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It has been an issue of debate whether the inflationary infrared (IR) divergences are
physical or not. Our claim is that, at least, in single-field models, the answer is “No”,
and that the spurious IR divergence is originating from the careless treatment of the gauge
modes. In our previous work we have explicitly shown that the IR divergence is absent in
the genuine gauge-invariant quantity at the leading order in the slow-roll approximation.
We extend our argument to include higher-order slow-roll corrections and the contributions
from the gravitational waves. The key issue is to assure the gauge invariance in the choice
of the initial vacuum, which is a new concept that has not been considered in conventional
calculations.

Subject Index: 440

§1. Introduction

The importance of the gauge-invariant perturbation has been widely recognized
since decays ago, but some subtle issues get in the way of its realization particularly
in non-linear perturbation theory. During inflation, massless fields are known to yield
the scale invariant spectrum P (k) ∝ 1/k3 at linear order. These fields contribute
to the one-loop diagram with the four point interaction as

∫
d3k/k3 in the long

wavelength limit, which leads to the logarithmic divergence.1)–20) In our previous
work,21) we pointed out that, at least in single field models, the IR divergences are
attributed to the bad treatment of gauge degrees of freedom. The gauge degrees of
freedom can be classified into two classes: the local ones and the non-local ones. In
the usual calculation only the former is fixed by adapting particular gauge conditions
at each space-time point. However, this is not sufficient in order to accomplish the
complete gauge fixing because of the presence of the non-local gauge degrees of
freedom, which are typically the degrees of freedom to specify boundary conditions
in solving the lapse function and the shift vector. These non-local gauge degrees
of freedom are formally fixed by imposing the regularity at spatial infinity in the
conventional perturbation theory. As a result, however, the time evolution of so-
called gauge invariant variables is affected by the information from infinitely large
volume outside our observable region. We claimed that this is the origin of IR
divergences.21)
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1068 Y. Urakawa and T. Tanaka

Along the line mentioned above, the IR divergence problem reminds us of the
importance of maintaining the gauge-invariance in cosmological perturbation. In our
previous work,22) we provide one simple but calculable example of genuine gauge-
invariant quantities, and showed its regularity at the leading order in the slow-roll
approximation. In order to realize IR regular perturbation theory, one important ad-
ditional aspect is to guarantee the gauge invariance of the initial quantum state. We
found that by choosing the Bunch-Davies vacuum, which yields the scale-invariant
spectrum, at the lowest order in slow-roll approximation, the gauge invariance of
the initial quantum state is realized. In this paper, we extend our argument about
IR regularity of such genuine gauge invariant quantities and the existence of gauge-
invariant initial state to the quadratic order in the slow-roll approximation. This
extension would be wanted, because the presence of IR divergences that has been
reported so far mostly starts with this order (see Ref. 19) for a recent review). We
also include the discussion about the contributions from the graviton loops.

To quantify the primordial fluctuations and provide the testable predictions for
models of inflation, it is necessary to remedy the singular behaviour of IR corrections
as well as the ultraviolet divergence.23)–25) The feasibility of the secular growth of
IR contributions has also been addressed, motivated as a possible solution to the
smallness of the cosmological constant.26)–29) (See also Refs. 30) and 31).) Despite
the several efforts,21),32)–43) the debate regarding the possibility of the IR divergence
has not been settled. To put an end to this debate, following the idea presented
in our previous works,21),22) we explicitly show the absence of the IR divergence,
restricting our argument to single field models of inflation.

Our paper is organized as follows. In §2, we give the setup of our problem and
briefly review our solution to the IR divergence problem. In §2.2, we clarify the
relation between the residual gauge degrees of freedom and the boundary conditions
in solving the lapse function and the shift vector. In §3, we give one example of
genuine gauge-invariant variables. In §4, we show the regularity of the genuine
gauge-invariant variable and study the requirement of the gauge-invariance on the
initial quantum state. Our results are summarized in §5.

§2. Brief review of IR divergence problem

In this section, we briefly summarize our solution to the IR divergence problem,
proposed in our previous work.22)

2.1. Basic equations

We consider a standard single field inflation model whose action takes the form

S =
M2

pl

2

∫ √−g [R− gμνφ,μφ,ν − 2V (φ)]d4x , (2.1)

where Mpl is the Planck mass and the scalar field Φ was rescaled as Φ → Φ/Mpl to
be dimensionless. The ADM formalism has been utilized to derive the action of the
dynamical variables particularly in the non-linear perturbation theory.44) Using the
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Natural Selection of Inflationary Vacuum 1069

decomposed metric

ds2 = −N2dt2 + hij(dxi +N idt)(dxj +N jdt) , (2.2)

the action is rewritten as

S=
M2

pl

2

∫ √
h
[
N sR− 2NV (φ) +

1
N

(EijEij − E2)

+
1
N

(∂tφ−N i∂iφ)2 −Nhij∂iφ∂jφ
]
d4x , (2.3)

where sR is the three-dimensional scalar curvature and Eij and E are defined by

Eij =
1
2

(∂thij −DiNj −DjNi) , E = hijEij . (2.4)

The spatial index of Ni is raised and lowered by hij .
In this paper we work both in the comoving gauge and in the flat gauge. We

defer the introduction of the latter gauge to §3.2. The comoving gauge is defined by

δφ = 0 , (2.5)

where δφ is the perturbation of the scalar field. We decompose the spatial metric as

hij = e2(ρ+ζ)
[
eδγ

]
ij
, (2.6)

where a := eρ denotes the background scale factor, and tr[δγ] = 0. Using the
degrees of freedom in the choice of the spatial coordinates, we further impose the
gauge conditions ∂iδγij = 0. Here, the indices of spatial derivatives are raised or
lowered by using Kronecker’s delta as ∂i = δij∂j .

Varying the action with respect to N and N i, we obtain the Hamiltonian and
momentum constraints as

sR− 2V −N−2(EijEij − E2) −N−2 (∂tφ)2 = 0 , (2.7)

Dj

[
N−1

(
Ej i − δjiE

)]
= 0 . (2.8)

Introducing the perturbed variables as

ȟij := e−2ρhij , Ni = eρŇi , Ň i := ȟijŇi = eρN i , (2.9)

we factorize the scale factor from the metric as

ds2 = e2ρ[−(N2 − ŇiŇ
i)dη2 + 2Ňidηdx

i + ȟijdx
idxj ] . (2.10)

Expanding the perturbations, Q = δN(:= N−1), Ňi, ζ, and δγij as Q = Q1+Q2+· · · ,
the zeroth-order Hamiltonian constraint equation yields the background Friedmann
equation:

6ρ′ 2 = φ′ 2 + 2e2ρV (φ) , (2.11)

where a prime “ ′ ” denotes the differentiation with respect to the conformal time η.
The constraint equations at the linear order are obtained as

e2ρV δN1 − 3ρ′ζ ′1 + ∂2ζ1 + ρ′∂iŇi,1 = 0 , (2.12)
4∂i

(
ρ′δN1 − ζ ′1

) − ∂2Ňi,1 + ∂i∂
jŇj,1 = 0 , (2.13)

where ∂2 := ∂i∂i. The higher-order constraints can be obtained similarly.
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1070 Y. Urakawa and T. Tanaka

