homozygous for the reference

allele if SNP calling was attempted at the position (i.e. the position

had a score of ‘‘0’’ in the mask file). A small number of reported

SNPs in the .vcf files that fell in masked positions of the genome

were removed from subsequent analyses.

Coverage and SNP genotype information could be directly

obtained from the Complete Genomics ‘‘variations’’ files. SNPs
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and positions that were within 2 bp of indels or structural variants

were removed from subsequent analyses.

We intersected the variant genotypes and coverage information

from all six genomes and called genotypes for each individual.

SNPs with more than two different alleles across all individuals or

SNPs where one of the two alleles did not match the reference

sequence were removed from subsequent analyses. For sites where

one individual had a variant genotype, the genotypes for the other

individuals who did not have a variant allele were considered to be

homozygous for the reference if they had coverage at that

particular site, or were considered to be missing if they did not

have any coverage. Subsequent analyses of diversity levels and

MAF only used those SNPs and sites that were covered in all six

individuals.

Bioinformatic analysis of the Complete Genomics (CGS)
data

We also analyzed six European genomes sequenced by

Complete Genomics (CGS). Five of the genomes were from the

CEU sample (NA06985, NA06994, NA07357, NA10851, and

NA12004) and one was from a TSI individual (NA20502). We

used the genotype calls made by CGS that were found in the

‘‘masterVarBeta’’ files. SNPs with more than two different alleles

across all individuals, SNPs where one of the two alleles did not

match the reference sequence, and sites that were within 2 bp of

structural variants called in any one of the individuals were

removed from subsequent analyses. Later analyses of diversity

levels and MAF only used those SNPs and sites that were covered

in all six individuals.

We noted that some windows of the genome appeared to have

an unusually high number of SNPs where many individuals were

heterozygous (Figure S9). We removed windows which had at least

10 SNPs where the average number of heterozygous genotypes per

SNP was greater than 3 (out of 6). This filtering resulted in

dropping 3.8% of the windows and appeared to remove the outlier

regions (Figure S9).

Correlation analyses
We divided the genome into non-overlapping 100 kb windows.

Windows that were within 10 Mb of an annotated centromere,

telomere, or end of a chromosome were omitted from further

analyses. For each window, we tabulated several genomic features.

First, we obtained the recombination rate for each window using

the high-resolution pedigree-based genetic map assembled by

deCODE [80]. Second, we tabulated the number of sites within

each window where the hg18 base differed from the pantro2 base.

This was done using the .axt alignments obtained from the UCSC

browser. Importantly, bases in RepeatMasked parts of the genome

or where the hg18 or pantro2 alleles were missing were not

counted. Since we wanted to examine putatively neutral sites,

bases falling in the 17-way phastCons regions were also not

counted [81], except when analyzing synonymous and nonsynon-

ymous human-chimp divergence (see below). Third, we tabulated

GC content within each window as the fraction of bases where the

hg18 sequence was a G or a C. Only those bases that met the

inclusion criteria described above were counted in this analysis.

Fourth, as a measure of genic content, we tabulated the proportion

of bases within each window that overlapped with a RefSeq

transcript. We then tabulated the number of SNPs within each

window and the number of bases that had sequencing coverage

(see above for the criteria used to define covered bases).

Importantly, SNPs falling RepeatMasked regions or phastCons

regions were dropped from the analysis. Similarly, these bases

were not counted as covered bases. The number of SNPs per

covered base was used as a summary of diversity within each

window. Finally, we summarized the frequency spectrum within

each window by the average MAF over all the SNPs within each

window.

We tested for correlations between the variables described

above using non-parametric correlation tests. Specifically, we

tested for pairwise correlations between variables using Spear-

man’s r. Since many of the variables were correlated with each

other (Table S1), we calculated partial correlations to remove the

effects of confounding variables on the variables of interest. Partial

correlation statistics were calculated using the pcor function in R

[111].