2.2. Residual gauge degrees of freedom

The constraint equations (2.7) and (2.8) allow us to describe the non-dynamical
variables N and Ni in terms of ζ. Here we stress that the constraints (2.12) and the
divergence of (2.13) are elliptic-type equations, which require boundary conditions
to solve. Even though we impose the gauge conditions (2.5) and (2.6) at each space-
time point, N and Ni are not uniquely determined because of the presence of such
non-local gauge degrees of freedom. At the first order of perturbation, these degrees
of freedom are studied in Ref. 22), where general solutions of δN1 and Ni,1 are given
in the form:

δN1 =
1
ρ′

(
ζ ′1 −

1
4
∂iGi

)
, (2.14)

Ňi,1 = ∂i

(
φ′ 2

2ρ′ 2
∂−2ζ ′1 −

1
ρ′
ζ1

)
− 1

4

(
1 +

φ′ 2

2ρ′ 2

)
∂i∂

−2∂jGj +Gi . (2.15)

Here, an arbitrary vector functionGi(x) that satisfies the Laplace equation ∂2Gi(x) =
0 was introduced to make explicit the presence of degrees of freedom corresponding
to the boundary conditions. Substituting Eqs. (2.14) and (2.15) into the equations
of motion for ζ1 and δγij,1, we find that the introduction of the gauge function Gi(x)
modifies their evolution equations as well.22)

The ambiguity originating from the choice of the vector Gi(x) is a sign of the
presence of residual gauge degrees of freedom. Here, we explicitly show that Gi(x)
represents the residual gauge degrees of freedom that remain undetermined even after
specifying the gauge by the conditions (2.5) and (2.6). Since the gauge condition
δφ = 0 completely fixes the temporal gauge, the residual gauge can reside only in
changing the spatial coordinates: xi → x̃i = xi+δxi. The metric perturbations then
transform as

˜̌Ni,1(x) = Ňi,1(x) − δx′i , (2.16)

ζ̃1(x) = ζ1(x) − 1
3∂

iδxi , (2.17)

δγ̃ij,1(x) = δγij,1(x) − 2
{
∂(iδxj) − 1

3∂
kδxkδij

}
. (2.18)

In this section we associate a tilde “˜ ” with the perturbed variables in the gauge
with Gi �= 0 to discriminate them from the perturbed variables in the gauge with
Gi = 0.

Since we have not changed the temporal coordinate, the lapse function remains
unchanged at the linear order. Equating δN1 with δÑ1, given by Eq. (2.14), we find
that ζ1 is related to ζ̃1 as

ζ̃ ′1 = ζ ′1 +
1
4
∂iGi . (2.19)

Comparing Eq. (2.17) with (2.19), we obtain

∂iδx′i = −3
4∂

iGi . (2.20)
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Natural Selection of Inflationary Vacuum 1071

Imposing the transverse condition on δγij in Eq. (2.18), we obtain another condition
for δxi as

∂2δxi = −1
3∂i∂

jδxj . (2.21)

Then, Eqs. (2.20) and (2.21) are integrated to give

δxi = −
∫
dη Gi(x) +

1
4

∫
dη ∂i∂

−2∂jGj(x) +
∫
dη hi(x) +Hi(x), (2.22)

where we introduced vector functions hi(x) and Hi(x) that satisfy

∂ihi(x) = ∂2hi(x) = 0 , (2.23)

3∂2Hi(x) + ∂i∂
jHj(x) = 0 . (2.24)

Using Eqs. (2.17) and (2.20), Eq. (2.15) is recast into

˜̌Ni,1(x) = Ňi,1(x) +
1

3ρ′
∂i∂

jδxj − 1
4
∂i∂

−2∂jGj,1(x) +Gi,1(x) . (2.25)

Comparing Eq. (2.25) with Eq. (2.16), the vector function hi(x) is determined by

hi(x) =
1

4ρ′

∫
dη ∂i∂

jGj(x) +
1
ρ′
∂2Hi(x) . (2.26)

The degrees of freedom in boundary conditions are then found to represent the
change of the spatial coordinates:

δxi(x) = −
∫
dη Gi(x) +

1
4

∫
dη∂i∂

−2∂jGj(x)

+
1
4

∫
dη

ρ′

∫
dη ∂i∂

jGj(x) +Hi(x)
∫
dη

ρ′
∂2Hi(x) , (2.27)

which is basically expressed in terms of Gi(x). We note that the time-independent
vector Hi(x) can be absorbed into the integration constant of the temporal integral,∫
dη {−Gi(x) + (1/4)∂i∂−2∂jGj(x)}. Substituting Eq. (2.27) into Eqs. (2.17) and

(2.18), we find that spatial components of metric perturbation transform as

ζ̃1 = ζ1 +
1
4

∫
dη ∂iGi − 1

3
∂iHi . (2.28)

δγ̃ij,1 = δγij,1 +
∫
dη

{
2∂(iGj) − 1

2(∂i∂j∂−2 + δij)∂kGk
}
− 1

2

∫
dη

ρ′

∫
dη∂i∂j∂

kGk

−2
{
∂(iHj) − 1

3∂
kHkδij

}
− 2

∫
dη

ρ′
∂2∂(iHj). (2.29)

When we consider the universe with infinite volume and require that all quan-
tities are regular at the spatial infinity, the solution of δN1 and Ňi,1 would be spec-
ified uniquely. However, in this case, we observe the singular behaviour in the loop
corrections of the curvature perturbation ζ.8)–12),14)–20),42) This is because the IR
fluctuation acausally propagates through the non-physical gauge modes and comes
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1072 Y. Urakawa and T. Tanaka

into play. In contrast, if we do not care about any singular behaviors at infinity,
that would never be observed by us, a variety of homogeneous solutions Gi can be
added to the solution of δN1 and Ňi,1. In our previous work,21) we have shown
that, by choosing the function Gi appropriately, we can guarantee the regularity of
fluctuations of ζ in the flat gauge as long as a finite spatial region of our universe is
concerned. We think that this is a remarkable progress, but the prescription given
in Ref. 21) is not completely satisfactory in that the loop corrections for ζ depend
on the choice of the boundary conditions for the lapse function and the shift vector.
This fact signifies that the n-point functions for the “so-called” curvature perturba-
tion ζ is not a genuine gauge-invariant quantity, when we take into account the gauge
degrees of freedom associated with the choice of boundary conditions. Our discussion
here can be extended straightforwardly to the higher-order in perturbations.

§3. Gauge-invariant quantities

In this section, we provide one simple example of genuine gauge-invariant quan-
tities. If we compute genuine gauge-invariant quantities, the results by definition
should be unaffected by the choice of the gauge. Hence, they should be IR regular
even if we calculate them based on the standard perturbation theory. We demon-
strate this in the following two sections.

3.1. Definitions of scalar curvatures

One simple way to realize the gauge invariance is to use variables defined in a
completely fixed slicing and threading. What is revealed in the previous section is
the fact that the genuine gauge-invariant variables cannot be constructed by simply
adapting gauge conditions to metric components at each space-time point. In order
to fix the gauge completely, we also need to remove the unphysical degrees of freedom
associated with the choice of boundary conditions. This cannot be achieved easily
due to the difficulties in removing all arbitrariness regarding the choice of space-time
coordinates. It is, however, possible to calculate genuine gauge-invariant quantities
even if we do not accomplish the complete gauge fixing.

Since the time slicing is uniquely fixed by the gauge condition δφ = 0, it is enough
if we can arrange quantities so as to be invariant under the transformation of spatial
coordinates. In our previous work,22) we proposed to calculate n-point functions for
the scalar curvature of the induced metric on a φ= constant surface, sR. Although sR
itself does not remain invariant but transforms as a scalar quantity under the change
of spatial coordinates, the gauge invariance of the n-point functions of sR would be
ensured, if we could specify its n arguments in a coordinate-independent manner.
The distances of spatial geodesics that connect pairs of n points characterize the
configuration in a coordinate independent manner. On the basis of this idea, we
specify the n spatial points in terms of the geodesic distances and the directional
cosines, measured from a reference point. Although we cannot specify the reference
point and frame in a coordinate independent manner, this gauge dependence would
not matter as long as we are interested in the correlation functions in a quantum
state that respects the spatial homogeneity and isotropy of the universe.
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Natural Selection of Inflationary Vacuum 1073

We consider the three-dimensional geodesics whose affine parameter ranges from
λ = 0 to 1 with the initial “velocity” given by

dxi(X, λ)
dλ

∣∣∣∣
λ=0

= X i .

We identify a point in the geodesic normal coordinates Xi with the end point of the
geodesic xi(X, λ = 1). Noting that in the absence of the fluctuations Xi coincides
with xi, we expand xi(X) as

xi(X) := X i + δxi(X) .

We denote the spatial curvature whose argument is specified by the geodesic normal
coordinates X i as

gR(η, X) := sR(η, xi(X)) . (3.1)

Then, gR can be expanded as

gR(η, X) =
∞∑
n=0

δxi1 · · · δxin
n!

∂i1 · · · ∂insR(η, xi)|xi=X(i) . (3.2)

The n-point functions of gR would be surely gauge-invariant, unless the initial quan-
tum state breaks the gauge-invariance.

Our main purpose of this paper is to demonstrate the absence of IR divergence in
the genuine gauge-invariant quantities at one-loop order. At this order, the following
three terms contribute to the two-point function:

〈gRgR〉4 := 〈gR1
gR3〉 + 〈gR2

gR2〉 + 〈gR3
gR1〉 , (3.3)

where the subscripts 1, 2, 3, 4 represent the numbers of the contained creation and
annihilation operators or equivalently the number of the contained interaction pic-
ture field operators. For simplicity, we neglect the terms that do not yield the IR
divergence. In the above expression, each term contains two pairs of contraction
between creation and annihilation operators. Only when one of these pairs does not
contain any differentiation, the term potentially contributes to IR divergence. Since
the loop integrals diverge at most logarithmically, one spatial or temporal derivative
is sufficient to remedy their divergent behaviors. Noting that the curvature per-
turbation in the first-order scalar curvature is multiplied by the spatial derivatives
as

gR1 = sR1 ∝ ∂2ζ1 , (3.4)

the terms in gR3 that include more than one interaction picture field operators with
spatial or temporal derivatives do not yield divergences. This statement also applies
to the terms in gR2. Since gR2 contains at least one interaction picture field operator
that is differentiated, the terms in gR2 that include more than one differentiated
interaction picture field operators do not yield IR divergences.
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1074 Y. Urakawa and T. Tanaka

The loops of gravitational wave perturbation without derivatives yield the log-
arithmic divergence, too. However, the gravitational wave perturbation δγij with
derivatives no longer contributes to such divergent loop corrections.

Hereafter, we denote an equality which is valid only when we neglect the terms

irrelevant to IR divergences by “
IR≈”. Then, abbreviating the unimportant pre-factor,

we simply denote the scalar curvature sR as

sR
IR≈ e−2ζ

[
e−δγ

]ij
∂i∂jζ. (3.5)

3.2. Gauge transformation

To calculate the non-linear corrections under the slow-roll approximation, it is
convenient to temporally work in the flat gauge:

h̃ij = e2ρ
[
eδγ̃

]
ij
, tr[δγ̃] = 0, ∂iδγ̃ij = 0, (3.6)

because all the interaction vertexes are explicitly suppressed by the slow-roll para-
meters in this gauge.21),44) Here in this section we associate a tilde with the metric
perturbations in the flat gauge to discriminate those in the comoving gauge. The
action in this gauge is given by

S
IR≈ M2

pl

2

∫
e2ρ

[
Ñ−1

(
φ′ + ϕ′ − ˜̌N i∂iϕ

)2 − 2Ñe2ρ
∑
m=0

V (m)

m!
ϕm

− Ñ ˜̌hij∂iϕ∂jϕ+ Ñ−1
(
−ρ′2 + 4ρ′∂i ˜̌N i

)]
dηd3x. (3.7)

The transformation formulae between the comoving gauge and the flat gauge
are studied in Ref. 44), and we briefly summarize them in Appendix A. The cur-
vature perturbation in the comoving gauge ζ is related to the fluctuation of the
dimensionless scalar field (divided by Mpl) in the flat gauge ϕ as

ζ
IR≈ ζn + ζn∂ρζn +

ε2
4
ζ2
n +

ζ2
n∂

2
ρζn

2
+

3ε2ζ2
n∂ρζn
4

+
1
12
ε2(ε2 + 2ε3)ζ3

n, (3.8)

where we have introduced ζn := −(ρ′/φ′)ϕ, following Ref. 44). We use the horizon
flow function:

ε0 :=
Hi

H
, εm+1 :=

1
εm

dεm
dρ

for m ≥ 0, (3.9)

where H is the Hubble parameter and Hi is the one at the initial time. The horizon
flow function is related to the conventional slow-roll parameters as shown in Ref. 45).
Hereafter, assuming that the horizon flow functions εm with m ≥ 1 are all small of
O(ε), we neglect the terms of O(ε3). In Eq. (3.8), we neglected the cubic terms that
include only one graviton field δγ̃ij , for the following reason. Since gR1 includes only
ζ1, the terms in gR3 that include only one graviton field δγ̃ij , does not contribute to
〈gRgR〉4 after taking the contraction.
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Natural Selection of Inflationary Vacuum 1075

In line with the preceding papers,21),32) in order to calculate the n-point func-
tions, we solve the evolution equation (Heisenberg equation) for the operator ϕ, and
we express ϕ in terms of the interaction picture field ϕI . Variation of the total action
with respect to ϕ yields

e−2ρ∂η

[
e2ρ

Ñ

(
φ′ + ϕ′)] + Ñe2ρ

∑
m=0

V (m+1)

m!
ϕm

− (
φ′ + ϕ′) 1

Ñ
∂i

˜̌N i − Ñ
[
e−δγ̃

]ij
∂i∂jϕ

IR≈ 0 , (3.10)

where V (m) := dmV/dφm. To address the regularity of the graviton loops, we also
include the contributions from the gravitational wave perturbation. Variations with
respect to the lapse function and the shift vector, respectively, yield the Hamiltonian
constraint:

(Ñ2 − 1)e2ρV + Ñ2e2ρ
∞∑
m=1

V (m)

m!
ϕm + 2ρ′∂i ˜̌N i + φ′ϕ′ +

1
2
ϕ′2 IR≈ 0 , (3.11)

and the momentum constraints:

2ρ′∂iÑ − Ñ(φ′∂iϕ+ ∂iϕϕ
′)

IR≈ 0 . (3.12)

For the calculation of one loop corrections, it is enough to solve the constraint equa-
tions up to the quadratic order. These constraint equations are solved to give

δÑ
IR≈ − φ′2

2ρ′2
ζn +

1
4ρ′

ϕ
(
φ′δÑ1 + ϕ′

)
IR≈ −ε1ζn +

ε1
2

(
ε1 +

ε2
2

)
ζ2
n, (3.13)

∂i
˜̌N i IR≈ ε1ζ

′
n −

1
2
ε1ε2ζnζ

′
n. (3.14)

Substituting Eqs. (3.13) and (3.14) into Eq. (3.10), the evolution equation of ζn is
recast into a rather compact expression,

Lζn IR≈
[
−2ε1ζn +

1
2
ε1(4ε1 + ε2)ζ2

n

]
1
ρ′2

∂2ζn − ε1ε2ζn∂ρζn

−3
4
ε2ε3ζ

2
n +

([
e−δγ̃

]ij − δij
)

1
ρ′2

∂i∂jζn , (3.15)

where the differential operator L is defined by

L := ∂2
ρ + (3 − ε1 + ε2)∂ρ − 1

ρ′2
∂2. (3.16)

We expand ζn as ζn = ζn,1 + ζn,2 + ζn,3 + · · · and denote ζn,1 simply as ψ := ζn,1.
The equation of motion (3.15) is expanded as

Lψ = 0 , (3.17)
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1076 Y. Urakawa and T. Tanaka

Lζn,2 IR≈ −ε1ε2ψ∂ρψ − 3
4
ε2ε3ψ

2 − 2ε1ψ
1
ρ′2

∂2ψ − 1
ρ′2

δγ̃ij1 ∂i∂jψ , (3.18)

Lζn,3 IR≈ − 2
ρ′2

ε1(ψ∂2ζn,2 + ζn,2∂
2ψ) +

1
2ρ′2

ε1(4ε1 + ε2)ψ2∂2ψ

− 1
ρ′2

δγ̃ij1 ∂i∂jζn,2 +
1

2ρ′2
(δγ̃2

1)ij∂i∂jψ . (3.19)

Here, we neglected δγ̃ij,2 on the right-hand side of Eq. (3.19), because a particular
solution of δγ̃ij,2 is associated with derivatives, and we set its homogeneous solution
to zero. At the second order, Eq. (3.18) is integrated to give

ζn,2
IR≈ ζ̆n,2 +

1
2
δγ̃ij1 xi∂jψ, (3.20)

where, for a later use, we have distinguished the part containing the contributions
due to gravitational waves from the pure scalar part ζ̆n,2 given by

ζ̆n,2
IR≈

(ε1
2

+ ξ2

)
ψ2 + ε1ψ∂ρψ + ε1(ε1 + ε2)ψ∂ρψ

+ δζn,2 + λ2ψ(∂ρ − xi∂i)ψ . (3.21)

Here, ζ̆n,2 includes the non-local term:

δζn,2 := −L−1

[
3
4
ε2(2ε1 + ε3)ψ2

]
. (3.22)

It should be emphasized that the homogeneous solutions ξ2ψ2 and λ2ψ(∂ρ − xi∂i)ψ
can be added to ζ̆n,2, where the time dependent functions ξ2 and λ2 should be
of O(ε2) and their derivatives should be of O(ε3). One can easily check that the
above solution satisfies Eq. (3.18) to the present order of approximation, using the
commutation relations

[L, ∂ρ] = −2(1 − ε1)
1
ρ′2

∂2 + O(ε2) ,

[L, xi∂i] = − 2
ρ′2

∂2 ,

[
L, 1/ρ′2

]
= − 2

ρ′2
(2∂ρ + 1) + O(ε) . (3.23)

We are also allowed to change the solution of ζ̆n,2 at O(ε) by adjusting its solution
at O(ε2).∗) In the succeeding section, we will explain that the solution of ζ̆n,2 is
restricted by the requirement that the canonical commutation relation should be
consistently satisfied. This requirement is, however, not enough to determine ζ̌n,2
uniquely. Therefore, in Eq. (3.21), we fixed the terms of O(ε), requesting that, in
addition to the consistency of the commutation relation, ζ̌n,2 should be kept in the
simplest form.

∗) Actually, we could add a term of O(ε) proportional to ψ(∂ρ − xi∂i)ψ to ζ̆n,2.
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Natural Selection of Inflationary Vacuum 1077

At the third-order of perturbation, Eq. (3.19) is integrated to give

ζn,3
IR≈ ζ̆n,3 +

1
8

(δγ̃1δγ̃1)ij xi∂jψ +
1
8
δγ̃ij1 δγ̃

kl
1 xjxl∂i∂kψ, (3.24)

where ζ̆n,3 is the part purely composed of the scalar perturbation as

ζ̆n,3
IR≈ ξ3ψ

3 + λ3ψ
2(∂ρ − xi∂i)ψ

+
1
2
ε21ψ

2∂2
ρψ +

1
4
ε1(6ε1 − ε2)ψ2xi∂iψ. (3.25)

It is again allowed to add homogeneous solutions whose coefficients ξ3 and λ3 are of
O(ε2) and their derivatives by ρ is of O(ε3). Here we note that [L, ∂ρ−xi∂i] = O(ε).

3.3. Consistency of commutation relations

We have to take into account the following additional conditions that determine
the choice of the homogeneous solution in ζn. Until Eq. (4.13), we will leave ξ3
unspecified, but the other time dependent functions ξ2, λ2 and λ3 are constrained
in principle so as to guarantee the normal commutation relation for ψ, as we will
explain soon below.

The evolution of the Heisenberg field ζn is usually supposed to be solved with
the initial conditions that the Heisenberg field ζn is identified with the interaction
picture field ψ at the initial time. This procedure guarantees that the operator U
that relates ψ to ζn by ψ = UζnU

† is unitary. In this case, the canonical commutation
relation for ζn

[ζn(η,x), πn(η,y)] = iδ(3)(x − y), (3.26)

is equivalent to the commutation relation for the interaction picture fields

[ψ(η,x), πψ(η,y)] = iδ(3)(x − y), (3.27)

where πn is the conjugate momentum of ζn and πψ is its linear truncation. We give
a more explicit expression only up to O(ε) relative to the leading term here. In this
approximation, using Eq. (3.7), we obtain the kinetic term in the action as

Skin=
∫
dη

∫
d3x

M2
ple

2ρ

2Ñ
(φ′ + ϕ′)2 + · · ·

⊃
∫
dη

∫
d3xM2

ple
2ρε1ζ

′
n

[
(1 + ε1ζn)ζ ′n + ρ′(ε2 − 2ε1)ζn + O(ε2)

]
.

From this expression, we can define the conjugate momentum

πn :=
δSkin

δζ ′n
= M2

plε1e
2ρ

[
2(1 + ε1ζn)ζ ′n + ρ′(ε2 − 2ε1)ζn + O(ε2)

]
.