We tested whether the correlations were stronger in genic

windows compared to non-genic windows using a permutation

test. For each permutation, windows were randomly assigned to a

genic and a non-genic group, keeping the number of genic and

non-genic windows equal to that in the observed data. We

recorded the difference in the correlation coefficient between each

permuted genic and permuted non-genic dataset. The P-value for

the test was the proportion of 10,000 permuted datasets with

differences larger than those seen in the non-permuted data.

To test for a correlation between neutral polymorphism (Snorm)

and nonsynonymous divergence, we found the number of

nonsynonymous hg18-pantro2 alignment differences in each

window (DN). This was done by putting those alignment differences

that were not in RepeatMasked sequence and overlapped with an

exon in the Consensus Coding Sequence (CCDS) table from the

UCSC Table Browser into the SeattleSeq SNP annotation pipeline

(http://gvs.gs.washington.edu/SeattleSeqAnnotation/). The hu-

man and the chimp bases were used as the two alleles. If multiple

CCDS genes overlapped, we selected the longest one and discarded

the remainder. We used the Nei-Gobjori [112] approach with the

CCDS gene model to count the number of synonymous (LS) and

nonsynonymous (LN) sites per window. LN and LS were only counted

from the hg18 sequence, rather than averaged between the hg18

and pantro2 sequences. Only those sites that were not Repeat-

Masked and were aligned with pantro2 were counted. The number

of nonsynonymous differences per nonsynonymous site (dN) was

then calculated as DN/LN. Similarly, the number of synonymous

differences per synonymous site (dS) was then calculated as DS/LS.

Simulations
To determine which models of selection could generate the

correlations we observed in the resequencing data, we performed

forward-in-time population genetic simulations using the program

SFS_CODE [113]. Specifically, we simulated 100 kb regions that

included exons and introns separated by an intergenic spacer

region (Figure S5). We assumed a Jukes-Cantor mutation model

[114] with a per-base pair mutation rate of 2.561028.

Figure S10 shows the demographic model used for the

simulations. Briefly, we simulated a human population with a

chimp outgroup where the chimp population split from the human

population 5 million years ago (assuming 25 years per generation).

The ancestral human-chimp population was assumed to be of size

20,000 because previous studies have found that the ancestral

human-chimp population was likely 2–10-fold larger than the

current human effective population size [115–119]. At the human-

chimp speciation event, the both the chimp and human

populations underwent an instantaneous 2-fold contraction to

their current sizes. Since our data consisted of European

individuals, we also included a bottleneck in the human population

with parameters from Lohmueller et al. [120], but using an

ancestral population size of 10,000 between the human-chimp split

and the more recent bottleneck.
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The recombination rates for the simulated windows were

chosen to approximately match the distribution of estimated

recombination rates of the genic windows from the low-coverage

dataset. This was done by assigning each window in the low-

coverage data to one of 100 different bins based on its

recombination rate. A single recombination rate was chosen for

each bin (the mid-point of the bin), and this rate was used to

simulate the number of replicates proportional to the number of

windows in the actual data falling into the bin. A total of 20,000

simulated windows were generated for each model of selection.

Recombination hotspots were added to each window. Hotspots

were assumed to have a width of 2 kb and the inter-hotspot

distances were drawn from an exponential distribution with a mean

of 20 kb. To specify the intensities of the hotspots in SFS_CODE,

one needs to provide the proportion of the total amount of

recombination that occurred within each of the hotspots and

coldspots. We set the proportion of recombination that occurred in

hotspot i to be 0.8xi, where xi was drawn from a Dirichlet

distribution with parameter k equal to the number of hotspots within

the window, and a1~:::~ak~10. This framework allowed

hotspots to have different intensities and kept the total proportion

of recombination that occurred in hotspots in each window at 80%

[121]. A similar approach was used to determine the background

recombination rates for each part of the sequence outside of the

hotspots, except 0.2 was used instead of 0.8.

We examined several different models of natural selection

(Table S6). In most models, nonsynonymous mutations were

weakly deleterious with their selection coefficients drawn from a

gamma distribution of selective effects, the parameters of which

had been estimated from human resequencing data [22]. Some

models also included positive selection acting on a fraction of

nonsynonymous mutations, or a fraction of intronic mutations that

were weakly deleterious.