In the preceding subsection, we gave the non-linear solution by integrating the
equation of motion without care about its initial conditions. Therefore unitary rela-
tion between ψ and ζn is not guaranteed. Once we obtain the definite expansions of
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1078 Y. Urakawa and T. Tanaka

ζn and πn in terms of ψ and πψ, it would be possible to check whether the commu-
tation relation of ψ and πψ is guaranteed from that of ζn and πn or vise versa. We
can here check this consistency of these commutation relations to the only limited
extent because we have neglected the terms containing more than two interaction
picture field operators with space-time differentiation. Under this limitation, we can
evaluate the commutator, assuming [ψ(η,x), πψ(η,y)] = iδ(3)(x − y), as

[ζn(η,x), πn(η,y)] = iδ(3)(x − y)
[
1 +

{
4ξ2 − 3λ2 + O(ε2)

}
ζn

+
{
6ξ3 + 3λ3 + O(ε2)

}
ζ2
n + · · ·

]
, (3.28)

where the ellipsis represents the terms containing πψ and spatial derivatives, which
are the beyond the scope of the present paper. In this way we can verify that the
solution we gave is consistent with the expected commutation relation at O(ε). If
we have chosen an inappropriate solution for ζ̌n,2 at O(ε), the commutation relation
would not be satisfied.

At O(ε2) the terms that we could evaluate in (3.28) include the unspecified
functions ξ2, λ2, and λ3. From the requirement that the right-hand side of Eq. (3.28)
should be equated to Eq. (3.26), λ2 and λ3 are related to ξ2 and ξ3, respectively.

3.4. Calculations of scalar curvature

In this subsection, we give the expansion of the scalar curvature of a φ = constant
hypersurface gR in terms of ψ, which is the interaction picture field of ζn. Using
Eqs. (3.20) and (3.24), we first perturb the scalar curvature sR, given by Eq. (3.5),
to obtain

sR1 = sR̆1 = ∂2ψ, (3.29)

sR2
IR≈ sR̆2 +

1
2
δγij1 xi∂j∂

2ψ, (3.30)

sR3
IR≈ sR̆3 +

1
8
δγij1 δγ

kl
1 xjxl∂i∂k∂

2ψ +
1
8
(δγ2

1)ijxi∂j∂2ψ, (3.31)

where sR̆2 and sR̆3 are defined by

sR̆2
IR≈ ∂2ζ̆n,2 + ψ ∂2(∂ρ − 2 + ε2/2)ψ, (3.32)

sR̆3
IR≈ ∂2ζ̆n,3 + ζ̆n,2∂

2 (∂ρ − 2 + ε2/2) ∂2ψ

+ ψ (∂ρ − 2 + ε2/2) ∂2ζ̆n,2 + ∂2ψ∂ρζ̆n,2

+
ψ2

2
∂2

[
∂2
ρ − 4(∂ρ − 1) +

3
2
ε2∂ρ − 3ε2 +

1
2
ε2(ε2 + ε3)

]
ψ. (3.33)

To derive Eqs. (3.30) and (3.31), we have used the fact that, as presented in Eq. (A.8),
the gravitational wave perturbation in the comoving gauge δγij is identical to that
in the flat gauge δγ̃ij , besides the terms irrelevant to IR divergences.

Noting that the spatial metric after removing the common scale factor is given
by

dλ2 = e2ζ
[
eδγ

]
ij
dxidxj , (3.34)
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Natural Selection of Inflationary Vacuum 1079

the geodesic normal coordinates Xi is given by

xi(X)
IR≈ e−ζ

[
e−δγ/2

]
i
jX

j , (3.35)

where we again abbreviated the terms that include space-time derivatives. The
difference between the global coordinates and the geodesic normal ones is given by

δxi := xi(X) −X i = δxi1 + δxi2 + · · · , (3.36)

where

δxi1
IR≈ −ψX i − 1

2
δγij1 Xj , (3.37)

δxi2
IR≈ −ζ2X i +

1
2
ψ2X i +

1
8
(δγ2

1)ijXj . (3.38)

Now, we are ready to calculate the scalar curvature gR. Substituting Eqs. (3.30)
and (3.37) into Eq. (3.2), we obtain

gR2 = sR2 + δxi1∂i
sR1

IR≈ sR̆2 − ψX i∂i
sR̆1 , (3.39)

and substituting Eqs. (3.31) and (3.38) into Eq. (3.2), we obtain

gR3 = sR3 + δxi1∂i
sR2 + δxi2∂i

sR1 +
1
2
δxi1δx

j
1∂i∂j

sR1

IR≈ sR̆3 − ψX i∂i
sR̆2 −

(
ζ̆n,2 +

ε2
4
ψ2

)
X i∂i

sR̆1 +
1
2
ψ2(Xi∂i)2sR̆1. (3.40)

It would be appropriate to emphasize that, in contrast to the contributions from ζ,
the contribution from the gravitational wave perturbation δγij completely cancels
with each other in gR. This clearly shows that the graviton loop does not lead to IR
divergence at the one-loop order. This is essentially because the effect on sR from IR
modes of gravitational wave perturbation is simply caused by the associated defor-
mation of the spatial coordinates. Such gauge artifacts should completely disappear
when we consider coordinate independent quantities like gR.

§4. IR regularity and gauge-invariant vacuum

This section is devoted to show how the possibly divergent terms are cancelled
in the n-point functions of gR. As described in §3.1, in the standard cosmological
perturbation the Hilbert space has not been reduced to the one that is composed
only of the physical degrees of freedom. Namely, a part of gauge degrees of freedom
are left unfixed. Hence, an arbitrary quantum state defined in this Hilbert space can
be non-invariant along the gauge orbit of these residual gauge degrees of freedom. To
ensure the gauge-invariance of the n-point functions of gR, it turns out to be crucial
to set the initial quantum state to be gauge invariant as well. Otherwise, the n-
point functions fail to be regular due to the gauge artifacts. In this section, we reveal
how the gauge-invariance condition(= regularity condition for the n-point functions)
restricts the initial vacuum, particularly considering the one-loop correction to the
two-point function.
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1080 Y. Urakawa and T. Tanaka

4.1. Proof of IR regularity

In the previous section, we expanded the scalar curvature gR in terms of the
interaction picture field ψ. We expand ψ as

ψ =
∫

d3k

(2π)3/2

(
ψkak + ψ∗

ka
†
k

)
, (4.1)

where the creation and annihilation operators satisfy [ak, a
†
k′ ] = δ(3)(k−k′). Focus-

ing on the contribution from each Fourier mode ψk = vke
ikx, the derivative operator

xi∂i is rewritten as

xi∂iψk = vk∂log ke
ikx = ∂log kψ − eikx∂log kvk. (4.2)

For illustrative purpose, we first consider the leading order in the slow-roll ap-
proximation.22) For the Bunch-Davies vacuum, the mode function vk is given by

vk(η) = −ρ
′2e−ρ

φ′
1
k3/2

i√
2
e−ikη(1 + ikη) , (4.3)

and is easily checked to satisfy

(∂ρ − xi∂i)ψk = −Dkψk , (4.4)

where the operator Dk is defined by

Dk := ∂log k +
3
2
. (4.5)

Using Eq. (4.4), gR2 and gR3 could be compactly written as

gR2
IR≈ −ψ∂2Dkψk ,

gR3
IR≈ 1

2
ψ2∂2Dkψk . (4.6)

Taking the contractions of gR, we obtain

〈gR3(X1)gR1(X2)〉
IR≈ 1

2
〈ψ2〉

⎡
⎣ ∏
i=1,2

∫
d3ki

(2π)3/2

⎤
⎦(
D2
k1k

2
1ψk1(X1)

)
k2

2ψ
∗
k2

(X2)δ(3) (k1 − k2)

=
1
2
〈ψ2〉

∫
d(logk)

2π2
∂2

log k

{
k7/2ψk(X1)

}
k7/2ψ∗

k(X2),

and

〈gR2(X1)gR2(X2)〉
IR≈ 〈ψ2〉

⎡
⎣ ∏
i=1,2

∫
d3ki

(2π)3/2

⎤
⎦ (
Dk1k

2
1ψk1(X1)

) (
Dk2k

2
2ψ

∗
k2

(X2)
)
δ(3) (k1 − k2)

= 〈ψ2〉
∫
d(logk)

2π2
∂log k

{
k7/2ψk(X1)

}
∂log k

{
k7/2ψk(X2)

}
,
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Natural Selection of Inflationary Vacuum 1081

where using the geodesic normal coordinate we defined Xm := (η, Xm) for m = 1, 2.
Gathering the three terms on the right-hand side of Eq. (3.3), the two-point function
at one-loop order is summarized as

〈{gR(X1), gR(X2)}〉4
IR≈ 1

2
〈ψ2〉

∫
d(logk)

2π2

[
∂2

log k

{
k7ψk(X1)ψ∗

k(X2)
}

+ (c.c.)
]
, (4.7)

where we symmetrized about X1 and X2. This indicates that all the potentially di-
vergent pieces become the total derivative with respect to k and hence they vanish.∗)

At the leading order in the slow-roll approximation, the condition (4.4), sat-
isfied in the scale-invariant/Bunch Davies vacuum, was crucial to remove the IR
divergences. If we do not choose this vacuum, the quantum state is not invariant
under the residual gauge transformation, and hence the two-point function diverges.
We think that this possible divergence is attributed to infinitely large fluctuation
in the residual gauge degree of freedom corresponding to the overall rescaling of
the spatial coordinates. This unphysical degree of freedom can be tamed if and
probably only if we set the initial state to be invariant under this residual gauge
transformation, as we have anticipated earlier.

Now, we extend our argument to O(ε2). Once we include the slow-roll cor-
rections, the condition (4.4) no longer ensures the gauge invariance of the initial
state. Using Eqs. (3.32), (3.37), and (3.39), the second-order scalar curvature is
summarized as

gR2
IR≈ ψ∂2

[(
1 + ε1 + ε21 + ε1ε2 + λ2

)
∂ρψ − (1 + λ2)xi∂iψ

+
(
ε1 +

ε2
2

+ 2ξ2
)
ψ − 3

2
L−1ε2(2ε1 + ε3)ψ

]
. (4.8)

Here we used

∂2δζn,2
IR≈ −3

2
[
ψ∂2L−1ε2(2ε1 + ε3)ψ

]
, (4.9)

which follows from

L∂2δζn,2
IR≈ −3

2
L [
ψ∂2L−1ε2(2ε1 + ε3)ψ

]
.

As a natural extension of the condition (4.4), we assume that there is a set of
mode functions which satisfies

(
1 + ε1 + ε21 + ε1ε2

)
∂ρvk +

(
ε1 +

ε2
2

+ 2ξ2
)
vk

− 3
2
L−1
k ε2(2ε1 + ε3)vk = −Dkvk + O(ε3) , (4.10)

∗) Here, we assumed that the ultraviolet contribution has already been regularized appropriately,

say, by dimensional regularization. (See Ref. 25).)
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1082 Y. Urakawa and T. Tanaka

where we replaced L with Lk:

Lk := ∂2
ρ + (3 − ε1 + ε2)∂ρ +

1
ρ′2

k2. (4.11)

We will show the presence of such mode function in the succeeding subsection.
For such mode functions, the second-order scalar curvature gR2 is then simply

rewritten as
gR2

IR≈ −(1 + λ2)ψ∂2Dkψ

as in the leading-order of the slow-roll approximation. Using Eqs. (3.33), (3.38), and
(3.40) together with Eq. (4.10), the straight-forward but lengthy calculation leads to
gR3 in a rather simple expression:

gR3
IR≈ 1

2
ψ2∂2

[
(1 + 2λ2)D2

kψ − μDkψ

+
(−2ε21 + 3

2ε1ε2 + 1
2ε2ε3 + 6ξ3

)
ψ

]
− δζn,2∂

2Dkψ , (4.12)

where we defined μ := ε1 + 1
2ε2 − 3ε21 + 1

2ε1ε2 + 2(ξ2 + λ3). To ensure the absence of
the IR divergences, the arbitrary time-dependent function ξ3 should be chosen as

ξ3 :=
1
3
ε21 −

1
12
ε2(3ε1 + ε3) , (4.13)

to find

gR3
IR≈ 1

2
ψ2∂2

[
(1 + 2λ2)D2

kψ − μDkψ
] − δζn,2∂

2Dkψ . (4.14)

The possibly divergent terms are then summarized as

〈{gR(X1), gR(X2)}〉4
IR≈ 1

2
〈ψ2〉

∫
d(log k)

2π2

{
(1 + 2λ2)∂2

log k − μ∂log k

}{(
k7ψk(X1)ψ∗

k(X2)
)
+ (c.c.)

}

− 〈δζn,2〉
∫
d(log k)

2π2
∂log k

{(
k7ψk(X1)ψ∗

k(X2)
)
+ (c.c.)

}
, (4.15)

indicating that they are completely cancelled. The conditions on the initial vacuum
state are derived by requesting the regularity of the IR corrections. Since the IR
divergence is, in single field models of inflation, originating from the residual gauge
degrees of freedom,21),22) the regularity conditions can be considered as the necessary
condition for the gauge invariance.

4.2. Gauge-invariant initial vacuum

The requirement of the gauge invariance in the initial vacuum leads to the con-
dition (4.10) on the mode function vk. Taking the mode function vk in a similar
form to Eq. (4.3) as

vk(ρ̄) =
ρ′2e−ρ

φ′
1
k3/2

fk(ρ̄) , (4.16)
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Natural Selection of Inflationary Vacuum 1083

the condition (4.10) can be recast into a rather simple form:

(∂ρ̄ + ∂log k) fk(ρ̄) +
(

2ξ2 − ε21 −
1
2
ε1ε2

)
fk(ρ̄)

−3
2
L−1
k ε2(2ε1 + ε3)fk(ρ̄) = 0 , (4.17)

where we changed the time variable ρ into

ρ̄ = log ρ′ − ε1 + O(ε2) . (4.18)

Note that ρ̄ is approximately identical to ρ in the sense dρ̄/dρ = 1 + O(ε).
The mode equation Lkvk = 0 yields the evolution equation of fk as

L̄kfk(ρ̄) = 0 , (4.19)

where

L̄k = ∂2
ρ̄ + 3∂ρ̄ + e−2(ρ̄−log k) − 3(ε1 + ε2/2) + O (

ε2
)
. (4.20)

This operator L̄k is identical to Lk at the leading order in the slow roll approximation.
To fix the form of the terms written as O(ε2) in the above equation, we need to specify
the form of ρ̄ up to O(ε2). Since the explicit forms of the terms of O(ε2) in Eq. (4.20)
are not necessary for the following discussion, we leave the higher order corrections
to ρ̄ unspecified here. Operating ∂ρ̄ + ∂log k on Eq. (4.19), the solution of the mode
equation (4.19) is found to satisfy

L̄k (∂ρ̄ + ∂log k) fk =
3
2
ε2(2ε1 + ε3)fk , (4.21)

where we used [∂ρ̄ + ∂log k, L̄k] = −3ε2(ε1 + ε3/2). Multiplying the inverse of Lk
on Eq. (4.21), Eq. (4.21) reproduces the gauge-invariance condition (4.17), where
the second term of Eq. (4.17) appears as a homogeneous solution of L̄k. This indi-
cates that the solution of the mode equation (4.19) consistently satisfies the gauge-
invariance condition.