We then tabulated diversity and divergence summary statistics

from the simulations. Importantly, we only analyzed SNPs and

human-chimp differences that occurred in the neutral intergenic

sequence. For comparison to the low-coverage Danish data, we

used the population MAFs from the simulations, counting only

those SNPs with MAF .5% as we did in the observed data. From

these same simulations, we took a sample of six individuals to

analyze and compare to the higher-coverage data. The strength of

some correlations may depend on how precisely diversity statistics

could be estimated, and these estimates likely depend on the

amount of sequence analyzed within each window (or, in other

words, the fraction of bases within the 100 kb window that were

covered). Therefore, we sampled the amount of intergenic

sequence to be analyzed in each simulated window from the

empirical distribution of the number of bases covered in each

window. This was done separately for the low and higher-coverage

datasets because the number of bases covered differed between the

two datasets. To compute the number of human-chimp differences

from the simulations, we compared the sequence of a single chimp

individual to a single human individual. Sites where the two

individuals were homozygous for different alleles were counted as

differences. Sites where both were homozygous for the same allele

were not counted as differences. All other sites (e.g. chimp was

heterozygous and human was homozygous, chimp was heterozy-

gous and human was heterozygous, chimp was homozygous and

human was heterozygous) were counted as half a difference.

For computational efficiency, we simulated an ancestral

population of 500 individuals while keeping the population-scaled

mutation and recombination rates and selection coefficients equal

to their original values. This approach increased computational

efficiency, but should result in the same patterns of variation as

larger population sizes since the patterns of variation depend only

on the scaled population parameters.

Supporting Information

Figure S1 Correlations between the number of SNPs per

covered base among the three different datasets. The red line

denotes the lowess curve fit to the two variables. The value of

Spearman’s r for each pairwise correlation is shown in each panel.

Note that several outlier data points fell outside the plotting area.

(TIFF)

Figure S2 Correlations between the average MAF among the

three different datasets. The red line denotes the lowess curve fit to

the two variables. The value of Spearman’s r for each pairwise

correlation is shown in each panel. Note that several outlier data

points fell outside the plotting area.

(TIFF)

Figure S3 Correlations between summaries of genetic variation

and recombination rate in the higher-coverage dataset dividing the

data into genic and non-genic windows (see text). (A) Number of

SNPs per covered base divided by human-chimp divergence (Snorm)

versus recombination rate. (B) Average minor allele frequency

versus recombination rate. Red and green lines denote the lowess

curves fit to the two variables for genic and non-genic windows,

respectively. Black points denote genic windows while gray points

denote non-genic windows. Each point represents the average

statistics computed over 50 100 kb windows. The windows were

sorted by recombination rate prior to binning. Note that several

outlier data points fell outside the plotting area.

(TIFF)

Figure S4 Correlations between summaries of genetic variation

and recombination rate in the CGS dataset dividing the data into

genic and non-genic windows (see text). (A) Number of SNPs per

covered base divided by human-chimp divergence (Snorm) versus

recombination rate. (B) Average minor allele frequency versus

recombination rate. Red and green lines denote the lowess curves

fit to the two variables for genic and non-genic windows,

respectively. Black points denote genic windows while gray points

denote non-genic windows. Each point represents the average

statistics computed over 50 100 kb windows. The windows were

sorted by recombination rate prior to binning. Note that several

outlier data points fell outside the plotting area.

(TIFF)

Figure S5 Structure of a simulated window. Each window

contains 8 exons, 7 introns, and a 53 kb neutral intergenic

sequence in the middle. Some models of selection included

negative selection only on coding sites. Other models included

negative and positive selection on coding sites. A third set of

models added negative selection on a fraction of intronic sites. See

Table S6 for a further description of the different models of

selection.