It is also possible to show that the gauge-invariance condition (4.17) is sufficient
to ensure that the mode equation is satisfied for all wavenumbers, if it is satisfied for
a particular wavenumber k0: Lk0fk0(ρ̄) = 0. In fact, by using the gauge-invariance
condition, one can show

∂log kL̄kfk|k=k0 = (∂ρ̄ + ∂log k) L̄kfk|k=k0
= L̄k (∂ρ̄ + ∂log k) fk|k=k0 −

3ε2
2

(2ε1 + ε3) fk0 + O(ε3) = O(ε3) , (4.22)

which proves that thanks to the gauge-invariance condition, the mode function for
another wavenumber is guaranteed from that for k0.

As was anticipated in §4.1, the commutation relation for ψ is now verified. This
commutation relation is equivalent to the normalization condition for vk given by

Nk :=
ie3ρ̄ (fk∂ρ̄f∗k − f∗k∂ρ̄fk)
k3 {1 − 2ε1 + O(ε2)} = 1 .
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1084 Y. Urakawa and T. Tanaka

As in the case of mode equation, we assume that the normalization condition is
satisfied for a particular wavelength k0 as Nk0 = 1. Then, using the gauge-invariance
condition (4.17), we obtain

∂log kNk|k=k0 = (∂ρ̄ + ∂log k)Nk|k=k0 = B − 4ξ2 . (4.23)

where the first term B is of O(ε2) and its explicit form is not necessary in the current
discussion. An important fact is

∂ρ̄∂log kNk|k=k0 = 0, (4.24)

holds exactly, because ∂ρ̄ and ∂log k commute with each other and the normalization
condition Nk is conserved. Therefore the right hand side of Eq. (4.23) is guaranteed
to be constant in time. Then, by choosing ξ2 appropriately, we can always set

∂log kNk|k=k0 = O (
ε3

)
. (4.25)

This proves that one can extend the mode function by the gauge-invariance condition
(4.17) to the other wavenumbers keeping the normalization condition satisfied.

We summarize how the time dependent functions ξ2, ξ3, λ2 and λ3 are de-
termined uniquely and consistently. ξ2 was fixed by requesting the normalization
condition to be consistent with the gauge invariance of the initial state, while ξ3 was
fixed from the IR regularity of the two point function. As presented in Eq. (3.28),
to ensure the consistent commutation relations, λ2 and λ3 are also fixed once ξ2
and ξ3 are given. In this paper, we have not derived the gauge-invariance condition
(4.17) but we just postulated it. The above discussions, however, have proven that
this condition can be imposed consistently by choosing the homogeneous solution
appropriately in ζn.

§5. Conclusion

We presented, in the standard single field inflation model, one example of the
calculation of a genuine gauge-invariant quantity, i.e., the two-point function of gR,
which is the spatial curvature perturbation on a φ = constant hypersurface with its
arguments specified in terms of the geodesic normal coordinates. We showed that,
taking an appropriate initial vacuum, the two-point function for gR no longer yields
IR divergences at one-loop order. It would be also possible to extend our argument to
higher orders in loops and also to the general n-point functions. The quantities that
are compared with actual observations like the fluctuation in the Cosmic Microwave
Background should also be such genuine gauge-invariant quantities. Hence, our
result strongly indicates that such quantities are also IR regular for the standard
single field inflation model.

In the global gauge that we used in this paper the residual gauge degrees of
freedom were not fixed. The residual gauge degrees of freedom include the overall
spatial scale transformation corresponding to a constant shift of ζ in the δφ = 0
gauge, which is the origin of the IR divergences. To remove IR divergences, hence,
we had to impose the invariance of quantum states in the direction of the residual
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Natural Selection of Inflationary Vacuum 1085

gauge, which requests additional gauge invariance conditions, such as Eqs. (4.10)
and (4.13), on the choice of the initial quantum state. The condition (4.10) restricts
the mode function for the interaction picture field and the condition (4.13) restricts
the relation between the Heisenberg field and the interaction picture field. In the
present paper, we derived these conditions, requiring, instead of the gauge-invariance
itself, that the possibly divergent terms should be written in the form of total deriv-
atives under the momentum integral. While the adopted iterative solution to the
Heisenberg equation, that is used to obtain these gauge invariance conditions, may
not be general enough. In this sense, it may be possible to find other vacua that are
regular against IR contributions. Namely, the gauge-invariance condition (= regu-
larity condition) may not uniquely determine the vacuum state in the inflationary
universe. Therefore what we have derived is not a necessary condition but a sufficient
condition for the IR regularity. We also expect one can specify the initial quantum
state directly from requirement of the gauge-invariance, but this point has not been
clarified yet at all. We leave these issues for future work. At the leading order
in the slow-roll approximation, the condition (4.10) is automatically satisfied in the
scale-invariant (Bunch-Davies) vacuum. However, at the higher order in the slow-roll
approximation, this condition looks quite non-trivial. Our preliminary analysis tells
that this vacuum state seems to coincide with the one naturally obtained by using
the usual iε prescription. We would like to report on this point in our forthcoming
publication.46)

In contrast to the case of the global gauge, if we fix all the residual gauge degrees
of freedom and quantize only physical degrees of freedom, we need not to restrict
the initial quantum state by imposing additional gauge invariance conditions. This
would provide another way of quantization that also yields no artificial divergences.
In our previous work,21) following this direction, we tried to fix the residual gauge
degrees of freedom, including the overall scaling of spatial coordinates, by imposing
appropriate conditions. (We refer to this gauge as the local gauge.21)) If we perform
the canonical quantization in the local gauge and give the initial state there, the local
gauge conditions ensure the regularity of the IR corrections, without restricting the
initial quantum state. It is, however, not so trivial to perform canonical quantization
in the local gauge, because of additional conditions to fix the residual gauge degrees
of freedom. Furthermore, if we set initial vacuum in the local gauge, it would be
in general breaks the invariance under spatial translation. In our previous work,21)

We therefore chose the initial vacuum state in the global gauge and then linearly
transformed the interaction picture field from the global gauge to the local one. The
truth is that in this gauge transformation there appear the non-linear contributions
that can cause IR divergence. These contributions were not taken into account in
Ref. 21) and the expression in the local gauge was still including the divergent terms.
One can say that this is due to the lack of the gauge invariance in choosing the initial
state, because the IR divergence actually disappears at the leading order in the slow-
roll approximation if we take the Bunch-Davies vacuum, which is invariant under
the scale transformation. To guarantee the IR regularity also at higher orders in this
approximation, we need to adapt the gauge-invariance condition as is done in this
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paper.∗)
In this paper we have solved the Heisenberg equation to the second order in

the slow roll approximation. Up to this order, we showed the presence of a gauge
invariant initial quantum state that is free from IR divergences. But it looks quite
non-trivial to extend our results to the higher order in the slow roll approximation.
For the complete understanding of IR issue in the standard single field inflation
model, it is also definitely necessary to prove the existence of such an initial quantum
state without relying on the slow roll approximation.
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Appendix A
Third-Order Gauge Transformation

In this appendix, we study the change of variables between the flat gauge with
sR = 0 and the comoving gauge with δφ = 0. We denote the gauge transformation
from the flat gauge to the comoving gauge as x̃μ = eLξxμ where ξμ is the vector
field ξμ = (α, βi). In the present paper it is not strictly necessary to transform the
spatial coordinates, but we do this for future application. For the same reason, we
also leave the terms that do not yield IR divergences here.

In accordance with Ref. 44), we use the cosmic time t and denote its deriva-
tive by a dot. From the condition that this transformation makes the scalar field
perturbation to vanish, we obtain

0 = ϕ+ Lξ(φ+ ϕ) +
1
2!
L2
ξ(φ+ ϕ) +

1
3!
L3
ξ(φ+ ϕ) + · · · , (A.1)

It is enough to calculate the perturbed expansion up to the third order. Using
Eq. (A.1), the time shift α is solved at each order as

ρ̇α1 = − ρ̇
φ̇
ϕ =: ζn , (A.2)

ρ̇α2 =
ρ̇

2φ̇2
ϕϕ̇ =

1
4
(∂ρ + ε2)ζ2

n , (A.3)

ρ̇α3 =
1
12
ζ2
n∂

2
ρζn +

1
3
ζn (∂ρζn)2

∗) These points will be clarified in the errata of 21).
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+
3
16
ε2ζn∂ρζ

2
n +

1
24
ε2(2ε2 + ε3)ζ3

n +
1
2
βi2∂iζn , (A.4)

where, β1 = 0 is presumed. In both flat and comoving gauges, the traceless part of
the spatial metric gij is requested to satisfy the transverse conditions. To maintain
these transverse conditions, we also need to change the spatial coordinates at second
order. The spatial component of the metric then transforms as

e2ζ
[
eδγ

]
ij

=
[
eδγ̃

]
ij

+ (α1 + α2 + α3)e−2ρ∂t

(
e2ρ

[
eδγ̃

]
ij

)
+ βk2∂k

[
eδγ̃

]
ij

+2
{
∂(iβ

k
2 + ∂(iβ

k
3

}[
eδγ̃

]
j)k

+
1
2
e−2ρ(α1 + α2)∂t

{
(α1 + α2)∂t

(
e2ρ

[
eδγ̃

]
ij

)}

+
1
3
e−2ρα1∂t

{
α1∂t(α1ρ̇e

2ρ)
}
δij + Hij , (A.5)

where Hij is defined as

Hij := 2e−2ρ
{
∂(iα1 + ∂(iα2

}
Nj) + α1e

−2ρ∂t
{
∂(iα1Nj) + e2ρ∂(iβj),2

}
+βk2∂kρ̇α1δij + 2ρ̇α1∂(iβj),2

+e−2ρ∂(iα1

{
−∂j)α1 − 2∂j)α2 − 2∂j)α1δN + α1Ṅj) + α̇1Nj) + e2ρβ̇j),2

}
−α1∂(iα1∂j)α̇1 − α̇1∂iα1∂jα1 . (A.6)

Taking the trace part of Eq. (A.5), we obtain

ζ = ρ̇ (α1 + α2 + α3) + {ρ̇(α1 + α2)}2 +
1
2
(α1 + α2)∂t {ρ̇(α1 + α2)}

+
1
6
e−2ρα1∂t

{
α1∂t(ρ̇α1e

2ρ)
} − (ρ̇α1)2 +

4
3
(ρ̇α1)3

−1
6
δij

{[
eδγ

]
ij
−

[
eδγ̃

]
ij

}
+

1
6
α1∂t δ

ij
[
eδγ̃

]
ij

+
1
6
H +

1
3
(∂iβj2 + ∂iβj3)

[
eδγ̃

]
ij

−ρ̇α1

{
2ρ̇α2 +

2
3
∂iβi,2 + α1e

−2ρ∂t(ρ̇α1e
2ρ) +

1
3
H

}
, (A.7)

where we defined H := δijHij. For our purpose, it is sufficient to consider the
gravitational wave perturbation up to the second order. Neglecting the third-order
terms, the transformation of the transverse traceless tensor is given by

δγij = δγ̃ij + ζn∂ρδγ̃ij +
(
δi
kδj

l + δj
kδi

l − 2
3
δijδ

kl

)

×
(
∂kζn

e−2ρ

ρ̇
Nl + ∂kβl,2 − 1

2
e−2ρ

ρ̇2
∂kζn∂lζn

)
. (A.8)

Now, it is clear that δγij agrees with δγ̃ij , after we neglect the terms that are irrele-
vant to IR divergences. Using Eqs. (A.2)–(A.4) and Eq. (A.8), Eq. (A.7) is rewritten
as

ζ = ζn +
1
2
∂ρζ

2
n +

1
4
ε2ζ

2
n +

1
2
ζ2
n∂

2
ρζn +

3
8
ε2ζn∂ρζ

2
n +

1
12
ε2(ε2 + 2ε3)ζ3

n + ζn(∂ρζn)2

+
1
2
βi2∂iζn −

2
3
ζn∂

iβi,2 +
1
3
(∂iβi2 + ∂iβ

i
3) −

1
3
δγ̃ij∂iζn

e−2ρ

ρ̇2
Nj
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+
1
6
e−2ρ

ρ̇2
δγ̃ij∂iζn∂jζn +

1
6
(1 − 2ζn)H . (A.9)

Multiplying the spatial derivative ∂i on Eq. (A.5), βi,2 is given as a solution of the
Poisson equation:

∂2βi,2 = −∂jζn∂ρδγ̃ij − ∂jHij,2 +
1
3
∂iH2

+
1
4
∂i∂

−2

[
∂k∂lζn∂ρδγ̃kl +

(
∂k∂l − 1

3
δkl∂2

)
Hkl,2

]
, (A.10)

where we used ∂iβi,2, given by operating ∂i∂j on Eq. (A.5). At the third order, βi,3
is obtained in a similar manner. It is notable that βi,n (n = 2, 3, · · · ) is multiplied
by at least one wavenumber vector in the momentum representation. Neglecting
the terms that are irrelevant to the IR divergences, the curvature perturbation ζ is
related to ζn as

ζ = ζn +
1
2
∂ρζ

2
n +

ε2
4
ζ2
n +

1
2
ζ2
n∂

2
ρζn

+
3
8
ε2ζn∂ρζ

2
n +

1
12
ε2(ε2 + 2ε3)ζ3

n + · · · . (A.11)

Here, we also neglected the cubic-order terms with only one graviton field δγij , since
its contribution vanishes in 〈gRgR〉4.
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