(TIFF)

Figure S6 Comparison of Spearman’s r for genic regions with

the expected values based on forward simulations for the higher-

coverage dataset. (A) Number of SNPs per covered base divided by

human-chimp divergence (Snorm) versus recombination rate. (B)

Average minor allele frequency versus recombination rate. (C)

Number of SNPs per covered base divided by human-chimp

divergence (Snorm) versus human-chimp nonsynonymous diver-

gence (dN). The red solid lines denote the point estimate from the

genic regions in the higher-coverage data. The dotted lines

represent 95% confidence intervals obtained by bootstrapping.
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Black points denote a model with no selection and pink points a

model where negative selection acted only on nonsynonymous

mutations. Blue points denote models where both nonsynonymous

and some intronic sites were subjected to negative selection.

Orange points denote models where most nonsynonymous

mutations were negatively selected, but some were positively

selected. Green points denote models where nonsynonymous and

some intronic mutations were subjected to negative selection, but a

fraction of nonsynonymous mutations were positively selected. See

Table S6 for a more detailed description of the different models of

selection. Nonsynonymous divergence was measured from the

simulations as the fraction of differences between the human and

chimp sequences at first and second codon positions.

(TIFF)

Figure S7 Effect of recombination on the distributions of

summaries of neutral genetic variation. (A) Number of SNPs per

window. (B) Average number of pairwise differences. (C) Tajima’s

D. (D) Average minor allele frequency. Each figure shows the

distribution of the particular summary statistic for 105 simulated

(under the standard neutral model using ms [85]) 100 kb windows

in a sample size of 200 chromosomes assuming no recombination

(red curves) and a recombination rate of 10 cM/Mb (r~0:0032
per base pair, black curves). Solid vertical lines denote the medians

of the distributions. Dashed vertical lines denote the means of the

distributions. In panels A and B, the means of all distributions

match the medians of the 10 cM/Mb (black) distributions. In

panels C and D, the means of the 10 cM/Mb (black) distributions

match the medians.

(TIFF)

Figure S8 Correlations between the number of bases covered

per window among the three different datasets. The red line

denotes the lowess curve fit to the two variables. The value of

Spearman’s r for each pairwise correlation is shown in each panel.

Note that several outlier data points fell outside the plotting area.

(TIFF)

Figure S9 Patterns of heterozygosity in the CGS data. Number

of heterozygous genotypes per window (i.e. the number of

heterozygous genotypes per SNP summed over all SNPs within

each window) is represented on the y-axis and the number of SNPs

per window is represented on the x-axis. Red points denote those

windows with at least 10 SNPs where the average number of

heterozygous genotypes per SNP was .3 (out of 6). Such windows

were excluded from further analyses.

(TIFF)

Figure S10 Demographic model used for simulations. NH-C

denotes the ancestral human-chimp population size, NC denotes

the current chimp population size, NH denotes the current human

population size, NHBN denotes the human population size during

the bottleneck, tsplit denotes the human-chimp split time, tBN-start

denotes the time when the population size decreased to start the

bottleneck (moving forward in time), and tBN-end denotes the time

when the population recovered from the bottleneck (moving

forward in time). Note that all population parameters are scaled by

NH-C = 20,000. However, for computational efficiency, we simu-

lated 500 individuals while keeping the population parameters

equal to their original values (see Materials and Methods).

(TIFF)

Table S1 Pairwise correlations between variables for the low-

coverage data.

(PDF)

Table S2 Pairwise correlations between variables for the higher-

coverage data.

(PDF)

Table S3 Pairwise correlations between variables for the CGS

data.

(PDF)

Table S4 Correlation coefficients (Spearman’s r) between

coding region divergence and neutral diversity (Snorm).

(PDF)

Table S5 Correlation coefficients (Spearman’s r) between

coding region divergence and neutral diversity (Snorm) for windows

in the upper 90th percentile of nonsynonymous divergence per site

(dN) or synonymous divergence per site (dS).

(PDF)

Table S6 Selection models used in forward simulations.

(PDF)

Table S7 Values of Spearman’s r calculated from forward

simulations of various models of selection.

(PDF)

Table S8 Pairwise correlations between variables for the CGS

data after filtering CpG islands.

(PDF)
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